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Facilitating Electric Passenger Transport Systems
Integrating Renewable Energy Sources

Omkar Parishwad

Department of Architecture and Civil Engineering
Chalmers University of Technology

Abstract
Transport electrification driven by net-zero emission targets in the transport
sector requires accurate prediction of charging demand and cost effective
deployment of charging and energy infrastructure. This thesis begins with
a comprehensive review of infrastructure and energy supply for transport
electrification, with emphasis on near-term charging demand prediction, the
integration of renewable energy with charging infrastructure, and system-level
impacts.

Addressing identified research gaps, the first study develops an integrated
agent-based modeling framework to generate spatiotemporal charging demand
profiles. The framework jointly accounts for cost-aware charging behavior, daily
activity chains, and route and mode choice, while incorporating multiple charger
types, dynamic time-of-use tariffs, and probabilistic adaptive smart-charging
behavior that allows users to shift charging to reduce costs while mitigating
range anxiety.

Building on the near-future charging demand outputs, the second study de-
velops a large-scale optimization framework for the deployment of multi-class
public chargers, co-located photovoltaic systems, and battery energy storage
(BESS). The framework jointly optimizes charger placement, PV sizing, BESS
scheduling, and user incentives for short-distance spatial demand redirection,
while accounting for land-use constraints, seasonal PV capacity factors, and
time-of-use tariffs.

The developed approaches are demonstrated in a real-world case study of
Gothenburg using multisource data. System benefits are assessed across eco-
nomic, operational, and environmental dimensions. The results provide quanti-
tative evidence on how user charging behavior and smart charging influence
spatiotemporal demand, and how the integration of renewable energies with
BESS and incentive-based demand management can jointly enable cost-effective
and sustainable charging and energy supply for electric passenger transport.

Keywords: Integrated modeling and optimization; Charging demand fore-
casting; Charging preferences; Diverse user behavior; Charging infrastructure
deployment; Renewable energy; Battery storage systems.
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Chapter 1

Introduction

The electrification of urban passenger transport is accelerating, driven by
binding decarbonisation targets and rapid advances in vehicle and charging
technologies. The global Electric Vehicle (EV) fleet increased from 26 million
in 2022 to 40 million in 2023 and is projected to approach 60 million by 2025
(Cavalcante et al., 2024). In Europe, EV market share is expected to rise from
18% in 2023 to 25% in 2025 and exceed 60% by 2030 (Zaino et al., 2024; Jung
et al., 2023). Sweden aims to reach net-zero greenhouse gas emissions by 2045
under its national Climate Act, while EU policy frameworks mandate climate
neutrality by 2050, with EVs identified as a central component of the transition
(Rodrigues et al., 2023).

High penetration of EVs brings significant charging and energy infras-
tructure challenges, which are both technical and behavioral, and must be
captured to guide infrastructure planning. Uncoordinated charging can in-
crease local peak demand by up to 35%, risking transformer overloads, voltage
instability, and costly reinforcements in the Power Distribution System (PDS)
(Alvarez Guerrero et al., 2022; Ibrahim et al., 2024). Public charging infrastruc-
ture deployment is lagging. Only 150 000 new chargers were installed in 2023,
compared with the 410 000 with over 1.2 million units per year needed to meet
2030 targets (Karuppiah et al., 2024). Projections indicate that accommodating
an additional 75 million EVs by 2030 in Europe could require over AC 6.7 tril-
lion in grid upgrades by 2050 (Christensen et al., 2024). Integrating on-site
Renewable Energy Sources (RES), particularly Photovoltaic (PV) generation
with co-located Battery Energy Storage System (BESS) (Stecca et al., 2022),
and applying smart charging control strategies (Singh et al., 2022), offers a
viable mitigation pathway. Case studies show that co-located PV–BESS can
reduce peak grid imports by about 18% (Thunuguntla et al., 2024), while
Time-of-Use (ToU) tariffs and other adaptive charging strategies can shift at
least 20% of load to off-peak periods (Zhong et al., 2024b). Such measures
improve grid resilience, reduce operational costs, and increase the utilization of
locally generated renewable electricity (Dey et al., 2024).
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2 CHAPTER 1. INTRODUCTION

Accurate prediction of future charging demand is vital for charging in-
frastructure deployment, grid management, and policymaking (Kim and Kim,
2021). EVs alone are projected to account for 6–8% of global electricity demand
by 2035, underlining the urgency of robust demand estimation methods that
extend beyond static averages to behavior-sensitive models (Rietmann et al.,
2020). Forecasting remains challenging due to heterogeneous travel patterns,
charging behaviors across locations (home, work, public), vehicle specifications,
and user preferences. These behaviors are further shaped by external factors
such as ToU pricing and smart charging, as spatiotemporal charging costs
strongly influence when, where, and how users charge. Despite methodological
progress, significant gaps persist. Many models rely on static or simplified
assumptions, failing to capture the probabilistic, spatiotemporal, and cost-
sensitive nature of charging decisions (Adenaw and Lienkamp, 2021; Yi et al.,
2023; Wu et al., 2023). Although sensitivity to dynamic pricing is well docu-
mented (Visaria et al., 2022; Ensslen et al., 2018), it is often underrepresented
in large-scale agent-based simulations. Some studies incorporate strategies
such as plan-ahead and event-triggered charging, but integrated models that
jointly account for daily activity chains, dynamic pricing, smart charging,
and users’ travel and charging preferences remain scarce. Current approaches
often separate travel behavior modeling from charging demand estimation,
limiting the ability to capture interdependencies between travel and charging
behavior (He et al., 2022; Kim and Kim, 2021). These shortcomings constrain
realistic emulation of charging patterns and undermine spatiotemporal demand
estimation critical for infrastructure and energy planning.

Despite ambitious policy targets, Europe installs only about one-fifth of
the public charging points required annually to meet regulatory and projected
demand, highlighting a significant infrastructure deficit (Cui and Zhao, 2024;
European Commission. Joint Research Centre., 2023). This shortfall empha-
sizes the need for planning strategies that optimize not just charger numbers,
but also their spatial allocation and operational integration. Existing research
has advanced charger siting, PV sizing, and BESS deployment, yet typically
treats these dimensions in isolation or limited combinations. To date, no
unified optimization framework simultaneously addresses multi-class charger
placement, PV and BESS deployment, and optimal BESS scheduling. Sim-
ilarly, while demand-side management and spatial demand redirection have
been studied independently, integrating driver acceptance–based incentives
into infrastructure and PV–BESS planning to mitigate localized peaks remains
unexplored. Moreover, current models often neglect practical constraints such
as land-use and parking limitations, PV installation bounds, dynamic ToU
tariffs, and the spatiotemporal interplay of charging demand with renewable
generation (Sayarshad, 2024; Ji et al., 2024). In summary, the dual chal-
lenge lies in accurately forecasting behavior sensitive charging demand and
in strategically deploying charging and energy infrastructure under real-world
spatial, temporal, and economic constraints. Addressing these gaps motivates
the methodological developments in this thesis, with demand modeling and
infrastructure optimization to support sustainable transport electrification.
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Scope and contributions

Building on the research gaps and motivations outlined above, this thesis is
initiated through an extensive literature review (Paper I) to assess the current
state of knowledge on transport electrification, focusing on near-future charging
demand prediction, impacts on the PDS, and the prospects for integrating RES
with charging infrastructure. The review, elaborated in Chapter 2, identifies two
primary research gaps. First, accurate estimation of future charging demand
for passenger transport requires an integrated and scalable spatiotemporal
modeling approach that captures heterogeneous charging behaviors and the
influence of dynamic pricing or smart charging technologies, with consideration
of daily activity travel patterns, route, and mode choice behaviors. This
motivates us to conduct the first research (elaborated in Paper II) to develop
an integrated agent-based framework to estimate future spatiotemporal EV
charging demand. The framework captures users’ charging decisions by linking
daily travel behavior (including activity chains, mode, and route choices) with
cost-minimizing responses to heterogeneous charging costs of different charger
types, ToU electricity pricing, and adaptive smart charging.

Second, the review further synthesizes empirical evidence on how rising EV
penetration stresses the PDS, including voltage sags, thermal overloads, and
reduced reliability, and catalogs mitigation strategies such as smart grid con-
trols, distributed storage, and RES coupling to improve capacity and stability.
Notably, limited work has assessed how co-located PV and BESS can mitigate
peak loads under behavior sensitive demand management via user redirection.
This motivates us to conduct the second research elaborated in Paper III about
a holistic framework to co-optimize multi-class charger infrastructure, PV, and
BESS deployment, with co-optimization of BESS discharging and charging
scheduling and behaviorally informed user redirection for demand management.

Integrated and agent-based charging demand prediction considering
cost-aware and adaptive charging behavior (Paper II):

This study develops an integrated agent-based framework to estimate future
spatiotemporal EV charging demand. The framework captures users’ charging
decisions by linking daily travel behavior (including activity chains, mode, and
route choices) with cost-minimizing responses to ToU electricity pricing. It
accounts for heterogeneous charging costs across charger types and incorporates
smart charging strategies. A central contribution is a probabilistic and adaptive
smart charging module that enables users to reschedule charging within plugged-
in windows to exploit ToU price variations. Embedded within an extended
Multi-Agent Transport Simulation (MATSim) scoring function, the module
jointly models mode choice, route choice, and charging behavior, thereby
capturing realistic user trade-offs often overlooked in existing models. Agents
adjust charging timing and location within their activity windows to minimize
cost and maintain sufficient State-of-Charge (SoC), with heterogeneity modeled
through configurable awareness and coincidence factors. This generates realistic
and spatiotemporal varying demand profiles.
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Joint optimization of charging infrastructure and RES with BESS
considering user redirection incentives (Paper III):

This study develops a holistic framework for the co-optimization of multi-
class charger infrastructure, PV deployment, and BESS integration. The
framework incorporates dynamic BESS scheduling that synchronizes charg-
ing and discharging with PV generation profiles and ToU electricity tariffs,
thereby enhancing system flexibility and maximizing arbitrage opportunities.
In addition, it introduces a behaviorally informed user-redirection mechanism
that embeds distance- and time-based rebate incentives to mitigate localized
peak loads by steering demand toward underutilized and RES-rich charging
sites. The framework is validated through a real-world case study leveraging
multi-source big data to assess practical outcomes including operator profit
gains, reductions in grid electricity purchases, achievable redirection demand,
and associated environmental benefits.

The proposed methods are applied to the Greater Gothenburg region under
a 50% EV adoption scenario. The case study incorporates detailed road
networks, public transport timetables, and heterogeneous charger specifications.
A synthetic population of 557 220 commuter agents produces fine-grained
charging profiles, demonstrating the influence of price-responsive and behavior
sensitive modeling (Paper II). The optimization then identifies the cost-optimal
mix and location of home (7 kW), slow (11 kW), medium (22 kW), and fast
(50 kW) chargers co-located with PV and BESS capacity, balancing operator
profit with system cost (Paper III). The findings provide a realistic and data-
driven basis for evaluating the technical and economic feasibility of RES
integrated charging infrastructure in urban contexts.

Through these work, this thesis aims to answer the following research
questions. This thesis establishes reproducible approaches including agent-
based charging demand forecasting and strategic infrastructure planning with
system cost and benefit assessment for urban transport electrification.

• Behavior-aware spatiotemporal charging demand forecasting:
How to incorporate price-responsive and smart charging behavior into
agent-based modeling with daily travel pattern simulations to produce
high resolution spatiotemporal EV charging demand forecasts?

• Joint charging and energy infrastructure optimization: How can
multi-class charger siting, PV capacity allocation, and BESS scheduling
be co-optimized in an optimization to minimize annualised infrastructure
and electricity procurement costs?

• Renewable integration impact: How much can co-located PV and
battery storage reduce peak grid imports and total system cost?

• User Incentive charging demand management: To what extent
can spatially-targeted user incentives and demand redirection smooth
charging demand peak loads and enhance operator net-profit?
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• Case-study validation: How does the integrated framework perform,
both in terms of spatiotemporal charging patterns and optimal infras-
tructure deployment in a realistic case study of Gothenburg, Sweden?

Disposition of this thesis

This thesis comprises five chapters, followed by the appended research papers
(List of Publications). Chapter 2 presents a comprehensive literature review on
EV charging demand estimation, PDS interactions, and charging infrastructure
planning, and identifies the research gaps addressed in this thesis. Chapter 3 de-
tails the integrated methodological framework, including the extended MATSim
based Agent-Based Modeling (ABM) for high resolution and behavior sensitive
charging demand estimation (Paper II) and the Mixed-Integer Linear Program-
ming (MILP) formulation for strategic deployment of multi-class chargers, PV
generation, and BESS with operation optimization and system benefit assess-
ment (Paper III). Chapter 4 reports the application of proposed approaches
to a 50% EV adoption scenario in Gothenburg, describing data preparation,
outputs, optimization results, and key insights. Chapter 5 summarizes the
main findings, discusses limitations including the aggregate treatment of PDS
constraints and exclusion of Vehicle to Grid (V2G) interactions, and outlines
directions for future research.

The appended papers provide the full manuscripts and author contribu-
tion statements, supporting the summary and analysis presented in the main
chapters.



Chapter 2

Literature Review

This chapter reviews key research on transport electrification, drawing on the
synthesis presented in Paper I. The review is structured into three thematic
areas that directly align with the thesis contributions. Section 2.1 discusses
methodological trends and gaps in spatiotemporal EV charging demand es-
timation. Section 2.3 examines interactions between EV charging and the
PDS, including grid impacts and mitigation strategies with emerging smart
technologies such as V2G. Section 2.2 surveys charging infrastructure optimiza-
tion studies, considering both transport system perspectives and integrated
approaches that incorporate RES and PDS constraints.

2.1 Charging Demand estimation

Charging demand estimation forecasts the spatiotemporal energy requirements
of EVs, providing the basis for charging infrastructure deployment and PDS
management. This is distinct from charging activity, which records individual
charging events in simulation outputs (Yang et al., 2023; Radermecker and
Vanhaverbeke, 2023). Accurate demand estimates are critical for sizing charging
infrastructure and for validating model performance (Arias and Bae, 2016).
Underutilization of stations, often linked to accessibility, compatibility, or
socioeconomic disparities (Yi et al., 2022), can create network imbalances and
inequitable service provision, underscoring the need to capture spatiotemporal
demand patterns. Supporting even a single EV can raise residential electricity
consumption by nearly 50% (Brouwer et al., 2013), with level 1 chargers
typically used overnight at home. By contrast, level 2 and level 3 chargers,
prevalent in public, workplace, or commercial settings, impose larger coincident
loads and significantly reshape peak demand patterns (Xu et al., 2017; Ermagun
and Tian, 2024; Lou et al., 2024). In line with prior reviews (Goh et al., 2022),
modeling approaches can also be distinguished by their horizon of application,
from short-term forecasts for operational scheduling to long-term projections
for strategic planning and policy analysis.

6



2.1. CHARGING DEMAND ESTIMATION 7

2.1.1 Traditional rule-based and dynamic models

Early static models applied fixed load profiles or static origin destination
matrices, treating charging demand as temporally invariant and assuming
homogeneous user behavior (Sreekumar and Lekshmi, 2024). While computa-
tionally efficient, these methods lack realism in heterogeneous urban contexts
and fail to capture variability in demand (Deb et al., 2018b; Hüttel et al., 2021).
Rule-based approaches use simple heuristics, such as instructing all vehicles
to charge when SoC falls below 20%, but do not consider stochastic travel
patterns, charger availability, or user preferences (Çelik and Ok, 2024; Sanami
et al., 2025).

Dynamic models incorporate temporal variation and are typically divided
into short-term and long-term horizons. Short-term models forecast from
minutes to days, supporting operational planning. Classical methods include
regression, clustering, and Markov chains with spatial and temporal covariates
such as traffic flow and weather (Meyers and Yang, 2022). Nonlinear approaches,
including random forests and gradient boosting, improve accuracy in mixed
continuous categorical data settings (Parishwad et al., 2023). Geospatial
analytics and GIS methods map temporal usage patterns but often omit
capacity constraints or queuing effects (Khalife et al., 2022; Vansola et al.,
2023). Probabilistic models address uncertainties in trip chains, travel times,
and battery depletion, offering scenario-based risk assessments (Maity and
Sarkar, 2023; Das et al., 2022), though they remain limited by reliance on
historical data.

Long-term models, intended for strategic infrastructure planning over
months or years, apply time series techniques such as ARIMA, transformer-
based models, and ensemble approaches to project broader demand trends at
station or zone levels (Kim and Kim, 2021; Sike et al., 2023). More recent work
employs deep learning architectures, including spatiotemporal graph convo-
lutional networks, Long Short-Term Memory (LSTM) models, and attention-
based transformers, which capture complex spatial and temporal dependencies
(Wang et al., 2023; Huang et al., 2023). These methods improve spatial and
temporal coverage (Yi et al., 2022; Garrison et al., 2023) but face challenges with
generalization, vanishing gradients, and data scarcity for emerging behaviors
(Shi et al., 2023; Koohfar et al., 2023).

2.1.2 Agent-based modeling frameworks

ABMs represent individual commuters, with explicit daily activity chains,
travel choices, and charging behavior, producing high resolution and behavior
sensitive spatiotemporal charging demand profiles. Early work by Novosel et al.
(2015) coupled MATSim mobility outputs with EnergyPLAN, an advanced
energy-systems analysis model (Lund et al., 2004; Lund and Thellufsen, 2022),
to translate travel energy into grid impacts and demonstrated the feasibility of
linking transport and energy models, but were limited to home to work routines
and excluded explicit charger representation, dynamic tariffs and user behavior
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adaptive charging strategies. However, that implementation was limited to two
daily activities (home and work) and excluded explicit charger representation,
dynamic tariffs, and varied charging strategies. Zhuge et al. (2021) extended
this by modeling both link and node-based charging facilities in MATSim,
showing how spatial layouts influence station choice, but still assumed that
agents charge at the nearest available facility regardless of SoC, price incentives,
or accessibility.

Subsequent studies have progressively expanded ABM capabilities towards .
Yi et al. (2023) applied MATSim at the city scale to estimate public charging
demand and optimize station siting using a capacitated maximal-coverage
approach, validated against high resolution synthetic and observed data, but
without accounting for home charging or ToU pricing, both of which strongly
influence demand distribution. On interurban corridors, Wu et al. (2023)
modeled SoC and proximity based station selection for long distance trips,
though the highway focus limited its applicability to urban multimodal set-
tings. In city contexts, Adenaw and Lienkamp (2021) developed the UrbanEV
co-evolutionary extension for MATSim, embedding multi-criteria convenience
and preference factors into charging decisions. Their work relied on simpli-
fied behavioral calibration and excluded explicit responses to price variability.
Fadranski et al. (2023) combined MATSim travel patterns with spatial opti-
mization via a genetic algorithm to balance capital costs and user detours in
Berlin, but the model lacked temporal demand variation and smart charging
incentives. Large-scale applications by Muratori et al. (2021) and Menter et al.
(2023) demonstrated the potential of ABM for integrated energy mobility plan-
ning, while Lin et al. (2024) surveyed driver-behavior influences on charging
distribution. Both emphasized the need for dynamic tariff integration and
richer behavioral heterogeneity. Behavioral archetypes such as “plan ahead”
and “event triggered” charging strategies are documented, yet they are rarely
operationalized within large-scale ABMs. Wongsunopparat and Cherian (2023)
examined consumer adoption factors without translating findings into charging-
behavior simulations, and Hartvigsson et al. (2022) mapped geographic patterns
of power-system violations without modeling diverse charging strategies.

In summary, ABMs address many limitations of static and dynamic fore-
casting by capturing individual routines, stochastic travel patterns, and facility
interactions. Yet no existing framework integrates complete daily activity
chains, heterogeneous charger classes, dynamic ToU tariffs, and probabilistic
smart charging at the urban scale. Paper II addresses this by embedding a
stochastic smart charging module within the MATSim scoring function, en-
abling agents to reschedule charging during plugged-in windows based on cost,
convenience, and range anxiety. To address these gaps, Paper II embeds a
stochastic smart charging module within the MATSim scoring function, en-
abling agents to optimize charging decisions based on cost, convenience, and
range anxiety, thereby generating high resolution, behavior sensitive charging
demand forecasts.
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2.2 Optimal deployment of Charging Infrastruc-
ture

Planning EV charging infrastructure involves two key decisions, spatial siting
(where to locate charging stations) and charger sizing (how many units and
what power classes). These decisions influence user accessibility, travel time,
and system cost, and also interact with PDS limits such as voltage stability
and thermal capacity. Although most studies approach planning from either
a transport system or PDS perspective, integrating RES is essential for the
sustainable development of coupled transport and power systems, as illustrated
in Figure 2.1. The literature can be grouped into transport system oriented opti-
mization, which treats demand and grid conditions as exogenous, and integrated
planning, which jointly considers chargers, RES, and PDS constraints.

Figure 2.1: RES integrated transport electrification

2.2.1 Standalone optimization of charging infrastructure

Early work formulated siting as a network location problem, such as maximal
coverage, p-median, or flow refuelling variants, to maximize coverage or mini-
mize detours, typically assuming demand fixed in space and time. Data-driven
siting using large-scale mobility traces has shown how heuristic and exact
formulations can reduce excess travel while limiting the number of stations
(Vazifeh et al., 2019). Decomposition methods such as Benders and column
generation allow tractable solutions under probabilistic reachability and range
uncertainty, but generally omit renewables and tariff dynamics (Lee and Han,
2017). The Restriction Fragment Length Polymorphism (RFLP) generalisation
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with Benders decomposition has improved scalability for intercity corridors
(Arslan and Karaşan, 2016). Recent reviews summarise siting and sizing for-
mulations, identifying trade-offs between coverage, cost, and equity, and note
that many models remain static with respect to temporal demand variation
and grid constraints (Ahmad et al., 2022; Çelik and Ok, 2024).

Time and price signals or ToU are more often considered in operational
rather than siting objectives. Empirical analysis of non-residential charging in
Northern California shows that controlled charging within parking windows
combined with ToU tariffs can cut peak contributions by up to 40% and shift
demand to off-peak hours, demonstrating the value of tariff-aware operation
even when locations are fixed (Kara et al., 2015). In fleet and logistics contexts,
joint routing and charging formulations increasingly account for incentive mech-
anisms and spatiotemporal prices, using bi-level or decomposition approaches;
these can lower operator costs but generally assume a predetermined network
(Yao et al., 2023).

Public transport applications introduce additional constraints from timeta-
bles and layover durations. Integrated planning models co-optimize charger
placement with charging and scheduling decisions to minimize annual costs or
energy penalties. Recent work allows flexible public transit timetable adjust-
ments and both depot and on-route charging options (Duan et al., 2023; Gairola
and Nezamuddin, 2023). Extensions have added energy storage at depots and
explicitly incorporated ToU tariffs and capacity charges into the operating
objective (Zhong et al., 2024a). Despite these advances, most transport-focused
studies continue to treat charging demand as exogenous and to simplify inter-
actions with PDS and RES.

2.2.2 Integrated charging infrastructure planning

A second stream of research couples siting and sizing decisions with the energy
supply side. Reviews of energy planning emphasize the need to impose dis-
tribution network limits, including voltage stability and thermal loading, and
to co-optimize supply options such as grid connection, on-site PV, and BESS
to mitigate local peaks and reduce connection costs (Ahmad et al., 2022). At
the station level, recent models determine PV and BESS capacities together
with operational schedules to shave peaks and lower energy costs, often using
mixed-integer or conic optimization with explicit solar generation profiles (Dong
et al., 2024; Huang et al., 2024; Dai et al., 2019). In extreme fast-charging and
highway contexts, joint optimization of PV, BESS, and grid supply has been
shown to improve economics under both demand and irradiance uncertainty
(Liu et al., 2021). At the city scale, energy mobility studies highlight the role
of BESS in matching variable RES output to EV demand and in alleviating
feeder congestion (Fachrizal et al., 2024).

Demand-side coordination is more often treated as an operational problem
after siting decisions have been made. Stochastic and model-predictive control
schemes for stations participate in demand response programmes, achieving
peak reduction and cost savings through price-based or incentive-based load
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shifting. However, such approaches typically optimize a single site or operate
on a fixed network rather than co-designing locations and capacities (Zanvettor
et al., 2024; Casini et al., 2021). Incentive-aware formulations in mobility
services confirm that targeted flexibility payments can redirect charging demand
in both space and time, but these are rarely embedded within city-wide siting
models that also account for RES, BESS, and PDS constraints (Yao et al.,
2023). The literature demonstrates three main streams. Mature transport-side
siting and sizing models optimized for coverage, cost, and service objectives
(Vazifeh et al., 2019; Lee and Han, 2017; Arslan and Karaşan, 2016), station
and grid-side models that co-optimize PV-BESS capacity and operation under
tariff variation and solar intermittency (Dong et al., 2024; Liu et al., 2021;
Šolić et al., 2023), and the operational demand management through demand
response and incentives for local peak mitigation (Zanvettor et al., 2024).

Despite progress in each area, there remains a clear gap in urban-scale
optimization that simultaneously (a) sites and sizes multi-class chargers, (b)
sizes and schedules co-located PV and BESS, (c) respects land-use and PDS
constraints, (d) uses realistic, behavior-driven demand profiles, and (e) incorpo-
rates price and incentive-based redirection. This gap motivates the optimization
framework presented in Paper III and discussed later in this thesis.

2.3 Interactions with Power Grid

The accelerated adoption of EVs requires a detailed assessment of PDS impacts
and the effectiveness of mitigation measures. This section reviews how charging
demand influences grid performance and summarizes strategies such as demand
response, RES BESS integration, smart grid controls, and V2G that can
improve voltage stability, relieve thermal constraints, and enhance reliability.
Demand response refers to actions within the PDS that reduce demand during
peak periods and increase it during off-peak periods, with users acting as active
participants in system balancing. Electrification of passenger transport adds
new stresses to the PDS, including transformer and feeder loading, voltage
stability issues, and potential reliability risks. Here, feeders are the set of
distribution branches that extend from the source to load areas, delivering
power to end users. Understanding these interactions is essential for designing
operational strategies and infrastructure investments that maintain power
quality and resilience.

2.3.1 Grid impact of charging

Uncoordinated charging can overload transformers and feeders, increase system
losses, and cause voltage deviations. These risks are most pronounced during
evening peaks and in dense urban feeders. Studies using standard IEEE
radial test systems (Deb et al., 2018a; Shukla et al., 2019) and both real and
synthetic feeder models (Banol Arias et al., 2018; Jones et al., 2021) consistently
report thermal and voltage violations under high EV penetration. Large-
scale geographic analyses further show that violation risks vary spatially and
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seasonally; urban areas and price-optimized charging can worsen low-voltage
problems, whereas rural feeders are generally less constrained (Hartvigsson
et al., 2022).

Mitigation strategies can be grouped into siting and operational measures.
On the siting side, placing public chargers to balance feeder loading can
improve voltage profiles and reduce overload events (Nugraha et al., 2023).
On the operational side, coordinated or price-responsive scheduling reduces
simultaneous charging events and flattens peaks (Bouhouras et al., 2022). Power
quality concerns, such as voltage unbalance and harmonics at the end of long
feeders, motivate the use of local filtering, inverter-based mitigation, managed
charging, and V2G support (Kumar et al., 2021). Long-term analyses indicate
that hosting capacity depends on tariff structures and the proliferation of
fast chargers and BESS, although integrated assessments of these factors are
still limited (Polat et al., 2023; Khan et al., 2019). Overall grid reliability is
ultimately linked to targeted reinforcements such as transformer upgrades or
network sectionalising, as well as advanced operational tools including voltage
optimization and state estimation, particularly under increasing RES and EV
penetration (Bibak and Tekiner-Mogulkoc, 2021; Ghania et al., 2022).

2.3.2 Grid mitigations via smart technologies

Smart charging strategies can be implemented in centralized form, controlled
by an aggregator or distribution system operator, or in decentralized form,
where users respond to broadcast price signals (Xu et al., 2018). Empirical
and simulation studies report substantial benefits. In non-residential contexts,
price-aligned control can reduce coincident peaks and lower monthly electricity
bills (Kara et al., 2015). City-specific assessments reveal heterogeneous gains
across private, commercial, and fleet segments (Jian et al., 2018). Comparative
analyses indicate that loss-oriented scheduling can reduce network losses, while
cost-oriented scheduling lowers electricity procurement costs (Khalid et al.,
2024). Incorporating marginal carbon intensity into charging schedules can
further reduce emissions relative to uncontrolled charging (Li et al., 2023; Zhong
et al., 2024c).

V2G extends these capabilities by enabling bidirectional power flow, allowing
EVs to contribute to peak shaving, frequency regulation, and local voltage
support (Hu et al., 2016). Recent planning models co-optimize V2G-enabled
charger siting with operational strategies under both public and private charging
modes, explicitly representing user PDS interactions (Niu et al., 2024). At the
microgrid scale, studies examine the economics of V2G for ancillary services
when combined with on-site RES and storage (Pilotti et al., 2023). Cost
benefit analyses for managed charging show that tariff-aligned control can
deliver significant peak reduction and bill savings in non-residential settings,
even without full bidirectional capability (Kara et al., 2015). However, few
works jointly optimize long-term V2G scheduling with spatial infrastructure
planning under distribution constraints (Chauhan and Jain, 2024). Only a
small number of studies embed smart charging or V2G control within large-
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scale demand simulations, which limits the co-design of infrastructure and
operational strategies. Many existing analyses rely on coarse hourly time
steps, missing sub-hourly peaks that can stress network assets. There is a
clear need for frameworks that integrate transport ABMs with feeder-resolved
PDS simulations to evaluate infrastructure investments alongside operational
controls. This motivates future research that links behavior sensitive demand
from our agent-based framework with detailed distribution grid models to
co-design tariffs, incentives, and operational strategies.

Synthesis: Drawing together from this literature review, several critical gaps
emerge that shape both the contributions of this thesis and priorities for future
research.

• Charging demand estimation: Many forecasting approaches treat demand
as exogenous, static, or only weakly sensitive to user behavior, which limits
their ability to reproduce the spatial and temporal patterns of charging in
cities. Recent ABM studies with MATSim demonstrate that microscopic
activity chains can produce accurate charging demand estimates and
inform location optimization. However, typical implementations still
simplify the interaction between home and public charging and under-
represent price responsiveness.

• Integrated charging with RES and smart systems: Transport-focused
siting and sizing models often achieve good spatial coverage but omit
co-sizing of RES and BESS or realistic tariff signals. Conversely, many
station-level energy models co-optimize PV, BESS, and operations but
assume fixed networks and static demand. There is a need to co-design
charger locations, capacities, and on-site energy resources under time-
varying prices and solar availability. Smart charging and incentive-based
redirection of EV users have shown promise for peak reduction but remain
underused in holistic planning. Future work should incorporate driver
acceptance functions for travel distance and time-cost trade-offs directly
into network-wide siting and operational decisions.

• Integrated behavioral-grid modeling: Evidence from distribution network
studies shows that uncoordinated charging can cause transformer and
feeder overloads and voltage deviations. Coordinated or tariff-aligned
control mitigates these impacts, yet most urban siting models still abstract
away feeder constraints and reliability indicators. Future extensions
should incorporate detailed grid power flow modeling to improve system
resilience and support decarbonisation objectives.

These gaps motivate the integrated pipeline developed in this thesis. User
behavior sensitive, agent-based charging demand estimation (Paper II), and
city-scale co-optimization of multi-class chargers with co-located PV and BESS
under time-varying tariffs (Paper III). The framework provides a basis for
extending future work to embed feeder-level PDS constraints and services.
Promising directions beyond the present scope include coupling the optimiza-
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tion with feeder-resolved hosting-capacity limits and voltage objectives; ex-
tending to bidirectional services (V2G) with joint siting and scheduling under
user acceptance and market participation; and developing hybrid modeling ap-
proaches that combine activity-based simulation with data-driven forecasting to
capture nonlinear behavioral adaptation over time. Addressing these priorities
would advance the next generation of EV electrification studies, linking de-
tailed behavioral demand models with robust infrastructure and energy system
optimization to achieve sustainable and cost-effective transport electrification.



Chapter 3

Methodology

Urban transport electrification requires charging and energy infrastructure that
is both sufficient to meet demand and strategically designed to minimize cost,
grid stress, and environmental impact. Determining where and how much infras-
tructure to deploy depends critically on accurate forecasts of when and where
charging demand will occur (i.e., spatiotemporal charging demand). Without
a realistic demand model, investments risk being either undersized, leading to
congestion and reliability issues, or oversized, resulting in underutilised assets
and unnecessary capital costs.

This thesis develops methodologies for future charging demand estimation
and strategic charging infrastructure planning for satisfying spatiotemporal
charging demand. The first work extends the MATSim framework with in-
tegrated charging behavior modeling and a stochastic and adaptive smart
charging module (Paper II). Agents optimize charging timing and location de-
cisions in response to their SoC, charging costs, walking distance, and schedule
constraints. This produces behaviorally realistic and price-responsive charging
profiles that reflect both planned and spontaneous charging decisions. The sec-
ond work establishes a mixed-integer linear program (Paper III) to co-optimize
charger siting, renewable integration, and BESS operation, with the option
to introduce location-specific user incentives that redirect demand toward
underutilised infrastructure. This two-stage pipeline bridges the critical gaps
identified in the literature review.

The following sections of this chapter describe these two components in
detail. Section 3.1 presents the agent-based charging demand model embedded
in MATSim, including its data requirements, decision rules, and behavioral
parameters. Section 3.2 outlines the strategic optimization model for EV
charging infrastructure, PV, and BESS deployment, and explains how the
outputs of the first stage feed into the second.

15
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3.1 Agent-based charging demand model consid-
ering charging behavior

Estimating realistic spatiotemporal patterns of EV charging demand requires
a modeling framework that captures individual travel behavior, system-level
transport equilibrium, and the diversity of charging strategies. ABMs are
well suited to this task because they simulate each traveller’s complete daily
activity chain, covering home, work, shopping, and leisure. It also embeds trip
generation, mode and route choice, and charging decisions within a unified and
probabilistic structure. In contrast to static or rule-based estimators, ABMs can
model heterogeneous charging behaviors (immediate event-triggered charging
versus delayed plan-ahead strategies), capture the interaction between home,
workplace, and public facilities, and account for responses to time-varying tariffs.
By combining road network properties, traffic conditions, socio-demographic
profiles, and empirical charging behavior, the model produces charging demand
profiles that evolve in response to changes in infrastructure and pricing. This
addresses a key limitation in much of the literature (Chapter 2), the absence
of scalable and behaviorally detailed approaches that generate spatiotemporal
charging demand endogenously. The complete nomenclature for the following
method is listed in Appendix A.1.

3.1.1 Integrated charging demand estimation

To capture the evolution of charging demand under realistic user decisions and
tariff structures, we extend the MATSim co-evolutionary replanning process
with an EV-oriented module based on the EV-Contrib architecture (ETH Zürich
et al., 2016). Each synthetic agent is assigned an activity plan with explicit
timing and mode choice, as well as a vehicle profile specifying battery capacity,
energy consumption rate, charger plug compatibility, and access type. As agents
move through the road network, their SoC is continuously updated. When
the SoC drops below a critical level, or when a planned charging opportunity
aligns with cost or convenience preferences, a charging event is dynamically
scheduled at a compatible facility. Charger attributes include location, plug
type, access classification (home, work, public), outlet count, power level, and
pricing scheme, with home chargers following hourly ToU tariffs and workplace
or public chargers following fixed rates.

The decision logic is embedded within MATSim’s iterative scoring and
replanning loop (Figure 3.1). The plan utility combines conventional MATSim
activity and travel components with EV-specific terms for charging cost, range
anxiety, walking disutility, and state-of-charge penalties (Arabani et al., 2024).
This enables agents to weigh travel time, monetary cost, and comfort when
selecting charging locations and start times. A stochastic BestScore replanning
strategy, augmented with the extended utility, iteratively improves each agent’s
plan until the system converges to an equilibrium in both mobility and charging
behavior. Two behavioral archetypes are implemented to reflect heterogeneity
in charging decisions. In the event-triggered strategy, agents initiate charging
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Figure 3.1: Integrated MATSim workflow for EV charging demand estimation

as soon as SoC falls below a defined threshold, regardless of activity duration.
In the plan-ahead strategy, agents with longer parking durations defer the
start of charging to align with lower ToU prices, provided that sufficient SoC
is maintained. Start times are chosen through a utility-maximising search
within the available parking window. If the required charging time exceeds
the idle time, the strategy defaults to immediate charging. The proportions
of agents following each strategy are set using two configurable parameters:
the awareness factor, representing the share of agents who respond to tariff
signals, and the coincidence factor, representing the likelihood of ignoring price
in favour of convenience. These parameters capture heterogeneity in price
sensitivity and concurrent charger usage.

The modeling integrates multiple spatial and operational datasets. The
road network is derived from processed OpenStreetMap data, with attributes
for mode eligibility, capacity, functional class, and free-flow speed. Charger
locations are specified in an additional network layer, while agents without
assigned home or workplace chargers are probabilistically matched to facilities
within a 500 m search radius, assuming 80% home charger access. Activity
plans are generated from empirical distributions of activity types, timings, and
spatial locations (Tozluoğlu et al., 2023). Vehicle attributes are defined using
MATSim’s person and vehicle schema, with energy consumption and battery
dynamics determining SoC evolution during trips.

Electricity prices are incorporated through a time-dependent multiplier
Mtemporal(t) that reflects hourly ToU tariffs. Agents with the “aware” attribute
access these prices in real time during simulation, adjusting charging decisions
accordingly. Charging demand thus emerges endogenously from the intersection
of trip-based energy depletion, charger availability, activity duration, tariff
information, and agent-specific decision rules. The simulation is run with a 10%
synthetic population sample, consistent with sampling fidelity studies (Kuehnel
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et al., 2022), ensuring computational tractability while preserving spatial and
temporal resolution. Charger availability is not artificially constrained, allowing
charging patterns and load profiles to emerge directly from the interaction of
demand, infrastructure, and pricing.

3.1.2 Utility parameters for scoring function

In the MATSim co-evolutionary replanning framework, each agent evaluates
its daily activity-travel plan through a pseudo-random utility maximisation
process. Alternative plans are scored, compared, and selected probabilistically
over successive iterations (Arabani et al., 2024). The base plan utility, S∗

plan,
aggregates the utilities of activities and the disutilities of travel across all N
legs in the plan:

S∗
plan =

N−1∑
q=0

Sact,q +
N−1∑
q=0

Strav,q. (3.1)

The activity utility for leg q, Sact,q, reflects the marginal benefit of remaining
at the location for duration tdur,q relative to a reference duration tdur,0, and
applies penalties for arriving early or late:

Sact,q = βdur ln

(
tdur,q
tdur,0

)
+ βearly tearly,q + βlate tlate,q. (3.2)

Here, βdur denotes the marginal utility of activity duration, while βearly and
βlate are schedule-deviation penalties.

The travel disutility term, Strav,q, incorporates a mode-specific constant, travel
time, direct monetary cost, travel distance, and transfer penalties:

Strav,q = Cmode(q) + βtrav,mode(q) ttrav,q + βm ∆mq

+
(
βd,mode(q) + βm γd,mode(q)

)
dtrav,q + βtransfer xtransfer,q. (3.3)

Table 3.1: Default utility parameters for the Urban EV module

Parameter Value Parameter Value Parameter Value

Tsimulation 170 h NagentPlans 5 βemptyBattery -30.0
dwalk,max 500 m thresSoC 20% βrangeAnxiety -10.0
preplan,nonCrit 0.3 NmaxChanges 5 βwalk -1.0
ptimeAdjustment 0.1 tflexibility 1200 s βsocDiff -5.0
chomeCharging 1.5 cpublicCharging 5.5 cworkCharging 5.0
βmoney 1.0 βtemporalCost 1.0 βchargerCost 1.0

To model EV-specific charging behavior, S∗
plan is extended with additional com-

ponents representing monetary charging cost, range anxiety, battery depletion,
walking distance to chargers, and a penalty for finishing the day with a lower
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SoC than at the start:

SEV, plan = S∗
plan − βmoney Ccharging + βrangeAnxiety SrangeAnxiety

− βemptyBattery SemptyBattery − βwalking Swalking − βSoCdiff SSoCdiff.
(3.4)

The extended terms are defined as follows:

Charging cost utility

Ccharging, a(t) = Econsumed, a(t) · Ccharger ·Mtemporal(t) (3.5)

where Econsumed, a is the charged energy for agent a (kWh), Ccharger is the
charger type specific price, and Mtemporal(t) is the dynamic ToU multiplier for
simulation time t.

Range anxiety penalty

SrangeAnxiety, a =

{
βrangeAnxiety · thresSoC−SoCa

thresSoC
, if SoCa ≤ thresSoC

0, otherwise
(3.6)

Battery depletion penalty

SemptyBattery, a =

{
βemptyBattery, if SoCa = 0

0, otherwise
(3.7)

Walking disutility

Swalking,a = βwalk ·
(
1− exp

(
−λ · dwalk,a

dwalk,max

))
(3.8)

where dwalk,a is the straight-line distance from the charger to the activity
location, and λ controls decay rate.

SoC differential penalty

SSoCdiff, a = βsocDiff ·max
(
0,SoCstart, a − SoCend, a

)
(3.9)

Home charging is not directly rewarded in utility terms but typically yields
lower disutility because ChomeCharging < CworkCharging, CpublicCharging, allowing
tariff differentials to shape location choice.
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Figure 3.2: Charging decision making logic considering dynamic charging costs

3.1.3 Adaptive smart charging model

The model embeds a novel stochastic smart charging module within MATSim’s
replanning loop (Figure 3.1), enabling adaptive charging decisions that reflect
heterogeneous user behavior (Figure 3.2). Each agent carries a dynamically
updated SoC throughout the mobsim routine. If the SoC falls below the range-
anxiety threshold, an event-triggered charging activity is immediately inserted
at the nearest accessible and compatible charger, reflecting the high penalties
associated with low SoC and battery depletion (Eqs. (3.6)–(3.7)).

If no threshold violation occurs, the model forecasts post-trip SoC. Charging
is then considered during the next activity if (a) the projected SoC would
breach the threshold and (b) a charger lies within the maximum walking
radius (500 m). At this stage, the cost component defined in Eq. (3.5) is
applied. Agents with probabilistic price awareness may defer charging within
the available dwell window, optimizing for periods of lower ToU tariffs. The
actual charging start time is then given by

toptstart = arg min
t∈[tarr, tdep−Tcharge]

{
Ccharging(t)

}
, (3.10)

where Ccharging(t) denotes the expected charging cost at time t. Agents lacking
price awareness, or with insufficient idle time, default to immediate charging.
A coincidence factor introduces additional stochasticity, simulating clustered
starts or incidental human delays.

The entire simulation logic is executed within an integrated MATSim
framework, and charging is managed intrinsically in this implementation,
allowing for the decoupling of plug-in and charging start times, as well as
value-of-time and money considerations, vehicle queuing, and unplugging of
EVs at activity end. Over successive iterations, the system converges toward a
quasi-equilibrium in which charging demand profiles emerge endogenously from
the interplay of infrastructure availability, tariff structures, and heterogeneous
user responses. During replanning, agents adjust departure times, routes, or
charging node choices to improve their overall score. This integrated agent-
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based model enables the evaluation of demand-shifting effects resulting from
pricing information and provides a tractable mechanism for simulating adaptive
smart charging behavior under various infrastructural or policy scenarios, which
can be scaled up to simulate any region or country.

3.2 Deployment of charging infrastructure with
RES and BESS

The second work applies a large-scale mixed-integer optimization model to
determine the cost-optimal siting and sizing of public EV chargers, co-located
PV capacity, and BESS. This formulation builds on the harmonised spatiotem-
poral inputs produced in Section 3.3, where agent-based charging events from
Section 3.1 are spatially mapped to a common hexagonal grid and temporally
aggregated into representative days and intervals. The complete nomenclature
is listed in Appendix A.2.

The study area is discretised into hexagonal cells i ∈ I, each representing a
candidate site for public charging infrastructure and on-site energy resources.
The planning horizon comprises a reduced set of representative days m ∈ M
(one per month or season) and half-hourly intervals t ∈ H, allowing seasonal and
diurnal variability to be retained at manageable computational cost. Charging
demand from the ABM is aggregated by site, day, and interval, and is separated
into home and public classes b ∈ B. This yields demand tensors Di,m,t,b that
form the core of the capacity and energy-balance constraints.

Public charging capacity is modeled through integer decision variables xi,c

for charger classes c ∈ C, subject to site-specific capacity limits. Home chargers
Chome

i are treated as fixed, cost-free capacity external to the charging point
operator (Charging Point Operator (CPO)) decision scope. PV deployment
is represented by Ψi, the number of installed panel units at site i, each with
nominal capacity Ψcap and bounded by land-availability limits Ψ̄i. Battery
deployment is represented by Θi, the number of storage units at site i, each
with rated energy capacity Θcap, round-trip charge and discharge efficiencies
ηch, ηdis, and an upper bound Θ̄i. Grid electricity is procured at time-of-use
tariffs ρm,t, while PV output is calculated from Ψi and exogenous capacity
factors ppvm,t derived from clear-sky or satellite-based irradiance profiles.

To improve utilization and alleviate localised congestion, the model allows
incentive-based spatial redirection of public charging demand. Directed arcs
(i, j) ∈ D define feasible redirection from an overloaded origin cell i to an
underutilised destination j within a maximum network distance. Redirection
is modeled only when destination capacity is available and when the energy
to be shifted exceeds a minimum threshold. For active arcs (i, j,m, t) ∈ A,
the CPO offers a monetary rebate Ti,j proportional to the additional travel
time, representing compensation for user inconvenience. Redirected volumes
are constrained by the receiving site’s available charger capacity and by user
acceptance assumptions.
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By structuring the model around representative days, respective charging
demands, site-specific capacity bounds, and cost parameters, the formulation
remains transferable to any urban context. When coupled with local inputs for
demand, tariffs, solar capacity factors, and siting constraints, it can produce
infrastructure portfolios that reflect local travel behavior, energy pricing, and
renewable resource availability.

3.2.1 The MILP objective function

The MILP is formulated to determine the annual net profit of the charging point
operator (CPO) over the planning horizon, balancing revenues from energy
sales against operating costs, user incentive payments, and the amortised cost of
infrastructure investments. Let Ndays(m) denote the number of representative
days for month m and DAYS the total number of days in the year. The
objective function is expressed in Equation (3.11).

max
∑

m∈M
Ndays(m) ×

(
Revenuem − Costgridm − Costincentivem − Costslackm

)
︸ ︷︷ ︸

Annual operating profit

− DAYS ×
(
CapExchargers +CapExΨ +CapExΘ

)
︸ ︷︷ ︸

Annualised capital cost

,

(3.11)

The annual operating profit term aggregates results over all representative
months and consists of four components:

Charging revenue: Total income from charging services is computed by
multiplying per-kWh tariffs Pricec by the delivered energy ei,m,t,c,b across all
cells, intervals, demand classes, and charger types:

Revenuem =
∑
i∈I

∑
t∈H

∑
b∈B

∑
c∈C

Pricec × ei,m,t,c,b. (3.12)

This covers both directly served demand and any energy delivered to users
redirected from other locations.

Grid electricity cost: Energy purchased from the power grid, whether
supplied directly to vehicles or used to charge storage, is priced at the applicable
time-of-use tariff ρm,t:

Costgridm =
∑
i∈I

∑
t∈H

∑
b∈B

ρm,t ×
(
gdiri,m,t,b + gbatti,m,t

)
. (3.13)
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User incentive payments: When public charging demand is redirected
from an origin cell i to a destination cell j, the CPO compensates the user
based on the travel time difference, represented here as a per-kWh rebate Ti,j :

Costincentivem =
∑

(i,j)∈D

∑
t∈H

Ti,j × nκ
i,j,m,t. (3.14)

The variable nκ
i,j,m,t denotes the number of redirected charging events in the

given arc and time slot.

Slack penalty: A penalty is applied to any portion of demand that cannot
be met due to insufficient capacity:

Costslackm = λslack

∑
i∈I

∑
t∈H

∑
b∈B

ϵi,m,t,b. (3.15)

The coefficient λslack is set at a sufficiently high value to ensure that unmet
demand is minimized in optimal solutions.

The annualised capital cost term converts up-front investments into equivalent
daily annuities using a present-value factor (PVFg) for each asset type g (slow,
medium, fast chargers, PV panels, and battery units), defined as:

PVFg(r, ng) =
1

365

r(1 + r)ng

(1 + r)ng − 1
, (3.16)

where r is the real discount rate and ng the asset lifetime in years. These
factors are then applied to compute annualised costs:

CapExchargers =
∑
i∈I

∑
c∈C

PVFc × ρc × xi,c, (3.17)

CapExΨ =
∑
i∈I

PVFΨ × ρΨ ×Ψi, (3.18)

CapExΘ =
∑
i∈I

PVFΘ × ρΘ ×Θi. (3.19)

In combination, Equations (3.11) (3.19) provide a unified framework in which
both the operational and investment dimensions are optimized simultaneously.
This enables the joint evaluation of charging revenues, energy procurement
strategies, incentive-based demand management, and the deployment of PV
and BESS assets within a consistent economic objective.

3.2.2 Infrastructure capacity and demand fulfilment con-
straints

The model limits the number of public chargers that can be installed in each
grid cell i ∈ I to respect space and land-use constraints:∑

c∈C
xi,c ≤ C

.pub

i , ∀ i ∈ I. (3.20)
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Here, xi,c is the integer count of chargers of type c, and C
.pub

i specifies the
maximum allowable number of public units in cell i.

At any month m and time interval t, total dispatched charging energy across
all demand classes must not exceed the installed technical capacity:

∑
b∈B

∑
c∈C

ei,m,t,c,b ≤
∑
c∈C

Kc xi,c, ∀ i,m, t. (3.21)

The term ei,m,t,c,b represents energy delivered to class b by chargers of type c
at cell i.

Home charging demand benefits first from the capacity of pre-installed

chargers C
.home

i , each with power Khome. Any remaining load is met by public
infrastructure or penalised through slack.

∑
c∈C

ei,m,t,c,home + ϵi,m,t,home = max
{
0, Di,m,t,home −Khome C

.home

i

}
. (3.22)

Similarly, public charging demand in each cell is balanced by local service
and the net effect of redirections:

∑
c∈C

ei,m,t,c,public+ ϵi,m,t,public = Di,m,t,public−
∑

j:(i,j)∈D

zi,j,m,t+
∑

j:(j,i)∈D

zj,i,m,t.

(3.23)
Slack variables ϵi,m,t,b are penalised in the objective to enforce near-complete
demand fulfilment wherever feasible.

3.2.3 Energy balance and renewable-integration constraints

For every cell, representative month, and time interval, total energy supplied
from the grid, on-site PV, and BESS discharge must equal the energy delivered
to EVs:

gdiri,m,t,b + pvdiri,m,t,b + ddisi,m,t,b =
∑
c∈C

ei,m,t,c,b, ∀ i,m, t, b. (3.24)

PV output, whether consumed directly or routed into storage, is limited by
the installed panel capacity Ψi, per-panel rating Ψcap, and the time-varying
capacity factor ppvm,t:

pvdiri,m,t,b + pbatti,m,t ≤ Ψcap Ψi p
pv
m,t, ∀ i,m, t. (3.25)
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3.2.4 Battery scheduling and operational constraints

The BESS state-of-charge SoC χi,m,t evolves over time according to the follow-
ing continuity equation:

χi,m,t =


αΘi Cap

Θ, t = 1, m = 1,

χi,m−1,|H|, t = 1, m > 1,

χi,m,t−1 + ηch
(
gbatti,m,t + pbatti,m,t

)
− 1

ηdis

∑
b∈B ddisi,m,t,b, t > 1,

(3.26)
where α is the initial SoC fraction, ηch and ηdis are charging and discharging
efficiencies, and CapΘ is the capacity of a single battery unit.

The SoC is kept within safe operating limits:

βmin Θi Cap
Θ ≤ χi,m,t ≤ βmax Θi Cap

Θ. (3.27)

To prevent simultaneous charging and discharging, a binary mode indicator
δi,m,t is used:

gbatti,m,t + pbatti,m,t ≤ M δi,m,t,
∑
b∈B

ddisi,m,t,b ≤ M (1− δi,m,t), ∀ i,m, t, (3.28)

where M is a suitably large constant.

The number of battery units is an integer variable subject to site-specific
bounds:

0 ≤ Θi ≤ Θi, Θi ∈ Z≥0. (3.29)

3.2.5 Spatial redirection and incentive constraints

Candidate redirection arcs (i, j) ∈ D are pre-processed from the road network
using a maximum travel distance dmax. Only arcs meeting this distance
threshold and a minimum demand condition κmin for (i, j,m, t) are retained in
set A. The per-kWh rebate for accepting a redirection is calculated as:

Ti,j = vtime

(
1

vcar
+

2

vwalk

)
dij , (3.30)

where vtime is the user’s value of time, and vcar and vwalk are travel speeds by
car and on foot, respectively.

Total incentive expenditure is then:∑
(i,j,m,t)∈A

Ti,j n
κ
i,j,m,t. (3.31)

Each redirected trip consumes on average κ kWh:

zi,j,m,t ≤ κnκ
i,j,m,t. (3.32)



26 CHAPTER 3. METHODOLOGY

Finally, an arc may only carry redirected flows if activated by binary variable
Yi,j,m,t, with flows bounded by the capacity at the receiving location:

κmin Yi,j,m,t ≤ zi,j,m,t ≤ Yi,j,m,t

∑
c∈C

Kc xj,c, ∀ (i, j,m, t) ∈ A. (3.33)

This MILP framework integrates charger siting and sizing, PV and BESS
operation, and spatial demand management under realistic spatial, technical,
and behavioral constraints. In its current form, PDS effects are included in
aggregate through tariffs and capacity limits; feeder-level impacts such as
voltage deviation, thermal constraints, or hosting capacity are not yet explicitly
modeled. As discussed in Section 2.3, incorporating such constraints, alongside
potential V2G services, remains a key direction for future work.

3.3 Spatiotemporal data integration

The abovementioned approaches require harmonised spatial and temporal
datasets that serve both the agent-based charging demand estimation and the
strategic infrastructure deployment optimization. These datasets consist of
the synthetic populations, the multimodal transport network, the charging
infrastructure, and the temporal energy context, are processed to a common
spatial and temporal resolution so that the outputs from the ABM can be
directly utilised in the MILP framework.

3.3.1 Synthetic population and activity-travel patterns

The ABM is initialised with a synthetic population that captures the heterogene-
ity of urban travellers (Tozluoğlu et al., 2023). Each agent is assigned a daily
activity plan, consisting of ordered sequences of activities such as home, work,
shopping, and leisure, with geocoded origins and destinations, start times, and
durations drawn from household travel surveys or diary datasets (ETH Zürich
et al., 2016). Socio-demographic attributes, including age, employment status,
income group, and vehicle ownership, influence travel demand, mode choice,
and the likelihood of charger access (Westin et al., 2018). For EV-owning agents,
battery capacity, energy consumption rate, and plug compatibility are specified
in line with observed fleet compositions. These attributes are encoded using
MATSim’s XML schema and govern the iterative mobility-charging decision
process described in Section 3.1.

3.3.2 Transport network and charging infrastructure

Routing, mode choice, and charger accessibility assessments rely on a mul-
timodal transport network and a detailed charger inventory. The network,
derived from cleaned OpenStreetMap data and General Transit Feed Specifica-
tion (GTFS) feeds, is converted into MATSim-compatible XML with attributes
such as link capacity, free-flow speed, mode eligibility, and transit timetables
(Calazans Campelo et al., 2017; Fayyaz S. et al., 2017). Charger locations are
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Figure 3.3: Overview of data streams and their role in the optimal charging-
infrastructure framework

represented as georeferenced points classified by power class, plug type, and
access category (home, workplace, or public) (Erbaş et al., 2018). Land-use
layers, building footprints, and parking polygons provide constraints for feasible
charger placement and maximum site density (Csiszár et al., 2019; Abdullah
et al., 2022). All spatial layers are projected to a common coordinate reference
system and overlaid on a uniform grid, which defines the candidate site set
i ∈ I for the optimization stage (Section 3.2).

3.3.3 Dynamic tariffs and RES generation profiles

Temporal datasets supply the dynamic context for charging decisions in the
ABM and operational scheduling in the MILP. Electricity tariffs are sourced
from day-ahead market data, adjusted for taxes, network charges, and retail
margins, and expressed as hourly or half-hourly price series. In the ABM,
these prices enter the decision logic through the time-dependent multiplier
Mtemporal(t) (Birk Jones et al., 2022; Yang et al., 2024). Renewable generation
is represented through monthly-by-hour PV capacity factors, obtained from
clear-sky models or satellite-based irradiance datasets, which determine the
temporal coincidence between local generation and charging demand (Ameur
et al., 2020; Liu and Du, 2023).

3.3.4 Spatial and temporal aggregation

The ABM produces millions of timestamped charging events, each with location,
energy charged, and charger type. These events are spatially mapped to their
host grid cell and temporally aggregated into representative periods and discrete
time intervals (48 half-hour slots), producing a demand tensor Di,m,t,b over
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sites i, representative periods m, time intervals t, and charger classes b. This
aggregation ensures that high resolution charging patterns from the behavioral
simulation are directly compatible with the spatial and temporal discretisation
used in the MILP constraints as per Equations (3.22) to (3.23).

By aligning all spatial layers, activity-travel attributes, tariff profiles, and
renewable output data within a single reference system and discretisation
scheme, the integrated pipeline ensures that demand forecasts from the ABM
can be seamlessly converted into infrastructure and operational decisions in
the optimization model. This harmonisation improves reproducibility, enables
consistent sensitivity analysis under alternative infrastructure or tariff scenar-
ios, and makes the approach transferable to other urban contexts without
modification to the underlying framework.

3.3.5 Land-use and land-cover constraints

Realistic infrastructure planning must account for spatial limits on the installa-
tion of charger and PV infrastructure. These limits are determined by available
Land-Use and Land-Cover (LULC) spatial capacities, parking capacities, and
consideration for pre-existing chargers. They are implemented in the optimiza-
tion model as upper bounds on the corresponding decision variables, ensuring
that results remain physically and legally feasible for any study region.

Public-charger capacity bounds: For each grid cell i ∈ I, the maximum number
of deployable chargers is linked to the availability of suitable parking spaces. The
methodology assumes that each designated public parking can host a charging
point, an approach consistent with prior siting studies (Giménez-Gaydou et al.,
2016; Bian et al., 2019). Parking inventories can be compiled from LULC
analysis or multiple geospatial sources such as municipal parking registers,
open data parking lot layers, and volunteered or crowdsourced geographic
information, and merged after removing spatial duplicates. The resulting
per-cell counts form the charger installation limit (Cpub

i ), which constrains
the public-charger siting decision variables in the optimization framework (see
Equation (3.20)).

PV installation potential: PV installation limits are derived from two comple-
mentary spatial datasets. First, publicly available parking lot inventories are
used to identify areas where full canopy coverage is feasible; here, we assume
that 100% of the delineated parking-lot footprint can be considered for PV
deployment. Second, high resolution aerial or satellite imagery combined with
vector land use and building footprints is classified using supervised LULC
mapping techniques applied in solar siting studies (Nanda et al., 2020; Sander
et al., 2024). A conservative fraction (10%) of the total available area is assumed
suitable for PV deployment, accounting for shading, access, and structural
constraints. This area is converted into a maximum number of PV panels per
cell (Ψi) which acts as the PV capacity bound in the optimization framework
(see Equation (3.25)).
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Private-home charger inputs: Existing private home chargers are treated
as exogenous charging capacity, available to meet residential demand before
any public infrastructure deployment. The potential stock is estimated from
residential building footprints classified as eligible single-family dwellings and
filtered for minimum floor area. An assumed penetration rate (50%) is applied
to represent the share of eligible dwellings equipped with chargers. The
resulting fixed counts (Chome

i ) enter the optimization directly in the residential-
demand balance equations (see Equation (3.22)), preventing the model from
oversupplying public chargers in areas already well served by private home
charging infrastructure.

By incorporating LULC, parking, and building footprint datasets into spatial
bounds, this methodology ensures that all charger and PV siting outcomes
respect practical feasibility constraints, enabling direct transfer of the framework
to different regions without altering the underlying optimization logic. In
Chapter 4, we apply the discussed methodology to a real-world case study,
examining the resulting infrastructure mix and evaluating the role of renewables
and incentive mechanisms in achieving a cost-effective and resilient EV charging
ecosystem.



Chapter 4

Analysis, Results and
Insights

This chapter summarizes the results of applying the developed methods from
Chapter 3 to the Greater Gothenburg region in Sweden. The analysis links the
agent-based charging demand estimation with the subsequent infrastructure
optimization to interpret the system-level impact insights. We first restate the
main case-specific inputs to ensure transparency and traceability of assumptions
for Gothenburg, Sweden, and point back to Chapter 3 for data definitions and
preprocessing steps. The datasets conform to the spatiotemporal backbone
(Section 3.3) introduced earlier, with a hexagonal grid for location analysis
and monthly representative days for seasonally resolved operations. We then
present the outputs of charging demand estimation, including the EV SoC
dynamics, temporal demand profiles, and spatial demand. Next, we report the
optimal infrastructure optimization and operational schedules, covering charger
deployment, PV and BESS operation, grid purchases under ToU tariffs, and
the effects of RES integration and user incentive-based redirection on peak
load and system cost. The chapter concludes with key insights and targeted
sensitivity analyses for the Gothenburg context.

4.1 Case Study in Gothenburg, Sweden

To demonstrate and validate the proposed methods, we configure a near
future scenario with 50% EV penetration for the Greater Gothenburg area
in Sweden. The study region demarcation follows Trafikverket’s Region A
zoning and encompasses Gothenburg Municipality together with the adjoining
municipalities of Partille and Mölndal. This area includes a dense urban
core with extensive public transport coverage, suburban neighbourhoods, and
peri-urban corridors (Figure 4.1). Such heterogeneity in land-use and travel
behavior provides a case study for both the charging demand estimation and
the subsequent optimization of charging and energy infrastructure.

30
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Figure 4.1: Study area (Region A, Trafikverket) within Greater Gothenburg,
Sweden.

All case specific datasets are pre-processed to match the uniform spatial grid
and temporal resolution as defined in Chapter 3, ensuring consistency across
both modeling stages. The spatial discretisation uses a uniform hexagonal
grid (Section 3.3), while the temporal resolution adopts monthly representative
days, each split into 48 half-hour intervals, to capture diurnal and seasonal
variability.

4.1.1 Synthetic population and activity travel data

The synthetic population with activity patterns for the MATSim stage (Sec-
tion 3.1) comes from the Synthetic Sweden Mobility (SySMo) work (Tozluoğlu
et al., 2023), which integrates socio-demographic records from Statistics Sweden,
the national travel survey, and land-use based origin–destination matrices from
the Sampers model (Parishwad and Jia, 2023). Each synthetic individual is
assigned relevant socio-demographic attributes and a complete daily activity
chain. Activity chains comprise ordered sequences of activity types (home, work,
shopping, leisure) with geocoded coordinates, start and end times, durations,
and selected travel modes.

For this case study, the synthetic population dataset contains 557,220
individuals within the study footprint. Of these, 211,880 are designated as car
users. A 50% EV penetration rate is assumed among car users, yielding 105,945
EV agents, with the remainder using conventional vehicles, public transport,
walking, or cycling. These population and activity travel attributes are encoded
in MATSim’s XML schema, as described in Section 3.3.1, and form the basis
for generating location specific, time dependent charging events.
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4.1.2 Electric vehicle fleet specifications

Each EV-owning agent in the synthetic population is assigned a vehicle from
a representative set of market-available models in Sweden, spanning multiple
size and performance classes (Table 4.1). The selected models (BMW i3,
Renault ZOE, Tesla Model Y, Volvo XC40 P8, and VW ID.4) reflect a mix of
compact, mid size, and sport utility categories observed in recent registration
statistics. For each vehicle type, the simulation uses manufacturer derived
specifications for battery capacity, rated energy consumption, and maximum
charging C-rate, along with compatibility for home, workplace, and public
chargers as defined in Section 3.3.

These technical parameters govern the achievable driving range, charging
duration, and infrastructure compatibility in (Section 3.1). The initial SoC
for each EV is drawn from a uniform distribution between 60% and 80%,
representing typical post-trip battery levels. To capture heterogeneity in
user behavior, additional attributes, including range-anxiety thresholds and
flexibility in shifting charging within a parked interval, are assigned at the
agent level. Range anxiety attribute is included for every EV agent in their
trip activity, with a uniform distribution between 15% and 25%, representing
typical EV user behavior statistics.

Table 4.1: EV model attributes and fleet counts

Vehicle model Consumption Battery Max C-rate Count
(kWh/100 km) (kWh) (C)

BMW i3 21.0 42 2.0 2 205
Renault ZOE 17.2 52 1.5 2 126
Tesla Model Y 18.3 75 2.0 2 064
Volvo XC40 P8 15.6 60 1.5 2 107
VW ID.4 16.3 34 2.0 2 092

4.1.3 Charging infrastructure and accessibility

The charging network in the MATSim scenario comprises three charger types-
home units (7 kW), workplace units (11 kW), and public stations (22 kW, ten
outlets per site) (Table 4.2). Home and workplace chargers are assumed to be
present at 80% of eligible residential and office locations, based at the end of
agent work and home designated trips. Charger assignment to agents follows
their dwelling or workplace location, with availability constraints as specified in
Section 3.3. Public charging stations are positioned to provide coverage in areas
of high residential or employment density, along major transport corridors,
and near key trip attractors. The base dataset contains 796 public stations, of
which 662 register non-zero utilization in the simulated day. For all charger
types, accessibility is subject to a maximum walking distance of 500 m between
the activity location and the charging point.
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Figure 4.2: Spatial distribution of MATSim simulated chargers in Gothenburg

4.1.4 Transport network and public transit schedule

The multimodal network illustrated in Figure 4.2 is used in the MATSim
stage (Section 3.1), which integrates road and public transit datasets to enable
realistic route choice, trip chaining, and mode switching. Road geometry and
attributes are sourced from Open StreetMap (OSM) and include free-flow
speeds, link capacities, and permitted modes. All spatial data layers, including
agent origins and destinations, are projected to the SWEREF 99 TM coordinate
system (EPSG:3006), providing a consistent metric scale for distance and
accessibility calculations.

Public transport services are incorporated using GTFS feeds from regional
operators, covering bus, tram, ferry, and commuter rail services. The public

Table 4.2: Charger infrastructure summary

Charger type Power Outlets/station Total stations Used stations

Home 7 kW 1 8 475 7 737
Work 11 kW 1 8 475 3 204
Public 22 kW 10 796 662
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Figure 4.3: Gothenburg temporal datasets, monthly profiles (a) Retail grid
electricity pricing; (b) Clear sky PV capacity factors

transit layer includes routes extending slightly beyond the Region A boundary
to capture transfers, waiting times, and availability effects that influence mode
choice for agents whose trips cross municipal borders. Ferry services on the Göta
älv and selected coastal routes are also included to reflect waterborne travel
options. The GTFS timetables and stop locations are converted to MATSim
schedules with defined stops, lines, and vehicle blocks, enabling time-resolved
simulation of multimodal accessibility. Congestion effects on road travel are
represented through link-based volume–delay functions calibrated to reflect
observed peak-period delays in the Gothenburg region.

4.1.5 Nordpool electricity tariffs and PV generation

Electricity price and PV generation data are required. In the MATSim simu-
lation, ToU home-charging tariffs influence charging start times and location
choice for price-responsive agents, while fixed workplace and public charging
prices reflect typical local market rates. In the MILP optimization (Section 3.2),
the same retail tariffs ρm,t enter the grid procurement cost term Costgridm , and
PV generation limits are enforced through constraints.

Hourly day-ahead spot prices for the Swedish bidding area SE3 are obtained
from Nord Pool1 and converted to retail prices by adding regulated Swedish
charges: electricity tax (0.375 SEK/kWh), grid fee (0.45 SEK/kWh), retailer
margin (0.02 SEK/kWh), and 25% VAT. This yields seasonal variation, with
winter (Dec–Feb) averages around 2.00 SEK/kWh and summer (Jun–Aug)
averages near 1.50 SEK/kWh. Intra-day spreads exceed 0.50 SEK/kWh, peak-
ing at 0.70 SEK/kWh on spring mornings. Representative hourly multipliers
used in the MATSim charging decision logic are listed in Table 4.3. Nord
Pool data show clear seasonal variation, with average summer prices of about
15–20% lower than winter prices. In Gothenburg, winter months (Dec–Feb) av-
erage around 2.00 SEK/kWh, while summer months (Jun–Aug) average about

1https://www.nordpoolgroup.com/en/market-data12/Dayahead/Area-Prices/SE/

Hourly/, accessed July 2024

https://www.nordpoolgroup.com/en/market-data12/Dayahead/Area-Prices/SE/Hourly/
https://www.nordpoolgroup.com/en/market-data12/Dayahead/Area-Prices/SE/Hourly/
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1.50 SEK/kWh (Figure 4.3a). Within each season, peak-to-off-peak spreads
exceed 0.50 SEK/kWh, with the largest spread (0.70 SEK/kWh) seen on spring
mornings. While the MATSim considers annual average of the dynamic tariff
values (Table 4.3), this seasonal variation in the electric tariff is considered in
the optimization framework (Figure 4.3a).

Table 4.3: Hourly price multipliers for home charging tariffs

Time window Multiplier Charging cost

00:00–06:00 0.70 Low
06:00–08:00 1.60 High
08:00–10:00 1.47 High
10:00–17:00 0.92 Medium
17:00–20:00 1.14 High
20:00–22:00 1.00 Medium
22:00–24:00 0.70 Low

PV generation inputs for the optimization are expressed as monthly-by-hour
capacity factors ppvm,t derived from the JRC PVGIS (v5.3) database (European
Commission. Joint Research Centre., 2025). These factors combine clear-sky
irradiance models with historical weather data for Gothenburg, capturing both
diurnal production profiles and seasonal variation. At this latitude (57.7◦N),
summer midday clear-sky capacity factors can reach 0.90 p.u. (per unit of
installed capacity), while winter midday peaks are close to 0.10 p.u., an order-
of-magnitude difference in generation potential. Average summer monthly
factors are about 0.20, dropping to approximately 0.01 in mid-winter. The
PVGIS factors used here have been validated against measured PV plant
data in Sweden, showing mean absolute errors below 10% for monthly yields
(Formolli et al., 2023). Figure 4.3(b) shows aggregated seasonal profiles for
clarity, but the MILP model uses separate values for each month to represent
the full annual cycle.

4.1.6 Charging infrastructure install limits

In the Gothenburg case, spatial limits for charger and PV deployment are
derived from high resolution parking and land use datasets for Gothenburg,
Partille, and Mölndal. These limits enter the optimization model as the public
charger bound (Cpub

i ), the PV capacity bound (Ψi), and the fixed home charger
availability (Chome

i ).

Public charger capacity: A comprehensive inventory of public parking
capacity was compiled by merging multiple geospatial sources: the open-data
parking lot layer2 from Göteborgs Stad, OSM data tagged as amenity=parking
or amenity=charging station, and parking registers from the neighbouring
municipalities of Partille and Mölndal. After removing spatial duplicates,
parking locations were aggregated into the common hexagonal grid (Section 3.3)

2https://data.goteborg.se/ParkingService/v2.3/help, accessed August 18, 2025

https://data.goteborg.se/ParkingService/v2.3/help
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Figure 4.4: Home chargers per hex-grid cell for the Gothenburg region. Counts
are based on eligible single-family dwellings with 50% EV penetration.

to compute a per-cell installation capacity. The modeling assumption is that
each parking bay can host one charging point, consistent with prior siting
studies (Giménez-Gaydou et al., 2016; Bian et al., 2019).

PV installation potential: The PV installation limit in each grid cell is
estimated from two spatial sources. First, mapped parking-lot footprints are
extracted from OSM and municipal geodata. These areas are assumed to be
fully usable for canopy-based PV deployment, consistent with recent urban solar
siting practices. Second, adjacent public land and open surfaces are identified
through LULC classification and supervised multispectral satellite imagery
analysis, following approaches in European PV potential studies (Sander et al.,
2024). For these broader classified areas, only a conservative fraction (10%) of
the surface is considered suitable for PV deployment, accounting for shading,
accessibility, and structural constraints. The combined PV installation potential
is 100% of the parking lot footprint plus 10% of the classified public land area
is converted into a maximum number of standard 400 W modules per grid cell,
which defines the PV installation bound used in the optimization framework.

Fixed home chargers: Private home chargers are treated as fixed capacity
within the optimization framework, available to meet residential charging
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demand before any public deployment. Counts are based on OSM building
footprints tagged as building=villa, detached, or bungalow, filtered for a
minimum floor area of 25m2. Applying the 50% EV penetration assumption to
eligible single-family dwellings yields the fixed charger count in each grid cell.
Figure 4.4 maps the resulting spatial distribution, showing concentrations in
higher-income detached housing areas such as Majorna (up to 1 520 chargers per
cell), and sparse availability (< 10 per cell) in less dense northern districts. By
integrating these spatial bounds, the optimization respects physical feasibility
and observed infrastructure constraints in the study area.

4.1.7 Infrastructure capital costs and lifetimes

The optimization stage uses 2024–2025 capital cost and lifetime parameters
for charger types, PV modules, and BESS, drawn from Swedish and European
market data. All costs are expressed in SEK (excluding VAT) and annualised
using the present value factor (PVFg) in Equation (3.16), assuming a uniform
real discount rate (r = 6%). This amortisation allows fair comparison of assets
with different lifetimes. Public charging tariffs are set in SEK/kWh based on
prevailing Gothenburg market rates, with higher values for faster charger types.
PV and BESS assets have no retail tariff; their benefit in the optimization is
through reduced grid purchases and associated cost savings. Private home
chargers are assumed to be user-funded and are excluded from the capital cost
and revenue model of the CPO. Table 4.4 summarizes the specifications, unit
CapEx, assumed technical lifetime, and applicable tariffs for each infrastructure
category. Charger costs reflect installed turnkey prices, PV module costs are
per 400 W panel, and BESS costs are per 10 kWh cell.

Table 4.4: CapEx, lifetimes, and tariffs for infrastructure assets (Sweden)

Infrastructure asset Specification CapEx Life (yr) Tariff

“home” charger 7 kW AC * 10 0.00
Public “slow” charger 11 kW AC 16 000 10 5.50
Public “medium” charger 22 kW AC 22 000 10 6.00
Public ”fast” charger 50 kW DC 240 000 10 6.50
Solar PV panel (400 W) 0.4 kW 5 200 25 –
Battery cell (10 kWh) 10 kWh 45 000 15 –

4.2 Charging Demand Results and Insights

The integrated MATSim–EV framework produces high resolution spatiotempo-
ral charging profiles from agents’ SoC-aware routing and utility-based charging
choices. All simulations converged within 60 co-evolution iterations, at which
point agent plan utilities stabilised and a dynamic transport equilibrium was
reached, consistent with iterative learning processes in MATSim-type models
(Adenaw and Lienkamp, 2021). We first examine individual SoC trajectories,
sampled at 15-minute intervals, before moving to aggregate and comparatively
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Figure 4.5: (a) SoC trajectories for five EV agents over the simulated week;
(b) Zoomed view of SoC profiles.

assess temporal demand patterns under three behavioral-pricing scenarios, and
spatial utilization outcomes across the considered Gothenburg region in Sweden
(Figure 4.1).

4.2.1 Simulated State-of-Charge dynamics

Figure 4.5 shows one-week SoC profiles for five randomly selected EV agents.
The linear charge ramps identify charger type by slope: public chargers (22 kW)
exhibit the steepest gradients, workplace chargers (11 kW) are intermediate,
and home chargers (7 kW) have the shallowest rise. Effective slopes fall slightly
below nameplate values due to vehicle–charger efficiency and taper effects, as
represented in the vehicle module (Sevdari et al., 2023). Agents start with
an initial SoC between 60 % and 80 %, drawn from a uniform distribution.
Across the week, daily depletion is generally 5–15 kWh, consistent with the
vehicle-specific consumption rates (15.6–21 kWh/100 km) and observed trip
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lengths. Off-peak ToU windows (22:00–06:00) are highlighted by shaded bands.
In several cases, notably Days 1–3 and Day 4 in the zoomed panel, home-
charging events are shifted into these low tariff hours. This shift is visible
as delayed start times following evening arrivals, with the dot–dash overlays
indicating the adjusted charging periods. The zoomed view (Figure 4.5b)
illustrates heterogeneity in charging strategies. Vehicle 9512556 performs a
single overnight home session (gain of about 25 kWh over ∼6 h), whereas
others fragment charging into multiple shorter sessions aligned with daily
activities. Vehicle 4655116 alternates between public and workplace charging,
while Vehicle 5563501 relies on intermittent public charging when its SoC nears
a driver-specific lower bound, visible on Days 3 and 4. Work charging events
are also evident, such as the mid-morning sessions for Vehicle ID 4597050.

Overall, these patterns show that home access enables more consistent
overnight charging, while a lack of access to a home charger drives reliance on
public infrastructure and greater variation in charging timing. The combination
of ToU price sensitivity, range-anxiety thresholds, and charger accessibility
results in diverse but realistic SoC trajectories, avoiding critically low levels
while exploiting low tariff windows. These microscale behaviors form the
basis for the aggregated demand and spatial profiles analysed in the following
subsections.

4.2.2 Charging demand profiles: Scenario comparison

The individual SoC trajectories for all EV agents were aggregated to hourly
charging loads under three behavioral pricing scenarios (Figure 4.6). Results
are scaled from the 10% synthetic population simulation to the full regional
fleet at 50% EV penetration. This sampling approach is standard in large-scale
MATSim studies and has been shown to preserve temporal patterns when
properly scaled.

Scenario 1: Non-cost-aware immediate charging. In the absence of
charging costs, agents select charging locations and times solely for convenience
(Figure 4.6a). Workplace charging dominates the 06:00–09:00 window, peaking
at 32,012 kWh at 07:00 and totalling 275,320 kWh over the day. Home charging
forms a broad evening peak at 17:00 (34,576 kWh) and totals 397,074 kWh.
Public charging is more evenly distributed, with a mid-morning maximum of
23,614 kWh and a daily total of 304,938 kWh. The temporal shape shows
pronounced workplace-arrival peaks and modest overnight home charging,
reflecting convenience driven charging behavior (Yi et al., 2023).

Scenario 2: Charger-cost-aware immediate charging. Introducing
tariffs (fixed 5.0 SEK/kWh at work and public sites; time-of-use at home)
rebalances charging toward the cheaper residential option (Figure 4.6b). Home
charging increases by +36.2% from Scenario 1, reaching 540,678 kWh daily,
with a higher evening peak at 18:00 of 50,306 kWh (+45.5% vs. Scenario 1).
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Figure 4.6: Hourly aggregate charging demand by charger type: (a) Scenario 1
(Non-cost-aware immediate charging), (b) Scenario 2 (Charger-cost-aware im-
mediate charging), (c) Scenario 3 (Adaptive cost-aware smart charging), (d)
Daily totals by scenario.

Public charging falls by 20.3% to 242,900 kWh, while workplace charging drops
by 32.3% to 186,352 kWh. The total daily energy falls slightly to 969,930 kWh
(−0.8% vs. Scenario 1), indicating that pricing shifts load location and timing
without materially changing total consumption (Khan et al., 2024).

Scenario 3: Adaptive cost-aware smart charging. Allowing 70% of
agents to optimize charging start times within plug-in windows (with a 30%
stochastic coincidence factor) mitigates the evening home peak (Figure 4.6c).
Home charging rises marginally to 542,678 kWh (+0.37% vs. Scenario 2).
The 17:00 peak is reduced to 38,996 kWh, a −22.5% drop from Scenario 2
and −11.1% relative to Scenario 1. Off-peak (22:00–06:00) home charging
increases by +12,981 kWh (+56.2% vs. Scenario 2), reaching 36,055 kWh at
23:00. Workplace and public charging remain unchanged in daily totals from
Scenario 2, at 186,352 kWh and 243,900 kWh, respectively. Total daily energy
is 972,930 kWh, only +0.3% from Scenario 2. This probabilistic deferral is
consistent with field studies showing that managed charging and ToU incentives
shift load to low-price windows without creating rebound spikes at period
boundaries (Göberndorfer et al., 2024).

Figure 4.6(d) shows that while total daily energy varies due to stochastic-
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ity by less than 1% across scenarios, temporal profiles change substantially.
Scenario 2 shifts charging from public/workplace to home in response to cost
differences, amplifying evening residential peaks. Scenario 3 achieves the
strongest peak reduction, shifting a significant share of residential load into
off-peak windows while preserving daytime accessibility to workplace and public
charging. These smoothed demand profiles feed directly into the optimization
in Chapter 3, where infrastructure portfolios can be tailored to exploit off-peak
home charging, manage workplace peaks, and right-size public capacity.

4.2.3 Spatial patterns of charging demand and utilization

Figure 4.7 maps hexagon-level daily charging metrics across Region A (see
Figure 4.1 for boundaries).

Figure (a) shows total daily energy delivered per cell. Peripheral suburbs
such as Askim, Torslanda, and Partille register under 145 kWh/day, reflecting
low charging demand. In contrast, the historic city centre (Inom Vallgraven)
and dense mixed-use districts exceed 11,000 kWh/day, with the busiest cells
surpassing 20,000 kWh/day. This central–peripheral gradient mirrors the
concentration of trip destinations, mixed land uses, and higher EV ownership
in the core compared to dispersed residential patterns at the fringe.

Figure (b) reports mean session duration as a proxy for utilization inten-
sity. The shortest averages (< 81 min) occur in outer cells where charging is
often opportunistic. Central clusters such as Lindholmen Science Park and
Gamlestaden sustain much longer durations, frequently above 520 min and
in some cases reaching 645–930 min. These extended times are consistent
with all-day parking at home or workplace AC chargers, indicating locations
suited to slower charging technologies, whereas short-stay zones could justify
higher-power installations.

Figure (c) shows the mean walking distance from the activity location
to a used charger. High-density neighbourhoods with on-plot or curbside
access average 0–20 m. Peripheral and low-density cells can exceed 300 m,
with some island and rural fringe locations (e.g., Öckerö archipelago) reaching
945–1,560 m. As accessibility studies suggest, walking tolerance often drops
beyond 300–400 m for routine activities (Daniels and Mulley, 2013), these
longer distances signal underserved areas. Strategic infill within 200–300 m of
residential clusters could improve user uptake and equity.

Figures (d)–(f) disaggregate demand by charging context. Home charging
(Figure d) is concentrated in residential belts, peaking at 4,706–8,350 kWh/day
in areas such as Majorna and Frölunda Torg. Workplace charging (Figure e)
aligns with employment corridors and campuses, reaching 5,443–14,460 kWh/day
in Lindholmen and Chalmers. Public charging (Figure f) clusters at retail and
transport hubs (Nordstan, Heden, Frölunda Torg) with 1,047–5,450 kWh/day.
These complementary spatial roles match empirical findings that location type
is a primary determinant of charging time and place (Kazemtarghi et al., 2024;
Potoglou et al., 2023).
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Figure 4.7: Hex-cell aggregates across Region A: (a) total daily charging
demand, (b) mean session duration, (c) mean walking distance, and Charging
Demands for (d) home, (e) work, (f) public events.

The co-occurrence of high demand and long dwell times in the core suggests
deploying additional 50 kW DC fast chargers alongside dynamic load man-
agement to reduce queuing during extended AC sessions. At the same time,
low-utilization cells with high average walking distances point to opportunities
for distributed neighbourhood-scale chargers to balance spatial access and



4.2. CHARGING DEMAND RESULTS AND INSIGHTS 43

Figure 4.8: Hourly charging demand by location type: (a) Surte (suburban),
(b) Central Gothenburg (urban core), and (c) daily totals by type.

reduce user inconvenience.

4.2.4 Local charging demand patterns

To illustrate how local land use and infrastructure access shape temporal
charging behavior, two contrasting hexagons from Figure 4.7(a) are examined:
a suburban cell in Surte (Ale municipality) and an urban-core cell in Inom
Vallgraven (central Gothenburg). Their hourly charging demand profiles are
shown in Figure 4.8(a,b), with Figure (c) comparing daily energy totals by
location type.

Surte (suburban): Daily demand is modest and spread throughout the day
(Figure 4.8a). Home charging dominates, peaking at 1,104 kWh at 16:00, con-
sistent with plan-ahead evening sessions to exploit lower ToU rates. Workplace
charging is negligible, with a maximum of 132.5 kWh at 06:00, while public
charging reaches 605 kWh at 08:00. Over 24 hours, the cell delivers 16,500 kWh
at home, 504.5 kWh at work, and 4,655 kWh at public chargers , about 2.2%
of the region’s total daily demand (21,660 kWh vs. 972,930 kWh). The strong
residential share and weak daytime work/public use reflect low job density and
sparse destination charging typical of suburban areas.

Inom Vallgraven (urban core): Demand profiles here are highly con-
centrated around commute and mid-morning activity peaks (Figure 4.8b).
Workplace charging surges to 7,034 kWh between 07:00–08:00, public charging
peaks at 6,534 kWh at 09:00, and home charging reaches 2,548 kWh at 17:00.
Daily totals are 32,256 kWh (home), 33,854 kWh (work), and 52,102 kWh
(public), accounting for over 12% of regional demand within less than 3% of
the study area. This concentration aligns with evidence that dense mixed-use
cores, abundant charger supply, and high trip density drive spatial–temporal
coincidence of demand.

In Surte, the prevalence of evening home charging and minimal midday
workplace/public use suggests value in deploying additional workplace AC
chargers or small public stations to spread load into daytime hours, improving
flexibility and reducing residential clustering after 17:00. In Inom Vallgraven,
pronounced morning workplace peaks and substantial public demand indicate
the need for high-capacity DC fast chargers and dynamic load management
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at key nodes to mitigate queuing and local network stress. The agent-based
simulation thus identifies where and when charging is likely to occur under
current access, ToU tariffs, and user preferences. However, it does not address
the cost-optimal mix or placement of infrastructure. In the following section,
we apply the MILP optimization framework, which takes the high resolution
MATSim demand as input and co-optimizes the siting and sizing of multi-class
public chargers, co-located PV and BESS, and tariff-aware operations, with
optional spatial redirection incentives. This closes the loop from behavior-
driven demand modeling to strategic, economically grounded infrastructure
planning.

4.3 Infrastructure optimization results and in-
sights

This section presents the outcomes of applying the optimization model (Sec-
tion 3.2) to the Gothenburg case study region in Sweden (Figure 4.1). The
optimization takes as input the high resolution and behaviorally derived charg-
ing demand described in Chapter 4.2.

As detailed in Section 3.3, the agent-based modeling represents approxi-
mately 557 220 synthetic agents in the study area, of which about 106 000 are
EV users under a 50% penetration scenario. These charging events are aggre-
gated to the spatial and temporal discretisation used in the optimization, at 48
half-hourly intervals for each representative day, mapped across 564 hexagonal
grid cells covering Region A. The aggregated demand profiles preserve the
results from the final scenario (Figure 4.6(c)). To capture seasonality without
prohibitive computational cost, the optimization uses one representative day
per month, each resolved at the same 30-minute interval as the input demand
data, and scales results to an annual horizon. Sensitivity checks confirm that
this representative-day approach reproduces annual profit and deployment
estimates within a narrow margin of a full-year run, while reducing solution
times by roughly an order of magnitude.

Using these spatio–temporally aggregated charging demands as the fixed
demand inputs (Di,m,t,b) in the MILP framework, the following analysis evalu-
ates four alternative infrastructure strategies. Each scenario modifies the set of
available planning options, such as user redirection, BESS, and co-located PV,
to quantify their incremental impacts on network design, operational scheduling,
energy procurement, and profitability.

4.3.1 Scenario comparisons: marginal impacts

We assess four scenarios to isolate the incremental effect of different planning
features and understand how spatial redirection, battery storage, and co-located
PV affect the profitability and operation of EV charging network. All scenarios
use the same MILP formulation and constraints discussed in Section 3.2 and
the same behavior driven demand inputs. Only the available planning options
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Table 4.5: Summary of infrastructure, annual energy flows, costs, and net profit

Baseline Scenario 1 Scenario 2 Scenario 3

Infrastructure deployed
Home chargers (7 kW) 22 321 22 321 22 321 22 321
Slow chargers (11 kW) 287 279 283 284
Medium chargers (22 kW) 7 205 7 229 7 225 7 204
Fast chargers (50 kW) 22 6 6 6
Charger capacity (kWh) 162 767 162 407 162 393 161 912
PV panels - - - 88 886
Battery units (10 kWh) - - 70 732

Annual energy (GWh)
Grid purchase 227.398 227.398 227.398 191.853

Grid→chargers 227.398 227.398 227.129 191.311
Grid→batteriess - - 0.00027 0.542

PV produced - - - 35.545
PV→chargers - - - 32.350
PV→batteries - - - 3.195

Demand redirected - 0.108 0.108 0.929

Annual costs & profit*
Local revenue 1478.088 1478.088 1478.088 1478.088
Net Redirection revenue - 0.596 0.596 5.108
Grid electricity OpEx 392.073 392.073 391.765 332.497
Redirection OpEx - 0.212 0.212 1.621
Charger CapEx 17.141 16.708 16.703 16.657
PV + battery CapEx - - 0.288 34.303

Net profit 1068.873 1069.094 1069.119 1093.009

*All costs are reported in million Swedish krona (SEK) units.

differ, as the optimal solutions summarised in Table 4.5, and visualised in
Figure 4.9, highlight how each feature adds value when integrated into the
optimal deployment strategy.

Baseline (chargers Only):

In the absence of PV, BESS, or user redirection, the optimization deploys
287 slow, 7 205 medium, and 22 fast public chargers, totalling 162,767 kWh
of rated capacity. All charging demand is supplied by the grid, requiring
227.4 GWh/year. Annual operating costs are dominated by grid electricity
purchases (SEK 392 million), with charger capital expenditure at SEK 17.14 mil-
lion. User charging payments yield revenues of SEK 1.478 billion, resulting in
a net profit of SEK 1.069 billion. This serves as the benchmark for subsequent
scenario comparisons.

Scenario 1 (Charger + user redirection)

Allowing user redirection of sessions within 1.5 km, supported by targeted
incentives, diverts approximately 0.11 GWh/year (≈0.05% of total demand)
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Figure 4.9: Comparative assessment across scenarios.

from congested to underutilised cells. This modest peak shaving reduces fast-
charger deployment from 22 to 6 units (–73%) and slightly lowers slow-charger
counts, cutting charger CapEx by about SEK 0.43 million/year. Incentive pay-
ments remain low (SEK 0.21 million/year), while avoided congestion generates
additional revenue of roughly SEK 0.60 million/year. The net profit increases
to SEK 1.0691 billion, a marginal gain of 0.02% over the baseline. These small
improvements reflect both the limited fraction of demand that is economically
viable to redirect and the short walking-distance threshold imposed.

Scenario 2 (Chargers + BESS without PV)

Adding 70 battery units (10 kWh each) of BESS enables tariff arbitrage.
Charging during low-cost off-peak hours (269 MWh/year) and discharging
at high-cost periods. Charger deployment remains almost unchanged from
Scenario 1, so Capital Expenditure (CapEx) differences for chargers are neg-
ligible. The additional BESS CapEx of SEK 0.29 million/year yields only a
SEK 0.024 million/year profit increase (+0.002% over Scenario 1). Without PV,
the BESS simply shifts the timing of grid electricity use rather than substituting
a higher cost supply with low-cost renewable energy. This underlines that, in
high-penetration AC networks with modest intraday tariff spreads, BESS alone
delivers limited financial return unless paired with low-cost generation.

Scenario 3 (Chargers + PV + BESS + user redirection)

Integrating 88,886 PV panels with BESS and redirection changes the eco-
nomics substantially. The PV array produces 35.55 GWh/year, of which 91%
(32.35 GWh) is used directly for charging and 9% (3.20 GWh) is stored in
BESS for later use. Annual grid purchases drop by 15.6% to 191.85 GWh/year,
cutting electricity expenditure by about SEK 60 million/year. Surplus PV
availability makes detours to solar-rich sites more attractive, increasing redi-
rected demand to 0.93 GWh/year, over 8.5 times Scenario 1 levels. While PV
and BESS raise infrastructure CapEx to SEK 34.3 million/year, operational
savings more than offset this, lifting net profit to SEK 1.093 billion. This
represents a 2.24% increase over baseline and the highest performance among
all scenarios.

Across the four scenarios, user redirection alone delivers only marginal profit
gains, mainly through reducing fast-charger requirements in high demand nodes.
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Figure 4.10: Scenario 3: half-hourly charging demand (positive) and supply
(negative) on a representative March day in Gothenburg.

BESS without renewables offers negligible additional value in the Gothenburg
context, as intraday tariff differentials are modest. The inclusion of PV funda-
mentally alters the outcome, lowering dependence on grid electricity, enabling
greater use of demand redirection, and significantly improving profitability.
These results confirm that the most effective strategy combines renewable
generation, BESS, and targeted demand management, aligning operational
cost savings with infrastructure right-sizing and improved utilization.

4.3.2 Daily demand–supply balance

Figure 4.10 presents the half-hourly charging demand and corresponding supply
sources for Scenario 3 on a representative March day in Gothenburg. The
positive y-axis aggregates demand from home, workplace, and public charging,
while the negative y-axis disaggregates the energy supply by origin, for grid
electricity, direct PV generation, and BESS discharge. Privately owned home
chargers meet approximately 77% of residential charging needs, concentrated
in off-peak night hours and the midday trough between commuting peaks. The
remaining 23% of home demand is served by local public chargers, mainly
in cells without high home-charger penetration. Midday coincides with the
strongest renewable contribution. Direct PV output, supplemented by PV-
charged BESS discharge, supplies up to one-quarter of the total charging load.
This period overlaps both the highest solar irradiance and elevated ToU grid
tariffs, allowing renewables to displace the most expensive grid energy and
reduce operator costs.

The BESS operates as a tariff alignment buffer, charging during low-price
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Figure 4.11: Local Capacity (kWh) of Public Chargers per hex-grid cell

intervals (both overnight from the grid and midday from surplus PV) and
discharging in the late afternoon and early evening when demand and prices
peak. This temporal shifting flattens the net grid draw and reduces the need
for high-cost peak procurement. Redirected charging demand, actively steered
toward sites with available PV and charged BESS, contributes an additional
5–10% of supply during the busiest afternoon intervals. This dual effect of
relieving congestion in peak-demand cells and increasing renewable utilization
in surplus cells enhances both service reliability and asset productivity.

The combined operation of PV, BESS, and targeted user redirection sub-
stantially reshapes the daily demand–supply profile. Grid reliance drops sharply
in the costliest hours, while the renewable share rises in periods of high de-
mand. These patterns reflect the optimization model to co-optimize supply
side generation, BESS dispatch, and spatial demand management, yielding
both operational and economic benefits in line with observed outcomes from
managed charging and co-located PV–BESS deployments (Hull et al., 2024).
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4.3.3 Charger deployment patterns

The optimized public charger network is visualized by charger type across the
564 hexagonal cells of Gothenburg Region A (Figures 4.12(a), 4.12(b)). Slow
(11 kW) and fast (50 kW) charger counts are shown in Figure 4.12(b), medium
(22 kW) charger counts in Figure 4.12(b), and the combined local charging
capacity in Figure 4.11.

Medium-speed chargers comprise over 95 % of the public chargers and
concentrate along primary commuting corridors and high-activity districts,
striking a balance between installation cost and throughput requirements
(Figure 4.12(b)). Only six fast chargers are deployed, strategically located
at major arterial nodes and park-and-ride facilities to provide rapid top-ups
without excessive investment in expensive DC infrastructure (Figure 4.12(a)).
The 284 slow chargers fill service gaps in densely populated suburbs, where
overnight or long-duration parking makes lower-speed charging sufficient.

Figure 4.11 illustrates the spatial intensity of total public charging capacity
(kWh) per cell, confirming that land-use heterogeneity and local demand peaks
drive charger type allocation. High-capacity clusters appear in central urban
cores and transit hubs, while suburban and fringe areas rely on slower bays.
These deployment patterns validate our model ability to align charger typology
with spatial variations in EV traffic, residential density, and activity centers,
ensuring both coverage and cost-effectiveness.

4.3.4 RES and BESS infrastructure

Co-locating solar PV and BESS with public chargers delivers the largest
profitability gains by displacing expensive grid imports and enabling both
temporal and spatial load shifting. Figure 4.13 (June representative day)
overlays the optimal PV panel installations, BESS allocations, and the peak
redirection flows that were determined by the MILP. PV panels cluster in
cells that combine high charging demand, available rooftop or parking-lot area,
and minimal green-space restrictions. These installations produce up to 35.5
GWh/year, of which roughly 32.4 GWh feeds chargers directly and 3.2 GWh
charges the BESS (Table 4.5). High midday irradiance in these cells allows
for maximal solar capture precisely when workplace and public demand peaks
occur.

BESS deployment (732 × 10 kWh units) closely follows the PV sites and
major commuter corridors (Figure 4.13). The BESS smooths two tariff driven
peaks (06:00-09:00 and 16:00-19:00) of a day by charging from surplus PV
between 10:00 and 15:00, and from low tariff grid during overnight hours. During
high-tariff intervals, batteries discharge up to 1.2 kWh per cell, offsetting grid
purchases and shaving peaks.

Figure 4.14 presents the January representative-day SoC trajectories for
all BESS units (grey) and their mean SoC (red dashed). Starting at 20%, the
BESS charges steadily to 75-80% by late afternoon, then discharges through
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(a) Slow and Fast public charger counts per hex-grid cell for study region

(b) Medium Charger counts per hex-grid cell for the study region

Figure 4.12: Spatial distribution of Public EV chargers in Gothenburg region.
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Figure 4.13: June representative day PV (green), BESS (blue), and redirection
flows (arrows).

the evening back toward 20%. All SoC paths remain within the 10-90% bounds,
confirming durability and responsiveness without excessive cycling.

4.3.5 Spatial user redirection dynamics

Spatial demand redirection emerges as a powerful complement to temporal load
management, leveraging user redirection incentives to smooth peak charging
demand and maximize renewable utilization. Figure 4.13 illustrates, for June
representative day, how the model superimposes optimal PV panel and BESS
deployments with the highest-value redirection arcs (within the 1.5 km travel
radius). The effectiveness of each redirection arc depends on three concurrent
factors. The destination cell’s surplus of low-cost renewable or stored energy, the
local retail tariff exceeding the combined marginal energy cost plus the travel-
time rebate, and the driver’s willingness to detour under the distance threshold.
Midday hours, when ToU tariffs approach 2.0 SEK/kWh and PV capacity
factors peak, consistently yield the greatest net incentive rents, triggering the
majority of profitable rerouting (Figure 4.15).

Seasonal sensitivity is stark. In July, despite similarly high solar output
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Figure 4.14: Optimal Battery scheduling operations (January representative
day)

(over 0.8 capacity factor), a 25% drop in retail tariffs erodes price margins below
incentive thresholds, collapsing redirected volumes (near zero). Conversely, in
September, recovering tariffs (up to 1.9 SEK/kWh) cannot compensate for
low PV generation (up to 0.55 capacity factor), so redirections occur only
when and where residual renewable surplus exists, limiting daily opportunities
to a few critical hours. BESS further amplifies user redirection potential by
time-shifting PV energy into high-tariff windows. In summer months, up to
12% of redirected demand originates from BESS discharge. By autumn, this
share rises toward 25%, reflecting reduced daylight and greater reliance on
stored energy. The combined PV+BESS infrastructure thus broadens profitable
redirection windows well beyond raw solar peaks. Over an entire year, redirected
demand of 0.93 GWh (Table 4.5) incurs SEK 5.11 million in rebates but offsets
high-tariff grid purchases and defers the need for incremental fast chargers
during afternoon peaks. Although this redirected energy represents under
1% of total delivered kWh, its impact on operating profits, particularly on
high PV days, is disproportionately large, underscoring the strategic value of
spatial flexibility. Policy levers also emerge. A modest 0.2 SEK/kWh uplift in
tariffs of July would unlock latent PV potential, multiplying redirected volumes
without new capital outlay. Alternatively, temporarily lowering distance-based
incentives during tariff-depressed months could sustain redirection economics
without harming consumer welfare. Overall, the spatial redirection mechanism,
which couples per-kWh travel-time rebates with fine-grained infrastructure
and renewable placement, proves a robust tool for peak shaving and renewable
integration. Its success, however, hinges on the precise alignment of tariff
schedules, weather-driven PV availability, and thoughtfully sited PV+BESS
assets.
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Figure 4.15: Monthly-interval net revenue (SEK/kWh) from redirected charg-
ing.

4.3.6 Local insights: Mölnlycke suburban node

Figure 4.16 zooms in on a representative suburban fringe cell in Mölnlycke
(see Figure 4.1). Figure 4.16 (a) depicts the hourly profile of total charging
demand, peaking sharply during the 17:00-19:00 commuter return window.
Figure 4.16 (b) shows that only a small fraction of this demand is met by
private home chargers, reflecting the area’s lower residential density and limited
private-charger penetration. Consequently, Figure 4.16 (c) reveals substantial
public charging demand throughout the daytime, especially along the adjacent
transport corridor where through-traffic and transit stops generate residual load
once home charging is exhausted. In response, the optimization locates public
chargers in the eastern and southern hexagons surrounding Mölnlycke’s core.
Marshland, lakes, and fractured road connectivity limit feasible redirection to
under 0.9 km, well below our 1.5 km cap (Equation (3.23)), necessitating more
local bays. Figure (d) overlays optimal PV panel clusters (200-400 panels per
cell) and small-scale BESS deployments (up to 10 units), sited along arterial
corridors with both rooftop-PV potential and low grid expansion costs. June’s
redirection flows (arrows) emanate during the 16:00-18:00 peak from central
Mölnlycke toward these renewable-rich outskirts, confirming that drivers elect
to detour when the destination cell offers cost savings via on-site solar or stored
energy.

These patterns illustrate the fidelity of our MILP framework in aligning
charger siting with local land cover, network topology, and demand vectors. In
Mölnlycke, where private-charger access is sparse and redirection distances are
constrained, the model invests in medium- and fast-speed public chargers to
meet peak needs. Conversely, where connectivity and solar availability allow, it
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Figure 4.16: Local Insights for Mölnlycke area outside Gothenburg (a) Annual
charging demands (b) Home demand (c) Public demand (d) PV panels, BESS
and redirections

favors smaller public sites augmented by PV and BESS, enabling economically
viable redirection and reduced reliance on the main grid.

4.3.7 Carbon emission reduction

To quantify the climate benefits of co-locating PV and BESS (Scenario 3)
versus the grid-only baseline, we calculate avoided operational CO2 emissions
by replacing grid procurement with local renewables and storage dispatch.
Adopting Sweden’s 2024 average grid factor of 9 g CO2e /kWh, we multiply
each half-hour’s PV-to-charger and PV-to-battery-to-charger energy by this
factor and aggregate monthly via representative-day scaling (Ndays(m)):

∆Eannual =
∑

m∈M

∑
t∈H

Ndays(m) ηgrid

(
EPV→char

m,t + EPV→batt→char
m,t

)
.

Using Scenario 3’s dispatch results, the model avoids roughly 317.3 t CO2e
per year. On a representative summer day (June), total savings reach 1 455.6 kg
CO2e: 1 376.5 kg from direct PV charging and 79 kg via stored PV discharge.
Figure 4.17 presents a monthly × half-hour heatmap of avoided emissions (kg
CO2e per interval). Peak reductions occur during mid-day to late afternoon
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Figure 4.17: Heatmap of avoided CO2e emissions (kg per half-hour) under
Scenario 3 vs. baseline.

(intervals 16-30) in May-July, mirroring the highest PV capacity factors and
reinforcing the compatibility between solar availability and carbon savings.

These results demonstrate that integrating on-site renewables and storage
not only boosts CPO profitability but also delivers meaningful environmental
gains. By shifting up to a quarter of midday load onto zero-carbon PV and
strategically discharging batteries during high-tariff intervals, the optimized
infrastructure achieves both peak-shaving and an annual reduction of approxi-
mately 320 t CO2e. This dual economic-environmental benefit emphasizes the
value of combining RES deployment with demand-management incentives in
urban EV charging networks.

As demonstrated here, from high resolution, behaviorally enriched demand
simulation in MATSim to the holistic MILP co-optimization of chargers, renew-
ables, storage, and spatial incentives, yields a coherent, city wide blueprint for
EV infrastructure planning in Gothenburg. These results not only capture the
nuanced interplay of user choices, tariff signals, and renewable availability at
the urban scale but also illustrate a methodology that can readily be extended
to national or multi-regional contexts, provided the requisite demographic,
network, and market data alongside sufficient computational resources. Nev-
ertheless, our present analysis abstracts away certain real-world complexities,
most notably distribution grid reliability and feeder-level power flows, which
can critically affect both the feasibility and the economic performance of large-
scale deployments. In the following Chapter 5, we critically reflect on these
limitations, outline the necessary enhancements, and chart a roadmap for
future research to further strengthen the robustness and applicability of this
end-to-end electrification framework.



Chapter 5

Conclusion and Discussions

This chapter summarizes the key findings from this thesis including a behav-
iorally rich agent-based charging demand model (Chapter 3) and a large-scale
mixed-integer optimization of charging infrastructure, co-located photovoltaic
(PV) generation, battery energy storage systems (BESS), and user redirection
incentives (Chapter 3). The summary is structured to highlight (i) the method-
ological advances, (ii) major empirical insights from the Gothenburg case study,
(iii) cross-cutting implications for policy and practice, and (iv) limitations and
future research pathways.

The extended MATSim-based agent-based model explicitly incorporates
cost-aware and adaptive charging behavior, allowing agents to respond to ToU
tariffs, battery state-of-charge SoC, and heterogeneous charging access con-
straints. This enables the endogenous emergence of charging events, both
event-triggered SoC threshold) and plan-ahead (cost-minimising) strategies,
within the co-evolutionary replanning process. On the supply side, the optimiza-
tion framework jointly considers charger siting and sizing (across slow, medium,
and fast chargers), PV and BESS deployment, dynamic BESS scheduling, and
spatial user redirection. The model operates at high spatiotemporal granularity,
half-hourly intervals, monthly representative days, capturing seasonal solar
variability and demand patterns. Unlike most optimization studies, this thesis
embeds a user-incentive mechanism for spatial redirection of charging demand.
Redirection arcs are constrained by realistic travel time and distance thresholds,
available charger capacity at the destination, and economic acceptability from
the users perspective. This formulation captures both the operational feasibility
and the behavioral plausibility of demand-side measures.
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5.1 Spatiotemporal charging demand dynamics
in Gothenburg

The Gothenburg case study, evaluated under a 50% EV penetration scenario,
demonstrates pronounced temporal and spatial variation in charging demand
patterns. Home charging constitutes the dominant share during the overnight
period and around midday, whereas workplace charging peaks sharply during
the morning commute. Public charging displays a more consistent profile
throughout the day, with concentrations in high-density urban districts.

In the non-cost aware baseline scenario, the arrival of vehicles at workplaces
in the morning produces pronounced demand peaks. When price awareness is
introduced, a substantial portion of daytime charging shifts from workplace to
home locations, particularly into the low tariff overnight window. Adaptive
smart charging behaviors further flatten the evening residential peak, reducing
it by as much as 15%, while increasing off-peak charging volumes without
significantly impairing daytime accessibility. These dynamics underscore the
need to account for behavioral responses to price signals and technical flexibility
measures when planning charging infrastructure and grid operations. The
detailed analysis of charging demand dynamics yields the following specific
insights:

• Incorporating dynamic ToU tariffs into the charging demand estimation
causes a notable reallocation of energy demand from daytime workplace
locations to homes, yet the dominant evening system peak remains
largely intact. This finding highlights the importance of reflecting tariff
structures in modeling, as their omission can lead to incorrect estimation
of spatiotemporal demand profiles.

• Introducing probabilistic smart charging behavior substantially reshapes
the demand curve, lowering the home charging peak between 17:00 and
22:00 hours by up to 11% and reallocating roughly 20% of residential
charging energy to the low-cost overnight period.

• Significant heterogeneity is observed in charging strategies among agents
with otherwise identical travel schedules. Differences in location-specific
tariffs and adaptive charging decisions lead to diverse strategies for cost
minimization. This diversity reinforces the value of embedding behavioral
variation and cost-awareness into spatiotemporal demand estimation.

• Spatial and temporal demand patterns vary widely across the city. For
instance, central Gothenburg districts such as Inom Vallgraven exceed
20 MWh/day, almost triple the daily energy observed in peripheral
areas like Surte. Workplace charging demand in the city core peaks
at approximately 7 MWh at 08:00 hours, whereas suburban demand is
dominated by off-peak home charging volumes below 1.1 MWh. Such
disparities emphasize the necessity of agent-based approaches that jointly
capture spatial and temporal influences on user charging behavior.
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Overall, the modeling results present a behaviorally detailed and spatially
explicit picture of charging needs in an urban EV transition context. The out-
comes highlight both opportunities for peak reduction through smart charging
and the limitations of relying solely on tariff adjustments to manage demand.
These findings form a robust basis for the optimization stage of the pipeline,
where infrastructure siting, sizing, and operational strategies can be tailored to
the observed behavioral and spatial heterogeneity.

5.2 Impact of integrated PV, BESS, and user
redirection

The optimization analysis for the Gothenburg 50% EV penetration scenario
demonstrates that the combined deployment of PV, BESS, and spatially tar-
geted user redirection strategies substantially improves both operational per-
formance and economic outcomes compared to a charger-only baseline. By
explicitly integrating high resolution charging demand profiles from MATSim
with land-use capacity limits, dynamic ToU tariffs, and travel-time based
incentive mechanisms, the framework quantifies how distributed renewable
generation and storage, together with behavioral demand management, can be
co-optimized to enhance profitability while reducing grid dependence.

The integrated approach delivers measurable benefits across cost savings,
renewable utilization, and emissions reduction. The results indicate that,
beyond increasing operator profit margins, such a configuration improves the
resilience of the charging network by flattening daily load profiles and better
matching supply from distributed RES to demand peaks. Importantly, this
synergy is most pronounced when BESS and PV are co-located in high demand
zones and linked to underutilized capacity via user redirection incentives.

The key quantitative findings are as follows:

• The combined integration of PV, BESS, and user redirection yields an
annual net profit increase of approximately SEK 31.5 million (+2.25%)
relative to the optimal charger-only configuration. PV generation alone
offsets around 35.5 GWh/year of grid electricity purchases, producing
annual procurement cost savings exceeding SEK 35 million.

• Substituting grid electricity with local PV output and BESS-stored energy
avoids roughly 320 tCO2e per year, with the largest emissions reductions
occurring during summer midday peaks when PV capacity factors exceed
75% of their theoretical maximum.

• In the optimized infrastructure portfolio, medium-speed (22 kW) chargers
dominate due to their cost-effectiveness and alignment with typical dwell
times, representing more than 95% of public units. Fast DC (50 kW)
chargers are deployed only at high value arterial nodes and park-and-ride
facilities, while slow AC (11 kW) chargers are used to fill accessibility
gaps in suburban and peri-urban areas.
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• PV installations are concentrated in high demand urban zones where
sufficient surface area is available, ensuring that most generated energy
is consumed locally. BESS units are co-located with PV arrays and
placed near centralized demand clusters to maximize both tariff-arbitrage
potential and daily load smoothing.

• The presence of BESS extends the effective time window for profitable
user redirection by enabling evening discharge from midday PV surpluses.
In the fully integrated scenario, redirected demand exceeds 0.9 GWh/year,
more than eight times higher than in cases without PV, thereby reducing
the need for additional high-capacity chargers in overloaded cells and
increasing renewable electricity utilization.

Overall, the modeling confirms that co-locating public charging with dis-
tributed PV and BESS, and coupling this with strategically incentivised demand
redirection, creates a more profitable, sustainable, and operational charging
ecosystem. Such configurations attenuate peak loads, reduce reliance on high-
cost grid electricity, and contribute directly to climate goals through avoided
emissions. While the present formulation uses a representative day approach to
capture seasonal variability with lower computational cost, future extensions
could incorporate explicit feeder-level grid constraints, stochastic renewable
generation and demand variability, and charger type differentiation in redirec-
tion flows. Such enhancements would further align the optimization outputs
with real-world operational requirements and increase the transferability of
these findings to other urban contexts.

5.3 Study Implications and Practicality

The results confirm that integrating distributed PV and BESS with behav-
iorally informed demand management can significantly reduce reliance on
the central grid during peak-tariff periods, alleviating stress on vulnerable
distribution network nodes. By capturing behavioral diversity and price re-
sponsiveness, the framework avoids over provisioning of high-cost fast chargers
in locations where demand can be economically redirected. This enables more
balanced infrastructure investment, aligning public charging capacity with
actual utilization potential. The methodology is inherently scalable to larger
geographies and higher penetration levels, provided suitable data are available.
Its modular structure allows adaptation to other urban contexts, differing
policy environments, and alternative renewable or storage technologies.

Key limitations of this work include the aggregate representation of grid
interactions, where the optimization operates at a regional level without explic-
itly modeling low-voltage feeder constraints. The exclusion of vehicle-to-grid
(V2G) services represents another constraint, as incorporating bidirectional
charging could potentially enhance system flexibility and enable additional
revenue streams. behavioral parameters, although calibrated using relevant
literature, remain subject to uncertainty, particularly regarding long-term
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adoption of smart charging technologies and heterogeneous user responses to
dynamic tariffs. Furthermore, both PV generation and charging demand are
treated deterministically for each representative day, which limits the ability to
assess robustness under weather variability or unexpected demand fluctuations.
Future research could address these gaps by coupling the planning framework
with detailed power flow models to evaluate feeder-level constraint violations
and hosting capacity limits. Incorporating V2G and broader bidirectional
charging economics would enable more comprehensive assessments of flexibil-
ity potential. Extending behavioral modeling to capture long-term adoption
trajectories and varied responses to emerging tariff structures would improve
realism, while stochastic optimization approaches could better account for
uncertainties in renewable generation, electricity prices, and charging demand
patterns across seasons and years.

This thesis demonstrates that combining behaviorally realistic charging
demand estimation with co-optimized deployment of charging infrastructure,
PV generation, and storage, augmented by incentive-based user redirection,
can deliver substantial operational, economic, and environmental benefits for
urban e-mobility systems. The Gothenburg case study shows that strategic
integration of renewable generation and demand flexibility measures not only
mitigates grid impacts but also enhances profitability and sustainability. The
proposed framework thus offers a transferable, evidence-based decision-support
tool for planners and operators navigating the transition to large-scale electric
mobility.



Appendix A

Nomenclature

A.1 Extended MATSim framework

S∗
plan Baseline plan score combining activity and travel

utilities over all segments.

N Number of tour segments in a daily plan.

Sact,q Utility of performing activity q (duration benefit &
early/late penalties).

tdur,q, tdur,0 Actual and reference durations of activity q.

βdur, βearly, βlate Marginal utility of duration; early and late schedule
penalties.

Strav,q Disutility of the travel leg q (mode, time, money,
distance, transfers).

Cmode(q) Mode-specific constant disutility for leg q.

ttrav,q, dtrav,q Travel time and distance for leg q.

βtrav,mode(q), βd,mode(q), γd,mode(q), βm, βtransfer

Marginal disutilities for travel time, distance, money,
and transfers.

∆mq, xtransfer,q Monetary cost and number of transfers in leg q.

SEV,plan EV-augmented plan score including charging costs
and penalties.

βmoney, βrangeAnxiety, βemptyBattery, βwalking, βSoCdiff

Marginal utilities for charging cost, range anxiety,
depletion, walking, and SoC deviation.
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ccharging(t) Instantaneous charging cost at time t (kWh × tariff).

Mtemporal(t) Time-of-use multiplier for charging cost at hour cor-
responding to t.

SrangeAnxiety, SemptyBattery

Disutility terms for low SoC and fully depleted bat-
tery.

Swalking Walking disutility to charger: 1−exp(−λ dwalk/dwalk,max).

SSoCdiff Penalty proportional to (SoCstart − SoCend).

toptstart Optimal charging start time within [tarr, tdep−Tcharge].

λ, λwalk, thresSoC, Tcharge

Exponential decay rate; max walk distance; SoC
threshold; required charging duration.

A.2 MILP Optimization formulation

(a) Sets and Indices

i ∈ I Hex-cell index and set of potential sites.

m ∈ M Month index and set, {Jan, . . . ,Dec}.

t ∈ H Half-hour interval index and set, {1, . . . , 48}.

b ∈ B Demand class, {home,public}.

c ∈ C Public charger type, {slow,medium, fast}.

(i, j) ∈ D Potential redirection arc between cells within dmax.

(i, j,m, t) ∈ A Active redirection arc at (i → j) when the demand
threshold is met.

(b) Parameters

Ndays(m) Representative days in month m.

DAYS Total days in planning horizon (annual = 365).

C
.pub

i Max public chargers at cell i.

C
.home

i Exogenous home chargers at cell i.

Kc kWh capacity per interval of charger c.

ρc Daily annuity cost of charger c (SEK/day).
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Ψi Max PV panels at cell i.

Ψcap kWh output per PV panel per interval.

ppvm,t PV availability factor in (m, t).

Θi Max battery units at cell i.

CapΘ kWh capacity per battery unit.

ηch, ηdis charge-discharge efficiencies.

ρm,t Retail electricity price in (m, t) (SEK/kWh).

Pricec Charging tariff at charger c (SEK/kWh).

Ti,j Incentive rebate (SEK/kWh) for redirecting from i
to j.

λslack Penalty per unmet kWh.

κ kWh per redirected trip.

κmin Min kWh to activate an arc.

τ Intervals per hour.

α, βmin, βmax Initial, min, max SoC fraction.

dmax Max network distance for redirection.

(c) Decision Variables

xi,c ∈ Z+ Count of public chargers of type c at cell i.

Ψi ∈ Z+ Count of PV panels at cell i.

Θi ∈ Z+ Count of battery units at cell i.

ei,m,t,c,b ≥ 0 kWh delivered by charger c to class b.

gdiri,m,t,b ≥ 0 Direct grid supply to class b.

gbatti,m,t ≥ 0 Grid→battery kWh.

pbatti,m,t ≥ 0 PV→battery kWh.

ddisi,m,t,b ≥ 0 Battery discharge to class b.

χi,m,t ≥ 0 State-of-charge (kWh).

ϵi,m,t,b ≥ 0 Unmet demand slack.

zi,j,m,t ≥ 0 kWh redirected from i to j.

nκ
i,j,m,t ∈ Z+ Count of redirected trips (i → j).

Yi,j,m,t ∈ {0, 1} Arc-activation flag.

δi,m,t ∈ {0, 1} Battery charge-discharge mode.



Bibliography

Abdullah, H.M., Gastli, A., Ben-Brahim, L., Mohammed, S.O., 2022. Integrated
Multi-Criteria Model for Long-Term Placement of Electric Vehicle Chargers.
IEEE Access 10, 123452–123473. doi:10.1109/ACCESS.2022.3224796.

Adenaw, L., Lienkamp, M., 2021. Multi-Criteria, Co-Evolutionary Charging
Behavior: An Agent-Based Simulation of Urban Electromobility. World
Electric Vehicle Journal 12, 18. doi:10.3390/wevj12010018.

Ahmad, F., Iqbal, A., Ashraf, I., Marzband, M., Khan, I., 2022. Optimal
location of electric vehicle charging station and its impact on distribution
network: A review. Energy Reports 8, 2314–2333. doi:10.1016/j.egyr.
2022.01.180.

Alvarez Guerrero, J.D., Acker, T.L., Castro, R., 2022. Power System Impacts
of Electric Vehicle Charging Strategies. Electricity 3, 297–324. doi:10.3390/
electricity3030017.

Ameur, A., Berrada, A., Loudiyi, K., Aggour, M., 2020. Forecast modeling and
performance assessment of solar PV systems. Journal of Cleaner Production
267, 122167. doi:10.1016/j.jclepro.2020.122167.

Arabani, H.P., Ingelström, M., Márquez-Fernández, F.J., Alaküla, M., 2024.
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