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Significance

 This study establishes a 
framework for understanding 
how genetic diversity shapes 
metabolic adaptation across 
﻿Saccharomyces cerevisiae  strains. 
By integrating pangenomics, 
transcriptomics, and fluxomics, 
we find that niche specialization 
leads to streamlined genomes 
and metabolism, gene expression 
exerts potential transcriptional 
control over some core 
biochemical pathways on a 
population level, and strains in 
various oxygen-limited 
environments independently 
evolve similar metabolic 
reprogramming. The newly 
reconstructed pangenome and 
high-quality 1,807 ssGEMs 
enhance the predictions of strain 
fitness and serve as valuable 
computational resources for the 
scientific community. These 
resources support future research 
on yeast evolution, ecology, and 
metabolic engineering, facilitating 
the engineering of yeasts with 
enhanced traits for industrial 
biotechnology and the 
understanding of the evolutionary 
principles occurred in other 
nonmodel yeast species.
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The famous model organism Saccharomyces cerevisiae is widely present in a variety of 
natural and human-associated habitats. Despite extensive studies of this organism, the 
metabolic mechanisms driving its adaptation to varying niches remain elusive. We here 
gathered genomic resources from 1,807 S. cerevisiae strains and assembled them into 
a high-quality pangenome, facilitating the comprehensive characterization of genetic 
diversity across isolates. Utilizing the pangenome, 1,807 strain-specific genome-scale 
metabolic models (ssGEMs) were generated, which performed well in quantitative 
predictions of cellular phenotypes, thus helping to examine the metabolic disparities 
among all S. cerevisiae strains. Integrative analyses of fluxomics and transcriptomics with 
ssGEMs showcased ubiquitous transcriptional regulation of metabolic flux in specific 
pathways (i.e., amino acid synthesis) at a population level. Additionally, the gene/reac-
tion inactivation analysis through the ssGEMs refined by transcriptomics showed that 
S. cerevisiae strains from various ecological niches had undergone reductive evolution at 
both the genomic and metabolic network levels when compared to wild isolates. Finally, 
the compiled analysis of the pangenome, transcriptome, and metabolic fluxome revealed 
remarkable metabolic differences among S. cerevisiae strains originating from distinct 
oxygen-limited niches, including human gut and cheese environments, and identified 
convergent metabolic evolution, such as downregulation of oxidative phosphorylation 
pathways. Together, these results illustrate how yeast adapts to distinct niches modulated 
by genomic and metabolic reprogramming, and provide computational resources for 
translating yeast genotype to fitness in future studies.

Saccharomyces cerevisiae | pangenome | strain-specific genome-scale metabolic model |  
environmental adaptation | metabolic reprogramming

 As one of the most famous eukaryotic model organisms, the budding yeast Saccharomyces 
cerevisiae  has been widely used in areas of synthetic and systems biology ( 1       – 5 ). The first 
whole genome sequence of S. cerevisiae  was released in 1996, followed by numerous 
molecular studies using its laboratory mutants ( 3 ,  6   – 8 ). Well adapted to laboratory envi-
ronments, S. cerevisiae  is also ubiquitous in both natural and human-associated niches. 
The wide distribution around the earth has shaped the genetic and phenotypic diversity 
of distinct S. cerevisiae  isolates ( 9 ). Elucidating how S. cerevisiae  strains adapt to varied 
environments could provide insights into the metabolic rewiring of eukaryotic organisms 
driven by natural and artificial selection ( 10 ).

 The advancement of high-throughput sequencing technology has made it possible to 
profile the genomic evolution of S. cerevisiae  on a larger scale. Over the past decade, 
amounts of genome sequencing have been performed to characterize the genetic diversity 
of S. cerevisiae  strains sampled from a wide range of habitats, such as wine, plants, and 
human-guts ( 11           – 17 ). Notably, Peter et al. reported the whole genome sequencing for 
1,011 S. cerevisiae  strains worldwide, successfully delineating the global evolutionary por-
trait of the species ( 9 ). More recently, the same group performed pantranscriptome analysis 
of ~1,000 S. cerevisiae  strains and illustrated the gene expression patterns across the major 
evolutionary clades ( 18 ). Together, these omics datasets provide valuable resources to study 
the evolution of S. cerevisiae  at system and population levels.

 The pangenome, defined as the collection of all genes encompassed by a group of 
individuals from a certain species, has become a powerful tool to characterize the genomic 
and metabolic diversity of studied species ( 19 ). Currently, there are two representative 
pangenomes for S. cerevisiae , here named Sce-pan1011 and Sce-pan1364, which were 
built for 1,011 and 1,364 isolates, respectively. By contrast, the Sce-pan1011 contains a 
total of 7,796 ORFs, while the Sce-pan1364 has only 7,078 ORFs ( 9 ,  20 ). With the 
accumulation of newly sequenced S. cerevisiae  strains, it is thus critical to rebuild the 
pangenome of S. cerevisiae  considering all sequenced isolates, as well as refining its D
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architecture to solve the existing conflict between the aforemen-
tioned two versions of pangenomes.

 Genome-scale metabolic models (GEMs) provide a mathemat-
ical framework representing the entire metabolism of an organism 
( 21 ). It could serve as a tool to mechanistically link genotype to 
phenotype. It has been effectively applied to study the metabolic 
rewiring and hybridization during the adaptive evolution of the 
﻿Saccharomyces  genus ( 22 ,  23 ). Since the publication of the first 
GEM in 2003, S. cerevisiae  GEMs have been continuously 
improved through iterative updates by the community ( 24 ,  25 ). 
During GEMs reconstruction, the genomic information of S. 
cerevisiae  S288c was intensively leveraged, while omitting the gene 
gain and loss existing in other isolates. Therefore, it is challenging 
to directly apply the current S. cerevisiae  GEMs-Yeast8 to simulate 
the metabolic diversity of other isolates. In this regard, Lu et al. 
have built pan-GEMs for 1,011 S. cerevisiae  strains and, for the 
first time, developed strain-specific GEMs for all the studied 
strains, illustrating metabolic conservation and variation at 
single-strain resolution ( 26 ). However, the limitation of omics 
datasets, i.e., transcriptomics and phenomics, to some extent, 
hinders the applications of GEMs in reflecting the in vivo meta-
bolic diversity of those strains ( 26 ).

 To systematically elucidate the molecular mechanisms under-
pinning the adaptation of S. cerevisiae  strains across a variety of 
environments, we reconstructed a new version of pangenome for 
﻿S. cerevisiae  utilizing the high-quality genome sequences from 
1,807 isolates, which helps to comprehensively describe genetic 
diversity within the species. Subsequently, inspired by the detailed 
functional annotation of the newly built pangenome, 1,807 
strain-specific genome-scale metabolic models (ssGEMs) were 

established to quantitatively assess metabolic differences between 
strains. We further integrated large-scale transcriptomics data with 
ssGEMs to investigate the transcriptional regulation of the met-
abolic network at the population level. Finally, a multidimensional 
integration analysis of the pangenome, transcriptome, and flux-
ome was performed to characterize the genetic and metabolic 
features of S. cerevisiae  strains that originated from anaerobic 
environments, including the human gut and dairy niches. Overall, 
with advanced genomic and modeling analysis, our work shows 
how the metabolism of S. cerevisiae  was dynamically repro-
grammed to adapt to diverse ecological niches around the world. 

Results

Pangenome of 1,807 S. cerevisiae Strains. To comprehensively 
investigate the genetic diversity of S. cerevisiae, we compiled 1,913 
S. cerevisiae genomes from NCBI and published datasets (9, 11, 
13, 14, 16, 17, 20). Following unified genome annotation and 
quality control, 1,807 high-quality genomes were retained to 
construct the pangenome (SI Appendix, Fig. S1). We also refined 
the sampled environments for each strain used in the subsequent 
analysis. Our collection, curation, and refinement of each isolate’s 
genome laid a solid foundation for the reconstruction of the S. 
cerevisiae pangenome from scratch. Consequently, a total of 7,514 
distinct ORFswere identified throughout the 1,807 genomes to 
construct the new version of the S. cerevisiae pangenome, which 
was named Sce-pan1807 (Fig.  1A and SI  Appendix, Fig.  S1). 
Compared to the previous study (9), this analysis incorporated a 
broader range of ecological niches and geological contexts (Fig. 1B 
and SI Appendix, Fig. S1 C and D). While previous pangenome 

1913 assembled 
genomes collection
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Reference genes

Non-reference clusters

Pan-genome
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Contig N50
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Fig. 1.   Construction and quality analysis of the S. cerevisiae pangenome. Schematic overview of the workflow employed for constructing the S. cerevisiae 
pangenome (A). Distribution of strain number across different ecological origins, comparing isolates from the Sce-pan1011 reference dataset (9) with newly 
incorporated strains (B). Comparative analysis in gene representation between the newly built pangenome (Sce-pan1807) and the previously two published 
ones (Sce-pan1011, Sce-pan1364). During the mapping analysis, the genome of S. cerevisiae CEN.PK was set as the reference genome. “Number of hit ORFs” 
indicates the number of pan genes that have been detected in the reference genome. “Number of lost genes” indicates the number of the reference strain’s 
genes that have not been detected in the pangenome. “Number of mapped genes” indicates the number of the reference strain’s genes that have been detected 
in pangenome (C). Assessment of pangenome completeness using the BUSCO method and the saccharomycetes_odb10 database (D). Functional categorization 
of pangenomes using COG (E). The number in brackets in the legend indicates the number of the functionally annotated genes in the pangenomes.D
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analysis revealed that diploid strains generally exhibit growth 
advantages in natural environments (9), we found that among 
the newly added strains, certain specialized clades (such as Baijiu, 
Mantou) with high ploidy (ploidy > 2n) demonstrated natural 
selection advantages comparable to diploid strains (SI Appendix, 
Fig. S2). Additionally, we performed phylogenetic analysis on the 
unique genes identified in the newly added strains and found a 
potential horizontal gene transfer (HGT) from Oomycota species 
in China (SI Appendix, Fig. S2).

 At the first glance, the size of Sce-pan1807 (7,972 ORFs) is 
comparable with two previously pangenomes—Sce-pan1011 
(7,796 ORFs) and Sce-pan1364 (7,078 ORFs) ( 9 ,  20 ) ( Table 1 ). 
To further evaluate the quality of Sce-pan1807, we compared its 
performance against these prior pangenomes in representing 
genomic information. In this aspect, genomes from two 
well-studied strains—S. cerevisiae  CEN.PK and S288c were 
employed to map against each pangenome’s representative 
sequences by sequence alignment ( Fig. 1C   and SI Appendix, 
Fig. S1E﻿ ). All 3 pangenomes could cover most genes in CEN.PK 
(~98% for Sce-pan1807, ~95% for Sce-pan1011 and ~91% for 
Sce-pan1364); however, each pangenome still exhibited some 
degree of gene missing during the above blast analysis. Particularly, 
the prior pangenome Sce-pan1364, containing 7,078 genes, was 
accompanied by the highest number of missing genes. Further, 
249 genes from CEN.PK could not be mapped onto the 
Sce-pan1364, indicating that 7,078 ORFs in the Sce-pan1364 
are insufficient to represent all genes in the species. By comparison, 
for Sce-pan1011, the hit pangene number (6,075) is larger than 
the total gene number of CEN.PK (5,451), implying that 
Sce-pan1011 may contain some redundant genes ( Fig. 1C  ). The 
same analysis for S288c showed consistent results (SI Appendix, 
Fig. S1E﻿ ). Furthermore, an all-vs.-all BLAST analysis confirmed 
the presence of redundancy in Sce-pan1011 (SI Appendix, Fig. S3 ). 
The quality of the three pangenomes was further assessed through 
the genome completeness evaluation using BUSCO ( 27 ). All 3 
pangenomes exhibited nearly no fragmented genes. However, the 
pangenome Sce-pan1364 has the highest missing score (1.9% for 
Sce-pan1011, 3.2% for Sce-pan1364 vs. 0.3% for Sce-pan1807), 
while Sce-pan1011 was accompanied by the highest duplicated 
score (12.1% for Sce-pan1011, 1.3% for Sce-pan1364 vs. 1.6% 
for Sce-pan1807) ( Fig. 1D  ). Collectively, these analyses indicate 
that Sce-pan1807 performs well in reflecting the genomic infor-
mation from different S. cerevisiae  strains. 

 To illustrate the metabolic functions encoded in the pange-
nome, we performed a functional annotation for all 3 pangenomes 
using the eggNOG tool ( 28 ), as well as a functional enrichment 
analysis based on the annotation from Clusters of Orthologous 
Groups (COGs). We found that the functional distribution of 
COG categories throughout the 3 pangenomes displays a similar 
tendency ( Fig. 1E  ), albeit there were some slight deviations across 
all COG categories, which may be due to the differences in the 
coverage and quality scores of the 3 pangenomes.  

Accurate Definition of Core Genome. The core genome consists 
of genes shared across most strains of a species. To accurately 
define the core genome of S. cerevisiae, we performed a thorough 
analysis of the core genome size considering the frequency of 
ORFs occurring in different strains (Fig. 2A). We found that as 
the threshold for defining core genes increased from 95 to 100% 
strain coverage, the core genome size decreased from 5,496 to 939. 
Notably, when the threshold exceeded 99%, the core genome size 
experienced a precipitous decline, which likely due to errors or 
incompleteness during the sequencing and assembly processes, 
which is a common issue in many population genomics studies 
(29–31). Based on this sensitivity analysis, we selected 99% as 
the threshold to define the core genome in this study, yielding 
4,766 core genes and 2,748 accessory genes within our S. cerevisiae 
pangenome. By comparison, the core genome size is smaller 
in our work than that in the previous pangenome assemblies 
(Dataset S1). The slightly larger core genome size in Sce-pan1011 
(4,942) is primarily due to the smaller number of strains, as well 
as the existing gene redundancy discussed above (Fig. 1 C and D), 
while the significantly larger core genome size in Sce-pan1364 
(5,293) can be explained by its more relaxed threshold (95%) 
used to define core genes (20).

 Next, the metabolic functions of core genomes from three 
﻿S. cerevisiae  pangenome studies were compared thoroughly 
( Fig. 2B  ). For each core genome, the gene functions were classified 
based on the COG categories. Overall, the 3 core genomes exhibit 
highly similar functional distributions, highlighting the functional 
conservation encoded by the core genome of S. cerevisiae . Notably, 
a portion of the core genes in all 3 core genomes belong to the 
group of unknown functions (920 for Sce-pan1011, 945 for 
Sce-pan1364, and 950 for this study), highlighting substantial 
gaps in our understanding of the S. cerevisiae  genome.

 Utilizing the same approach, we assembled a pangenome for 
eight distinct Saccharomyces  species, including S. cerevisiae  ( Fig. 2C   
and SI Appendix, Table S1 ). There are 9,232 ORFs in the pange-
nomes of the 8 yeast species, comprising 2,974 core genes and 
6,258 accessory genes. When compared to the pangenome of 
﻿S. cerevisiae , the larger pangenome size (9,232 vs. 7,514) and the 
smaller core genome size (2,974 vs. 4,766) for those 8 yeast species 
showcased the high quality of the pan- and core-genome con-
structed in this study.  

Evolution of the Core Genome within and across Yeast Species. 
Through sequence alignment between the core genomes of 
S. cerevisiae and 8 yeast species, the genes in S. cerevisiae core 
genome can be further categorized into yeast core genes (common 
in 8 yeast species) and S. cerevisiae-specific core genes (only found 
in a portion of 8 yeast species, Fig. 2D). The average gene copy 
number differed relatively slightly among S. cerevisiae strains (mean 
gene copy number: 1.05 for the core genome vs. 1.09 for the 
accessory genome, P value = 2.06 × 10−14, SI Appendix, Fig. S4A). 
However, the gene copy number of core genes varied more than 
that of the accessory genome (mean coefficient of variation: 0.17 
for core genome vs. 0.13 for accessory genome, P value = 2.10 
× 10−28, Fig.  2D). In line with these findings, the comparison 
between yeast core and S. cerevisiae specific core genes revealed 
a similar pattern, with yeast core genes exhibiting a marginally 
higher level of variation in gene copy number compared to  
S. cerevisiae specific core genes (mean coefficient of variation: 0.17 
for core genome vs. 0.16 for accessory genome, P value = 8.94 
× 10−4, Fig. 2D). These findings reveal subtle differences in gene 
copy number between the core and accessory genomes, as well as 
between the yeast core and S. cerevisiae-specific core genes.

Table  1.   Comparison of all pangenomes used in this 
study

pangenome
Strains/ 
species

Total 
ORFs

Core 
ORFs

Accessory 
ORFs Reference

 Sce-pan1807 1,807 7,514 4,766 2,748 This study

 Sce-pan1011 1,101 7,796 4,942 2,854 Peter et al. (9)

 Sce-pan1364 1,364 7,078 5,293 1,785 Li et al. (20)

 Yeast-pan 8 9,232 2,974 6,258 This study
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 Subsequently, we compared the functional distribution of yeast 
core genes and S. cerevisiae﻿-specific core genes within the S. cere-
visiae  core genome. For each COG, the fraction of yeast core genes 
per S. cerevisiae  core genes was calculated, respectively. The higher 
the fraction of yeast core genes, the greater the conservation in the 
evolution of metabolism from specific COGs. The top 5 most 
conserved COGs are chromatin structure and dynamic, inorganic 
ion metabolism, carbohydrate metabolism, cell membrane bio-
genesis, and amino acid biogenesis ( Fig. 2E  ), with 4 of them 
involved in enzyme-driven cellular metabolism. In contrast, some 
metabolism-related categories, such as nucleotide metabolism, 
RNA processing and modification, and energy production and 
conversion, show lower conservation, indicating the loss of  
﻿S. cerevisiae  core genes in other yeast species. Collectively, those 
differences in metabolism conservation during the evolution of 

the yeast core genome may contribute to phenotypic diversity 
across yeast species ( 32   – 34 ).

 To investigate gene expression differences, we analyzed large-scale 
transcriptome data of 969 S. cerevisiae  strains from a recent study 
( 18 ), most of which were included in our pangenome analysis. The 
comparative analysis of gene expression profiles between S. cerevi-
siae  core and accessory genomes revealed that core genes are more 
abundant but have less variance than accessory genes (P  value = 
2.14 × 10−10 ,  Fig. 2D  ), which is consistent with a previous study 
( 18 ). A parallel comparison between yeast core and S. cerevisiae  
specific core genes displayed a subtle but consistent trend (mean 
relative gene expression abundance: 6.07 for yeast core genes vs. 
5.81 for S. cerevisiae  specific core genes, P  value = 1.06 × 10−7 ; mean 
coefficient of variation: 0.086 for yeast core genes vs. 0.099 for S. 
cerevisiae  specific core genes, P  value = 1.70 × 10−10 ,  Fig. 2D  ). 
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Fig. 2.   Core genome analysis of 1,807 S. cerevisiae strains. Sensitivity analysis for core genome definition across S. cerevisiae isolates (A). Functional comparison 
of core genomes derived from three distinct pangenomes (B). A phylogenetic relationship among 7 Saccharomyces species (32), as well as the comparison of 
the pangenomes between yeast species and S. cerevisiae (C). Comparative analysis in gene copy number, gene expression/variation between S. cerevisiae core 
and accessory genes, as well as between yeast core and nonyeast core genes. Here, the core genes from S. cerevisiae were further divided into yeast core and 
nonyeast core genes, the latter only existing in S. cerevisiae, according to the newly defined core genomes from 8 yeast species (D). Conservation analysis of yeast 
core genes across different functional categories. The X-axis represents the proportion of yeast species’ core genes in all S. cerevisiae core genes for each COG 
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Overall, our findings show that S. cerevisiae  core genes are prone 
to being highly and stably expressed across strains.  

Pangenome Infers Strain-Specific-GEMs. To further explore the 
metabolic diversity in S. cerevisiae isolates, the GEM for each strain 
was reconstructed based on Sce-pan1807 (Fig. 3A). Initially, the 
pan-GEMs of S. cerevisiae (pan-GEMs-1011) from our previous 
work was updated to reflect the corrected pangenome and recent 
metabolic network updates of S. cerevisiae (SI Appendix, Fig. S5A) 
(26, 35). The updated pan-GEMs encompassed 4,176 reactions, 
1,259 genes, and 2,887 metabolites (Fig. 3B), which was named 
pan-GEMs-1807. Then, using the pan-GEMs-1807 and gene 
presence matrix, we reconstructed 1,807 strain-specific GEMs 
(ssGEMs) via an automated pipeline. The reaction sizes among 
these models varied from 3,794 to 4,025, with the number of 
genes ranging from 1,053 to 1,186. Furthermore, strains from 
different niches exhibited distinct distributions in metabolic 
network size (Fig. 3C). For instance, strains in specific clades such 
as French Dairy and African Beer displayed significantly fewer 
metabolic genes and reactions compared to strains from other 
clades, although the two clades were not similar in metabolic 
network composition. A positive correlation was observed between 
metabolic gene number and reaction number (Pearson’s correlation 
coefficient = 0.64, P value = 2.8 × 10−208, SI Appendix, Fig. S5B). 
According to our predictive analysis, 85% of the ssGEMs 

could simulate the strain growth under glucose minimal media 
conditions. However, the theoretical maximum biomass yields 
did not differ significantly between strains from different habitats 
(SI Appendix, Fig. S5D). The existence of 15% nonviable strains 
may be related to auxotroph caused by long-term adaptation 
or domestication. Then, 87% of the nonviable ssGEMs could 
successfully predict the growth after the gap-filling step and the 
numbers of gap-filled reactions are fewer than seven (SI Appendix, 
Fig.  S5 C and E). Interestingly, we found that the auxotroph 
predicted by the model was mainly due to the loss of crucial 
metabolic genes and the corresponding reactions in pathways 
important for precursor biosynthesis (SI  Appendix, Table  S2). 
For example, the reaction r_1838, catalyzed by homocitrate 
synthase (HCS), which is essential for lysine biosynthesis (36, 37),  
has been found to be absent in 97 ssGEMs. Note that the 
incomplete genome sequencing may contribute to these losses, 
so future physiological studies are needed to validate the predicted 
auxotrophies (Table 2).

 To further assess the quality of the 1807 ssGEMs, the utilization 
of 65 carbon sources by two strains CEN.PK and Ethanol Red 
were predicted, for which experimental results were already avail-
able ( 16 ). The predictive accuracy was 0.64 for CEN.PK and 0.70 
for Ethanol Red, which was comparable to that of the well-curated 
model -Yeast9 ( 35 ) ( Fig. 3D  ), thus lending confidence to our 
model prediction capability.  

strain 1 strain 2 ……

gene A 1 0 1

gene B 1 1 1

…… 0 0 1

A B

C D

Annotated genomes
Pan-genome

pan-GEMs

…
ssGEM1 ssGEM2 ssGEMn

Fig. 3.   Construction and evaluation of 1,807 ssGEMs. Workflow for the reconstruction of ssGEMs (A). Numbers of reactions, genes, and metabolites in pan-GEMs 
built in this work (B). Distribution of metabolic reactions and gene content across 1,807 ssGEMs, categorized by ecological niche (C). Evaluation of the prediction 
capability of ssGEMs through in silico utilization analysis of 61 different carbon sources by three different S. cerevisiae strains—S288c, CEN.PK, and Ethanol red. 
Here, the newly built ssGEMs for CEN.PK and Ethanol red were used in the comparative analysis, and Yeast9 (35), the consesus GEMs for S288c, was used as 
the reference (D). The experiment dataset used for graph D is from a previous study (16).
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Model-Based Analysis Explores the Evolution of Metabolic 
Network at the Population Level. GEMs are widely used in 
omics integrative analysis (38, 39). To explore how the genome-
wide gene expression variations shape the metabolic rewiring at 
a population level, the transcriptome data from 969 S. cerevisiae 
isolates under the identical culture condition in synthetic complete 
medium with glucose as the sole carbon source (18) was used to 
reconstruct condition-specific GEMs base on the above ssGEMs.

 Using a well-established algorithm called GIMME ( 40 ), we 
constructed 907 transcriptome-pruned ssGEMs by removing 
reactions with low gene expression levels ( Fig. 4A  ). Compared to 
wild S. cerevisiae  strains, a pattern of reductive evolution was 
observed in numerous human-associated clades, such as African 
Palm Wine and French Guiana Human. This reduction is char-
acterized by a smaller active metabolic network, potentially attrib-
utable to the more stable ecological niches where these strains 
inhabit relative to the fluctuating environments of wild strains 
( 41 ,  42 ). However, this trend was less pronounced at the gene 
level than at the reaction level, with some clades possessing a 
higher number of metabolic-related genes. This discrepancy may 
arise from gene copy number variations and the presence of iso-
enzymes ( Fig. 4B  ). To validate the methodological robustness, we 
employed an alternative algorithm, tINIT ( 43 ), the output of 
which displayed a similar tendency (SI Appendix, Fig. S6 ). The 
observed slight discrepancies between the outputs from the above 
two algorithms can be attributed to the difference in principles 
and parameter setting during the condition-specific GEMs recon-
struction ( 44 ). Examining the conservation of core reactions 
owned by the wild strains in other clades, some reactions were 
frequently inactivated along with the low gene expression levels 
revealed by condition-specific GEMs reconstruction, which may 
result in variation in the cellular metabolism across strains ( Fig. 4C   
and SI Appendix, Fig. S7A﻿ ). For example, the frequently inacti-
vated reaction r_0730, involving the mitochondrial formylation 
of Met-tRNAiMet catalyzed by mitochondrial methionyl-tRNA 
synthetase (MetRS), has been shown to have an incremental effect 
on mitochondrial translation ( 45 ,  46 ). Further experimental val-
idation would be necessary to understand the biological implica-
tions of these reactions classified as inactivation in this study. 
Pathway enrichment analysis of the 40 most commonly inacti-
vated reactions during model refining reveals that the majority of 
those reactions are related to cell permeability and sensitivity 
[steroid biosynthesis ( 47 ), adjusted P  value = 4.61 × 10−8 ; glycer-
ophospholipid metabolism ( 48 ), adjusted P  value = 0.01; inositol 
phosphate metabolism ( 49 ), adjusted P  value = 0.004], cofactor 
metabolism [folate metabolism ( 50 ), adjusted P  value = 0.02; 
thiamine metabolism ( 51 ), adjusted P  value = 0.02], and protein 
synthesis [threonylcarbamoyladenosine (t6A) metabolism, 
adjusted P  value = 0.02, which is involved in a universally con-
served tRNA modification ( 52 )] ( Fig. 4D  ).        

 Furthermore, our findings revealed that the pathway-level reac-
tion inactivation varied by clade, reflecting unique evolutionary 
adaptations to specific niches ( Fig. 4E  ). For example, inositol 

phosphate metabolism, which plays an important role in mem-
brane synthesis ( 49 ) and stress responses ( 53 ), experienced signif-
icant reactions inactivation in domesticated clades such as French 
Dairy and AU Wine 1, which may be related to the adaptation to 
high osmotic stress conditions during domestication. As another 
example, the steroid biosynthesis, oxygen-dependent in S. cerevi-
siae  ( 54 ), is consistently inactive in strains from French Guiana 
human clade ( 55 ), which mainly grow under low-oxygen condi-
tions. The unique inactivation of specific pathways in these clades 
offers insights into the distinct metabolic adaptations of S. cerevi-
siae  to diverse environments. However, a more profound under-
standing of the underlying mechanisms necessitates further 
investigation by incorporating additional quantitative phenotypic 
and omics datasets.

 Using transcriptome-pruned ssGEMs, we analyzed the corre-
lation between metabolic flux and gene expression levels in 969 
﻿S. cerevisiae  isolates ( 18 ). Based on the measured relative growth 
data ( 18 ), we fixed the specific growth rates in the model accord-
ingly and calculated the flux distributions by minimizing glucose 
uptake via flux balance analysis (FBA). After that, the correlation 
analysis between fluxes and gene expression yielded coefficients 
ranging from −0.47 to 0.54 ( Fig. 4F  ). The observed weak overall 
correlation between metabolic fluxes and transcription may be 
attributed to the fact that metabolic flux regulation occurs at mul-
tiscale levels, including but not limited to transcriptional control 
( 56 ). The presence of negative correlations in some reactions could 
be attributed to local flux coordination ( 57 ). Reactions were 
ranked based on their correlation coefficients. The top 10 reac-
tions, which are predominantly regulated at the transcriptional 
level, primarily participate in specific subpathways, i.e., amino 
acid metabolism and central carbon metabolism (SI Appendix, 
Fig. S7C﻿ ). Meanwhile, pathway enrichment analysis revealed that 
subpathways in amino acid metabolism (e.g., cysteine and methio-
nine metabolism, adjusted P  value = 0.04; glycine, serine, and 
threonine metabolism, adjusted P  value = 0.004; phenylalanine, 
tyrosine, and tryptophan biosynthesis, adjusted P  value = 0.02) 
and central carbon metabolism (such as the TCA cycle, adjusted 
﻿P  value = 0.02) have stronger correlations between flux and tran-
scription ( Fig. 4G  ). Our findings are consistent with previous 
studies showing that the TCA cycle and synthesis of amino acid 
fluxes are predominantly regulated by transcription ( 58   – 60 ). 
Collectively, on a population scale, our integrative analysis reveals 
a weak correlation at the genome-wide level between fluxomics 
and transcriptomics, implying that changes in gene expression do 
not always reflect changes in fluxes ( 56 ,  58 ).  

Multidimensional Analysis Captures Potential Adaptative 
Mechanism of S. cerevisiae Strains Sampled from Oxygen-
Limited Conditions. Finally, a thorough analysis that encompassed 
transcriptome, pangenome, and ssGEMs was performed to 
understand how S. cerevisiae adapts to specific ecological niches. 
We focused on the strains belonging to the dairy, bioethanol, and 
human clades, which typically encounter oxygen limitation in 
their biological habitats (55) and have distinct metabolic networks 
compared to the wild strains (Fig. 4B). We first examined whether 
single nucleotide polymorphisms (SNPs) could explain phenotypic 
variation across these clades. Although SNPs distinguished the 
clades genetically (Fig. 5A), they accounted for only 27% of the 
variation in growth rate (R2 = 0.27, SI Appendix, Fig. S8). Instead, 
these growth disparities may be better explained by transcriptome 
data, copy number variations (CNVs), and gene presence/absence 
(SI  Appendix, Fig.  S8). Thus, the evolutionary mechanisms 
underlying the phenotypic variance of those strains were further 
examined at both the gene and metabolic network levels.

Table 2.   Classification of S. cerevisiae clades by ecolog-
ical source
Ecological source Included clade IDs

 Wild Chinese Wild, South American Wild, 
Taiwan Wild 2, Asian Oak

 Human French Guiana human

 Dairy French dairy

 Bioethanol Brazilian bioethanol
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 First, we extracted the pangenome for human, dairy, bioetha-
nol, and wild strains, from Sce-pan1807 ( Fig. 5B  ). To mitigate 
the impact of strain number disparities on the pangenome struc-
ture, we randomly selected 25 strains from each category for sub-
sequent analysis. The human, dairy, and bioethanol populations 
have a relatively smaller pangenome size compared to the wild 
population, albeit with a larger number of core genes. The human 
clade exhibited the smallest pangenome size and the largest core 
genome size, potentially attributable to the stressful growth con-
dition within the human gut ( 61 ). This suggests that the reductive 
genome evolution is widespread in strains under specific ecological 
environments, consistent with a recent study ( 62 ). Moreover, the 
variations in the core genomes among different strain clades high-
light the genetic diversity arising from adaptive evolution 
(SI Appendix, Fig. S8B﻿ ). PCA showed that, unlike the core genome 
content ( Fig. 5C   and SI Appendix, Fig. S8 C  and D ), both the 
accessory genome and the pangenome content can be employed 
to effectively classify strains from clades of human, dairy, bioeth-
anol, and wild based on gene presence/absence or gene copy num-
ber. Next, a random forest algorithm was used to extract pivotal 
genetic features for classifying strains based on their accessory 
genome (SI Appendix, Fig. S8E﻿ ). As a result, each clade displayed 
unique genetic features in the accessory genome in terms of gene 
presence/absence and copy number ( Fig. 5D   and SI Appendix, 
Fig. S8F﻿ ). Although some of the top feature genes have unknown 
functions, annotations of all feature genes suggest that they are 
mainly related to stress response and cell membrane/cell wall syn-
thesis (SI Appendix, Fig. S9 A  and B ) ( 63 ). Additionally, the feature 
genes extracted based on gene presence and copy number data are 
different (SI Appendix, Fig. S9 A  and B ), which hints that the 
variations in gene content and gene copy number may have been 
modulated in response to environmental stress.

 Next, we investigated the metabolic flux rewiring mechanisms 
underlying S. cerevisiae  strains from human, dairy, and bioethanol 
clades through ssGEMs simulation. To accurately capture the 
trends in metabolic flux variations across various strains, we inte-
grated both relative growth data and transcriptomics into ssGEMs 
for simulation ( 64 ), during which the relative growth rate was just 
set as a soft constraint (SI Appendix ). The predicted growth rates 
are consistent with the experimental data (Pearson’s correlation 
coefficient = 0.85, P  value = 3.68 × 10−28 , SI Appendix, Fig. S10A﻿ ). 
Additionally, our simulation successfully captured the phenotype 
of bioethanol strains, which show higher ethanol yield than wild 
strains ( 65 ). Interestingly, the human clade also exhibits a higher 
ethanol secretion compared to the wild strains, potentially due to 
its adaptive evolution in an oxygen-limited human gut environ-
ment (SI Appendix, Fig. S10B﻿ ) ( 55 ). Overall, the reliability of our 
pipeline in condition-specific flux simulation is demonstrated by 
the precise predictions for growth and ethanol secretion of 
﻿S. cerevisiae  strains from different clades.

 We investigated whether the metabolic variations among the 
selected strains from the above 4 different clades could be captured 
by flux analysis. We found that, unlike the bioethanol clade, the 
human and dairy clades could be clearly distinguished from the 
wild strain through PCA only based on flux distributions ( Fig. 5E   
and SI Appendix, Fig. S10C﻿ ). However, the differentiation of 
strains within the four clades based on metabolic fluxes did not 
achieve the same resolution as clustering based on gene presence 
or gene copy numbers ( Fig. 5E   and SI Appendix, Fig. S10C﻿ ), which 
is likely due to the fact that all RNA-seq datasets used in our 
analysis were collected under the same growth condition ( 18 ). This 
also hints that the metabolic fluxes, compared to the genomic 
variation, may be more conserved in maintaining cellular fitness. 
Subsequently, with the strains from the wild clade as the reference, 
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-log(Adjusted P value)

-log(Adjusted P value)

Remove inactive 
reactions

Pruned ssGEMs
FBA

907 strains fluxes distributions

...
ssGEMs

...

RNAseq data

rxn1 rxn2 … rxnN

strainA 0.12 0.2 … 0.06

strainB 0.2 2.7 … 0.8

… … … …

strainX 0.06 1.1 … 2.3

Fig. 4.   Integration analysis of ssGEMs and transcriptomics helps to explore the evolutionary mechanisms of metabolic networks. Workflow for the construction 
and simulation of transcriptome-pruned ssGEMs (A). Comparative analysis of metabolic network sizes across distinct evolutionary clades of S. cerevisiae, based 
on previously established SNP-derived phylogenetic classifications (9) (B). The statistical analysis of wild core reactions which are lost in other strains’ ssGEMs 
(C). Pathway enrichment analysis involving the top 40 wild core reactions which are lost in other strains’ ssGEMs (D). Pathway enrichment analysis of wild core 
reactions which are lost in other strains’ ssGEMs across different clades (E). Correlation analysis between metabolic fluxes and associated gene expression levels. 
Spearman’s rank correlation coefficients were computed, and P values were subsequently adjusted for multiple comparisons using the Benjamini–Hochberg 
(FDR) procedure. Reactions exhibiting an FDR-adjusted P-value < 0.05 are presented. (F). Pathway enrichment analysis for reactions showing high correlation 
(G). The statistical analysis for two group comparison was based on a two-sided Welch’s t test. *P value < 0.05; **P value < 0.01; ***P value < 0.001.
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the key metabolic features were delineated for the human, dairy, 
and bioethanol clades through machine learning, respectively 
(SI Appendix, Fig. S10 D–F﻿ ). Specifically, within the human clade, 
dCMP deaminase was identified as a pivotal metabolic feature. 
The down-regulation of flux through the reaction catalyzed by 
dCMP deaminase might play a role in maintaining the balanced 
dNTP pool required for proper DNA metabolism ( 66 ). We further 
evaluated the metabolic variations at the pathway level ( Fig. 5F   
and SI Appendix, Fig. S10 G  and H ). Interestingly, we found that 
there are many similar metabolic signatures among strains from 
the human, dairy, and bioethanol clades. For example, due to the 
long-term adaptation to oxygen-limited environments, both 
human and bioethanol strains exhibited a weak activity in the 
oxidative phosphorylation pathway even under the same batch 
cultivation. Intriguingly, dairy and human strains showed nearly 
identical patterns in metabolic variation, with upregulated path-
ways predominantly associated with growth, including tRNA 
metabolism ( 67 ), steroid biosynthesis ( 68 ), terpenoid biosynthesis 
( 69 ), purine metabolism ( 70 ), and pyrimidine metabolism ( 71 ) 
( Fig. 5F  ). This result is consistent with the observed faster growth 
rates of both human and dairy strains compared to wild strains 

( 18 ) ( Fig. 5G  ). It may be because the increased activity in ethanol 
secretion from niches specific adaptation occurred in those strains 
strengthens Crabtree effect when growing under the same condi-
tion (SI Appendix, Fig. S10B﻿ ), thus promoting the cellular growth 
accordingly. Additionally, a significant downregulation of histidine 
metabolism in both human and dairy clades is consistent with 
findings from a recent comparative metabolomics study of 
﻿S. cerevisiae  ( 72 ) ( Fig. 5F   and SI Appendix, Fig. S10G﻿ ). These 
shared metabolic variations among human, dairy, and bioethanol 
clades underscore the pervasive signatures of convergent evolution 
within the metabolic networks of independently adaptive subpop-
ulations. As for strains within the human clade, we found that the 
upregulation of subpathways involved in cofactor metabolism, 
particularly thiamin metabolism (P  value = 0.003), which generates 
the indispensable cofactor thiamine pyrophosphate (TPP) for 
enzymes participating in central carbon and energy metabolism ( 73 ), 
has been documented at both metabolic flux and transcriptional 
levels ( Fig. 5G   and SI Appendix, Fig. S11A﻿ ). This upregulation may 
coincide with the adaptative evolution of strains inside the human 
gut environment, which is possibly driven by the resource compe-
tition among microbial species within the human gut ( 61 ,  74 ).   
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Fig. 5.   Multidimensional analysis from pangenomes to metabolic networks helps to uncover the potential adaptative mechanisms of S. cerevisiae from human, 
dairy, and bioethanol-related niches. PCA clustering analysis of strains from different clades based on the SNPs (A). A comparison of the pangenome among 
strains from the clades of bioethanol, human, and dairy and wild (B). PCA clustering analysis of strains from different clades based on the gene presence/absence 
matrix (Left) and the gene copy number matrix of the accessory genome (Right) (C). Top genes with copy number variation used to classify strains from different 
clades by the random forest algorithm (D). PCA clustering analysis of strains from the wild and human gut environment using genome-scale fluxes obtained 
from ssGEMs simulation (E). Enrichment analysis of reactions with differential metabolic fluxes between human-related strains and the wild (F). Growth rate 
comparison across human, dairy, bioethanol, and wild clades based on experimental growth rate with glucose as the main carbon source (estimated based on 
the measured t-mid time dataset) (G).
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Discussion

 Microorganisms, including S. cerevisiae,  undergo adaptive evolu-
tion to improve cellular fitness with their genome compositions 
shaped by environmental pressures to promote trait diversity ( 9 , 
 75 ,  76 ). Our study introduces a high-quality S. cerevisiae  pange-
nome, Sce-pan1807 and put forward a unified framework inte-
grating pangenome analysis, metabolic model simulation and 
transcriptomic profiling to elucidate the principles of metabolic 
reprogramming underlying yeast adaptation across diverse envi-
ronments. Compared to prior studies ( 9 ,  20 ), our pangenome 
offers greater comprehensiveness due to a refined workflow and 
an extensive genomic dataset ( Fig. 1B   and SI Appendix, Fig. S1D﻿ ). 
Our pangenome resolves inconsistencies in earlier versions by 
reducing gene redundancy and improving strain coverage ( Fig. 1 
﻿C  and D   and SI Appendix, Fig. S1E﻿ ), providing a chance to probe 
the genetic diversity of S. cerevisiae  strains worldwide. By incor-
porating 796 additional strains, our pangenome significantly 
enhances representation across geographical regions and ecological 
niches. Notably, previously underrepresented niches, such as the 
Mantou and Baijiu clades, exhibit unique ploidy characteristics 
and novel genes, which offer new insight into genetic adaptation 
(SI Appendix, Fig. S2 ). Given that 1,223 new genes, absent in the 
﻿S. cerevisiae  model strains S288c and CEN.PK 113.7D, were iden-
tified through our pangenome analysis, the functional studies of 
those genes will certainly deepen our understanding of how the 
gain of genes impacts cellular fitness. Currently, our pangenome 
analysis is primarily focused on gene existence/copy analysis across 
diverse strains. In further comparative genomic analysis, the struc-
tural variants (SVs) and single-nucleotide polymorphisms (SNPs), 
which widely exist in yeast genomes ( 9 ,  77 ), should also be taken 
into account to illustrate how multidimensional evolutionary sig-
natures contribute to trait diversity.

 Based on Sce-pan1807, we developed the most comprehensive 
panGEM for S. cerevisiae  to date, encompassing all genetically sup-
ported reactions potentially present in S. cerevisiae . Compared to 
existing S. cerevisiae  panmodels, our panGEM features significant 
expansions including 29 additional genes, 202 new reactions, and 
139 new metabolites ( Fig. 3B  ). More importantly, we successfully 
constructed high-quality ssGEMs for 1,807 S. cerevisiae  strains 
based on Sce-pan1807 and panGEM. These ssGEMs accurately 
reflect the metabolic potential of each strain by accounting for gene 
gains and losses. Compared to models derived from other S. cere-
visiae  pangenomes, our ssGEMs demonstrate superior performance, 
highlighting the advantages of our pangenome (SI Appendix, 
Fig. S12 ). However, considering the large number of ssGEMs devel-
oped in this work, more physiological datasets are required to fur-
ther evaluate the prediction capability of those ssGEMs in order to 
apply these models in more detailed studies. GEMs may not accu-
rately reflect in vivo cellular metabolic activities ( 78 ). Here, guided 
by large-scale transcriptomics from a recent study ( 18 ), ssGEMs 
for 907 isolates were refined. The pruned genes/reactions from 
ssGEMs reflected the reductive evolution in most domesticated 
clades, indicating that human-related activities significantly influ-
ence S. cerevisiae  evolution ( Fig. 4 D  and E  ).

 Further, our transcriptomics-refined ssGEMs help to elucidate 
the relationship between transcriptional regulation and metabolic 
flux across different metabolic pathways on a population level. 
Previous pantranscriptome studies were often limited to exploring 
transcriptional differences across strains due to the availability of 
only transcriptome and phenotype data ( 18 ). However, these tran-
scriptional differences do not always directly correspond to vari-
ations in metabolic flux. A major advancement in our study is the 
integration of fluxomics with transcriptomics dataset, allowing us 

to investigate how transcriptional levels influence metabolic flux 
across different reactions and metabolic pathways in S. cerevisiae . 
We found a weak genome-wide correlation between fluxes and 
transcription across the studied strains, implying that changes in 
gene expression do not always reflect changes in metabolic fluxes 
( Fig. 4F  ). Notably, we observed that metabolic fluxes in pathways 
related to amino acid metabolism and central carbon metabolism 
are under tighter transcriptional control ( Fig. 4G  ).

 By integrating pangenome, transcriptome, and metabolic mod-
eling analyses, our study provides a comprehensive framework for 
understanding how S. cerevisiae  strains adapt to diverse stressful 
conditions. Here, we selected strains from human gut, dairy, and 
bioethanol clades ( 9 ) as representative examples to investigate 
adaptive strategies in specific ecological niches. Compared to wild 
strains, the strains from the human gut environment exhibit 
remarkable differences at multiscale levels, including gene pres-
ence/absence, gene copy number, and fluxes of the metabolic 
network, all of which may contribute to the adaptation underlying 
the human gut environment with limited oxygen supply and 
intense resource competition ( Fig. 5 ). Thus, our analysis here pro-
vides a universal paradigm for profiling the metabolic rewiring of 
﻿S. cerevisiae  at a holistic level, which could be applied to examine 
the long-term evolution of other valuable microorganisms. It 
should be noted that our current omics integrative analysis mainly 
examines part of strains from diverse ecological niches and the 
RNA-seq datasets were obtained under the same condition with 
the glucose as the sole substrate ( 18 ). To achieve a more compre-
hensive understanding of the evolutionary metabolic reprogram-
ming in S. cerevisiae , omics and phenotypic datasets under diverse 
conditions are needed to incorporate with existing models.

 In conclusion, we have recreated the new version of pangenome 
and large-scale strain-specific genome-scale models for 1,807 
strains of S. cerevisiae . These resources together systematically illus-
trate how S. cerevisiae  strains flexibly adapt to various stressful 
conditions through multidimensional evolution at both genomic 
and metabolic levels. As additional omics and phenotypic data 
become available, these computational resources can be further 
updated and eventually accelerate the systematic evolutionary 
studies of yeast species.  

Materials and Methods

All the materials and methods are detailed in SI Appendix: Genome sequences 
collection and annotation; Genome assessment; Pangenome reconstruction 
of S. cerevisiae; Phylogenetic analysis of 1,807 S. cerevisiae strains; Clade 
categorization of 1,807 S. cerevisiae strains; Pangenome reconstruction of 8 
different yeast species; ssGEMs reconstruction; ssGEMs gap-filling; ssGEMs 
simulation of different substrate utilizing; Transcriptome-pruned ssGEMs 
construction and simulation; Genome-wide SNPs analysis for strains from 
specific evolutionary clades; Pangenome analysis for strains from specific evo-
lutionary clades; Model simulation for strains from clade of bioethanol, dairy, 
human, and wild; Exploration of the potential genetic/metabolic features with 
machine learning; Differential expression and KEGG pathway enrichment 
analyses; Statistical analysis.

Data, Materials, and Software Availability. All scripts are accessible at https://
github.com/hongzhonglu/Unified_Yeast_GEMs_Database (79). All large files, 
including ssGEMs, annotated genome data, and transcriptome-constrained 
ssGEMs are accessible at https://figshare.com/s/9c2faecc9d79d4825d0d (80). 
All other data are included in the manuscript and/or supporting information.
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