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A B S T R A C T

Accurate prediction of façade deterioration due to microclimate effects is crucial for sustainable building 
management and preservation. This paper introduces a methodology for full façade risk assessment using image- 
based empirical evidence from real buildings. The PAIR methodology—Prepare, Analyze, Integrate, Rela
te—combines drone imagery, computer vision, weather data, and three-dimensional neighborhood models to 
create a database that organizes façade deterioration data into sections. This database supports a machine 
learning model to predict façade deterioration risks. A case study of 16 brick façades in Gothenburg, Sweden, 
demonstrated the model’s strong performance (R2 = 0.978, MSE = 0.0003) on the test sample. However, per
formance declined on an excluded validation façade (R2 = − 0.467, MSE = 0.024) due to limited training data 
and inaccuracies from prior maintenance. Despite these limitations, the methodology provides a computationally 
efficient alternative to full-scale hygrothermal modeling for assessing deterioration risk across entire façades.

1. Introduction

Addressing the weathering effects on building façades often requires 
reactive maintenance. In Sweden, about 70 % of renovations are driven 
by urgent needs after a component’s service life ends [1]. While 
straightforward, this approach leads to higher costs compared to pro
active maintenance, which can reduce costs by up to 18 % through 
timely planning and prioritization [2]. Emerging technologies, such as 
computer vision image analysis and drone-based façade assessments, 
could enable early detection of degradation, improving maintenance 
planning as is the case with civil engineering structures [3,4]. This paper 
explores leveraging of these technologies to predict façade deterioration 
risks more accurately. Both reactive and proactive maintenance strate
gies can be costly without preventive measures such as regular cleaning, 
inspection and maintenance, protective coating and proper drainage. 
Lack of such measures often leads to premature renovation needs and 
escalating deterioration.

Preventing moisture-induced deterioration is typically ensured by 
designing façades according to technical standards. In Sweden, for 
example, the ByggaF method [5] provides frameworks and checklists for 
reducing moisture risks from the planning to the operation stages. In 
addition to ByggaF, there are hygrothermal performance indicators that 
combine critical moisture saturation exceedance with dose-response 

functions. This is mainly used in the design stage, allowing, for 
example, the risk of mold growth [6] and freeze-thaw attacks [7] to be 
assessed by hygrothermal simulation. Despite these methods, unex
pected material degradation still occurs as current assessments do not 
indicate when risks will materialize, highlighting their main limitation.

1.1. Predicting moisture-induced façade degradation

In general, hygrothermal modeling and its performance indicators 
cannot predict the onset and evolution of degradation. Portal et al. [8] 
made a rare step in this direction by coupling a heat and moisture model 
with mechanical assessment to study the response of its lime wood 
supports of a historical painting to changing surrounding climate con
ditions. In most cases, however, dose response indicators, including 
freeze-thaw deterioration, are employed to estimate the risk of degra
dation. In theory, such indicators correlate the number of freeze-thaw 
cycles (doses) with the progression of damage. Laboratory studies 
show that increased freeze-thaw cycles lead to more severe deteriora
tion, impacting the compressive strength and the micro/macro structure 
of bricks [9–11] and mortar [12,13]. However, applying the correlation 
to real building envelopes is challenging due to uniform laboratory 
conditions versus varied real-world exposures. Technical standards for 
testing natural stone (EN 12371:2010), calcium silicate masonry (EN 
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772–18:2011), or clay masonry (SIS-CEN/TS 772–22:2008) all exag
gerate real-world conditions by fully saturating the specimen, as noted 
by Mensinga [14,15], who highlights this issue and criticized the 
omnidirectional nature of frost exposure in the experimental setup. 
Additionally, he suggests that bricks deemed less resistant in labs may 
outperform in reality due to uncontrolled moisture saturation. In reality, 
even one freeze-thaw cycle can cause irreversible volumetric changes to 
bricks, resulting in damage, making it unclear how many cycles are 
needed for observable deterioration. This also applies to other indicators 
like the modified winter index [16] or the freeze-thaw damage risk index 
[17]. Therefore, hygrothermal performance indicators are used to 
compare different building envelope designs as shown by [7] rather than 
predict degradation.

Even with hygrothermal design tools predicting minimized risk at 
the envelope design stage, localized façade damage can still occur due to 
microclimate variations. Recent literature suggests assessing multiple 
points across the façade [18], but this is often overlooked by assuming a 
single set of boundary conditions for the whole façade, especially for 
short-wave and night-time radiation. Wind-driven rain (WDR) variation 
are roughly considered, with technical standard (ISO 15927-3:2009) or 
the SB method [19] allowing differentiation of WDR over several façade 
geometries. However, these semi-empirical methods have large un
certainties due to limited building configurations. These uncertainties 
are further exacerbated in the urban environment [20], making the use 
of semi-empirical methods questionable for most buildings.

Understanding the microclimate around façades can provide insights 
into the degradation factors and improve conservation strategies. 
Indeed, research is advancing in this direction. For example, Charisi and 
Thiis, combined ray tracing and WDR quantification based on ISO 
15927-3:2009 to account for the effects of small structural elements’ 
effect on façade surface temperatures and relative humidities [21–23]. 
Computational Fluid Dynamic (CFD) simulation can be applied to 
complex façades and urban environments. Significant efforts have been 
made to validate CFD models for different building configurations with 
field measurements [24–27]. These models have been used in urban 
settings [20,25] and complemented by short-wave and long-wave ra
diation analysis [28]. Despite these advances, however, CFD-based 
modeling has its limitations. In particular, such modeling is complex, 
computationally expensive, time consuming and requires domain 
expertise, presenting barriers to wider adoption.

In summary, there is a need for a methodology that overcomes the 
limitations of conventional microclimate and hygrothermal modeling. 
This could involve studying the spatial distribution of degradation on 
façades due to microclimate variations and relating these findings to 
other façades. To achieve this, it is essential to objectively quantify 
façade degradation. In this regard, analyzing images collected by Un
manned Aerial Vehicles (UAVs, drones) using computer vision algo
rithms offers a promising solution.

1.2. Use of computer vision in façades

The application of computer vision to the analyze building façade 
deterioration is growing, particularly for automating anomaly detection 
through the UAV-collected images. Significant advancements have been 
made especially in the field of crack detection. Initially, research 
involved manual inspection of automatically generated orthophotos 
with zoom-in capabilities [29], as well as traditional computer vision 
techniques such as Sobel edge detection and thresholding [30–32]. 
While these methods provided initial automation, they struggle to 
distinguish edges from actual cracks from structural patterns like 
frames, leading to high false positive.

Consequently, research has shifted towards deep learning tech
niques, extensively used in civil engineering structures [33] and now 
applied to façades. For example, Chen developed a two-step neural 
network method involving a convolutional Neural Network (CNN) for 
patch-level crack classification and U-net model for pixel-level crack 

segmentation to address the background noise [34]. This approach re
quires many training images, leading researchers to use pretrained CNNs 
for image feature extraction, optimized for the detecting degradation 
patterns through transfer learning. This concept has been applied to 
various degradation modes, including cracking [35], spalling, peeling, 
biological growth or delamination [36].

Research on brick façades has increasingly turned to pretrained 
CNNs for anomaly detection. Katsigiannis et al. [37] benchmark the 
performance of six pretrained CNNs including VGG16 and MobileNetV2, 
for detecting cracks in brickwork using limited training data. Wang et al. 
[38] used the faster region-based convolutional neural network (Faster 
R-CNN) to spalling and efflorescence on bricks with a focus on devel
oping real-time automated vision-based inspection system for smart
phones or IP cameras.

Other studies improve the façade inspection process by mapping 
results to spatial representations, aiming to enhance visual documen
tation for inspectors. For example, Torres-Gonzáles et al. [39] used a 
simple thresholding technique applied to HSV and CIELab colour spaces 
to map the presence of salts, dirt and biological growth over the 
orthomosaic of cladded buildings. Regarding deep learning, Chen et al. 
[40] re-trained the You Only Look Once (YOLOv8) algorithm to detect 
degraded bricks in drone imagery and mapped the detections onto 
orthophotos constructed from 3D point cloud models. Similarly, Yang 
et al. [41] leveraged a combination of K-net and UPerNet to segment 
cracks, aiming to map them onto a BIM model of a building recon
structed from a point cloud.

Identifying crack features helps support visual inspections by 
providing more detailed information about the condition. Crack seg
mentation as used by Yang et al. [41] was also leveraged to estimate 
cracks severity by measuring length, width and geometric moment. 
Alipour et al. [42] presented a similar example of a deep learning 
application where the CrackPix algorithm was developed to detect and 
quantify cracks in concrete structures.

Common in previous works has been to support visual inspections 
and reducing manual efforts. However, the data generated through such 
CV-based detections is rarely used beyond anomaly identification. 
Specifically, there is limited exploration of how CV outputs could be 
leveraged for predictive modeling, such as estimating future degrada
tion or microclimatic impacts.

1.3. Aim and scope

To address previous research limitations, this paper leverages com
puter vision anomaly detection to establish a methodology for evalu
ating deteriorations risks along façades. The proposed Prepare, Analyze, 
Integrate, and Relate (PAIR) framework aims to estimate microclimate 
effects by directly predicting façade degradation. This methodology 
involves dividing façade orthomosaic images into sections, pairing 
degradation distribution and its extent with features from three- 
dimensional models of façades and their surrounding area, and 
training machine learning algorithms to predict degradation on other 
façades.

A key feature of the PAIR methodology is its modularity. Rather than 
prescribing a specific CV algorithm, it allows practitioners to select 
models suited to their technical capacity, data availability and target 
degradation types. To support this, Section 2.2 (“Analyze”) presents an 
overview of relevant CV algorithms, including object detection and 
image segmentation methods. This overview builds on the literature 
review in Section 1.2 and is intended to guide practitioners and re
searchers in selecting appropriate CV tools for the application of the 
methodology.

The remainder of the paper is organized as follows: Section 2 de
scribes the methodology in detail. Section 3 illustrates the methodology 
with a case study of 16 brick façades in Flatås area in Gothenburg, 
Sweden, and describes two experimental set-ups for testing the meth
odology’s predictions. Section 4 presents the results for the two 

J. Mandinec et al.                                                                                                                                                                                                                               Automation in Construction 178 (2025) 106443 

2 



experiments. Finally, sections 5 and 6 contain a general discussion and 
conclusion.

2. Methodology

At a high level, the PAIR framework consists of four sequential 
phases, visualized in Fig. 1. 

1) Prepare: This initial phase involves the collection of façades’ 
orthomosaic images followed by their division into sections. This 
step is crucial for the subsequent façade’s section-by-section analysis 
and predictions.

2) Analyze: At this stage, the extent of deterioration in each section is 
quantified using computer vision algorithms. This step is essential for 
establishing a baseline from which machine learning algorithms can 
learn to predict deterioration.

3) Integrate: The next stage builds on the degradation data by incor
porating features derived from a three-dimensional model of the 
façade and its surroundings. These features represent the spatial 
characteristics and the impact of the environment on each section, 
thereby establishing a basis for inferring the subsequent degradation 
predictions.

4) Relate: In the final stage, the obtained database is employed to train 
machine learning algorithms. This allows to relate the degradation 
characteristics identified in the database to other façades, conse
quently making degradation predictions.

Each phase comprises several steps that are categorized into two 
types: prescriptive and flexible. Prescriptive steps are mandatory and 
must be followed to ensure the framework’s integrity. For example, the 
framework mandates the division of façades into sections for the orga
nization of both empirical,spatial and climate data.

On the other hand, flexible steps provide the freedom to make 
choices based on the specific goal to which the framework is being 
applied, or the tool and resources available. These steps allow for cus
tomization and adaptability, so that the framework can be tailored to the 
unique contexts of other geographic areas other than Gothenburg, 
Sweden, which was later used in the case study. For instance, in the 
Analyze phase, the users can select their preferred degradation metrics, 
such as the length of missing veneers or the number of cracks, to analyze 
the extent of degradation. Users are also free to choose the computer 
vision algorithm that best suits their needs.

This combination of prescriptive and flexible steps ensures that the 
framework is both robust and adaptable. This provides a structured 
approach while accommodating case-by-case variations and prefer
ences. The framework’s steps, both prescriptive and flexible, are illus
trated in a flowchart diagram in Fig. 2. The diagram is organized within 
the framework phases for which the examples of outcomes are provided.

2.1. Prepare

The methodology stipulates two requirements for orthomosaic im
ages. Firstly, the images must contain only the area of the façade that is 
desired to be analyzed. No requirements on the resolution or the size of 
the image are given. Nevertheless, the second requirement is that the 
degradation over the façade must be clearly recognizable. The collection 
of the images may thus be performed by any means that is suitable.

The most straightforward approach is to take photographs from the 
ground. However, this approach may necessitate more extensive pre- 
processing, including perspective transformation, noise reduction (i.e., 
sharpening), upscaling or using deep super-resolution networks [43]. 
Nevertheless, even with the employment of the most comprehensive 
pre-processing techniques, ground photography may be rendered un
usable. This is particular for spacious façades where the loss of details 
may be significant in areas far from the camera’s position, making 
degradation unrecognizable. In such cases, the use of Unmanned Aerial 
Vehicles (UAVs or drones) is more suitable. Principally, images taken by 
a drone require little or no pre-processing, given their ability to shoot 
close and in normal direction against the wall. Regardless of the method 
used, the photographs must be stitched together and trimmed to form an 
orthomosaic. This may be achieved using almost any software for 
graphic editing. This paper in particular employs Microsoft Image 
Composite Editor in a case study presented in section 3 Case study.

After obtaining an orthomosaic of a façade, each image needs to be 
further divided into rectangular sections of equal size. The dimension of 
a section is arbitrary. However, the sectioning must be aligned with a 
three-dimensional model (3D) model of the façade to ensure an 
approximate agreement between their dimensions. More details about 
how to derive the 3D model can be found in section 2.3 Integrate.

2.2. Analyze

At this stage, it is necessary to quantify the deterioration of each 
façade section. Before proceeding, however, it is necessary to specify 
what degradation (e.g., cracking, spalling) to look for and to establish 
metrics to measure the degradation. At the elementary level, the 
degradation may be quantified in a binary fashion, i.e., whether a sec
tion is affected or not. Alternatively, it may be quantified on a contin
uous spectrum. The latter is represented by the area of degradation, 
which is a metric used for the assessment of façades [44]. It is hereby 
defined as the area of a section in percentage that is degraded. Alter
natively, one can employ other performance metrics like the total length 
of missing veneers in a section, the number of cracks, or assessing the 
severity of cracks using their width and orientation.

In the case of accessibility to a CV algorithm that can meet the 
analysis objectives, one can proceed with the degradation quantification 
of each façade section. Otherwise, an appropriate (computer vision) 
algorithm must be trained. Regardless of the chosen quantification 
metric, a plethora of methods are available that are capable of either 
detecting degradation or segmenting its area. The utilization of classical 
algorithms such as thresholding [45], k-mean segmentation [46] or 
Canny edge detection [47] are relatively straightforward. However, it is 
important to exercise caution when applying these algorithms in prac
tice, given their inherent constraints. To illustrate, consider the thresh
olding for crack detection. This process involves transforming all pixels 
on a greyscale representation of an image below an arbitrary threshold 
to white colour and vice versa, thereby highlighting cracks. However, 
thresholding sensitivity to lighting conditions and façade colors may 
necessitate modifying the threshold for different images. Therefore, its 
application on a larger number of façades may be impractical.

In contrast, more advanced computer vision models may require a 
higher level of expertise but may offer a more robust approach to 
degradation analysis [48,49]. There are different computer vision 
models that can be categorized in object detection algorithms and 

Fig. 1. High-level overview of the PAIR framework for evaluating the effect of façades microclimate by predicting degradation along façades surface
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segmentation algorithms. The former can be used for detecting degraded 
bricks, while the latter is more suitable for identifying cracks and 
missing veneers between masonry. Examples of object detection algo
rithms are YOLO (You Only Look Once) [50], EfficientDet [51] and SSD 
(Single Shot MultiBox Detector) [52].

It should be noted that none of the computer vision algorithms 
mentioned are natively trained for detecting degradations on façades. 
However, it is possible to re-train them to perform this task. This was 
exemplified by Lee et al. [53] who retrained the Faster R-CNN [54] to 
detect delamination, cracks, peeled paint, and water leaks, on building 

façades using 10,907 raw images. Nevertheless, such a vast number 
images are unnecessary, as demonstrated by Wang et al. [38] who used 
only 500 images to retrain the same algorithm creating a model capable 
of detecting spalled and efflorescent bricks, thus illustrating the concept 
of transfer learning. Chen et al. [40] trained a YOLOv8-seg model using 
895 high-quality images of masonry façades from Suzhou, China, 
mapping degradations across orthophotos constructed from 3D point 
cloud models.

Regarding image segmentation, one can either utilize algorithms that 
natively segment images, like U-net [55], FCN [56] or SegNet [57], or 

Fig. 2. Detailed overview of the PAIR framework. Flowchart steps are organized by the framework’s phases, with flexible steps highlighted in orange. Images on the 
right illustrate the outcomes of each phase. “CV” in the Analyze phase for computer vision.
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combine the aforementioned object detection algorithms with other 
algorithms like vision transformers. YOLO-based algorithms are a pop
ular choice among researchers in this regard. Cao [58] combined the 
YOLOv7 framework with BlendMask-based segmentation [59] to create 
YOLOM—a model that facilitates façade inspection tasks. Similarly, Fu 
and Angkawisittpan [60] leveraged YOLOv5 with Swin transformer [61] 
to classify and segment 5 types of degradation (cracks, delamination, 
plant growth, alkalization and staining) using 150 images for each type. 
Outside of YOLO family, Yang et al. [41] leveraged a combination of K- 
net [62] and UPerNet [63] to segment cracks, using 400 training images.

In addition to significantly reducing the number of required training 
images, transfer learning also adapts the used algorithm to the specifics 
of the analyzed façades—the same type of damage may appear differ
ently on different bricks—potentially providing higher accuracy. Both 
the annotation and the training process can differ depending on the 
algorithm. For instance, each algorithm may require different hyper
parameters to be tuned for optimal performance. Once the algorithm is 
tuned and applied to all façade sections, it is recommended to inspect 
the outcomes of the degradation analysis. This should be done before 
moving into the Integrate phase of the methodology.

This paper, respectively the case study showcasing the methodology, 
leverages the YOLOv4 framework to detect bricks subjected to spalling 
due to weathering. The framework was chosen based on the following 
criteria, which may be adopted by other assessors as well: 

1) Degradation metric definition: To quantify the extent of degra
dation on each façade section, a variant of the area of degradation 
metric—degradation ratio—is chosen, considering only the presence 
of degradation but not, for example, its depth or severity. This re
quires the computer vision algorithm to count the total number of 
bricks and the number of degraded bricks in each section, priori
tizing an object detection approach.

2) Image characteristics: An algorithm should be able to distinguish 
colors and textures on brick façades. In this regard, brick walls are 
generally highly variable. In consequence, an algorithm with strong 
generalization (CNN-based model) is preferred over simpler tech
niques like thresholding or contour analysis.

3) Data availability: The number of real images available for training 
is typically limited. Thus, the concept of transfer learning may be 
utilized by prioritizing algorithms that can be fine-tuned for the 
specifics of the case study.

4) Performance and Robustness: Existing and validated algorithms 
on similar tasks can be used with benefits. For this reason, an in- 
house model based on YOLOv4, capable of detecting spalled 
bricks, is selected and further fine-tuned to the case study using 
image samples from all analyzed façades.

Information on the training process of the algorithm and results of its 
application are given in sections 3 Case study and 3.1 Degradation 
analysis.

2.3. Integrate

The database consisting of the state of degradation for each section is 
further enhanced by the incorporation of environmental and spatial 
information. To achieve this integration, a 3D model of the façade and 
its neighborhood is required. The façade in the 3D neighborhood model 
must be segmented into sections that correspond to those defined in the 
Prepare phase. The environmental and spatial data is then defined for 
the center of each section. The collection of environmental information 
focuses on factors that are known to contribute to the occurrence and 
progression of degradation. These mainly include wind-driven rain, 
night-sky radiation cooling and solar radiation. The collection of the 
environmental and spatial factors specific to each façade section are 
hereby divided into elementary and azimuth-based features. The 
elementary features may include spatial factors such as the height from 

the ground and the distance of the section’s center from the edge of the 
façade, two of which are the influencing factors to the rain catch ratio. 
Additionally, the sky-view factor, which contributes to night-sky radi
ation cooling, is to be collected. Further data collection focuses on 
aggregating weather loads exposure on each façade section. This can be 
achieved by, but is not limited to, transforming weather factors such as 
mean wind speeds or cumulative wind-driven rain intensity data to e.g. 
36 directions separated by 10◦ azimuths, thereby creating azimuth- 
based features.

To provide information on façade microclimate, azimuth-based 
features can be transferred further to account for neighboring build
ings. This is done sequentially. Initially, distances from the center of 
each façade section to nearest object are measured in the directions of 
the azimuths. Secondly, the unobstructed wind and wind-driven rain 
impingement is assumed from azimuths in which the distances are 100 
m or longer. Lastly, azimuth-based features are transferred using linear 
interpolation. This transformation process is illustrated in Fig. 3.

In addition to the environmental and spatial data, general informa
tion about the façades can be collected, including the year of construc
tion, year of renovation, or information about the composition of the 
façades. However, it is important to note that the absence of certain 
general characteristics like a year of construction may not be essential in 
the context of degradation predictions as other factors like the wind- 
drive rain exposure may prove to be sufficient or more influential. 
Moreover, the relative importance of a feature may vary depending on 
the machine learning algorithm employed.

The Integrate process may lead to the creation of many features and 
thus to a large feature space. Such database set-up may lead to a phe
nomenon known as the curse of dimensionality, a term coined by 
Richard Bellman [64]. As the number of dimensions increases, the vol
ume of the feature space expands exponentially and so does the amount 
of data needed for effectively covering the space. Put differently, data 
points may become sparse, making underlying patterns in data unde
tectable. Therefore, it is recommended to reduce the feature space 
before advancing further.

Two common approaches for dimensionality reduction are Principal 
Component Analysis (PCA) [65] and binning, but other approaches may 
also be adopted. PCA involves the transfer of data onto a new coordinate 
system in the direction of the data’s greatest variation. This method is 
invariant to the feature’s type, and therefore, it can be applied to a part 
or the entire database at once. Binning, on the other hand, aggregates 
features of the same type onto bins. In the context of the methodology, it 
may be applied to azimuth-based features, whereby incoming wind- 
driven rain from two or more directions is combined.

The Integrate process adopted in the case study, which later dem
onstrates the methodology, produced three elementary features for each 
section of each façade, i.e. sky view factor, height above ground level 
and distance of the section center from the nearest edge of the façade. 
The wind-driven rain in each section was calculated for each 10◦ azi
muth, based on the multiplication of the horizontal rain intensity with 
the mean wind speed coming from the corresponding direction and with 
the cosine transformation of the wind direction normal to the façade 
surface. The obstructions were accounted for as described above. Both 
binning and the PCA were adopted to reduce the azimuth-based WDR 
features, forming 9 binned WDR features, and 2 principal components. 
In addition, the sum and mean values for each façade sections were 
calculated from WDR from all directions. Finally, a façade constant 
feature, which categorizes the façades based on their material compo
sition, is formed. More information on the specific implementation of 
the Integrate process is given in section 3.2 Description of features.

2.4. Relate

At this final phase, features are utilized in machine learning algo
rithms to perform degradation predictions on façade sections.

The selection of relevant features is a crucial step in the construction 
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of machine learning predictors. It serves to reduce the issue of over
fitting, reduce computational costs and, most importantly, enhance the 
predictive performance of the model [66]. Common feature selection 
methods include filter, wrapper and embedded methods. In practical 
terms, the choice of the feature selection method depends on multiple 
aspects such as the dimensionality of data or the computational re
sources. Later in this paper a method for feature selection embedded in a 
random forest regression algorithm is employed in the case study. The 
selection of this ensemble algorithm is supported by the results of an 
initial ablation study conducted during the preparation process of this 
study, as well as its capacity to interpret feature importances, resist 
collinearity and overfitting, and model complex non-linear relationship.

To ensure that the selected features in a model generalize well to new 
unseen data, strategies such as hyperparameter tuning and/or cross-fold 
validation can be employed. Both strategies are generally used to reduce 
overfitting, which happens when the model learns the noise instead of 
the underlying patterns. The case study presented later in this paper 
combines both strategies with the objective of minimizing the risk of 
overfitting to the greatest extent possible. In practical terms, cross-fold 
validation involves splitting the dataset into K equally sized folds. K-1 
folds are used for training the model, while the remaining folds are used 
to validate the performance. This process is repeated until all folds have 
been used for validation separately. The model’s final performance is 
then assessed by averaging a performance metric (e.g., mean squared 
error (MSE), mean absolute error (MAE), coefficient of determination 
(r2)) for all validations. All of this may be considered as one iteration 
within the process of searching for optimal hyperparameters of machine 
learning algorithms, specifically the random forest regressor used later 
in the case study. Typically, such a search is performed either by 
exhaustively trying all possible combinations of parameters specified in 
a grid to see which combination yields the best results, or by trying 
combinations of parameters randomly sampled from the grid. In the 
context of the case study described here, cross-fold validation is per
formed using r2 as the performance metric combined with exhaustive 
grid search for hyperparameter tuning. More information regarding the 
specific use of the feature selection and the optimization is given in 3.3 
Experimental set-up.

3. Case study

The methodology is further exemplified and tested by investigating a 
case study conducted on a sample of façades located in the Flatås area in 
Gothenburg, Sweden. The objective of the case study is to predict the 
extent of degradation, i.e., degradation ratio, across a façade. The 
sample consists of 16 façades with a common outer layer of yellow brick 
and rendered lightweight concrete basement walls beneath the brick
work. The façades in the sample all show signs of microclimate induced 
deterioration. Furthermore, they are all from a similar building stock in 
a single climatic zone, assuming the façades to follow a similar deteri
oration pattern. Strict inclusion criteria were applied to ensure that only 
façades predominantly exhibiting microclimate-related weath
ering—excluding those affected by factors such as water leakage or 
foundation movement—were selected, thereby providing a controlled 
environment for method evaluation; however, the limited availability of 
such suitable cases constrained the dataset size. Ten of these façades are 
constructed as non-ventilated brick façades. According to a technical 
documentation for one of the buildings, these façades are made of yel
low hollow bricks, attached to lightweight concrete blocks. The 
remaining façades in the sample have a ventilated cavity between the 
outer layer of brick and the rest of the construction. On closer inspection, 
the ventilated façades can be further divided into three subcategories, 
each with a different type of yellow brick. The buildings were all con
structed between 1954 and 1965, The selection of the façades was based 
on the presence of observed degradation. Additionally, tenants’ privacy 
was considered by preferring parts of façades with no or small window 
openings. In total nine of the 16 façades that were investigated face 
south, two façades face north and west, respectively, and three façades 
face east. The position of each façade within the neighborhood is shown 
in Fig. 4.

In the preparatory phase, a drone survey was conducted for each 
façade using the DJI Mavic 3, which is equipped with 4/3 CMOS Has
selblad camera. The drone was operated manually, with photographs 
taken at a distance ranging 3–6 m from the façade surface. Furthermore, 
the photographs were taken on an overcast day to prevent the formation 
of shadows on the façades. The obtained photographs were then stitched 

Fig. 3. Accounting for obstruction from buildings and other nearby objects in azimuth-based features. Left: unobstructed wind-driven rain at the center of a façade 
section. Right: obstructed wind-driven rain. Obstructions are accounted for by measuring distances from the section center to the nearest building at every 10◦

azimuth (red dashed lines). These distances are then interpolated considering a maximum of 100 m. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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together using the Microsoft Image Composite Editor, resulting in 
orthomosaics of the façades. The division of each orthomosaic into 
sections was carried out in conjunction with a three-dimensional model 
of the neighborhood, obtained from the Digital Twin Cities Centre 
(DTCC) model [67], forming sections with an area of approximately 1 
m2. This step was performed using the Grasshopper and Ladybug plug- 
ins for Rhinoceros 7, specifically the LB ViewPercent function. Prior to 

the division, however, the DTCC’s model was manually modified to 
partially compensate for its limitations. In particular, roof overhangs 
were incorporated into the model. Moreover, basement walls were in
tegrated into the model, with their respective heights determined on- 
site. The areas of façades subjected to further analysis were identified 
based on the delineation of the basement walls, the presence of larger 
openings, and the coverage of the examined façades by bushes in a few 

Fig. 4. Satellite image of the neighborhood with the façades studied in the case study highlighted. Façades 1– 9 face south, 10–11 face north, 12–13 face west, and 
14–16 face east. The satellite image was produced using Google Earth © 2018.

Fig. 5. Slice of the 3D model of the neighborhood, showing the examined areas on the south-facing façades 1, 3, and 7, and the west-facing façade 12. Examined 
areas are highlighted in gold. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cases. The areas of interest over the façades are illustrated in Fig. 5, 
which shows a slice of the 3D model of the neighborhood.

It should be noted that the division process did not result in squared 
sections in all façades due to their dimensions, the dimensional un
certainties associated with the height of the buildings in the DTCC 
model, and the way the function performs the division. Furthermore, the 
dimensions of the façades are not identical. The smallest examined part 
of a façade is 3 m wide and 8 m high whereas the façade with the largest 
area is 13.15 m wide and 11.5 m high. As a result, the number of sections 
in façades within the dataset varies from 24 to 132. A list of all the fa
çades used in the case study, including information on orientation, di
mensions, number of sections and whether the façade is ventilated or 
not, can be found in the Supplementary Data section, appended at the 
end of this paper.

3.1. Degradation analysis

To pinpoint the impact of microclimate on a façade based on 
observed degradation, it is necessary to consider previous renovations. 
Naturally, the newly renovated façade will display no degradations but 
may display the signs of the replaced brickwork, indicating that those 
bricks were previously damaged. This became clear upon examining the 
façades, where some bricks exhibited a noticeably brighter colour. Other 
areas of brickwork were also visually different from the rest. In such, 
however, the determination of whether they have been replaced was 
often uncertain. Therefore, prior to the degradation analysis, a survey 
was conducted among building owners to gather information on the 
history of façade renovations. Despite efforts to identify the locations of 
replaced brickwork and the dates of restoration, most attempts were 
unsuccessful. At best, only the date of the last replacement was deter
mined. Consequently, the following analysis will focus solely on bricks 
that exhibit signs of physical degradation (such as spalling) and those 
that have been clearly replaced.

To assess the microclimate impact on façades, a ratio of the number 
of degraded bricks (including those that have been replaced) to the total 
number of bricks is employed to quantify the extent of degradation in 
each façade section. The analysis itself is conducted using a BuildSense 
model, which is an in-house object detection model based on YOLOv4, 
which can detect spalled and efflorescent bricks, but also identify 
missing veneers in a stone masonry wall [68]. Although newer computer 
vision algorithms like YOLOv11 or DETR may provide better accuracy 
and computational efficiency, the YOLOv4-based model was preferred 
due to its convenience. Specifically, the YOLOv4 architecture was 
configured with an input resolution of 416 × 416 pixels, batch size of 4, 
subdivisions of 4, and a learning rate of 0.0001. The training policy 
included a burn-in period of 400 iterations and learning rate step-downs 
at 1600 and 1800 iterations. Additional augmentations such as mosaic 
and HSV transformations (saturation, exposure, hue) were enabled via 
the training configuration. The model was retrained three times to 
produce three different models, one to detect spalled bricks, the second 
to detect replaced bricks and the third to count the total number of 
bricks in a section of the façade. The training process was conducted 
using a sample of 5 to 8 images from each façade in the dataset, hence 
training on 90 images in total. These were manually annotated using 
Label Studio [69] and YOLO format, with annotations also made for 
parts of bricks located on sections’ edges. Image resolution varied across 
the dataset depending on drone positioning, with photos captured from 
distances ranging between 3 and 6 m from the façade. No manual image 
resizing or augmentation was applied; the YOLO training pipeline 
handled all preprocessing steps internally.

The images were divided into two sets, with 80 % allocated to the 
training set and 20 % to the testing set. Max batches, i.e., the maximum 
number of iterations the algorithm goes through, was set to 2000. The 
training took approximately 10 min on Intel(R) Core(TM) i9–10,900 
CPU @ 2.80GHz with GPU NVIDIA GeForce RTX 2070 SUPER with 8GB 
VRAM and 64GB system RAM for each model. The achieved average 

precisions were 99 %, 87 % and 90 % for detection of brick, replaced 
brick and for spalled bricks, respectively. For inference, a confidence 
threshold of 0.9 and an IoU (Intersection over Union) threshold of 0.4 
were applied for non-maximum suppression (NMS). The models were 
then applied to all façades, iterating through all the sections, and the 
resultant class label, bounding box coordinates and confidence score 
were stored in a database with the inferred number of bricks, degraded 
brick and replaced bricks. This process is illustrated in Fig. 6.

Subsequently, a manual inspection of the analysis outputs was con
ducted to ensure the quality of the degradation data. This was done by 
mapping all detections over the orthomosaics. It was observed that in 
cases of two façades, the model for the detection of replaced bricks 
resulted in a large number of false positives, located mostly under roof 
overhangs, which could be a result of imperfect lighting conditions 
when the photographs were taken. These instances were erased from the 
database to ensure the quality of the target variable in the following 
predictions. The results from the analysis, i.e., the target variable for 
building machine learning predictors, are given in Fig. 7.

As visible in Fig. 7, the degradation distributions are, in general, 
highly skewed towards zero. Out of a total of 1171 façade sections, 672 
(57.4 %) were classified as completely undamaged. Many other sections 
exhibit only a few detections. Degradation ratios below 0.05 were 
recorded in 909 sections (i.e., 77.6 %). Such observations are chiefly 
prevalent in north, west and east façades with only 26 sections 
exceeding the threshold. Degradation ratios of such outliers are below 
0.2 except for one section in façade 16 where 24.3 % of bricks were 
classified as degraded/replaced. In contrast, the sections of the south- 
facing façades exhibit markedly higher levels of degradation. While 
the third quartile (Q3), which indicate the upper end of central 50 % of 
the points in a distribution, of the north, west and east-facing façades 
never exceeded the degradation ratio of 0.025, the third quartile of the 
south-facing façades exceeded this ratio on seven occasions, reaching a 
value of 0.05 or above. Furthermore, the upper bound whiskers, repre
senting 1.5 times the interquartile range (IRQ) from Q3, are typically 
higher in south-facing façades. These results suggest that the most severe 
conditions in Flatås originate from the south. Fig. 8 shows the posi
tioning and prevalence of the degradation ratio on façades oriented 
towards the south.

As illustrated in Fig. 8, the degradation is more pronounced towards 
the edge of the façades, indicated by the thick continuous lines. This 
phenomenon can be observed in all façades except for façade 9. Here, 
the bricks are mainly degraded towards the dashed line, after which the 
façade continues. Similarly, the lowest portions of the brickwork were 
also affected in most other façades. It is noteworthy that only façades 3, 
6 and 8 have their bottom edge positioned within a half of a meter from 
the ground, which could indicate the presence of capillary suction. 
However, the lowest areas of façade 3 seem to be relatively unaffected 
by this compared to façades 6 and 8. The lowest edges of the other fa
çades are positioned well above two meters from the ground, which 
suggests that the observed degradation may be influenced by rainwater 
runoff. The part of the façade underneath the brickwork is a render on 
lightweight concrete blocks which allows water to run off the façade. 
Furthermore, the façades tend to exhibit deterioration either around the 
middle or the upper third section of the examined area. This pattern is 
the most pronounced for façades 1 and 2. The former façade displays a 
distinct horizontal stripe of degradation spanning across the façade just 
above its midpoint, while the area above this stripe shows minimal or no 
degradation, probably due to the roof overhang. In contrast, the 
degraded areas on the latter façade do not exhibit such a distinct pattern 
but rather display degradation in clusters. These are again positioned 
above the midpoint of the façade. Interestingly, the most pronounced 
cluster is positioned much closer to the upper edge of the façade than in 
façade 1, despite the two façades having identical roof overhangs.

Notwithstanding the observed similarities in the façades’ degrada
tion patterns, it is evident that each façade can be regarded as uniquely 
damaged. For instance, façades 2 and 5 are almost identical yet the level 
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of their deterioration is distinct. Furthermore, other façades may also be 
regarded as dissimilar to one another. A comparison of façade 1 or 4 to 
the others is illustrative of this point.

3.2. Description of features

The database, which now comprises degradation ratios for each 
façade section, is further complemented by descriptive features. The 
elementary features, namely height from the ground, sky-view factor 
and distance from the closest edge of the façade to section center, are 
derived directly from the modified DTCC’s 3D model of the neighbor
hood. These are further complemented by a façade type, which is in the 
subsequent analysis referred to as the “Façade constant”. This categor
ical variable serves to distinguish non-ventilated and the three types of 
ventilated façades.

The four elementary features are further complemented by an 
azimuth-based wind-driven rain (WDR) that considers obstruction from 
neighboring objects. The generation of such is further instituted by the 
past modelled hourly weather data for Gothenburg, Sweden, under the 
validated climate scenario A1B. The projection contains weather data 
for the period between 1960 and 2023 covering the exposure for most of 
the service life for the façades in the dataset. The wind and rainfall data 
in the winter months, which are used further for the generation of fea
tures, are summarized in Fig. 9.

As can be observed, the intensity of the exposure is amplified on the 

south and south-west sides. The predominant wind direction is between 
200◦ and 210◦ azimuths, while the greatest rainfall intensity occurs 
between 200◦ and 240◦ azimuths. The calculation of WDR-based azi
muth features on each façade section is conducted utilizing rainfall in
tensity data in the winter months. The cosine rule, which is a 
fundamental principle in any commonly known semi-empirical WDR 
method, is employed to project precipitation on the façade surfaces. The 
precipitation projections are further compounded to 36 directions 
separated by 10◦ azimuths and multiplied by mean wind speeds from 
corresponding direction, which are accounted for neighboring obstruc
tions as described in section 2.3. The resulting 36 WDR features are 
further reduced using binning and principal component analysis. The 
former aggregates WDR to bins set apart at 40◦ intervals, while the latter 
reduces the 36 dimensions to 2 principal components. Finally, the 
feature space is completed by aggregating the mean and sum of WDR. 
The total number of features for building a machine learning predictor of 
degradation is thus 17. Spearman’s correlations for each of these 17 
features are shown in Fig. 10. These are presented for individual façades, 
for façades within their respective orientations and for the entire 
dataset.

The features display notable variability in their correlations with the 
degradation ratios across different façades. To illustrate, the sky-view 
factor in south-oriented façades ranges from a strong and positive cor
relation (r = 0.79) in façade 1 to a negative and negligible correlation (r 
= − 0.13) in façade 7. A similar variability is evident across other 

Fig. 6. Application of YOLOv4 model retrained to detect spalled and replaced bricks. The model is iteratively applied to all sections of each façade to determine 
degradation ratio of per section. Left: division of a façade into sections. Right: output of the YOLOv4 model. The example is presented on Façade 8.
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features. Furthermore, features demonstrate moderately strong corre
lations at best when façades are sampled to their respective orientation 
groups. However, correlations for the entire dataset showed only weak 
relationships between the features and the degradation ratios.

3.3. Experimental set-up

The objective of the case study is to construct a machine learning 
predictor that can predict degradation ratios across façades. The per
formance of the predictor is to be evaluated using two holdout samples. 
The first sample is produced by excluding data for one entire façade, 

Fig. 7. Degradation assessment of all façades using the YOLOv4 model to detect spalled and replaced bricks. Each point represents the degradation ratio estimated in 
one façade section. Boxplots indicate the degradation distribution across each façade by showing its median value and interquartile range.
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which is hereinafter referred to as the validation façade sample. The 
second sample is generated through a process in which the data are 
augmented by adding random Gaussian noise to the degradation ratios 
and adjusting augmented values that fell below zero to zero, randomly 
shuffled and then divided according to the 80:20 convention. The 
smaller portion of the data is the holdout sample hereinafter called the 
test sample. The latter constitutes the training data for the algorithm.

The division of the cases study façades in different samples aims to 
test two different aspects of the model’s performance. The test sample is 
used to inquire which features and how well those features may inform 
the degradation prediction across façades. It assesses the model’s 
generalization to unseen data from the same degradation distribution as 
the training data. Conversely, the validation façade tests the model’s 

ability to generalize to unseen data which may be from a different 
degradation distribution, as hinted at in Section 3.1, where all façades 
were regarded as exhibiting unique damage patterns across their 
surfaces.

For validation, Façade 2 is hereafter selected as the validation 
façade. As Fig. 7 and Fig. 8 show, it displays the second highest degree of 
degradation after façade 1. Unlike Façade 1, however, which exhibits 
degradation levels that significantly exceed those observed in other fa
çades, and which may be regarded as an outlier whose extent of 
degradation cannot be drawn from the data of the remaining façades, 
high degradation ratios in Façade 2 might be predicted based on Façade 
1. This makes the prediction of degradation levels across Façade 2 a 
challenging but feasible undertaking. Fig. 11 shows a photograph of 

Fig. 8. Positioning and prevalence of the degradation ratio on south-facing façades. Heatmaps were generated by upscaling degradation data arrays (sections) by a 
factor of 100 using spline interpolation. The façades are depicted to their actual scale.
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Façade 2.
The remaining data, i.e., all data without Façade 2, are augmented by 

a factor of 10 as explained at the beginning of this section, resulting in a 
training and testing dataset, comprising 9008 and 2252 datapoints, 
respectively. The validation façade encompasses data for 45 sections. All 
portions of the dataset were standardized i.e., each feature was scaled by 
the removal of its mean value and subsequent division by its standard 
deviation. This is done to ensure uniformity in the contribution of the 
features to the prediction model.

The prediction model was constructed using a random forest 
regression algorithm as its core component. Random forest was selected 
based on the results of an initial ablation study that included alternative 
models such as XGBoost, Support Vector Regression (SVR), and a basic 
feed-forward neural network with random forest achieving the highest 
r2 and lowest Mean Square Error (MSE). Random forest was ultimately 
chosen for its robustness to collinearity and overfitting, ability to cap
ture complex non-linear relationships, and its capacity to provide 
feature importance insights, aiding in understanding key predictive 
variables. This last quality is used to select features from the feature 
space. This is done by constructing a random forest regressor comprising 
100 decision trees, which are used to estimate the relative importance of 
each feature. Subsequently, only features with an importance score 
above a threshold, derived from the mean importance of all features, are 
kept. The automatic feature selection, hereinafter referred to as Exper
imental set-up 1, is augmented with the manual selection of features. 
This is primarily to ascertain the impact of varying feature selections on 
the predictions of the validation façade, which, as previously suggested, 
exhibit different degradation patterns compared to the rest. This is 
further referred to as Experimental set-up 2.

To reduce the possibility of overfitting, hyperparameter tuning 
conjunct with cross-fold validation is adopted. The former was carried 

out using a grid search approach, which optimizes the model’s perfor
mance by exploring a range of hyperparameter combinations. Cross-fold 
validation, with k-folds equal to 5, was employed throughout the pro
cess to ensure the model’s robustness across different subsets of the 
training data. The r2 scoring method was employed to train the model, 
with the objective of emphasizing the model’s ability to explain variance 
in the target variable.

The hyperparameter tuning process considers five distinct hyper
parameters, which are deemed the most important when constructing 
the random forest regressor. The number of trees, as the name implies, 
controls the maximum number of trees that can be included in the forest. 
Its default value is 100 trees. Additionally, the tuning process entails the 
examination of 50 and 200 trees. The second hyperparameter is the 
maximum depth which defines the maximum number of computational 
nodes for each tree. The default value ‘None’ for this parameter, which 
allows trees to expand until all leaves contain less than a minimum 
number of samples that are required to split a tree node (i.e., the third 
hyperparameter that is considered), is complemented by values 10, 20 
and 30. For the third hyperparameter, the values of 2 (the default value), 
5 and 10 are used in the optimization process. The fourth hyper
parameter is the minimum number of samples that is required to form a 
leaf node. Its default value is complemented by values of 2 and 4. 
Finally, the maximum number of features to consider when searching for 
the best split is considered in the tuning by considering all n features, the 
square root of n features, and the binary logarithm of n features.

4. Results

The case study example of the methodology so far has progressed 
through three of the four phases, generating degradation data and 
descriptive features for each façade section. These are used in the final 

Fig. 9. Wind and rain data for Gothenburg, Sweden, based on the A1B projection for the period 1960 and 2023. Left: wind-rose diagram. Right: heatmap showing the 
cumulative sum of horizontal rain intensity binned in 40-degree intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)
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Relate phase of the methodology demonstrating the predictive capa
bilities of the methodology. The outcomes in this section are presented 
in the context of the two experimental set-ups, which have been defined 
in section 3.3 Experimental set-up.

4.1. Experimental set-up 1 – Automatic feature selection

The relative importance of features, the selection threshold, and 
features selected for constructing the degradation predictor are shown in 
Table 1. The feature selection threshold (0.059) was derived by calcu
lating the mean of the relative importance of all features.

Five features comprising the three elementary ones i.e., sky-view 
factor, height from the ground and the distance from the closest 
corner, and the two principal components derived from rain azimuth- 
based rain features, are included in the following analysis. The 
training process resulted in a set of hyperparameters which are shown in 
Table 2 alongside with r2 and MSE scores on the hold out samples.

The model’s predictions on the test sample resulted in both high 
variance (r2 = 0.978) and low error (MSE = 0.0002), indicating a good 
predictive capability. In contrast, the metrics exhibit a lack of predictive 
power the validation façade (r2 = − 1.152; MSE = 0.0332). These results 
are illustrated in Fig. 12, which depicts a comparison between the actual 
degradation ratios in sections and the predicted ratios for both holdout 
samples.

In the case of the test hold-out sample, essentially all predictions are 
in proximity to the red dashed line, which represents the ideal best 
possible fit between the actual and predicted degradation ratios. 
Nevertheless, predictions over the validation façade are generally low, 
with the highest degradation estimate 0.12. Predictions over most of the 
sections, however, are close to 0. The disparity over the validation 

façade is further illustrated in Fig. 13.
The actual spatial distribution of the degradation ratios over the 

validation façade, as determined through computer vision analysis, 
demonstrates higher ratios towards the edge of the façade on the left and 
above its center. The highest ratio (0.54) is located near the bottom left 
corner. The ratios get progressively lower further away from the fa
çade’s edge, except for the area above the center i.e., rows 1–3. In this 
region, the degradation ratios initially increase, but then, at the right 
edge of the brick portion of the façade, undergo a sudden decline to
wards zero. In contrast, the predicted spatial distribution exhibits no 
such pattern. The sections above the center, i.e., rows 0–3, exhibit 
minimal variation. The only discernible pattern is observed from row 4 
onward. In this area, the left edge of the façade once again exhibits the 
highest degradation ratios with the maximum of 0.12. The ratios then 
decline progressively but are elevated at the far-right sections.

4.2. Experimental set-up 2 – Manual feature selection

This experimental set-up involves testing different feature combi
nations to evaluate their impact on the predictions over the validation 
façade. Three elementary features from Set-up 1, i.e., the sky-view fac
tor, height from the ground and the distance from the closer edge, are 
kept constant throughout the analysis. The focus, however, was on the 
azimuth-based features, which were modified in each iteration. To 
illustrate the impact of these features on the predictive performance, 
three examples are provided: (1) the feature 0 ≤ Rain <40, (2) 200 ≤
Rain <240, and (3) combination of two azimuth-based features i.e., 0 ≤
Rain <40 and 160 ≤ Rain <200. To further analyze the features’ impact 
on predictions, the experiment is at the end repeated with the inclusion 
of the “Façade constant” in the feature space. Although this feature 

Fig. 10. Spearman correlation of features with the degradation ratio across façades. Note, in the instances where there were gaps, the correlation coefficient was not 
defined due to the presence of constant inputs.
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showed low estimated importance in Set-up 1 (Table 1), its inclusion is 
justified as the presence of ventilated cavity is known to have significant 
impact on the hygrothermal performance of façades and thus the 
occurrence of degradation. Moreover, its importance within the random 
forest regression might be amplified when combined with feature sub
sets. Regardless of the example, the hyperparameters were optimized 
and the algorithm trained as described in section 3.3 Experimental set- 
up. Table 3 shows r2 and MSE score for both hold-out samples for the 
three examples without the use of ‘Façade constant” in the feature space.

The model, as presented in Table 3, demonstrated comparable per
formance across all instances in the test hold-out sample. Additionally, 
both the r2 and MSE scores were almost identical to those recorded in 
the Experimental set-up 1, where the features were automatically 
selected by the model. However, the metrics for the validation façade 
exhibit insufficient performance. This is specifically reflected in the 
negative r2 scores, which were achieved in all instances. The perfor
mance of all three examples is graphically shown in Fig. 14.

In accordance with the established metrics, the impact of selecting 
different features on the model’s performance is negligible in the test 
hold-out sample. However, the utilization of different features alters 
predictions over the validation façade. The model, in general, tends to 

Fig. 11. Photograph of Façade 2 that is hereafter regarded as the validation façade for testing the ability of the predictor to generalize to unseen data, which may be 
drawn from different degradation distribution. Right: detailed view of the area highlighted with a red mask in the photograph, showing bricks undergoing spalling 
(lighter-colored areas inside bricks). Bricks with a lighter overall appearance, mostly located on the left side, are considered as replaced bricks in further analysis. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Assessment of preliminary feature importance as estimated by the Random 
Forest regression algorithm. A selection threshold of 0.059 results in the inclu
sion of the top five features.

Feature Importance

1 Sky-view factor 0.311
2 PCA rain 2 0.219
3 PCA rain 1 0.155
4 Height from ground 0.124
5 Distance to closest edge 0.060
6 160 ≤ Rain <200 0.030
7 200 ≤ Rain <240 0.029
8 240 ≤ Rain <280 0.018
9 0 ≤ Rain <40 0.015
10 120 ≤ Rain <160 0.014
11 Rain sum 0.009
12 Rain mean 0.008
13 80 ≤ Rain <120 0.004
14 Façade constant 0.003
15 40 ≤ Rain <80 0.001
16 280 ≤ Rain <320 0.000
17 320 ≤ Rain <360 0.000

Table 2 
Model’s estimated training parameters. Included are r2 and MSE metrics achieved on the test sample and the validation façade.

Technique Hyperparameters Optimal Values Test sample 
r2

Test sample MSE Val. façade  
r2

Val. facade 
MSE

Random Forest Regression Number of trees 200 0.978 0.0002 − 1.152 0.0332
Maximum depth of each tree N/A
Minimum samples required to split a node 2
Minimum samples required at each leaf node 1
The number of features to consider sqrt
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predict low degradation ratios. The estimated maximum is 0.3 (feature 
subset with 200 ≤ Rain <240, in the middle). Inherently, the predictions 
at the lower end of the true degradation spectrum demonstrate a higher 
degree of precision. This is particularly evident in the feature subsets on 
the left and right, specifically 0 ≤ Rain <40 and 0 ≤ Rain <40, 160 ≤
Rain <200, where most predictions fall withing a 5 % deviation from the 
optimal fit. Nevertheless, as the true degradation ratios approach a value 
of 0.2, the prevalence of underestimated predictions increases across the 
examples. The results for the Validation façade are further com
plemented in Fig. 15, which depicts the spatial distribution of the 
predictions.

The predictions based on different subsets of features exhibited 
distinct spatial patterns over the validation façade. The use of the range 
0 ≤ Rain <40 (on the left) produced a pattern that most closely re
sembles the true degradation distribution (Fig. 13). However, the spatial 
comparison deviates particularly in the upper parts of the façade, i.e., 
rows 0–2, which exhibited a high prevalence of degradation with the 
maximum of 0.43. Conversely, the predictions are underestimated with 
the recorded maximum of 0.11. In general, the degradation is more 
prevalent on the left side of the façade and in row 3 where the predicted 
maximum (0.29) occurs. This pattern is also recognizable in the case to 
the right, which employs two azimuth-based features, i.e., 0 ≤ Rain <40, 

Fig. 12. Application of the Random Forest regressor on the test set (left) and on the validation façade (right), utilizing features selected in Table 1 - illustrating the 
comparison between predicted and actual degraded/undegraded ratio in each section of the façade. The red dashed line represents the theoretical best possible 
agreement between the predicted and actual values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 13. Spatial comparison of actual degradation based on computer vision analysis (left) and predicted degradation ratios (right) over the validation façade.
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160 ≤ Rain <200. In this instance, however, the degradation ratios 
steadily increase from the bottom right corner towards the left corner of 
row 3, with a maximum value of 0.25 occurring on column 1. This 
progression is also evident in the initial case, although the transition is 
less pronounced. The final case (in the middle), which employs the 
feature 160 ≤ Rain <200, has larger differences. The predicted pattern 
resembles the letter “H”, with a more pronounced right side. In com
parison to all the other cases, the model in this instance predicted the 
highest degradation ratios (0.3) on the right side of the examined wall i. 
e., in the furthest distance from the edge of the façade.

To illustrate the influence of the “Façade constant” on the predictions 
over the validation façade, Fig. 16 shows the spatial distribution of the 

degradation over the façade for the three examples.
In general, the addition of the “Façade constant” in the feature space 

kept its excellent r2 scores for the test hold-out sample but inherited and 
further amplified the inaccuracies from the original results (Fig. 15). 
Specifically, their r2 scores has worsened across cases with − 0.585, 
− 1.091 and − 0.317 for the cases 0 ≤ Rain <40, 200 ≤ Rain <240, and 
0 ≤ Rain <40 and 160 ≤ Rain <200, respectively. The drop in perfor
mance is especially noticeable in the case on the left (0 ≤ Rain <40) and 
in the middle (200 ≤ Rain <240). The use of the 0 ≤ Rain <40 (depicted 
on the left) produced a pattern over the façade that, on its left side, 
resembles the true degradation distribution (Fig. 13). This resemblance, 
however, falls apart particularly on the right side of the façade where the 
predictions at the edge of the examined area (column 4) were signifi
cantly overestimated. There in row 3, which by itself forms a stripe of 
sections with elevated predicted degradations, the maximum degrada
tion of 0.42 was predicted. Another notable deviation is in the upper 
parts of the façade, i.e., rows 0–2, which exhibited a high prevalence of 
degradation with the maximum of 0.43. Conversely, the predictions are 
underestimated with a recorded maximum of 0.20. A similar pattern can 
be seen in the middle case (200 ≤ Rain <240) with the difference that 
the predicted degradation ratios are generally lower compared to the 
previous case. This is invalidated only in column 4 where some pre
dictions are higher with the maximum of 0.38 at rows 4 and 5. To some 
extent the pattern is observable also in the case to the right, which 
employes two azimuth-based features, i.e., 0 ≤ Rain <40 and 160 ≤ Rain 

Table 3 
Model performance for three different subsets of azimuth-based features. Each 
subset includes three elementary features, namely the sky-view factor, height 
from the ground and distance from the closer edge.

Subset with following 
azimuth-based 
features:

Test 
sample 
r2

Test 
sample 
MSE

Validation 
façade  
r2

Validation 
facade 
MSE

0 ≤ Rain < 40 0.978 0.0003 − 0.467 0.024
200 ≤ Rain < 240, 0.975 0.0003 − 0.948 0.031
0 ≤ Rain < 40, 160 ≤

Rain < 200
0.978 0.0002 − 0.246 0.019

Fig. 14. Application of the Random Forest regressor on the test set (first row) and on the validation façade (second row), utilizing three different subsets of azimuth- 
based features: 0 ≤ Rain <40 (left), 200 ≤ Rain <240 (middle) and 0 ≤ Rain <40, 160 ≤ Rain <200 (right). Each subset is accompanied by three elementary features: 
sky-view factor, height from the ground and distance from the closer edge. The red dashed line represents the theoretically best possible agreement between pre
dicted and actual values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Spatial distribution of degradation predictions for three subsets of azimuth-based features: 0 ≤ Rain <40 (left) 200 ≤ Rain <240 (middle) and 0 ≤ Rain <40, 
160 ≤ Rain <200 (right). Each subset is accompanied by three elementary features: sky-view factor, height from the ground, and distance from the closer edge.

Fig. 16. Additional influence of the “Façade constant” feature on the spatial distribution of degradation predictions for three subsets of azimuth-based features: 0 ≤
Rain <40 (left), 200 ≤ Rain <240 (middle), and 0 ≤ Rain <40, 160 ≤ Rain <200 (right). These are accompanied in all cases by three elementary features: sky-view 
factor, height from the ground, and distance from the closer edge.
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<200. In this instance, however, like the original case in Fig. 15, the 
degradation ratios increase steadily from the lower right corner to the 
left corner of row 3, with a maximum value of 0.24 occurring in column 
1.

5. Discussion

The two experimental set-ups provided key insights. Firstly, the 
methodology effectively identifies areas under significant environ
mental stress, likely to degrade. This is supported by the test hold-out 
sample results, where the random forest regression model estimated 
most degradation ratios with a margin of error below 5 %. However, 
applying the model to the validation façade highlights a crucial caveat 
for practical implementation. The test hold-out sample was from the 
same distribution as the training data, while the validation façade, 
which was set aside for later testing, came from a different distribution. 
Thus, inaccurate predictions in the validation likely stem from distri
bution shift, as often noted in the literature.

In essence, the distribution shift results in the model’s insufficient 
generalization to the unseen data. To illustrate this one might consider 
the case of a self-driving car that has been trained and successfully tested 
in the streets of Gothenburg, Sweden, and then deployed in unfamiliar 
and narrower streets of Thessaloniki, Greece. This is analogous to the 
situation with the validation façade. The model becomes familiar with, i. 
e., overfit to, the training and test sets, which demonstrate certain 
characteristics. However, the model underperforms in the validation 
façade, exhibiting degradation patterns and characteristics that are 
likely distinct from those observed in other façades. This coincides with 
the observation made in section 3.1 Degradation analysis where the 
degradation patters across each façade in the dataset were regarded as 
unique upon observation of Fig. 7 and Fig. 8. In other words, the model 
learned patterns from the training set that are probably not present in 
the validation façade. Consequently, the selection of distinct features 
also resulted in disparate degradation predictions for the validation 
façade. This was, among others, illustrated with the feature “Façade 
constant”, which categorizes façades based on whether they have a 
ventilated cavity or not. Although this feature is considered significant 
from the building physics perspective, it had a negative impact on the 
prediction of degradation over the validation façade. In conclusion, a 
feature may prove highly predictive in most façades but irrelevant or 
even misleading when applied to a façade with its distinctive degrada
tion patterns.

Addressing the distribution shift is essential for the further devel
opment of the methodology. In this context, the shift is primarily due to 
the inadequate assessment of the façades’ degradation, which does not 
fully incorporate their maintenance history. The majority of the build
ings in the dataset were erected at the beginning of the 1960s, with one 
exception, which was constructed in 1954. Despite the long existence of 
the buildings, the efforts to ascertain the history of façade renovation 
yielded inadequate information. The most dated renovation effort 
recorded in the survey was undertaken in 2011. In such cases, bricks of 
markedly brighter colour indicate the recent replacement. However, a 
closer examination of a few façades in the database reveals other areas of 
brickwork, which appearance also deviates from the rest. In such situ
ations it is unclear whether these bricks were replaced, or whether their 
distinct visual characteristics are caused by other factors such as the 
deviation of material properties coming from a different batch of bricks. 
Therefore, for practical reasons, the degradation analysis considered 
only damaged bricks and bricks that have markedly brighter colour. 
However, this approach probably imposed a significant limitation as the 
outcomes of the degradation analysis may have been more similar across 
the façades.

It is also necessary to consider other factors that may contribute to 
the distribution shift. It can be argued that the differences in environ
mental exposure across the façades have been considered by including 
the most influential factors; however, it is possible that others could be 

added in order to capture the exposure more comprehensively. For 
instance, including additional factors in the feature space such as sun 
exposure and shading, or the inclusion of other objects than buildings, 
such as trees, which can affect frost exposure in early spring, could have 
led to a more accurate inference of façades’ degradation. Similarly, the 
more comprehensive description of façade material might have helped 
to explain the disparities between the degradation patterns. However, 
given the excellent performance of the models on the test-holdout 
sample, incorporating maintenance history in the degradation analysis 
is deemed more important.

To address the issue of the distribution shift, two distinct approaches 
are worth considering. The first approach involves expanding the 
training dataset. The current database comprises 16 façades from one 
neighborhood, which were expected to show similar degradation pat
terns as they come from similar building stock in a single climate zone. 
Arguably, many more façades can be added to the dataset, as there are 
numerous similar buildings throughout Sweden. It may be the case that 
capturing more façades that exhibit similar degradation patterns to the 
validation façade could diminish the gap caused by the distribution 
shift. However, the incorporation of new façades should be well 
considered as façades may be damaged for reasons other than micro
climate weathering (e.g., water leakage, moving foundations), breaking 
the integrity of the data. Moreover, it is likely that the inclusion of 
several more façades will not narrow the distribution gap, but the in
clusion of hundreds of brick façades, which exceeds the scope of this 
paper, may achieve this objective.

The second approach focuses on enhancing the degradation analysis 
itself. Currently based on supervised computer vision models trained on 
manually annotated data, this method may struggle to identify unan
notated but anomalous areas. This limitation becomes more pronounced 
without access to historical drone surveys, which would otherwise 
provide valuable temporal context. An unsupervised machine learning 
method, such as k-means clustering applied features extracted from deep 
vision networks, may offer a more flexible solution. It could group bricks 
into clusters—identifying those damaged, replaced a decade ago, or 
earlier—without labels. The number of clusters could be user-defined or 
inferred by the algorithm. This approach could provide a more nuanced 
understanding of the brickwork’s condition over time, potentially 
revealing subtle patterns of deterioration and repair. Coupling it with 
non-destructive testing could further validate the findings, ultimately 
helping to resolve the distribution shift through a richer, more inde
pendent analysis.

The narrowing of the gap caused by the distribution shift would 
make the methodology more suitable for assessing which parts of fa
çades are under failure conditions and likely to degrade. It could also 
indicate which sections might sustain greater damage. However, for a 
nuanced understanding of when the degradation onsets, considering the 
composition of the façade and its material properties is essential. For 
instance, façades that allow for drying or brickwork that allows for a 
higher level of moisture before saturation may be exposed to later onset 
of freeze-thaw degradation. Moreover, material properties can vary 
within a single façade, so the degradation ratio of each section could 
scale the results derived from Monte Carlo-based hygrothermal simu
lation. This could provide insight into how many freeze-thaw cycles a 
façade must undergo before degrading. Consequently, the predicted 
degradation ratio of each section could help determine when and to 
what extent degradation occurs.

Although the framework is showcased only on brick façades, its 
prescriptive and flexible steps ensure theoretical robustness. However, 
ensuring practical robustness, in addition to addressing the distribution 
shift, would require the use of computer vision models that are trained to 
detect degradation of various types on different façade materials, similar 
to those CV models presented in [40] or [61]. Moreover, as different 
materials are expected to have different hygrothermal and thus different 
degradation mechanisms and patterns, scalability of the PAIR frame
work would require material- and climate-zone specific calibration. 
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Vandemeulebroucke et al. [70], for instance, emphasized this point 
when they analyzed results of 34,560 hygrothermal simulations, 
showing that, in some scenarios, façade degradation risks may primarily 
be driven by location, while in other cases, it may be driven by brick 
type. Ultimately, the framework, respectively its ML-based degradation 
predictor, could be used to predict the location of degradation on fa
çades in entire neighborhoods across countries and climate zones.

6. Conclusion

This paper developed a methodology for the assessment of the risk of 
degradation along façade surfaces. The methodology is designed to 
address the primary limitations of conventional microclimate and 
hygrothermal modeling by estimating the effects of microclimate over 
façades through direct prediction of façade degradation. This is made 
possible by the four-step methodology, which comprises the following 
stages: Prepare, Analyze, Integrate, and Relate (PAIR). These stages 
combine data from drone imagery of façades and their analysis by 
computer vision with weather data and data mined from a 3D model of 
the façade surroundings. The result is a machine learning predictor for 
façade surface degradation prediction.

The methodology was exemplified in a case study comprising 16 
brick façades from the Flatås area in Gothenburg, Sweden. These were 
subjected to a drone survey, which yielded high-resolution images of 
their surfaces. Subsequently, the drone imagery was analyzed, detecting 
damaged and replaced bricks during previous renovations. This was 
achieved by retraining an in-house computer vision model (BuildSense) 
based on You Only Look Once (YOLOv4) computer vision framework. 
The degradation data was conjugated with data from DTCC model of the 
neighborhood. The performance of the final model was evaluated using 
two distinct hold-out samples of the data, namely the validation façade 
hold-out sample and the test hold-out sample. The former was con
structed by setting aside data for one façade at the outset of the analysis. 
The choice of the validation façade was made upon examining the 
degradation patterns of the façades in the dataset, choosing a façade 
with the second highest degree of degradation with the incentive that its 
highly and less degraded sections could be predicted based on other 
façades in the dataset. The latter was constructed by shuffling the 
remaining data and randomly selecting 20 % of the data. Consequently, 
the predictor exhibited excellent performance in the case of the test 
hold-out sample. In contrast, the model demonstrated inadequate pre
dictive capabilities when evaluated on the validation façade. These 
findings were consistent across both experimental set-ups tested, which 
differed in their feature selection methods. Additionally, the predictions 
on the validation façade have exhibited high sensitivity to the selected 
features. This behavior was attributed to the distribution shift, which 
was likely caused by the validation façade exhibiting distinctive 
degradation patterns that were not adequately represented in the 
training data.

Although YOLOv4 was selected for its ready availability within the 
BuildSense system, recent object detection models such as YOLOv11, 
and transformer-based approaches like DETR have demonstrated im
provements in both accuracy and efficiency. Future work may involve 
evaluating these newer models to enhance detection robustness, reduce 
manual verification, and increase scalability in broader applications. 
Additionally, unsupervised clustering techniques could be explored to 
better distinguish between degraded and replaced bricks. Alternatively, 
degradation analysis could be enhanced or replaced using point cloud 
data, which is not available in the current study. Nevertheless, state-of- 
the-arts methods like Vision Transformer segmentation or PointNet++

could further enhance the accuracy and robustness of the analysis. In 
addition, point cloud-based 3D reconstruction techniques may eliminate 
the need for the 3D model of the neighborhood, potentially making the 
application of the PAIR methodology more accurate and streamlined. 
The degradation assessment could also be enhanced by incorporating 
data from other sensors, such as infrared cameras or ground-penetrating 

radar—technologies that avoid practical challenges associated with both 
invasive (e.g., moisture probes, thermocouples) and environmental (e. 
g., surface temperature, ambient humidity, wind exposure) continuous 
measurements. Cost, unexpected data loss due to sensor malfunction, 
and the need to periodically change batteries are some of the challenges 
that would limit the incorporation of numerous façades into the dataset, 
hindering the resolution of the distribution shift.

Finally, the methodology has the potential to offer a computationally 
inexpensive risk of degradation assessment for façades in whole neigh
borhoods. However, its practical implementation is currently impeded 
by the distribution shift. Future research should focus on resolving this 
issue. This may be overcome by enhancing computer vision analysis in 
conjunction with other non-destructive testing methods. This would 
give a comprehensive understanding of façade’s maintenance records 
and expanding the number of façades in the database.
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