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 a b s t r a c t

A framework for deriving probabilistic data-driven closure models is proposed for coarse-grained 
numerical simulations of turbulence in statistically stationary state. The approach unites the ideal 
large-eddy simulation model [8] and data assimilation methods. The method requires a posteri-
ori measured data to define a stochastic large-eddy simulation model, which is combined with a 
Bayesian statistical correction enforcing user-specified statistics extracted from high-fidelity flow 
snapshots. Thus, it enables computationally cheap ensemble simulations by combining knowledge 
of the local integration error and knowledge of desired flow statistics. An example implementation 
of the modeling framework is given for two-dimensional Rayleigh-Bénard convection at Rayleigh 
number 𝑅𝑎 = 1010, incorporating stochastic perturbations and an ensemble Kalman filtering step 
in a non-intrusive way. Physical flow dynamics are obtained, whilst kinetic energy spectra and 
heat flux are accurately reproduced in long-time ensemble forecasts on coarse grids for two dis-
cretizations. The model is shown to produce accurate results with as few as 20 high-fidelity flow 
snapshots as input data.

1.  Introduction

The highly turbulent nature of fluid flows provides a major challenge in the prediction of fluid-dynamical processes. Examples in-
clude oceanic and atmospheric flows, relevant to geophysics and climate science, or engineering and industrial applications involving 
thermal processes. The nonlinearity in the governing equations causes interaction between flow features of different scales, leading to 
energy distribution over a wide range of scales of motion [1]. Accurate direct numerical simulations (DNS) of fluid-dynamical models 
thus require very fine computational grids to fully resolve all flow features, and quickly become prohibitively expensive to carry out. 
Feasible simulation strategies for such systems therefore necessitate a reduction in computational complexity to approximate the flow 
evolution. Well-established approaches dealing with complexity reduction include reduced-order modeling [2], where the governing 
equations or associated operators are formulated in a low-dimensional manner, and large-eddy simulation (LES) [3,4], where the 
governing equations are spatially filtered and small-scale effects are modelled. In the current work, we focus on the LES approach 
and combine this with stochastic forecasting and data assimilation. The result is a general modeling framework for data-driven error 
correction in low-fidelity fluid predictions, which we demonstrate for two-dimensional Rayleigh-Bénard convection. We elaborate on 
the various model components below.

Large-eddy simulation. The spatially filtered equations of motion form the starting point for large-scale LES models. The underlying 
rationale is that computationally feasible methods can be developed by only capturing the largest scales of motion, since these are most 
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important for the overall flow evolution. The level of detail in the LES solution is determined by the filter width. Explicit LES follows 
from applying the adopted spatial filter to the governing equations directly. Alternatively, the equations can be filtered implicitly 
by discretizing differential operators on coarse computational grids. Regardless of the chosen approach, filtering introduces errors 
and uncertainty in the flow evolution. The filter generally does not commute with the nonlinear terms in the governing equations, 
yielding a so-called commutation error. In addition, discretization error is introduced on coarse computational grids due to poorly 
resolved spatial derivatives. One can add modeling terms to the governing equations with the aim of compensating for the errors 
introduced by filtering and coarsening [5–7]. We will refer to this as the LES model, although it is also often referred to as the closure 
model or the sub-filter or sub-grid scale model. Furthermore, filtering introduces uncertainty since it discards information of small 
spatial scales. Infinitely many fully resolved flow fields will correspond to the same filtered LES field, which makes it impossible to 
know the exact evolution of the LES solution. Consequently, it is desirable to develop error-correcting LES models that simultaneously 
quantify the uncertainty in the LES solution.

The abstract ideal LES model was derived by Langford and Moser [8] and can serve as a guideline for model development. The 
model is ideal in the sense that it reproduces single-time, multi-point statistics of the unfiltered solution and minimizes error in 
the instantaneous dynamics. It states that the ideal evolution of an LES solution is the average evolution conditional to an infinite 
number of fully resolved (unfiltered) fields corresponding to the current large-scale (filtered) field. One can probe this distribution 
of fields using a stochastic forecast ensemble and subsequently approximate the conditional average. Naturally, the model depends 
on the governing equations, the adopted filter and, in simulations, on the chosen spatial and temporal discretizations. This makes it 
challenging to approximate the conditional average well. However, empirical approximations can still be found through the use of 
data.

The field of data-driven LES has seen rapid development in recent years due to the increasing availability of computational 
resources and accessibility of high-fidelity data. Machine learning is used regularly to train neural networks as LES models [9,10]. 
One can distinguish between a priori and a posteriori learning, which differ in their objective function. A priori methods rely only on 
the high-fidelity data to learn a closure model, for example by minimizing a function of the unfiltered and the filtered solution. This 
approach can yield accurate short-time predictions, but might also suffer from errors and instabilities due to model-data inconsistency 
[11,12]. A posteriori methods can overcome this inconsistency, by directly comparing the results of the low-fidelity solver and the 
high-fidelity data [13]. Consequently, the model will depend on the configuration of the low-fidelity solver. The presently proposed 
model uses an a posteriori approach based on the ideal LES formalism to calibrate a stochastic subgrid-scale model.

Stochastic modeling in coarsened fluid descriptions. Stochasticity is commonly used in geophysical fluid dynamics to model uncertainty 
[14,15] stemming from imperfect initial conditions and incomplete models [16]. A prevalent interpretation of stochastic forcing is 
that it models the chaotic behavior of unresolved small scales on the resolved dynamics. For example, data-informed stochastic models 
have been developed for the two-scale Lorenz ’96 system [17]. This system serves as a low-dimensional model of the atmosphere 
with variables evolving over different time scales. By replacing the influence of fast variables on the slow variables with data-driven 
stochastic processes, [18] were able to account for model error. The addition of time-correlated noise further improved the forecasting 
skill. Other approaches based on data-driven Markov chains [19] have led to state-dependent stochastic processes modeling the effects 
of unresolved variables yielding a good reproduction of statistics of the resolved variables, such as probability density functions and 
temporal autocorrelation. Alternatively, [20] produce an ensemble of predictions in latent space via data-driven neural stochastic 
differential equations and subsequently average the corresponding LES predictions to approximate the ideal LES prediction. They 
report reduced errors over long simulation times and good predictions of the time-averaged energy spectrum when compared to 
implicit LES and deterministic neural network closures.

The current method fits in the recent modeling trend in observational sciences where high resolution simulations are replaced by 
stochastically forced simulations on coarse grids. New types of data-driven stochastic models have been developed for fluid-dynamical 
systems for the purpose of modeling uncertainty in observations and correct for undesired coarsening effects. For example, the effect 
of transport noise [21,22] in advection-dominated geophysical flows has been studied in the context of uncertainty quantification 
[23–25] and data assimilation [26]. These studies showed good quantification of uncertainty in advective processes at severely 
reduced computational costs. Another advantage of stochastic forcing is that it allows for indefinite simulation of signals with desired 
statistical properties, for example mimicking features of the dataset from which the model is calibrated. The chaotic evolution of 
turbulent flows prompts the development of stochastic models that reproduce flow statistics rather than pointwise agreement with 
some reference. Inspired by the nonlocality of turbulence, a space- and time-dependent model can be decomposed via global basis 
functions for which only the time series are modeled [27,28], possibly based on statistical data. Examples include the use of include 
proper orthogonal functions (POD) [29] and Fourier modes to reproduce their respective spectra in coarse numerical simulations of 
Rayleigh-Bénard convection [30,31]. [32] employed spherical harmonic functions to develop a stochastic subgrid-scale term with 
memory effects for barotropic flow, and found good agreement in the resulting energy spectra. Capturing flow statistics instead of 
the full flow also reduces the amount of data required to calibrate the model. Low-dimensional models with basis functions tailored 
to user-specified statistics can be derived [33] and used to develop stochastic models at severely reduced computational costs while 
accurately reproducing selected statistics, as was recently shown for the two-dimensional Navier-Stokes equations [34].

Data assimilation and error correction. Data assimilation (DA) deals with efficiently incorporating data in predictions and is widely 
employed in geophysical sciences. DA combines predictions of dynamical systems with observations optimally, taking into account 
the uncertainty in both these aspects [35,36]. A common way to include information into a prediction ensemble is via Bayes’ theorem 
[36,37]. This has led to DA schemes for nonlinear problems such as the ensemble Kalman filter (EnKF) [38,39] and particle filters [40]. 
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In the context of DA, filtering1 of turbulent systems has also been carried out by representing interactions of resolved and unresolved 
scales as stochastic processes [41]. Recent work has provided a theoretical framework for filtering of dynamical systems by observing 
statistics only [42], with correcting model errors as a possible application. The observations are often dealt with sequentially in 
DA, resulting in ‘on-the-fly’ updates of predictions or parameters as new information becomes available [43]. This contrasts with 
data-driven LES, where model parameters are commonly determined before performing a numerical simulation. Nonetheless, we will 
show here that DA techniques can be adapted to yield turbulence closure models for coarsened discretized systems.

Coarsening a discretized system will lead to a change in the predicted dynamics. Such a change is not necessarily a cause for 
concern at sufficiently high resolution. However, severe coarsening induces strong errors and yields numerical solutions converging 
to a different statistically steady state, as may be observed when measuring statistics of the dynamical system at large lead times. 
These structural errors can be alleviated by steering predictions towards observations (or specific regions of the state space), thereby 
increasing their likelihood. This is referred to as nudging [44]. A similar concept of continous data assimilation (CDA) based on inter-
polated approximations of measurements has been developed for fluid flows [45]. CDA assimilates observations while the predictions 
are integrated in time via a term that nudges the prediction towards the observation. Theoretical convergence for downscaled solu-
tions has been proved for the two-dimensional Navier-Stokes equations [46], accompanied by numerical results for this system [47] 
and two-dimensional Rayleigh-Bénard convection [48,49]. The CDA approach is similar to the continuous-time 3D-Var DA scheme 
[50,51]. Recently, a heuristic data-driven stochastic closure model was derived from the 3D-Var scheme, with the aim of reproduc-
ing reference energy spectra. This has been demonstrated for the two-dimensional Euler equations [52], Rayleigh-Bénard convection 
[30], and quasi-geostrophic flow on the sphere [53]. However, unrealistic dynamics may arise when nudging the solution too strongly 
[36] and we therefore endeavour to replace ad-hoc modeling assumptions by a structured method based on DA techniques. This leads 
to a modeling framework from which we derive a nudging approach for turbulent flows. One of the results in this paper is that 
the proposed model yields realistic instantaneous dynamics while reproducing selected flow statistics in long-time simulations, even 
when only a small amount of data is available.

Contributions and paper outline. In this paper, we propose a probabilistic data-driven LES closure modeling strategy with the aim 
of correcting for undesired coarsening effects on the dynamics whilst modeling the inherent uncertainty. The approach is inspired 
by the abstract ideal LES model [8] and consists of a stochastic ensemble LES prediction followed by a Bayesian correction. Specifi-
cally, stochastic LES yields a computationally cheap ensemble prediction using a posteriori measured data. Subsequently, a Bayesian 
correction updates selected key statistics (or quantities of interest, QoIs) based on high-fidelity data. Thus, we combine knowl-
edge of the local errors of the low-fidelity solver with knowledge of long-time statistics of the high-fidelity reference result. The 
model permits indefinite computationally efficient ensemble simulations of the dynamical system. An example of this methodol-
ogy is provided for two-dimensional Rayleigh-Bénard convection, where we focus on kinetic energy spectra and heat flux as key
statistics.

The paper is structured as follows. In Section 2, we recapitulate the ideal LES model and extend this to discrete time to set the 
stage for stochastic LES modeling. In Section 3, we recall sequential data assimilation and formulate the general closure model by 
assimilating statistics. An example of a closure model derived via the proposed modeling framework is described for Rayleigh-Bénard 
convection in Section 4. Section 5 presents an assessment of both of both short-time and long-time performance in the cases of plenty 
historical data and sparse historical data, and also examines the regularization properties of the proposed method. A discussion on 
model generalization is provided in Section 6. The paper is concluded in Section 7.

2.  Ideal large-eddy simulation

LES generally starts from a filtered description of the governing equations of motion. The abstract ideal LES model [8] was 
derived to compensate for unwanted effects caused by underresolving the turbulent flow. It is ideal in the sense that it minimizes the 
instantaneous error in the evolution of the large-scale dynamics. In this section we recall the ideal LES model as presented by Langford 
and Moser [8]. We summarize Ideal LES in Section 2.1 and subsequently extend the formulation to discrete time in Section 2.2. In 
Section 2.3 we motivate stochastic modeling on coarse computational grids using ideal LES.

Notation. We follow the notation of [8] and denote by 𝑢 and 𝑣 unfiltered turbulent fields. The space of unfiltered fields is denoted 
by  . We let 𝑤 be a resolvable large-scale field, referred to as an LES field, and the space of filtered fields is denoted by  . Filtered 
variables are denoted by a tilde ̃⋅. Distributions are denoted by 𝜋, which will be distinguished via subscripts. Time levels are denoted 
by superscripts, e.g., 𝑢𝑛 denotes a turbulent field at time 𝑡𝑛. Sets of fields are written in curly brackets {⋅}, where we distinguish 
between sequences of snapshots and ensembles at specific times. Sequences of snapshots of a solution 𝑢 are denoted by {𝑢𝑗}. An 
ensemble at time 𝑡𝑛 is denoted by {𝑢𝑛𝑖 }, where the 𝑖th ensemble member is the field 𝑢𝑛𝑖 . As will become clear from context, we also 
augment the notation of ensembles with subscripts 𝑓 and 𝑎 to respectively denote forecast and analysis ensembles.

1 The term filtering is used both the fields of LES and data assimilation but carries a different meaning in each of the fields. In LES, filtering refers 
to spatial filtering: a method to determine the level of physical detail to keep in the LES solution. In data assimilation, filtering deals with the 
sequential updating of a probability distribution function of a random variable as new measurements become available.
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2.1.  Ideal LES in continuous time

We consider a field of interest 𝑢 with an evolution given by 𝐿(𝑢), which contains a nonlinear advection term. The numerical 
method that integrates 𝐿 will be referred to as the high-fidelity solver. The filtered evolution of 𝑢 reads

𝜕𝑢
𝜕𝑡

= 𝐿(𝑢), (1)

which can be expressed as the evolution of the filtered field 𝑢̃ as
𝜕𝑢̃
𝜕𝑡

= 𝐿(𝑢̃) +𝑀(𝑢). (2)

In the last equation, 𝑀(𝑢) = 𝐿(𝑢) − 𝐿(𝑢̃) is a model term that appears due to the filtering of the nonlinear advection term, which 
causes a commutation error. At this stage, 𝑀 is exact, but evaluating 𝑀 requires explicit knowledge of the unfiltered field and will 
instead be replaced by a model.

The ideal subgrid model is shown to minimize error in the instantaneous evolution of large scales and produce accurate spatial 
statistics [8]. The fundamental insight in the model derivation is that a spatial filter must discard information to be useful. In other 
words, it cannot be invertible and maps from a high-dimensional (possibly infinite-dimensional) space  of turbulent fields to a 
lower-dimensional space  of LES fields. In particular, defining a filter ̃⋅ also defines its null space  ′ and complement ̃ . The non-
invertibility of the filter guarantees that  ′ is nontrivial, providing an unambiguous definition of unresolvable scales as elements 
of  ′. The space  of LES fields is isomorphic to ̃ . This holds for continuous fields as well as discretized fields. In what follows, 
we denote by  the set of all fine-grid resolvable fields, by  the set of all coarse-grid resolvable fields, and use ̃⋅ to indicate the 
application of a coarse-graining operator.

Therefore, for any LES field 𝑤, there exists a distribution of turbulent fields 𝑢 such that ̃𝑢 = 𝑤. By imposing that any spatial statistic 
of the true solution is reproduced by the LES solution, it is shown that the ideal LES evolution must satisfy

d𝑤
d𝑡

=

⟨

d̃𝑢
d𝑡

|

|

|

|

|

𝑢̃ = 𝑤

⟩

, (3)

where ⟨⋅|⋅⟩ denotes the conditional average. In this formulation, it is necessary to think of the turbulent field 𝑢 as a single realization 
in an ensemble of turbulent fields. Thus, Eq. (3) describes the average filtered evolution of an ensemble of fields 𝑢, conditional to the 
filtered fields 𝑢̃ being equal to the LES field 𝑤. Eq. (3) generalizes the results of Adrian [54], who showed that modeling turbulence 
reduces to approximating conditional averages of statistics.

The ideal LES evolution is rewritten as
𝜕𝑤
𝜕𝑡

= 𝐿LES(𝑤) + 𝑚(𝑤), (4)

where 𝐿LES is an approximation of of the right-hand side of the original evolution, for example obtained as a coarse numerical 
discretization. Throughout this paper, we will refer to the numerical method integrating 𝐿LES as the low-fidelity solver. The ideal 
LES model 𝑚(𝑤) is consequently defined as

𝑚(𝑤) = ⟨𝑀LES(𝑢)|𝑢̃ = 𝑤⟩, (5)

𝑀LES(𝑢) =
𝜕𝑢
𝜕𝑡

− 𝐿LES(𝑢̃). (6)

The above result holds for general flow configurations, numerical methods, and filters. Nonetheless, it is evident that all these 
choices will influence the model in practical situations. The flow domain and physical parameters naturally determine the operator 𝐿. 
The chosen filter and numerical discretization, which in itself implicitly induces a filter, influence 𝐿LES and thus also affect the ideal 
subgrid model. Specifically, 𝑀LES differs from 𝑀 in (2) since the former contains discretization errors in addition to the commutator 
error already present in 𝑀 . However, equations ((5)–(6)) indicate how to construct the ideal model once knowledge of the full system 
is available. In particular, it suggests that measurements of the subgrid force 𝑀(𝑢) in (6) are suited to serve as input for data-driven 
models. These measurements require integrating the filtered solution in time using the low-fidelity solver, which ensures that effects 
of spatial and temporal discretization are also measured, and comparing this to the filtered evolution of the unfiltered solution. As 
a consequence, the closure model will depend on the adopted numerical method and resolution, which is a necessary feature for 
consistency of the closure model.

2.2.  Ideal LES in discrete time

As an intermediate step towards stochastic data-driven LES models, we proceed by expressing ideal LES in discrete time. This 
amounts to defining the ideal distribution of which the mean is the ideal LES prediction. This formulation will aid the model description 
in Section 3.

As before, we treat a turbulent field as a single entity in an ensemble of turbulent fields and adopt a probabilistic notation as 
follows. We denote by 𝜋𝑈  the distribution of unfiltered turbulent fields, where 𝜋𝑛𝑈 (𝑢) describes the probability of a turbulent field 𝑢
being the realization of the flow dynamics at time 𝑡𝑛. We define the high-fidelity forward flow map 𝜓Δ𝑡(𝑢𝑛) ∶= 𝑢𝑛+1 = 𝑢𝑛 + 𝐿Δ𝑡(𝑢𝑛), 
where the superscripts denote the time levels and 𝐿Δ𝑡(𝑢𝑛) denotes high-fidelity numerical integration of 𝑢𝑛 for Δ𝑡 time units. Since 
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the 𝜓Δ𝑡 is a deterministic map, we can describe the evolution of a distribution of fields as a transition kernel 𝜏(𝑣|𝑢) = 𝛿
(

𝑣 − 𝜓Δ𝑡(𝑢)
)

acting on the distribution 𝜋𝑛𝑈  as

𝜋𝑛+1𝑈 (𝑣) = ∫
𝛿
(

𝑣 − 𝜓Δ𝑡(𝑢)
)

𝜋𝑛𝑈 (𝑢)d𝑢, (7)

where 𝛿 is the Dirac delta function.
Specifically, given an LES solution 𝑤𝑛, we define the ideal distribution at 𝑡𝑛+1 as follows. We begin with the distribution 𝜋𝑛𝑉  of 

unfiltered fields 𝑢 that satisfy 𝑢̃ = 𝑤𝑛. This distribution evolves according to

𝜋𝑛+1𝑉 (𝑣) = ∫
𝛿
(

𝑣 − 𝜓Δ𝑡(𝑢)
)

𝜋𝑛𝑉 (𝑢)d𝑢, (8)

where  = {𝑢 ∈ |𝑢̃ = 𝑤𝑛}. We use 𝜋𝑛+1𝑉 (𝑣) to define the distribution 𝜋𝑛+1𝑊 (𝑤) of filtered fields 𝑤 that correspond to the unfiltered 
fields at 𝑡𝑛+1,

𝜋𝑛+1𝑊 (𝑤) = ∫
𝜋𝑛+1𝑉 (𝑣)d𝑣, (9)

where  = {𝑣 ∈ |𝑣̃ = 𝑤}. We refer to 𝜋𝑛+1𝑊  as the ideal distribution at time 𝑡𝑛+1. The ideal LES prediction 𝑤𝑛+1 is then given as the 
average field in this distribution,

𝑤𝑛+1 = 𝔼𝜋𝑛+1𝑊
[𝑤] = ∫

𝑤𝜋𝑛+1𝑊 (𝑤)d𝑤. (10)

Equations ((8)–(10)) describe the following procedure. Given an LES prediction at time 𝑤𝑛, we would like to know the best 
approximation at time 𝑤𝑛+1 as described by ideal LES. We thus consider the distribution 𝜋𝑛𝑉 (𝑢) of unfiltered fields 𝑢 at time 𝑡𝑛 that all 
correspond to the same LES field 𝑤𝑛 after applying the filter ̃⋅. Each unfiltered field in this distribution is evolved in time according 
to the high-fidelity flow map in (8), leading to a distribution 𝜋𝑛+1𝑉 (𝑣) of unfiltered fields at time 𝑡𝑛+1. To find the ideal LES prediction 
at this time, we have to compute the corresponding distribution 𝜋𝑛+1𝑊 (𝑤) of filtered fields 𝑤 as in (9) and subsequently compute its 
mean following (10).

2.3.  Naive Monte Carlo approximation to ideal LES

Eq. (10) indicates that the ideal LES prediction 𝑤𝑛+1 at time 𝑡𝑛+1 is the mean of the ideal distribution 𝜋𝑛+1𝑊 . Computing 𝑤𝑛+1
thus requires the evaluation of the integral on the right-hand side of Eq. (10), which is generally intractable since it concerns an 
infinite number of fluid fields. Any feasible approximation of this integral will require using Monte Carlo methods, which in this case 
corresponds to computing the empirical mean of a distribution approximating 𝜋𝑛+1𝑊 . A naive approximation to the ideal LES prediction 
𝑤𝑛+1 can therefore be obtained by initializing an ensemble {𝑢𝑛𝑖 } with an empirical distribution that approximates 𝜋𝑛𝑉 , and use this 
ensemble to subsequently approximate the integrals in Eqs. (8)–(10). This is summarized in Algorithm  1.

Algorithm  1 only serves to illustrate the concept of ideal LES and will not be used for actual prediction of flow fields in the current 
study. We refer to this algorithm as ‘naive’ as it quickly becomes computationally intractable. Since every realization in the Monte 
Carlo approximation needs to be integrated with the high-fidelity solver, the computational costs grow rapidly even when a modest 
number of ensemble members are used in the approximation. To remedy this, we explore in the next section the combination of ideal 
LES and data assimilation techniques to approximate the ideal distribution without having to integrate at high spatial resolution. 

Algorithm 1 Naive approximation of ideal LES over one time step.
procedure Naive ideal LES(𝑤𝑛, 𝜓 , Δ𝑡, 𝑁 , ̃⋅)
 for 𝑖 = 1,… , 𝑁 do
 𝑢𝑛𝑖 ← sample(𝜋𝑛𝑉 ) ⊳ Draw i.i.d. samples from 𝜋𝑛𝑉 , recall that 𝑢̃𝑛𝑖 = 𝑤𝑛

 𝑣𝑛+1𝑖 ← 𝜓Δ𝑡(𝑢𝑛𝑖 ) ⊳ Integrate samples in time to approximate 𝜋𝑛+1𝑉
 𝑤𝑛+1𝑖 ← 𝑣̃𝑛+1𝑖 ⊳ Filter samples to approximate 𝜋𝑛+1𝑊
 end for
 𝑤𝑛+1 ← 1

𝑁
∑𝑁
𝑖=1𝑤

𝑛+1
𝑖 ⊳ The empirical mean of 𝜋𝑛+1𝑊  approximates the ideal LES prediction

 return 𝑤𝑛+1
end procedure

The modeling framework proposed in this paper aims to approximate ideal LES via ensemble predictions, rather than provide 
the exact deterministic evolution. The strict non-invertibility requirement of the filter can then be relaxed and one may instead also 
consider ill-conditioned invertible filters. In such cases, a perturbation in a filtered field is magnified when computing the unfiltered 
field. Thus, one can turn a distribution of minimally perturbed LES fields into fully resolved fields that are considerably different and 
subsequently consider the mean evolution of this distribution as an approximation to the ideal LES evolution.
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3.  Probabilistic closure modeling framework

The probabilistic description of ideal LES as presented in the previous section motivates using stochastic simulation strategies to 
obtain empirical approximations to distributions of fields. Finding probability distributions given observations of the underlying dy-
namical system has traditionally been the goal of data assimilation [35], which aims to combine model predictions with observational 
data in a manner that optimally balances the uncertainties present in both the predictions and the observations. This is commonly 
achieved by filtering, i.e., sequentially updating the probability distribution of the variable of interest in two steps referred to as the 
prediction and the analysis.

In this section, we formulate stochastic LES in the context of sequential data assimilation. In particular, we discuss applying a 
Bayesian correction to the stochastic LES prediction in order to approximate the ideal distribution. By considering flows in statistically 
stationary states, we relax this modeling criterion and focus on accurate prediction of flow statistics instead. Through this combination 
of ideal LES and data assimilation methods, we arrive at a general framework of closure modeling by assimilating statistics.

Throughout this section, we assume that high-fidelity data is available in the form of flow snapshots. From these snapshots, we 
can extract time series and empirical distributions of flow statistics (also referred to as quantities of interest or QoIs) and access this 
information in the model formulation.

3.1.  Sequential data assimilation approximation to ideal LES

We first briefly recall the ensemble prediction and Bayesian correction steps in sequential data assimilation, which enables us to 
formulate the general closure model in Section 3.2.

Ensemble LES prediction. For simplicity, we consider a single LES solution 𝑤𝑛 at time 𝑡𝑛 and formulate the prediction ensemble or 
forecast ensemble starting from this single solution. As before, we can define the forward flow map as the (stochastic) map 𝜑Δ𝑡,𝑖(𝑤𝑛) ∶=
𝑤𝑛+1𝑖 = 𝑤𝑛 + 𝐿LES,Δ𝑡(𝑤𝑛, 𝑚𝑖), where 𝐿LES,Δ𝑡(𝑤𝑛, 𝑚𝑖) denotes numerical integration of the LES solution including the 𝑖th realization of 
the stochastic LES model. Thus, through the choice of numerical method and LES model, we implicitly define the transition kernel 
𝜏LES,Δ𝑡(𝑤𝑓 |𝑤). This kernel can be thought of as describing the probability that 𝜑Δ𝑡(𝑤) = 𝑤𝑓  occurs, or in other words, that the flow 
configuration 𝑤𝑓  is reached after integrating the prediction model Δ𝑡 time units starting from configuration 𝑤. Using this notation, 
we define the forecast distribution 𝜋𝑛+1𝑓  at time 𝑡𝑛+1 as

𝜋𝑛+1𝑓
(

𝑤𝑓
)

= ∫
𝜏LES,Δ𝑡

(

𝑤𝑓 |𝑤
)

𝛿
(

𝑤 −𝑤𝑛
)

d𝑤. (11)

If one defines the stochastic LES model 𝑚(𝑤) such that its average equals the conditional average in equations (5–6), then the mean 
of the stochastic ensemble will be the ideal LES prediction. However, in practice this will generally not be achievable. The conditional 
average in Eq. (5) can be estimated with sufficient measurements of 𝑀(𝑢) (Eq. (6)) using nonlinear mean square estimation [55]. 
Nonetheless, it becomes increasingly difficult to obtain sufficient samples of the state space when its dimension increases [36], hence 
it is infeasible to compute good approximations of the conditional average even at modest resolutions of the LES prediction. In 
practice, therefore, the forecast distribution 𝜋𝑛+1𝑓  will generally differ from the ideal distribution and may even be markedly different 
if errors accumulate. We thus need to correct the forecast distribution based on available knowledge of the ideal distribution.

Bayesian correction to incorporate measurements. The produced forecast ensemble is not guaranteed to be an accurate approximation 
of the ideal distribution. Therefore, we incorporate known information of the ideal distribution 𝜋𝑛+1𝑊  into the forecast distribution 
𝜋𝑛+1𝑓  in a Bayesian assimilation step, thereby producing an analysis ensemble or posterior ensemble with a distribution denoted by 𝜋𝑛+1𝑎 . 
The assimilation can succinctly be written in terms of a transition kernel 𝑏(𝑤𝑎|𝑤𝑓 ) acting on the forecast ensemble [36, Chapter 7],

𝜋𝑛+1𝑎
(

𝑤𝑎
)

= ∫
𝑏
(

𝑤𝑎|𝑤𝑓
)

𝜋𝑛+1𝑓
(

𝑤𝑓
)

d𝑤𝑓 , (12)

where the form of 𝑏 depends on the adopted DA method.
As an example we consider the Ensemble Kalman filter (EnKF) with perturbed observations [38,39] as a corrector for the prediction 

ensemble. EnKF provides a practical algorithm since it defines the transition from a forecast distribution to an analysis distribution in 
terms of the corresponding ensembles. We denote by 𝑤𝑛+1𝑖,𝑓  and 𝑤𝑛+1𝑖,𝑎  the 𝑖th ensemble members of the forecast ensemble and analysis 
ensemble, respectively, at time 𝑡𝑛+1. The correction then takes the form

𝑤𝑛+1𝑖,𝑎 = 𝑤𝑛+1𝑖,𝑓 −𝐾
(

𝐻𝑤𝑛+1𝑖,𝑓 + 𝑟𝑛+1𝑖 − 𝑦𝑛+1obs

)

, (13)

where 𝑟𝑛+1𝑖 ∼  (0, 𝑅) and 𝑦𝑛+1obs  is an observation. Here, 𝐻 is the measurement operator mapping an LES prediction 𝑤𝑛+1𝑖,𝑓  to an 
observable, 𝐾 is the Kalman gain matrix and 𝑅 is the observational noise covariance matrix. For this method, the transition kernel 𝑏
can be expressed as [36, Section 7.1]

𝑏
(

𝑤𝑛+1𝑎 |𝑤𝑛+1𝑓

)

= n
(

𝑤𝑛+1𝑎 ;𝑤𝑛+1𝑓 −𝐾
(

𝐻𝑤𝑛+1𝑓 − 𝑦𝑛+1obs

)

, 𝐾𝑅𝐾𝑇
)

. (14)

The term on the right-hand side describes the probability of sampling 𝑤𝑛+1𝑎  from a normal distribution with mean 𝑤𝑛+1𝑓 −𝐾(𝐻𝑤𝑛+1𝑓 −
𝑦𝑛+1obs ) and covariance 𝐾𝑅𝐾𝑇 .
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3.2.  Closure modeling by assimilating statistics

Using the assumption that the flow is statistically stationary and that high-fidelity flow snapshot data are available, we now derive 
a framework for ensemble methods that serve as self-contained data-driven stochastic models.

A flow statistic is defined by a function 𝐺 ∶  → ℝ producing a single number for a given flow configuration. Then, the expected 
value of the statistic in the ideal distribution

𝔼𝜋𝑊 [𝐺(𝑤)] = ∫
𝐺(𝑤)𝜋𝑊 (𝑤)d𝑤 (15)

becomes time-independent since we assume statistical stationarity. Therefore, instead of focusing on approximating the ideal distri-
bution 𝜋𝑛+1𝑉  by the posterior distribution 𝜋𝑛+1𝑎 , we can choose to relax this modeling goal such that it applies to selected flow statistics 
only. The underlying assumption is that selected flow statistics adequately describe the ideal distribution and hence that an ensemble 
of solutions with accurate flow statistics approximates the ideal distribution. That is, we aim to find a posterior distribution 𝜋𝑛+1𝑎  of 
flow fields such that

𝔼𝜋𝑛+1𝑎
[𝐺(𝑤)] = 𝔼𝜋𝑊 [𝐺(𝑤)] (16)

for user-defined flow statistics 𝐺. This way, we shift our focus from predicting distributions of fields to predicting distributions of flow 
statistics. In doing so, we exploit the knowledge of the distribution of 𝐺 as measured from high-fidelity flow snapshots. We denote 
this distribution by 𝐺(𝑤)𝜋𝑊 .

To achieve good approximations of flow statistics, following (16), we consider sequential data assimilation applied to a predicted 
ensemble of statistics rather than an ensemble of flow fields. This gives rise to the following general method, also summarized in 
Algorithm 2. Starting from an initial field 𝑤𝑛, an LES prediction ensemble {𝑤𝑛+1𝑖,𝑓 } is computed from which flow statistics {𝐺𝑛+1𝑖,𝑓 } are 
extracted. A Bayesian method is subsequently employed to correct the predicted statistics. Namely, a DA method is applied to the 
predicted statistic ensemble {𝐺𝑛+1𝑖,𝑓 }, where ‘observations’ {𝐺𝑛+1𝑖,obs} are samples from the distribution 𝐺(𝑤)𝜋𝑊 . The latter is estimated 
from the high-fidelity data. The resulting updated values {𝐺𝑛+1𝑖,𝑎 } of the statistic should be satisfied by the analysis ensemble of flow 
fields {𝑤𝑛+1𝑖,𝑎 }. Thus, the final step of the algorithm is to find, or ‘reconstruct’, this ensemble. Specifically, each forecast ensemble 
member 𝑤𝑛+1𝑖,𝑓  is transformed into an analysis ensemble member 𝑤𝑛+1𝑖,𝑎  such that the latter satisfies the flow statistic 𝐺𝑛+1𝑖,𝑎 .

Algorithm 2 Framework for closure modeling by assimilating statistics over one time step.
procedure Closure Model(𝑤𝑛, 𝜑, Δ𝑡, 𝑁 , DA)
 for 𝑖 = 1,… , 𝑁 do
 𝑤𝑛+1𝑖,𝑓 ← 𝜑Δ𝑡,𝑖(𝑤𝑛) ⊳ Compute ensemble LES prediction
 𝐺𝑛+1𝑖,𝑓 ← 𝐺(𝑤𝑛+1𝑖,𝑓 ) ⊳ Compute predicted statistics
 𝐺𝑛+1𝑖,obs ← sample(𝐺(𝑤)𝜋𝑊 ) ⊳ Generate ‘observed’ statistics
 end for
 

{

𝐺𝑛+1𝑖,𝑎

}

← DA
({

𝐺𝑛+1𝑖,𝑓

}

,
{

𝐺𝑛+1𝑖,obs

})

⊳ Bayesian correction of predicted statistics
 for 𝑖 = 1,… , 𝑁 do
 𝑤𝑛+1𝑖,𝑎 ← reconstruct(𝑤𝑛+1𝑖,𝑓 , 𝐺

𝑛+1
𝑖,𝑎 ) ⊳ Reconstruct flow fields such that these satisfy the updated statistics

 end for
 return 

{

𝑤𝑛+1𝑖,𝑎

}

⊳ Return the ensemble of flow fields with updated statistics
end procedure

Algorithm 2 provides a general framework for including knowledge of desired flow statistics into stochastic LES predictions. 
However, its generality comes at the cost of having many modeling choices, which we list below. These choices are

1. how to measure the sub-grid force 𝑀(𝑢) in Eq. (6). Ideal LES establishes what this measurement should encompass in continuous 
time. In discrete time, one has to decide over which time interval 𝑀(𝑢) is measured;

2. which stochastic LES model to use. Even though ideal LES provides a goal for what the LES model should achieve, the form of the 
stochastic forcing term may depend on the problem at hand;

3. which statistics to assimilate;
4. how the ‘observations’ are defined based on high-fidelity data. Time series data of statistics can be extracted from available 
high-fidelity flow snapshots. In turn, one can choose, e.g., to draw samples from empirically measured distributions, or to mimic 
measured temporal correlation;

5. which DA scheme to use;
6. how to reconstruct the flow fields when statistical values are known. A small number of statistics does not uniquely define a flow 
field, hence it is desirable to optimally find flow fields 𝑤𝑛+1𝑖,𝑎  from 𝑤𝑛+1𝑖,𝑓  under the constraints defined by the desired flow statistics.

The above description highlights that the reference data is used twice in this framework: first to measure the sub-grid force 
𝑀(𝑢), which is indicative of the local integration error, and subsequently to determine the flow statistics, which describe the desired 
statistically steady state. Furthermore, the first two points are related to ensemble prediction with stochastic data-driven LES, the 
remainder are part of the Bayesian correction. In the next section, we illustrate how the presented modeling framework can be applied 

Journal of Computational Physics 539 (2025) 114234 

7 



S. R. Ephrati

to develop a data-driven stochastic closure for two-dimensional Rayleigh-Bénard convection, and elaborate on each of the required 
modeling choices.

4.  Application to Rayleigh-Bénard convection

In this section, we provide an example of a closure model combining stochastic LES and assimilating statistics. We first introduce 
the governing equations and the test case that the closure model will be applied to. Subsequently, we highlight the model choices, 
provide implementation details and an estimate of the resulting computational complexity.

4.1.  Governing equations and numerical methods

Two-dimensional Rayleigh-Bénard (RB) convection serves as the test bed for the proposed model. The governing equations are 
the incompressible Navier-Stokes equations coupled to an energy equation describing buoyancy effects under the Boussinesq approx-
imation. The nondimensionalized equations are

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮 =
√

𝑃𝑟
𝑅𝑎

∇2𝐮 − ∇𝑝 + 𝑇 𝐞𝑦, (17)

∇ ⋅ 𝐮 = 0, (18)
𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ ∇𝑇 = 1
√

𝑃𝑟𝑅𝑎
∇2𝑇 , (19)

where 𝐮 is the velocity, 𝑝 is the pressure, 𝑇  is the temperature, and 𝐞𝑦 is the unit vector in the vertical direction. The velocity consists 
of a horizontal velocity 𝑢𝑥 and a vertical velocity 𝑢𝑦. Following the notation of Section 2, we regard a solution 𝑢 as the pair (𝐮, 𝑇 ).

The equations are solved in a two-dimensional rectangular box of width 𝐿𝑥 = 2 and height 𝐿𝑦 = 1. Periodic boundary conditions 
are imposed on the sides of the domain for all variables. The top and bottom boundaries are walls with no-slip boundary conditions for 
the velocity, and prescribed values of 1 at the bottom and 0 at the top for the dimensionless temperature. The dimensionless numbers 
are the Prandtl number 𝑃𝑟 = 𝜈∕𝜅 and the Rayleigh number 𝑅𝑎 = 𝑔𝛽Δ𝐿3

𝑦∕(𝜈𝜅). These numbers describe the ratio of characteristic 
length scales of the velocity and the temperature and the ratio between buoyancy and viscous effects, respectively, and we have a 
Reynolds number 𝑅𝑒 =

√

𝑅𝑎∕𝑃𝑟. Here 𝜈 is the kinematic viscosity, 𝜅 is the thermal diffusivity, 𝑔 is the gravitational acceleration, 𝛽
is the thermal expansion coefficient, Δ is the temperature difference between the walls of the domain. The test case is run at 𝑃𝑟 = 1
and 𝑅𝑎 = 1010 to simulate in the turbulent convective regime.

The Nusselt number describes the heat flux from the bottom to the top of the domain and is one of the critical responses of the 
system to the imposed physical parameters [56]. We adopt the definition

𝑁𝑢 = 1 +
√

𝑃𝑟𝑅𝑎⟨𝑣𝑇 ⟩Ω, (20)

where ⟨⋅⟩Ω is the mean over the entire domain Ω. Definition (20) is particularly suited for computation on coarse grids since it does 
not involve any gradients, and will be used as a metric to assess coarse-grid simulations.

The equations ((17)–(19)) are discretized in space using a energy-conserving finite difference method [57]. The high-fidelity 
solver is parallelized following [58]. The velocity is defined on a staggered grid, the temperature is defined on the same grid as 
the vertical velocity, and the pressure is computed at the cell centers. The arrangement of the temperature and vertical velocity 
ensures no interpolation errors when computing the buoyancy term [59]. A hyperbolic tangent grid spacing is adopted in the vertical 
(wall-normal) direction, guaranteeing refinement near the walls to resolve the boundary layer. The grid is uniformly spaced in the 
horizontal direction.

The temporal discretization follows from a fractional-step third-order Runge-Kutta (RK3) for explicit terms and the Crank-
Nicholson (CN) scheme for implicit terms. A time step from 𝑡𝑛 to 𝑡𝑛+1 is divided into three sub-stages denoted by the superscript 
𝑘, 𝑘 = 0, 1, 2, where 𝑘 = 0 coincides with the situation at 𝑡𝑛. In each stage, a provisional velocity 𝐮∗ is computed as

𝐮∗ − 𝐮𝑘
Δ𝑡

=
[

𝛾𝑘𝐻
𝑘 + 𝜌𝑘𝐻𝑘−1 − 𝛼𝑘𝑝𝑘 + 𝛼𝑘𝑘

𝑦
𝐮∗ + 𝐮𝑘

2

]

. (21)

The Runge-Kutta coefficients 𝛾, 𝜌, 𝛼 are given by 𝛾 = [8∕15, 5∕12, 3∕4], 𝜌 = [0,−17∕60,−5∕12] and 𝛼 = 𝛾 + 𝜌 (see [58–60]). The discrete 
gradient is denoted by . The convective terms, horizontal diffusion terms and source terms (buoyancy) are collected in 𝐻𝑘 and are 
treated explicitly. The vertical diffusion term 𝑦 is treated implicitly to eliminate viscous stability restrictions arising from the non-
uniform grid near the boundary [61]. A Poisson equation is then solved using 𝐮∗ to impose the continuity constraint (18). Discretely, 
this is given by

𝜙 = 1
𝛼𝑘Δ𝑡

(

𝐮∗
)

, (22)

where  is the discrete Laplacian and  is the discrete divergence. The velocity and pressure are then updated to yield a divergence-
free velocity field,

𝐮𝑘+1 = 𝐮∗ − 𝛼𝑘Δ𝑡(𝜙), (23)

𝑝𝑘+1 = 𝑝𝑘 + 𝜙 −
𝛼𝑘Δ𝑡
2𝑅𝑒

(𝜙). (24)
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The QUICK interpolation scheme [62] is used to discretize the convective terms, whereas the diffusive terms are discretized with a 
standard second-order finite difference scheme in both spatial directions. Finite differences are used to define the discrete gradient 
, the discrete divergence  and the discrete Laplacian .

A resolution of 4096 × 2048 is adopted for the DNS, which has been shown to be sufficient to resolve the flow at the chosen Rayleigh 
number [63]. All subsequent coarse-grid simulations are carried out on a 64 × 32 grid. The flow cannot be fully resolved at this low 
resolution and the numerical method induces artificial dissipation [30,64]. Hence, the low-fidelity numerical solution will reach a 
different statistically steady state than the high-fidelity reference solution if no model is explicitly applied.

4.2.  Model specification

As presented in Algorithm 2 in Section 3, the full statistical closure modeling framework consists of a stochastic ensemble forecast 
method and a subsequent Bayesian correction. A total of six modeling choices have to be made to obtain a workable algorithm, which 
we elaborate below. Model generalization is discussed in Section 6.

We assume that a sequence of high-fidelity snapshots {𝑢𝑗} is available. Furthermore, we repeatedly make use of the periodicity 
of the domain in the horizontal (wall-parallel) direction by computing the one-dimensional Fourier transform along horizontal cross-
sections of the domain. The Fourier coefficients are indicated with a hat symbol ̂⋅. For example, we use 𝑢𝑥,𝑘,𝑙 to denote the 𝑘th Fourier 
coefficient of the velocity 𝑢𝑥 along the 𝑙th horizontal cross-section. Given an entire solution 𝑢 consisting of a velocity 𝐮 = (𝑢𝑥, 𝑢𝑦) and 
a temperature 𝑇 , one obtains the Fourier coefficients 𝑢𝑥,𝑘,𝑙, 𝑢𝑦,𝑘,𝑙, 𝑇𝑘,𝑙. We denote these coefficients collectively by ̂𝑢𝑘,𝑙 for readability. 
This leads to the following model description.

1. The subgrid force 𝑀 in Eq. (6) is recorded in an a posteriori measurement. Specifically, 𝑀(𝑢𝑛) is measured by integrating the 
high-fidelity solver in time from a high-fidelity snapshot 𝑢𝑛 and the low-fidelity solver from 𝑢̃𝑛. Both solutions are integrated for 
Δ𝑡 time units, which equals a single coarse-grid time step and constitutes multiple fine-grid time steps. The solution from the high-
fidelity solver is then filtered and compared to the solution of the low-fidelity solver. Thus, a set of measurements {𝑀LES,Δ𝑡(𝑢𝑗 )} is 
obtained from a collection of high-fidelity snapshots {𝑢𝑗}. This procedure is summarized in Algorithm 3, where 𝜑Δ𝑡(𝑤𝑛) indicates 
numerical integration of the LES solution without an LES model. The number of measurements is varied throughout the performed 
numerical experiments and is specified in Section 5. 

Algorithm 3 Single a posteriori measurement.
procedure A posteriori measurement(𝑢𝑛, 𝜓 , 𝜑, Δ𝑡, ̃⋅)
 𝑤𝑛 ← 𝑢̃𝑛 ⊳ Initialize low-fidelity solution as the filtered high-fidelity snapshot
 𝑢𝑛+1 ← 𝜓Δ𝑡(𝑢𝑛) ⊳ Integrate high-fidelity solution in time
 𝑤𝑛+1 ← 𝜑Δ𝑡(𝑤𝑛) ⊳ Integrate low-fidelity solution in time
 𝑀LES,Δ𝑡(𝑢𝑛) = 𝑢̃𝑛+1 −𝑤𝑛+1

 return 𝑀LES,Δ𝑡(𝑢𝑛)
end procedure

2. The LES model is implemented as a stochastic perturbation calibrated from the measurements {𝑀LES,Δ𝑡(𝑢𝑗 )}. Namely, time series 
of the Fourier coefficients along horizontal cross-sections of the domain are first extracted for each prognostic variable. This yields 
{ ̂𝑀LES,Δ𝑡(𝑢𝑗 )𝑘,𝑙} and in particular we also obtain magnitudes {abs( ̂𝑀LES,Δ𝑡(𝑢𝑗 )𝑘,𝑙)}. The sample means 𝜇𝑀,𝑘,𝑙 and variances 𝜎2𝑀,𝑘,𝑙
of the magnitudes are stored.

The perturbation is then constructed as follows. For each Fourier coefficient and horizontal cross-section independently, we 
sample a magnitude 𝑟𝑀,𝑘,𝑙 ∼  (𝜇𝑀,𝑘,𝑙 , 𝜎2𝑀,𝑘,𝑙) and a phase 𝜗𝑀,𝑘,𝑙 ∼ 𝑈 [0, 2𝜋]. This fully defines the spectral coefficients and thus 
the corresponding physical fields. These fields are added as a perturbation after the full time step has been completed with the 
low-fidelity solver. An ensemble forecast {𝑤𝑛+1𝑖,𝑓 } is produced by computing a separate perturbation for each ensemble member. 
Such a perturbation can accurately compensate for coarsening errors even when a fraction of data is used [65] and is non-intrusive, 
thereby readily enabling ensemble forecasts.

3. We aim to reproduce the energy spectra and mean heat flux in all horizontal cross-sections of the domain. Given a solution 𝑢, 
the QoIs are abs(𝑢̂𝑘,𝑙) for the energy spectra and (𝑢𝑦𝑇 )0,𝑙 for the mean heat flux, where the subscript 0 signifies the zeroth Fourier 
coefficient. For simplicity, we will denote a single QoI by 𝐺, which can refer to either the magnitude of a Fourier coefficient or 
the mean heat flux.

4. The ‘observations’ are based on the sequence of filtered high-fidelity snapshots {𝑢̃𝑗}. This sequence yields a time series {𝐺𝑗ref}
for each QoI, of which the sample mean 𝜇obs and variance 𝜎2obs are stored. At every assimilation step, an ensemble {𝐺𝑖,obs} of 
observations is generated by sampling 𝐺𝑖,obs ∼  (𝜇obs, 𝜎2obs) for each QoI separately.

5. A simplified ensemble Kalman filter (EnKF) [38] is employed to update the predicted statistics based on the observations. 
EnKF takes into account the nonlinearity of the governing equations, permits using a wide range of noise models [39], and is
straightforward to implement.

A diagonalization approach [41,66] is used that disregards covariances between the QoIs, so that the analysis acts on each 
QoI separately. This can be thought of as covariance ‘localization’. Consequently, this avoids computing (inverses of) covariance 
matrices in the analysis step as is usually required in EnKF, which becomes a source of extensive computational costs if many 
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statistics are assimilated simultaneously. Instead, the analysis for each QoI reduces to a scalar equation independent of other QoIs. 
No ensemble inflation is used in the present study.

We denote the forecast, analysis ensemble, and observation ensembles of a single QoI by {𝐺𝑖,𝑓 }, {𝐺𝑖,𝑎}, and {𝐺𝑖,obs}, respec-
tively. The diagonalized EnKF then updates each predicted QoI as

𝐺𝑖,𝑎 = 𝐺𝑖,𝑓 +

(

var
({

𝐺𝑖,𝑓
})

var
({

𝐺𝑖,𝑓
})

+ var
({

𝐺𝑖,obs
})

)

(

𝐺𝑖,obs − 𝐺𝑖,𝑓
)

. (25)

6. The predicted LES solution 𝑤𝑖,𝑓  is updated to a solution 𝑤𝑖,𝑎 satisfying the statistic 𝐺𝑖,𝑎 from the previous step by appropriately 
adjusting the spectral coefficients of 𝑤𝑖,𝑓 . Namely, the magnitudes of the spectral coefficients of 𝑤𝑖,𝑓  can be readily changed to 
𝐺𝑖,𝑎. The desired heat flux values are approximated by applying a gradient descent method on the phases of the Fourier coefficients 
of the temperature field, as developed in [30]. The solution 𝑤𝑖,𝑎 is then fully described by the updated spectral coefficients.
The diagonalized EnKF in step 5 updates each QoI separately by disregarding covariances between the QoIs. Consequently, the 

error |𝐺𝑖,𝑎 − 𝐺𝑖,obs| can be estimated for each QoI independently, and is further detailed in Appendix A. In particular, for a sufficiently 
large ensemble size and sufficiently small time step, the ensemble mean of {𝐺𝑖,𝑎} is shown to revert to 𝜇obs. Accurately predicting 
mean values of QoIs is a consistency requirement, since it is assumed that the specified QoIs adequately describe the ideal distribution.

4.3.  Computational complexity

We now provide some estimates of the complexity reduction when employing the model on coarse grids. Solving the Poisson 
Eq. (22) is the largest source of computational costs in the spatial discretization since it involves solving a sparse (𝑁𝑥𝑁𝑦) × (𝑁𝑥𝑁𝑦)
linear system. The high-fidelity solver employs a parallelization technique for finite-difference discretization of wall-bounded flows 
[59] which solves (22) in (𝑁𝑥𝑁𝑦 log[𝑁𝑦]) operations. The low-fidelity solver uses a standard LU factorization for sparse linear 
systems for this purpose, requiring ((𝑁𝑥𝑁𝑦)3∕2) computational steps [67].

The one-dimensional (inverse) fast Fourier transform (I(FFT)) along horizontal cross-sections of the domain is used extensively 
in the present adaptation of the model. These are computed in (𝑁𝑥 log[𝑁𝑥]) operations [68]. The random fields in the stochastic 
perturbations are computed by applying the IFFT at each horizontal profile for all prognostic variables. Applying the correction of the 
magnitudes of the Fourier coefficients requires computing the (I)FFT twice for these variables. The heat flux correction requires three 
computations of the (I)FFT in total and an additional (𝑁𝑥𝑁𝑦) arithmetic operations per iteration. In total, we obtain the estimates of 
(107) operations per time step for the high-fidelity solver, and (105) for the low-fidelity solver including the model. This estimate 
is for a single realization of the model. Simulating an ensemble of size 𝑁 increases the computational costs by approximately a factor 
𝑁 . The diagonalized EnKF (25) does not result in substantial additional computational costs.

The time step size becomes restrictive for high-𝑅𝑎 flow. A step size of (Δ𝑦) ≈ ((𝑅𝑎𝑁𝑢)−1) = (10−12) is suggested [59] to stably 
fully resolve the turbulent flow features. Here Δ𝑦 denotes the smallest grid spacing in the non-uniform wall-normal grid.

The employed fine and coarse grids differ by a factor 64 in terms of grid cells per spatial direction. However, the difference between 
the smallest (non-uniform) grid spacings in the wall-normal direction yields a significant relaxation of the time step constraint. 
Following the estimate above, a time step restriction of (10−4) is obtained on the adopted coarse grid. However, a time step size of 
(10−2) was found to yield stable results, likely due to the presence of artificial dissipation, leading to a significant computational 
cost reduction.

5.  Model performance assessment

This section presents simulation results on the coarse computational grid, comparing four models to the high-fidelity reference. 
We first introduce the employed coarse-grid models, the reference data used for model calibration, and the performance assessment 
metrics.

Coarse-grid models. Four different models are employed in the coarse-grid simulations and compared to the filtered DNS. These 
models are listed below and consist of a physics-based deterministic model and three ensemble methods.

• The no-model coarse numerical simulation serves as a deterministic physics-inspired closure model and will be referred to as the 
‘coarse, no model’ method. The artificial viscosity native to the coarse discretization was found to produce results similar to using 
a Smagorinsky eddy-viscosity model [69,70] at several Smagorinsky constants. The latter is not included in the results for brevity. 
In Section 5.4, we instead employ a conservative coarse-grid discretization to assess regularization properties of the model.

• The first ensemble method is a stochastic LES model without Bayesian correction, which we refer to as a ‘stochastic LES model’. 
The model uses only the first two steps described in Section 4.2. Hence, it relies only on the a posteriori measurements and does 
not require additional time series data of the QoIs. This model is a variant of the a posteriori statistical turbulence closure of [34], 
applied to the quantities of interest given in Section 4.2.

• The second ensemble method combines the coarse no-model simulation with a heuristic stochastic correction, and is referred to 
as a ‘statistical nudge’. Namely, an ad-hoc correction of the predicted QoIs is applied towards an observation following the work 
of [30]. The observation is defined as in the third step in Section 4.2, while the nudging strength is defined for each statistic 
independently through the measured correlation time [30]. This approach does not use the a posteriori measurements but instead 
only requires time series data of the QoIs.
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• The third ensemble method combines stochastic LES with a Bayesian correction, using all steps described in Section 4.2, and will 
be denoted as ‘stochastic LES model, assimilated’.

The ensembles will consist of 10 members in Sections 5.1, 5.2, and 5.4. An ensemble with 50 members is considered in Section 5.3 
to investigate the dependence of the prediction quality on the ensemble size.

Reference data. The reference data is a sequence of filtered snapshots of a DNS performed on a 4096 × 2048 computational grid, from 
which two data sets are extracted.

• The first data set is comprised of ‘plenty data’. A total of 1000 solution snapshots separated by 0.05 time units are used to compute 
the a posteriori measurements and compute the statistics used in the observations. The corresponding results are presented in 
Sections 5.1, 5.3, and 5.4.

• The second data set consists of ‘few data’ and is used to verify the robustness of the model in the sparse data regime. Here, a total 
of 20 solution snapshots separated by 0.5 time units are used in the model calibration. The results using this data set are presented 
in Section 5.2.

The initial conditions of all coarse-grid simulations are filtered DNS snapshots outside the data sets described above.

Performance metrics. Several metrics are used to assess the model performance. For short lead times, a predicted solution (𝐮, 𝑇 ) can 
be compared to the reference solution (𝐮ref , 𝑇ref ) using the pattern correlation. We adopt the definition

⟨(𝐮, 𝑇 ), (𝐮ref , 𝑇ref )⟩
√

⟨(𝐮, 𝑇 ), (𝐮, 𝑇 )⟩⟨(𝐮ref , 𝑇ref ), (𝐮ref , 𝑇ref )⟩
, (26)

where ⟨⋅, ⋅⟩ denotes the standard 𝐿2 inner product over the computational domain.
Long-time simulation results are evaluated via time-averaged energy spectra and root-mean-square deviations (r.m.s.), as well as 

rolling means of the kinetic energy (KE) and the Nusselt number. The r.m.s. is computed as a function of the wall-normal distance. 
For a given 𝑦-value, we compute the r.m.s. of a field 𝑓 as

r.m.s.(𝑓, 𝑦, 𝑡) =
[

1
|𝐴| ∫𝐴

(

𝑓 (𝑥, 𝑦, 𝑡) − ⟨𝑓 (𝑥, 𝑦, 𝑡)⟩𝐴
)2 d𝐴

]1∕2
, (27)

where ⟨⋅⟩𝐴 is the mean over a cross-section with length |𝐴|. The KE is defined as

KE = ∫Ω
1
2
(𝐮 ⋅ 𝐮)dΩ. (28)

The Nusselt number is computed following Eq. (20).

5.1.  Model performance with plenty data

We first assess the model performance when plenty data is used to estimate the model parameters.
The pattern correlations (26) at short lead times are shown in Fig. 1 for three distinct initial conditions. The no-model simulation 

deteriorates over time due to loss of details in the numerical solution after initializing the flow from a filtered DNS snapshot. A low 
correlation does not imply that the flow statistics are incorrect since it measures the likeness of the global solution to the reference. 
Rather, it indicates the rate at which the flow deviates from the reference. It allows us to distinguish whether a solution is too 
rapidly steered towards a configuration with the desired statistical flow features. The correlation of the statistical nudging ensemble 
with the reference decreases rapidly, from which we surmise that the ad-hoc nudging is too strong and does not lead to a physical 
flow evolution. Applying the stochastic perturbation in the forecasting step largely mitigates this. This outcome reflects a trade-
off between pointwise agreement with the reference solution and the accuracy of statistical properties. The correlation coefficient 

Fig. 1. Pattern correlation between the prediction and the reference solution, using plenty data to calibrate the model. Three different initial 
conditions are considered. Each ensemble consists of 10 members; each band is colored between the maximal and minimal measured values.
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Fig. 2. Instantaneous snapshots after simulating for 100 time units initialized from a filtered DNS snapshot. Shown are the horizontal velocity (top 
row), vertical velocity (middle row) and temperature (bottom row). A snapshot from a single ensemble member is shown for the ensemble methods, 
using plenty data to calibrate the models.

primarily measures the pointwise agreement with a single reference, while statistical agreement does not necessarily imply strong 
pointwise correlation. Namely, a given set of statistics generally does not uniquely define the solution, hence a model can produce 
statistically accurate flow fields that are not well correlated with the reference. However, the difference between the ‘statistical nudge’ 
ensemble and the ‘stochastic LES model, assimilated’ ensemble suggests that a reduced nudging strength might be favorable when 
the initial condition is known. For example, this can be achieved by incorporating temporal effects into the observations, thereby 
including information of the initial conditions in the observation. Alternatively, a dynamically adaptive nudging procedure [44] can 
be applied such that a nudge is only applied if it increases the likelihood of the solution being in the ideal distribution.

A qualitative model comparison is given in Fig. 2 through instantaneous flow snapshots after reaching a statistically steady state 
in a long-time simulation. We observe that the no-model simulation suffers from artificial dissipation, evident from the smoothed 
fields and the reduced velocity magnitudes. The level of detail in the velocity fields is reconstructed well with the ensemble methods. 
The temperature fields display small-scale details, but these are fragmented instead of forming coherent patterns. Simultaneously, 
the velocity fields of the nudged ensembles feature pronounced flow details and maintain a qualitative agreement with the reference.

The average energy spectra near the center of the domain are depicted in the top row of Fig. 3, where the average is taken over all 
snapshots and all ensemble members. We also display the average spectra of the high-fidelity measurements that comprise the data set 
from which the model parameters are extracted and refer to this as the historical data. The no-model simulation provides predictions 
that consistently contain too little energy. Only applying the stochastic perturbation does not adequately alleviate this. Applying a 
correction, either ad-hoc or by assimilating statistics, yields a significant improvement particularly at the largest resolvable scales. 
This suggests that incorporating high-fidelity data into the model benefits the prediction of flow statistics in long-time simulations. We 
observe that the resulting energy spectra approximate the historical data accurately, which itself slightly deviates from the reference 
spectra over the simulated interval.

The time-averaged r.m.s. deviations show considerable improvement when applying the correction procedure, as shown in the 
bottom row of Fig. 3. Only applying the stochastic perturbation yields no improvement over using no model in the long-time simula-
tions, which further highlights the added value of the statistical correction. Assimilating statistics leads to a pronounced improvement 
of the velocity r.m.s. deviation particularly near the center of the domain. Here, the grid size is largest and the discretization effects 
significant, which induce a large measured sub-grid force and thus large stochastic perturbations. In turn, these large perturbations 
lead to a larger gain factor in the correction (25) and a close adherence to the reference statistics.

The rolling averages of the total kinetic energy and the Nusselt number over time are respectively given in Fig. 4. The artificial 
dissipation in the coarsened discretization causes the no-model result to deviate from the filtered DNS and reach a different statistically 
steady state with a strongly reduced energy content. Only applying the stochastic perturbation does not alleviate this, whereas 
including high-fidelity statistical data substantially improves the total energy content. An improvement of the predicted Nusselt 
number is observed for all ensemble methods. Notably, this includes the ensemble in which the predictions are perturbed and no 
knowledge of the heat flux is included. However, judging from the energy spectra in Fig. 3, this result is obtained without correctly 
predicting the energy distributions in the velocity and temperature fields.

5.2.  Model performance with few data

We now turn our attention to the model performance when using few data to estimate the model parameters. Only 20 snapshots 
are used to measure the the sub-grid scale forcing and the reference statistics. As such, the means and variances used in the model 
are poorly estimated and the correlation times of the quantities of interest become difficult to estimate due the sparsity of the data. 
We therefore expect the quality of the ad-hoc statistical nudging method to decrease.

The pattern correlations for short lead times are given in Fig. 5. No significant change in prediction quality is observed, compared 
to the predictions based on plenty data in Fig. 1. This suggests that the prediction of the instantaneous solution at short lead times is 
robust under changes in the available data and instead relies on the accuracy of the initial condition.
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Fig. 3. Top: Time-averaged energy spectra measured along a horizontal cross-section of the domain for the horizontal velocity (left), vertical velocity 
(middle) and temperature (right). The cross-sections are take in the core of the domain at 𝑦 = 5.5 × 10−1 for the horizontal velocity and 𝑦 = 5.0 × 10−1

for the vertical velocity and the temperature. Bottom: Average root mean square deviation (r.m.s.) of the horizontal velocity (left), vertical velocity 
(middle) and temperature (right), measured along horizontal cross-sections of the domain and shown as functions of the wall-normal distance. The 
models are calibrated using plenty data.

Fig. 4. Rolling means of the kinetic energy (KE, top panel) and the Nusselt number (𝑁𝑢, bottom panel) over time, where the models are calibrated 
using plenty data. Each ensemble consists of 10 members; each band is colored between the maximal and minimal measured values.
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Fig. 5. Pattern correlation between the prediction and the reference solution, using few data to calibrate the model. Three different initial conditions 
are considered. Each ensemble consists of 10 members; each band is colored between the maximal and minimal measured values.

Fig. 6. Top: Time-averaged energy spectra measured along a horizontal cross-section of the domain for the horizontal velocity (left), vertical velocity 
(middle) and temperature (right). The cross-sections are take in the core of the domain at 𝑦 = 5.5 × 10−1 for the horizontal velocity and 𝑦 = 5.0 × 10−1

for the vertical velocity and the temperature. Bottom: Average root mean square deviation (r.m.s.) of the horizontal velocity (left), vertical velocity 
(middle) and temperature (right), measured along horizontal cross-sections of the domain and shown as functions of the wall-normal distance. The 
models are calibrated using few data.

The energy spectra in the core of the domain and the average r.m.s. values for the prognostic variables are depicted in Fig. 6. Good 
agreement is observed at the largest scales of motion despite the small amount of data, and the methods that employ a statistical 
correction adequately reproduce the energy in these scales. The effects of using limited data become apparent in the smaller scales 
of motion, particularly visible in the spectrum of the temperature. The average measured energy in these scales is not converged 
and hence deviate from the reference. The ensemble with assimilated statistics closely follows the historical data, for which an 
improvement over the no-model result is still evident. The average r.m.s. values do not deteriorate using the small data set and show 
good agreement with the reference. The rolling averages of the kinetic energy and the Nusselt number, shown in Fig. 7, display the 
same qualitative behavior is observed as when using plenty data. Overall, no distinct loss of predictive quality is found using few 
data to calibrate the model when compared to using plenty data.
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Fig. 7. Rolling means of the kinetic energy (KE, top panel) and the Nusselt number (𝑁𝑢, bottom panel) over time, where the models are calibrated 
using few data. Each ensemble consists of 10 members; each band is colored between the maximal and minimal measured values.

5.3.  Dependence on ensemble size

The EnKF results in the optimal linear estimator in the limit of large ensemble size [71,72]. Carrying out an ensemble simulation 
with many ensemble members might quickly become prohibitively expensive, even when using a computationally cheap low-fidelity 
solver. In the EnKF, the evolution of the individual ensemble members is coupled through the analysis step which uses information of 
the entire ensemble, and a change in system dynamics may thus be observed when changing the number of ensemble members. We 
therefore repeat the short-time numerical simulations presented in Fig. 1 in Section 5.1 using 50 ensemble members instead of 10 to 
establish that a modest ensemble size does not adversely affect the model performance. The obtained pattern correlations in Fig. 8 
show no qualitative change with respect to the earlier presented results. This suggests that the currently adopted approach already 
provides robust forecasts at small ensemble size.

5.4.  Regularization properties

We now turn to the regularizing features of the proposed model. As highlighted in the previous subsections, the QUICK interpola-
tion scheme introduces significant artificial dissipation in coarse-grid simulations, which complicates the assessment of whether the 

Fig. 8. Pattern correlation between the prediction and the reference solution, using plenty data to calibrate the model. Each ensemble consists of 
50 members; each band is colored between the maximal and minimal measured values.
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Fig. 9. Pattern correlation between the prediction and the reference solution, using plenty data to calibrate the model. A conservative central 
difference scheme is employed for the velocity advection on the coarse grid, and three different initial conditions are considered. Each ensemble 
consists of 10 members; each band is colored between the maximal and minimal measured values. Only the stochastic LES model with assimilated 
statistics remains stable.
proposed model itself contributes meaningful dissipative effects. To further investigate the regularization capabilities of the model, 
we repeat the numerical experiment from Section 5.1, this time employing a conservative central scheme for velocity advection [57]. 
In coarse-grid simulations, this scheme develops high-frequency instabilities unless either the time step is significantly reduced or a 
strongly dissipative sub-grid scale model is used.

The short lead-time pattern correlations are shown in Fig. 9. It is observed that numerically stable simulations are only consistently 
achieved when employing the stochastic LES model while assimilating statistics. The other methods break down due to numerical 
instability. Nonetheless, a lower pattern correlation is observed when compared to the results in 5.1.

These observations are also reflected in the long-time results depicted in Figs. 10 and 11. A striking agreement with the historical 
data is found for the energy spectra, suggesting that the model retains its capability to maintain the desired energy distribution across 

Fig. 10. Top: Time-averaged energy spectra measured along a horizontal cross-section of the domain for the horizontal velocity (left), vertical 
velocity (middle) and temperature (right). The cross-sections are take in the core of the domain at 𝑦 = 5.5 × 10−1 for the horizontal velocity and 
𝑦 = 5.0 × 10−1 for the vertical velocity and the temperature. Bottom: Average root mean square deviation (r.m.s.) of the horizontal velocity (left), 
vertical velocity (middle) and temperature (right), measured along horizontal cross-sections of the domain and shown as functions of the wall-
normal distance. The models are calibrated using few data, and a conservative central difference scheme is employed for the velocity advection on 
the coarse grid. Only the stochastic LES model with assimilated statistics remains stable and is shown.
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Fig. 11. Rolling means of the kinetic energy (KE, top panel) and the Nusselt number (𝑁𝑢, bottom panel) over time, where the models are calibrated 
using few data and a conservative central difference scheme is employed for the velocity advection on the coarse grid. Each ensemble consists of 
10 members; each band is colored between the maximal and minimal measured values. Only the stochastic LES model with assimilated statistics 
remains stable.

the resolvable scales of motion. This indicates that the model regularizes the solution and adapts its dissipative properties to the 
discretization effects, although it does not act as a dissipative term in the traditional sense. The r.m.s. profiles provide a reasonable 
approximation of the reference solution, albeit with reduced accuracy compared to those obtained using the QUICK scheme. The total 
kinetic energy is slightly overestimated while an accurate estimate of the Nusselt number is obtained. Despite the stabilizing features 
of the model illustrated here, a slight deterioration compared to the results in Section 5.1 is observed. This suggests that the proposed 
model might benefit from the simultaneous use of dissipative discretizations or LES models.

6.  Discussion on model generalization

The model outlined in Section 4 serves as an example of how the general framework of closure modeling by assimilating statistics, 
described in Section 3, can be used in practice. Given the numerous modeling choices involved, we now discuss several potential 
directions for generalizing the model.

The sub-grid force measurements are not limited to one coarse-grid time step and may alternatively be used to model the instan-
taneous sub-grid force (6) to facilitate adaptive time-integration methods. Additionally, measuring the sub-grid force through more 
elaborate a posteriori methods (see [10] and references therein) can further aid the quality of the ensemble LES prediction.

The stochastic LES model is necessary to compute a forecast ensemble, and a wide range of modeling choices is available for 
this purpose. The present choice of de-correlated forcing of spectral coefficients intends to maintain simplicity and computational 
tractability, although incorporating spatial correlation in the forcing enables more refined forecast models. The empirical sub-grid 
force covariance is shown and discussed in Appendix B, and indicates that the covariance between high-frequency modes is non-
negligible. A tractable way to include these covariances is via localization [36] in spectral space. It is worth noting that the stochastic 
LES model need not be designed to exactly mirror the chosen QoIs. For example, POD-based forcing can account for spatial correlations 
in a low-rank setting. Other stochastic models to approximate the ideal distribution include multiplicative noise to incorporate state-
dependent forcing, structure-preserving stochastic perturbations to respect conserved quantities, or machine-learned parametrizations 
of unresolved dynamics.

Similar to the stochastic LES model, the ‘observations’ consist of de-correlated measurements of Fourier coefficients. This approach 
corresponds to the diagonalized EnKF method [41,66], which neglects interactions between spectral modes in favor of computational 
efficiency. However, as shown in Appendix B, the low-frequency components of the reference data exhibit non-negligible covariance 
with neighboring frequencies, both within horizontal cross-sections and across adjacent cross-sections. This is attributed to the cou-
pling of Fourier modes through nonlinear advection, as well as the presence of coherent flow structures that span across multiple 
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horizontal layers. This finding suggests that the current method can be made more accurate by incorporating these covariance values 
in the observations.

A possible extension to three-dimensional wall-bounded setups, such as turbulent channel flow or Rayleigh-Bénard convection, 
can be addressed analogously to the presented two-dimensional case. For simple domains with structured grids, this could be achieved 
by reconstructing two-dimensional spectra in wall-parallel planes. Reconstructing POD spectra provides an alternative [31], which 
is suited to three-dimensional flows and complex geometries. At the same time, the number of tracked statistics can increase sub-
stantially in three-dimensional settings and a reduction of the number of QoIs might become necessary for the algorithm to remain 
computationally feasible. Within the presented modeling framework, the choice of QoIs remains flexible and may depend on the 
problem at hand. For instance, one may consider only low-wavenumber Fourier modes to capture dominant large-scale structures 
or restrict attention to horizontal planes near the walls to better resolve boundary layer dynamics. An alternative strategy involves 
the use of spatially integrated QoIs, such as the total kinetic energy or global heat flux, from which reduced computational models 
subject to physical constraints can be derived [33,34].

7.  Conclusions

In this paper, we have proposed a method for deriving probabilistic data-driven turbulence closure models suitable for coarsened 
steady-state turbulence. Based on ideal large-eddy simulation, a combination of stochastic large-eddy similation and data assimilation 
methods is suggested, requiring both a posteriori collected data of the employed numerical solver and statistical data of the high-fidelity 
solution. Thus, the method exploits knowledge of the local integration error and the desired flow statistics.

An example of how the modeling framework can be used was provided using a non-intrusive implementation applied to two-
dimensional Rayleigh-Bénard convection at Rayleigh number 𝑅𝑎 = 1010. Stochastic perturbations based on sub-grid scale data were 
used in conjunction with a simplified ensemble Kalman filter to steer coarse numerical predictions towards desired statistics known 
from a precursor simulation. Here, we focused on horizontal energy spectra and average heat flux, which were found to be accurately 
reproduced with the proposed model. The model showed robust results for a modest ensemble size. No considerable deterioration of 
the predictions was observed using as few as 20 high-fidelity snapshots to determine the model parameters. The model was found to 
accurately maintain the energy distributions observed in reference data, even when using an unstable discretization.

The presented modeling framework is general and can be applied to different fluid dynamical models. Nonetheless, many mod-
eling choices have to be made in the actual implementation. An overview of the necessary modeling choices and suggestions for 
generalization were provided, including strategies to apply the general framework to three-dimensional flows. Exploring different 
modeling choices is a challenge for future work.

Here, the closure modeling framework based on the assimilation of statistics is formulated in discrete time. This formulation arises 
naturally in discretized systems and aligns with how data assimilation algorithms are typically presented. However, a continuous-time 
formulation can be advantageous for mathematical analysis (see, e.g., [72]) and aligns with the original ideal LES formulation [8]. 
The proposed modeling approach could likely be extended to a continuous-time setting, potentially offering new insights.
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Appendix A.  Error estimates for the adopted model

Below, we provide error estimates for the model described in Section 4.2.

Notation and definitions. The following estimate concerns a single quantity of interest 𝐺. Since each quantity of interest is updated 
independently of the other quantities, the analysis can be applied to each quantity of interest separately.
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Let 𝐺𝑛 and 𝐺𝑛+1 be the quantity of interest at time instances 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡, respectively. The evolution of 𝐺 is denoted by 
𝐺̇ = 𝐿𝐺(𝐺). We consider an ensemble of 𝑁 members, where each member is denoted by a subscript 𝑖, 𝑖 = 1,… , 𝑁 . We assume the 
deterministic operator 𝐿𝐺 is Lipschitz continuous with Lipschitz constant 𝐶𝐺. Thus, we can use

𝐺𝑛𝑖 − Δ𝑡𝐶𝐺 ≤ 𝐺𝑛+1𝑖 ≤ 𝐺𝑛𝑖 + Δ𝑡𝐶𝐺 , (A.1)

for each ensemble member.
The stochastic perturbation is given by Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀 , where 𝑟𝑛𝑖,𝑀 ∼  (0, 1) and 𝜇𝑚 is the mean measured deviation after an 

integration step, specified as a model parameter. The observation at time instance 𝑛 is denoted by 𝐺𝑛𝑖,obs = 𝜇obs + 𝜎obs𝑟𝑛𝑖,obs, where 
𝑟𝑛𝑖,obs ∼  (0, 1). The values of 𝑟𝑛𝑖,𝑀  and 𝑟𝑛𝑖,obs are i.i.d. for each 𝑖 and 𝑛.

The predicted value of ensemble member 𝑖 is given by 𝐺𝑖,𝑓 ,

𝐺𝑖,𝑓 = ∫

𝑡𝑛+1

𝑡𝑛
𝐿𝐺(𝐺𝑛𝑖 )d𝑡 + Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀 (A.2)

We denote the gain by 𝐾 and observe that this value is the same for each ensemble member. The ensemble and the observations 
have nonzero variance, from which it follows that 0 < 𝐾 < 1. We expand

𝐺𝑛+1𝑖 = 𝐺𝑖,𝑓 +𝐾(𝐺𝑛+1𝑖,obs − 𝐺𝑖,𝑓 )

= (1 −𝐾)

(

∫

𝑡𝑛+1

𝑡𝑛
𝐿(𝐺𝑛𝑖 )d𝑡 + Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀

)

+𝐾𝐺𝑛+1𝑖,obs, (A.3)

which is used to bound the errors of individual ensemble members and corresponding observations, as well as the ensemble mean 
and the mean observation.

Error between individual ensemble members and measurements. We define the errors as the distance between the value of the quantity 
of interest at a time instance and the corresponding observation, that is, 𝐸𝑛+1𝑖 = 𝐺𝑛+1𝑖 − 𝑑𝑛+1𝑖  and 𝐸𝑛𝑖 = 𝐺𝑛𝑖 − 𝑑

𝑛
𝑖 . We find

𝐸𝑛+1𝑖 = 𝐺𝑛+1𝑖 − 𝑑𝑛+1𝑖 = (1 −𝐾)

(

∫

𝑡𝑛+1

𝑡𝑛
𝐿(𝐺𝑛𝑖 )d𝑡 + Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀 − 𝐺𝑛+1𝑖,obs

)

. (A.4)

Note that 𝐺𝑛+1𝑖,obs − 𝐺
𝑛
𝑖,obs = 𝜎obs

(

𝑟𝑛𝑖,obs − 𝑟
𝑛
𝑖,obs

)

 and therefore, using (A.1), we obtain
|

|

|

𝐸𝑛+1𝑖
|

|

|

< |

|

|

𝐺𝑛𝑖 + Δ𝑡𝐶𝐺 + Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀 − 𝐺𝑛+1𝑖,obs
|

|

|

≤
|

|

|

|

𝐺𝑛𝑖 + Δ𝑡𝐶𝐺 + Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀 − 𝐺𝑛𝑖,obs − 𝜎obs
(

𝑟𝑛+1𝑖,obs − 𝑟
𝑛
𝑖,obs

)

|

|

|

|

=
|

|

|

|

𝐸𝑛𝑖 + Δ𝑡𝐶𝐺 + Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀 − 𝜎obs
(

𝑟𝑛+1𝑖,obs − 𝑟
𝑛
𝑖,obs

)

|

|

|

|

≤ |

|

𝐸𝑛𝑖 || + Δ𝑡|
|

𝐶𝐺 + 𝜇𝑚|| + 𝜎𝑀
|

|

|

𝑟𝑛𝑖,𝑀
|

|

|

+ 𝜎obs
|

|

|

𝑟𝑛+1𝑖,obs − 𝑟
𝑛
𝑖,obs

|

|

|

. (A.5)

Error between ensemble mean and mean observation. Recall the ensemble mean of a quantity 𝑓 with ensemble members 𝑓𝑖, 𝑖 = 1,… , 𝑁 ,

𝑓 = 1
𝑁

𝑁
∑

𝑖=1
𝑓𝑖. (A.6)

We now study the development of distance between the ensemble mean of the quantity of interest and the measured mean value, 
i.e., 𝐸̄𝑛+1 = |𝐺̄𝑛+1 − 𝜇obs|. We find that

𝐸𝑛+1 = |𝐺̄𝑛+1 − 𝜇obs|

=
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
(1 −𝐾)

[

∫

𝑡𝑛+1

𝑡𝑛
𝐿(𝐺𝑛𝑖 )d𝑡 + Δ𝑡𝜇𝑚 + 𝜎𝑀 𝑟𝑛𝑖,𝑀 − 𝜇obs

]

+𝐾𝜎obs𝑟𝑛+1𝑖,obs

|

|

|

|

|

|
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|

|

|

|

|

|
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𝑁

𝑁
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|
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|

|

|

|
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|

|
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𝑁

𝑁
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|

|

|

|

|

|

+𝐾𝜎obs
|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
𝑟𝑛+1𝑖,obs

|

|

|

|

|

|

< |

|

𝐺̄𝑛 − 𝜇obs|| + Δ𝑡
(

𝐶𝐺 + 𝜇𝑚
)

+ 𝜎𝑀
|

|

|

𝑟𝑛𝑖,𝑀
|

|

|

+ 𝜎obs
|

|

|

|

𝑟𝑛+1𝑖,obs
|

|

|

|

= 𝐸𝑛 + Δ𝑡
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𝐶𝐺 + 𝜇𝑚
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|
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|

|

|
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|

|
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|
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|
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(A.7)

Since 𝑟𝑛𝑖,𝑀  and 𝑟𝑛𝑖,obs are i.i.d. with mean zero for each 𝑖, 𝑛, we observe that 𝑟𝑛+1𝑖,𝑀  and 𝑟𝑛+1𝑖,obs approach zero as the ensemble size 𝑁
grows. Thus, in the limit of infinite ensemble size, we obtain

𝐸𝑛+1 < 𝐸𝑛 + Δ𝑡(𝐶𝐺 + 𝜇𝑚). (A.8)

Eq. (A.8) shows that the ensemble mean of 𝐺 reverts to 𝜇obs when the ensemble size is sufficiently large and the time step is sufficiently 
small.
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Appendix B.  Measured covariances between quantities of interest

The measured covariances between the magnitudes of the Fourier coefficients are shown in Fig. B.1, displaying the logarithm 
of the absolute value of the covariance to aid the identification of coherent patterns. Each horizontal cross-section of the domain 
consists of 33 Fourier coefficients. These are denoted by indices 0, 1, 2,… , 1056. Indices 0, 1, and 2 respectively correspond to the 
first, second, and third coefficients in the bottom-most horizontal layer, and index 1056 corresponds to the highest frequency in 
the top-most layer. The separate treatment of horizontal cross-sections causes a distinct squared pattern in the covariance matrices. 
Additionally, the vertical velocity and temperature have fixed boundary values, leading to a zero covariance with all other variables. 
These are visualized as white bands.

Fig. B.1. Logarithm of the absolute value of the covariance between the magnitudes of the Fourier coefficients. A total of 33 Fourier coefficients 
are computed along horizontal cross-sections of the domain, giving rise to the squared pattern. The figure displays the covariance for the horizontal 
velocity (left), vertical velocity (middle), and temperature (right), computed for the reference data (top row) and the measured sub-grid force 
(bottom row).

A diagonally dominant pattern is observed, both in the entire covariance matrix and the minor squares within. The covariance 
of the reference data furthermore indicates that the low-frequency components have non-negligible covariance with variables both 
within a horizontal cross-section and in neighboring layers. This is attributed to the coupling of Fourier modes via nonlinear advection, 
as well as the presence of coherent flow structures that span across multiple horizontal layers. For the sub-grid force, a similar pattern 
is observed for the high-frequency components.
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