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ABSTRACT

Physics-informed neural networks (PINNs) are introduced to solve the linear wave problem described by potential flow theory. In the
proposed PINN framework, both soft and hard enforcing of boundary conditions (BCs) at the bottom and sides of the wave domain are
proposed. Two scenarios for solving the linear wave problem are investigated to find suitable PINN architectures. In the first scenario, the free
surface wave is considered to be completely defined, and in the second scenario, the wave angular frequency is considered an unknown
parameter. With a completely defined free surface wave and incorporating both the free surface and bottom BCs as soft constraints, the
average velocity distribution error is less than 3%. Incorporation of a periodic BC (PBC) as a soft constraint reduces the average error to 0.10%.
A hard constraint PBC gives an average error of 0.16%, with a strict representation of the PBC. This study also explores the design of trial
functions to impose the kinematic bottom BC (KBBC) as a hard constraint. While these trial functions strictly satisfy the KBBC, they limit the
solution space, increasing the average error up to almost 15 times. When the angular frequency of the wave is considered as an unknown
parameter, to be estimated by the PINN, its value is estimated with an average error of 0.03%. Since linear wave theory underpins many wave
simulation approaches, the results of this study lay the groundwork for extending the PINN framework to more complex wave models.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0277421

. INTRODUCTION such as determining wave characteristics from partially known fluid
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Accurate and cost-effective modeling of free surface waves can
help to improve the design of ships and offshore structures. Fluid flows
are governed by the Navier-Stokes equations, which offer the most
comprehensive description of fluid dynamics. A state-of-the-art
method to study free surface waves is to employ CFD simulations with
an interface tracking method.'” However, this comes with a high com-
putational cost. Alternatively, solutions based on potential flow theory
are often regarded as sufficiently accurate to model different types of
free surface waves,” with fewer challenges.

Although these methods excel in many applications, they are not
inherently designed to incorporate experimental data, which could
address potential gaps in the chosen physical model. Additionally, they
encounter significant challenges when addressing inverse problems,

flow features, such as pressure and velocity fields, which remain com-
putationally demanding.

The above-mentioned challenges highlight the need for more ver-
satile approaches, such as physics-informed neural networks (PINNs),
which can combine data and physical laws. PINNs, introduced by
Raissi et al,,” are a class of neural networks designed to solve physical
problems governed by partial differential equations (PDEs). Unlike
traditional machine learning models that rely heavily on large labeled
datasets, PINNs incorporate the physical laws of a system directly into
the training process by encoding the governing equations and bound-
ary conditions into the loss function. This allows PINNSs to make accu-
rate predictions even with limited or no labeled data, making them
especially useful in scientific and engineering contexts where data may
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be sparse or expensive to obtain. Due to its widespread applicability,
regularization of the training data, and flexibility, PINNs can be used
to solve different scientific and engineering problems.” * Different
types of problems solved via PINNs can be found in review articles.” '’
A challenge with PINN is that the solution does not accurately satisfy
the boundary conditions if they are applied as (soft) loss functions. A
remedy to this is to implement them as (hard) constraints within the
architecture of the network.'*"”

Chen et al."* developed a PINN to determine the flow properties
of the inviscid rotational flow beneath nonlinear periodic waves.
Huang et al.” introduced a PINN methodology that incorporates initial
conditions as well as boundary conditions (BCs) as hard constraints,
and validated their model on free surface problems. Jagtap et al.'”
applied a PINN to study nonlinear wave dynamics, governed by the
Serre-Green-Naghdi equations in an ill-posed setting, by combining
labeled data with physical laws. Duong et al."® used PINNS to investi-
gate wave-in-deck loading phenomena, where the measured data,
together with Euler’s equation, were employed to reconstruct the free
surface. Wang et al.'"” demonstrated that PINNGs are effective in recon-
structing nearshore wave fields by utilizing wave energy balance equa-
tions, dispersion relations, and labeled data. Sheikholeslami et al'®
proposed a PINN framework to estimate the velocity potential beneath
a sinusoidal wave based on the linear wave theory, achieving an error
of less than 5%.

The majority of the research on the use of PINNs for free surface
flows has focused on solving the Euler equations™ *'® Serre-Green—
Naghdi equations,'” and shallow-water equations.'””’ The linear wave
problem, known as Airy wave, has not yet been studied using PINNs
in the literature. One example where its analytical solution has been
used is in the development of a PINN framework for reconstructing
irregular long-crested waves in offshore engineering applications.”
Simulating the linear wave problem remains of engineering relevance,
as this theory continues to be actively investigated in various contexts.
One notable application is in wave scattering analysis. For instance,
Kushwaha et al. recently carried out a series of studies based on linear
wave theory, examining wave scattering by arrays of floating circular
plates” and circular cylinders™ over a porous seabed. Additionally,
Porter et al”* investigated wave scattering from a bottom-mounted
circular cylinder using linear wave theory. In the current study, we
employ PINNSs to solve for the velocity components beneath the free
surface of a linear wave based on potential theory. This is a first step
toward solving more complicated problems based on potential theory
in many engineering applications. Particularly, the current study inves-
tigates different approaches for incorporating boundary conditions
and the determination of the unknown wave angular frequency.

The contributions of this study to the application of PINNs for
free surface problems based on potential theory are threefold. First, the
impact of applying periodic boundary conditions on the prediction
accuracy of PINNs is thoroughly investigated. Both soft and hard con-
straints are considered, and a customized approach for hard con-
straints is developed. To the best of the authors’ knowledge, this
investigation has not yet been conducted for free surface problems
with inviscid flows. The method developed in this paper, to impose the
periodic boundary conditions as hard constraints, is based on the gen-
eral methods introduced in earlier studies.'>'**”

Second, the enforcement of the kinematic bottom boundary con-
dition (KBBC) as a hard constraint is explored using two trial

ARTICLE pubs.aip.org/aip/pof

functions. These trial functions have been developed based on the
methods introduced in earlier works.'>***” The design process of these
trial functions, including their requirements and limitations, is
explained thoroughly. This offers a practical guide for formulating trial
functions for different problems.

Third, this study addresses the reconstruction of the free surface
profile, treating the wave angular frequency, w, as an unknown param-
eter and allows the PINN to infer @ by incorporating it into two loss
terms. The network relies solely on the linear wave theory governing
equations and boundary conditions, without requiring labeled data.
While this approach shares similarities with inverse problems, it
remains a direct problem, as no external data or measurements are
involved, only the fundamental equations.

As the linear wave theory serves as the foundation for many
wave modeling techniques, the present study provides a stepping
stone toward extending PINNs to more advanced wave models. The
proposed PINN framework, which allows for strict enforcement of
boundary conditions and accurate reconstruction of key wave
parameters such as the angular frequency, has potential applications
in various marine and coastal engineering contexts. These include
the prediction of wave-induced velocities around offshore structures,
wave scattering analysis, and load estimation on floating or bottom-
mounted devices. Such capabilities are particularly relevant in sce-
narios where traditional numerical methods may be insufficient or
where labeled data are scarce. Furthermore, the ability of PINNs to
infer unknown parameters opens new avenues for inverse modeling
tasks, including wave field reconstruction and data assimilation in
oceanography. While this study focuses on linear waves, the method-
ology lays the groundwork for addressing more complex problems
such as strongly nonlinear wave propagation and wave-body inter-
action, by building upon the PINN architecture and insights devel-
oped herein.

The remainder of this paper is organized as follows: Sec. II
presents the theoretical background of linear wave theory and the for-
mulation of PINNs used in this study. Section I1I discusses the imple-
mentation of soft and hard boundary conditions within the PINN
framework. Section IV introduces the scenarios and metrics used to
verify the PINN results against analytical solutions. The results and
their analysis are provided in Sec. V, where different PINN configura-
tions are evaluated. Finally, the main conclusions and recommenda-
tions for future work are summarized in Sec. V1.

All code accompanying this manuscript is available at: https://
github.com/M-Sheikholeslami/PINNs-with-soft-and-hard-constraints-
for-linear-waves.

Il. FRAMEWORK OF PINNs FOR LINEAR WAVE
DYNAMICS

PINNS are variants of neural networks that incorporate the gov-
erning equations, the initial conditions (ICs), and the BCs of a problem
into their architecture, rather than relying solely on labeled data. In
this section, we explore how PINNSs can be effectively applied to solve
problems related to linear waves. We outline the theoretical founda-
tion, describe the architecture necessary to solve wave dynamics, and
discuss the various challenges and procedures involved in modeling
with PINNs, including the design of the computational domain, opti-
mization techniques, and the selection of hyperparameters.
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A. Theory of linear wave (airy wave)

The linear wave problem describes the velocity potential distribu-
tion induced by small-amplitude waves with a sinusoidal profile. The
derivation of the linear wave problem from general potential theory
can be found in the work by Lewandowski.” A schematic view of the
wave and the spatial domain, constrained between the wave and the
sea bottom, is shown in Fig. 1. This domain has a depth of h, a length
of L, and a sinusoidal free surface, 1, with an amplitude of A.

The governing equation of this problem is the Laplace equation
for the velocity potential ¢, which is given by

2, 09 0’9
V¢_ax2+azz_0. (1)
The two boundary conditions for the free surface, ie., dynamic
free surface boundary condition (DFSBC), and kinematic free
surface boundary condition (KFSBC) are linearized and defined,
respectively, as

% =—gn atz=0 (DFSBC), @
¢ _ _
e @ A#=0 (KFSBC). (3)

The parameter 7 is the free surface elevation, as shown in Fig. 1, and is
defined to have a sinusoidal profile as

n(x,t) = Acos(kx — wt), (4)

where k is the wave number and @ is the wave angular frequency. The
use of cosine in Eq. (4) is consistent with the formulation presented by

Sinusoidal wave profile

LEEXTS

D

Sea bottom

FIG. 1. Schematic representation of the spatial domain governed by linear wave
theory.

Stage 1

Stage 2
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Lewandowski.” Moreover, since cosine and sine differ only by a phase
shift, this choice does not affect the generality of the results. The
DESBC is the linearized Bernoulli equation and can be seen as a sim-
plified version of the momentum conservation equation. The KFSBC
guarantees that no flow crosses the free surface. The same role at the
bottom of the domain is played by the kinematic bottom boundary
condition (KBBC), defined as
9¢

— = = — KBB
B 0 atz h  (KBBC), (5)

which essentially ensures that the bottom wall boundary is
impenetrable.

B. Physics-informed neural networks (PINNSs)

PINNSs belong to a specific class of artificial neural networks that
incorporate the physical constraints of a problem into the training pro-
cess. Artificial neural networks serve as universal function approxima-
tors, capable of learning complex mappings between inputs and
outputs, which can be used as a surrogate model. Once the network
architecture, such as the number of layers and neurons, is designed,
the remaining unknowns are the weights and biases of the network,
which are determined through an optimization procedure called train-
ing. In order to design and train a PINN, we should go through three
main stages, as shown in Fig. 2. These stages are explained in
Subsections 1T B 111 B 3, numbered as the stages.

1. Neural network as a surrogate model

Among the various types of neural networks, fully connected
feed-forward neural networks are most commonly used in PINNs.
These networks are composed of an input layer, one or more hidden
layers, and an output layer. Each layer contains computational units
called neurons. A neuron receives a set of input values, computes a
weighted sum, adds a bias term, and applies a nonlinear function called
the activation function. The weights determine the strength or impor-
tance of each input in the summation, while the bias allows the activa-
tion function to be shifted, enabling the model to better fit the data.
The hidden layers are called hidden because their outputs are not
directly observed, as they exist between the input and output layers
and allow the network to learn complex, nonlinear relationships. Let
the input be denoted as (x, t), where x € R? represents the spatial
coordinates and  is the temporal variable. The network outputs a sca-
lar prediction ii(x, t; ) € R, where 6 denotes all trainable parameters
of the model, including weights and biases. Each layer computes a
transformation of the form

20 = o(W020-) 4 p0), 1=1,2,...L, (6)

Stage 3

Design a neural network
as a surrogate model with >
unknown weights and biases

Embed known physical
constraints, such as governing >
equations and boundary conditions

Optimize the neural network to
find the unknown parameters
based on known physical constraints

FIG. 2. Three main stages in the design and training of a PINN. The unknown parameters are the weights and biases of the network that are determined through and optimiza-

tion procedure.
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FIG. 3. lllustration of a single neuron transformation in a fully connected feed-
forward neural network. The neuron (in layer /) is connected to two neurons from
the previous layer (/ — 1). The inputs 2" and z{' ", which are scalar compo-
nents of the vector z(~"), are linearly combined using scalar weights w1<'1) and wf’z)
(entries of the weight matrix W) and a scalar bias bs') (an entry of the bias vector
b‘”). The result is passed through a nonlinear activation function o (-) to produce
the output zsl) = a(wﬁ)zﬁ"” 4 wf'z)zé'_” 4 bgl)), which is the first component of
the vector z().

where W and b'”) are the weight matrix and bias vector of layer I,
respectively, and z(®) = (x, t) is the input to the network. The function
a(+), called the activation function, introduces nonlinearity into the
network, which is essential for approximating nonlinear mappings.
The final layer produces the output it(x, t; 0) = z1).

A visual representation of this transformation is provided in
Fig. 3, where the weighted sum of inputs from the previous layer, along
with a bias term, is passed through a nonlinear activation function to
produce the neuron’s output. This forms the core computational unit
of a fully connected feed-forward neural network.

The trainable parameters of the network, # (composed of W and
b, ie., weights and biases), are the unknowns that we need to find.
Their optimal values are not known a priori and must be discovered
through a training process based on the known physical constraints of
the problem. The training process is an optimization process involving
minimizing a loss function that measures how well the network out-
puts #(x, t; 0) satisfies the known physical constraints of the problem.
Sections 11 B2 and 11 B 3 elaborate on how this loss function is calcu-
lated in PINNs and how the loss values are used in optimizing the
weights and biases of PINNGs.

2. Embedding known physical constraints

What distinguishes PINNs from purely data-driven networks is
the loss function, which imposes the known governing physics of the
problem as constraints for finding the unknowns 6. These constraints
of the problem can be formulated as the partial differential equations
(PDEs) that govern the problem, along with the initial and boundary
conditions." Let the governing PDE be written as

Nlu(x,0)] =0, x€Q te (0,1, %

where N[-] is a nonlinear differential operator, and u(x,t) is the
true solution. Here, @ C R? denotes the spatial domain of interest
and T is the final time of interest. The initial and boundary conditions
are given by

ARTICLE pubs.aip.org/aip/pof
u(x,0) =g(x), x€Q, (8)
u(x,t) = h(x,t), x€dQ, te(0,T], 9)

where 0Q denotes the boundary of the spatial domain Q. To train the
network to satisfy these physical constraints, the loss function is con-
structed by forming the total loss Ly as

Ly = Lepg + Lic + Lgc, (10)
where each term penalizes the residual of the corresponding condition

N,

1 & 2
Lypg = — N @(X{ t{;ﬂ ) (11)
N 2 Vo 0
N, 2
Lic = LZ ﬁ(x?,O; 0) —g(x?) , (12)
No =
L —ii i(xb 12 0) — h(x, 1Y) ’ (13)
BC_Nb;l i ki irbi .

The loss function encodes the physical constraints of the model
and serves as the mathematical formulation used to infer the unknown
parameters 6. In the standard formulation of PINNS, these known
physical constraints are incorporated into the loss function, following
the approach introduced by Raissi et al." However, it should be noted
that known physical constraints can also be embedded directly into the
neural network architecture itself. This alternative approach is referred
to as the use of hard constraints, and two specific types of such con-
straints are described later in this paper.

3. Optimizing the neural network to find unknown
parameters based on known physical constraints

The optimization process aims to determine the unknown neural
network parameters @ such that the network output #(x, t; 0) approxi-
mates the solution and satisfies the known physical constraints of the
problem by minimizing the loss function” as

0" = arg moinLT(ﬂ). (14)

As illustrated in Fig. 4, the process begins with the initialization
of 0, followed by iterative updates. In each iteration, commonly
referred to as an epoch, the network undergoes forward propagation,
where the predictions #(x, t; 0) are computed at a set of collocation
points (x;, z;, t;) distributed across the spatiotemporal domain, includ-
ing the boundaries. The required spatial and temporal derivatives of
the output are also obtained during this step using automatic differen-
tiation (AD),”” which computes derivatives such as 9it/0x, 9%i/0x?,
and 011 /Ot by recursively applying the chain rule through the compu-
tational graph, as in

On_ ok (15)

Ox ; Oh; Ox
where h; are intermediate variables in the network (e.g., outputs of hid-
den neurons or layer activations), and the index j runs over the nodes
that contribute to the computation of ii. These variables depend on the
network parameters (weights and biases), but they are not independent
unknown parameters themselves.
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Initialize

~

Approximate u(x, t; 0)
' and its derivatives

<

Calculate the total loss
through Egs. (10) — (13)

Update 6
through Eq.(16)

d

Converged?

Trained function 4(x,t; )
with converged 6

Calculate VgL

|

FIG. 4. The basic optimization process of an artificial neural network.

The network output and its derivatives with respect to the inputs
are then substituted into the loss function defined by Egs. (10)-(13),
which quantify the extent to which the PINN approximation violates
the known physical constraints. If the computed loss does not satisfy
the convergence criteria, the network enters the backward propagation
phase, where the gradient of the total loss with respect to each parame-
ter in 6 is computed using AD. These gradients guide the parameter
updates by indicating how the weights and biases should change to
reduce the loss. Specifically, the update proceeds in the direction of the
negative gradient of the loss, which corresponds to the steepest descent
in loss value. The update rule follows a gradient-based”” optimization
algorithm, typically applied as

0D = g®) _ 57,100, (16)

where k denotes the iteration number in the optimization process, and
o is the learning rate, a hyperparameter that controls the step size, i.e.,
the magnitude of each update. A larger step size can accelerate

convergence but risks overshooting minima, while a smaller step size
may lead to more stable but slower convergence. The gradient VgL is
computed using AD. In this context, AD is also applied during the
backward propagation phase to compute the gradient of the total loss
with respect to the network parameters, using the chain rule’” as

OL _ §~0OL Ok 17)
a0; ~ 4= h; 30,

where 0; € 0 is the ith parameter of the neural network (e.g., a weight
or bias), and 4; is the jth intermediate variable (such as the output of a
hidden neuron) that depends on 0;. The summation runs over all com-
putational nodes h; influenced by 0;. This recursive application of the
chain rule enables efficient and exact computation of parameter gra-
dients without relying on numerical approximations.

In this study, more advanced variants of gradient descent are
employed to improve convergence speed and numerical stability. The
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Adam optimizer,”" for example, adaptively adjusts the learning rates
for each parameter based on statistical estimates of gradient moments.
Alternatively, quasi-Newton methods such as L-BFGS™ use approxi-
mations of the inverse Hessian matrix to perform more informed
updates of the unknown parameters, often leading to faster conver-
gence. Both approaches are extensions of gradient descent, built to
handle optimization under known physical constraints.

Each pass through this computational loop, from computing
the prediction and its derivatives to updating 0, constitutes one opti-
mization epoch. The process continues until convergence, when the
network yields a solution consistent with the known physical con-
straints. This means the network output satisfies the governing equa-
tion [Eq. (7)] along with the initial and boundary conditions [Egs.
(8)and (9)].

C. PINNs for the linear wave problem

This section outlines the process of defining the computational
domain, including the full ranges of x, z, and t, as well as the architec-
ture and loss function of the PINNs developed to solve the linear wave
problem. It also discusses the optimization algorithms and hyperpara-
meters used in training these networks.

1. Computational domain

A three-dimensional computational domain is designed for this
problem, as shown in Fig. 5. The x-length of this domain is decided to
cover one wavelength, 4, of the free surface wave profile. The wave
number, k, in Eq. (4), can be found through k = 27/ 4. The t-length of
the domain is set equal to the temporal periodicity, T, of the free sur-
face wave, which can be found through T = 2n/w = Zk/w. Since the
linear wave theory is based on the assumption that the wave ampli-
tude, A, should be much smaller than the wavelength, 4, a wave
amplitude of A = 1/(2007) is selected for all cases.

KFSBC

DFSBC

0,0,T = 2k
( o) (A,0,0)

(0,-X,0) KBBC
FIG. 5. Computational domain. The top boundary, where the KFSBC and DFSBC

conditions are applied, is shown in blue, while the bottom boundary, where the
KBBC condition is applied, is shown in red.

ARTICLE pubs.aip.org/aip/pof

2. The architecture and loss function

A schematic overview of the basic PINNs, known as vanilla-
PINNS,” used to solve the linear wave problem, is shown in Fig. 6. At
the core of a vanilla-PINN framework, there is a fully connected artifi-
cial neural network that receives the time and coordinates of the points
in the spatial-temporal computational domain as inputs and provides
the unknown variable that is to be solved as outputs. The spatial-
temporal points fed into the PINN are known as collocation points.*
The input layer of a PINN designed for the linear wave problem
receives three dimensions, namely, the spatial coordinates of x and z,
along with the temporal coordinate ¢. Unlike classical numerical meth-
ods for solving partial differential equations, PINNs treat the temporal
dimension similarly to spatial dimensions." Consequently, for an
unsteady two-dimensional linear wave, a three-dimensional computa-
tional domain is covered by collocation points.

The incorporation of the governing equation [Eq. (1)] and three
BCs [Egs. (2)-(5)] takes the first and second derivatives of ¢ with
respect to z and ¢. In Fig. 6, loss functions Lr, Lgg, Lxpsc, and Lxrssc
stand for the total loss, and the loss functions for the governing equa-
tion, KBBC and KFSBC, respectively, which are defined as

e e M| 2 x,7z,t 2 (xi, i, 1) |2
Les = ZZZ ¢ (xi, zj k) ¢(a 5 %) 7 (18)
i=1 j=1 k=1 z
NN ) xl, —h, t
Lxspc = ZZ it k) ) (19)
i=1 k=1
A 0 x,‘,O,t d Xi, 2
LKFSBC — Z Z d)( a k) _ n(at k) (20)
i1 k=1 z

After the calculation of the different loss terms, the rest of the training
procedure in a vanilla-PINN is similar to the common procedure of
training classic neural networks, using specific optimization methods.
The setup of the PINNs used in this study is presented in detail in
Subsection I1 C 3.

3. Hyperparameters and optimization scheme

A sensitivity analysis was conducted on the PINN architecture
for solving linear wave dynamics, with the results summarized in
Table 1. The study examines the influence of three key hyperpara-
meters: the number of layers, the number of neurons per layer, and the
number of collocation points. The total error represents the normal-
ized average error of the PINN prediction compared to the analytical
solution, while the periodic error quantifies discrepancies in the pre-
dicted velocity at the periodic boundaries along the x dimension. The
abbreviation Std. refers to the standard deviation of the total error
across repeated runs. Among the tested configurations, the model with
16 layers, ten neurons per layer, and 41° collocation points demon-
strated the most reliable performance, achieving the lowest average
error and the smallest standard deviation across all runs. Each configu-
ration was trained 100 times with different random initializations to
capture variability and ensure statistical reliability. This extensive sam-
pling reduces the risk of overfitting to specific initialization patterns
and highlights the selected configuration’s robustness to randomness
in parameter initialization.

Phys. Fluids 37, 087158 (2025); doi: 10.1063/5.0277421
© Author(s) 2025

37, 087158-6

L€:9%:01 G20z Isnbny 2}


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

16 Hidden layers

variables

Done

Converged

Yes

pubs.aip.org/aip/pof

Loss Function

+ Lxeec + LxrsBC

Lt = Lgk

Adam + L-BFGS ['

Optimizers:

FIG. 6. Schematic of the PINN used for the linear wave problem.

TABLE I. PINN performance for linear wave problem under different configurations.

u Total error w Total error u Period. error w Period. error Time

Layers Neurons Ngp (Std) [%] (Std) [%] (Std) [%] (Std) [%] (Std) [s]

4 10 213 18.22 (28.04) 0.81 (0.57) 2.31 (1.53) 2.93 (2.17) 40.91 (5.11)
8 5 213 24.95 (90.93) 0.54 (0.40) 1.71 (1.31) 1.69 (1.54) 48.08 (6.03)
8 10 213 6.64 (12.19) 0.44 (0.38) 1.30 (1.05) 1.52 (1.42) 61.05 (5.82)
8 20 213 17.04 (10.28) 5.09 (2.28) 16.46 (6.11) 14.63 (4.47) 34.07 (1.03)
16 10 113 3.18 (5.20) 0.57 (1.36) 1.09 (0.95) 1.05 (0.92) 88.76 (8.75)
16 10 213 2.68 (6.18) 0.33 (0.46) 1.05 (1.47) 1.00 (1.14) 145.85 (19.02)
16 10 413 2.31 (3.37) 0.27 (0.19) 0.84 (0.56) 0.84 (0.63) 250.69 (35.90)
16 10 613 2.97 (10.85) 0.26 (0.20) 0.82 (0.57) 0.84 (0.73) 579.76 (94.62)
16 5 213 14.22 (31.17) 0.90 (1.35) 2.53 (2.73) 2.51(2.97) 84.29 (10.10)
16 20 213 12.64 (10.62) 428 (1.64) 14.69 (4.69) 13.40 (4.77) 60.84 (1.57)
32 10 213 6.11 (18.40) 0.44 (0.45) 1.42 (1.46) 1.27 (1.26) 166.98 (16.69)

The distribution of collocation points in all cases in the current
study is equidistant throughout the domain, as it is also the case for

some other studies in the literature.””*° To ensure that the trained

model is not overfit to the training collocation points, the results pre-
sented in Secs. IV and V were extracted at points other than the

collocation points. To this end, an equidistant grid of 31° is utilized for
all the post-processing analysis.

Similar to classical neural networks, PINNSs use activation func-
tions to represent different levels of non-linearity.”” Hyperbolic tan-
gent is a popular choice to be used in the design of PINNs,"”** and
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has been used in the current study. However, the output layer of the
PINNS has an identity activation function, as in the work of Berrone
etal™

Learning rates between 10~ and 10~ have been used to solve a
wide range of problems™'"'**** using PINNs. Here, a learning rate of
1073 is chosen. A two-stage optimization procedure is employed for
training the model variables. In the first stage, the Adam optimizer”' is
used for 1000 epochs. Subsequently, the optimization continues with
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm, a quasi-Newton, gradient-based method.” The L-BEGS
optimization terminates automatically based on the increment toler-
ance. This two-stage optimization approach has been widely employed
in the literature.” *'*"*!

I1l. KINEMATIC BOTTOM BC AND PERIODIC BC FOR
PINN MODELING

An accurate imposition of BCs is crucial for ensuring the physical
fidelity of the model. Boundary conditions can be enforced using vari-
ous methods, generally categorized into soft and hard approaches.
Sections III A-III C explore these approaches in detail for imposing
the periodic and kinematic bottom boundary conditions in the PINN
framework.

A. Soft and hard approach to imposing boundary
conditions in PINNs

The soft approach for imposing BCs involves adding a separate
loss term for the imposed BCs to the total loss function as in Eq. (10).
During optimization, the total loss function is minimized as the sum
of all loss terms, which can result in imperfect satisfaction of the
boundary condition. In contrast, the hard constraint approach embeds
the boundary condition directly into the architecture of the PINN,
eliminating the need for a dedicated loss term. This ensures that the
neural network output inherently satisfies the boundary conditions. In
this study, two different types of hard BCs for the periodic BC (PBC)
and KBBC are investigated. These two different hard constraints target
two different parts of a PINN, which is denoted schematically in Fig. 7.

B. Hard periodic boundary condition

Imposing a periodic BC using a periodic layer is a robust method
to satisty the periodic BC to machine precision. In the problem under
investigation, the flow field is periodic in the x direction. Thus, the

ARTICLE pubs.aip.org/aip/pof

periodic layer, placed between the input layer and the first hidden layer
of the PINN, transforms the input, x, into a sum of periodic functions
with the same periodicity, «. The periodic layer is composed of several
neurons, each representing a periodic function (P) of the input of
interest, x, as

P;(x) = tanh(sin(ax + B;)) (21)

where the phase angle, B;, is trainable, and o, which is the periodicity
of the solution with respect to x, is not trainable. For the linear wave
theory, o is equal to the periodicity of the free surface profile with
respect to x, i.e, « = 21/ = 1. It should be noted that the tanh opera-
tor in Eq. (21) is a nonlinear activation function and does not necessar-
ily need to be the hyperbolic tangent function. This function is used to
be consistent with the activation functions in the other layers of the
PINN.

As shown in Fig. 8, the periodic layer can consist of several neu-
rons that apply Eq. (21) to the input dimension with respect to which
the output is periodic, specifically x in Fig. 8. The other dimensions go
through an identity function, I, which keeps them unchanged as no
periodicity is imposed in the z or ¢ dimensions. The periodic layer in
this study has 12 neurons, of which ten are connected to the x-dimen-
sion input neuron applying the P; functions. The neurons of the z and
t dimensions in the input layer are connected to a single neuron of
identity function (I), keeping them unchanged. This configuration,
with ten neurons connected to the x-dimension, was chosen to align
with the neuron count used in the hidden layers, ensuring architectural
consistency across the network.

C. Hard kinematic bottom boundary condition

This section develops trial functions for imposing the KBBC as a
hard constraint. The logic behind using trial functions to enforce con-
straints has already been discussed in the literature'”***” and is not
reiterated here. Incorporating a trial function strictly enforces the BCs
of interest. A trial function can be incorporated into the PINN archi-
tecture, as shown in Fig. 9. As an example, consider a PINN with out-
put N(x) designed to solve a one-dimensional (1D) partial differential
equation ¥(x). A trial function such as (x) = A+ xN(x) can
impose the Dirichlet BC of /(0) = A.

A proper trial function should have the following two
requirements:

Hidden Layers

Input Layer
Hard Periodic BCs

Loss Function

Y
Output Layer
) 4
Trial Functions for KBBC

FIG. 7. Positions in the PINN where different hard BCs should be applied.

Phys. Fluids 37, 087158 (2025); doi: 10.1063/5.0277421
© Author(s) 2025

37, 087158-8

L€:9%:01 G20z Isnbny 2}


pubs.aip.org/aip/phf

Physics of Fluids ARTICLE

Periodic

tayer 16 Hidden layers

Input

12}
8
-
=)
(3
Z
o
i

variables

Done

Converged?

pubs.aip.org/aip/pof

Loss Function

Lt = Lgg
+ LxBc + LxrsBc

Optimizers:
Adam + L-BFGS |’

FIG. 8. Schematic of the PINN used for the linear wave problem, having a periodic layer to meet the periodic BC of the problem.

Requirement 1: At the boundaries of interest, the trial function
must satisfy the boundary conditions, and all terms, including the
output of the neural network, must zero out.

Requirement 2: Throughout the rest of the domain, the trial func-
tion must include the output of the PINN and/or its derivatives.

For the development of a trial function tailored for enforcing a
specific constraint, the outcome has to fulfill the two requirements
mentioned before. As a starting point to develop a trial function tai-
lored for enforcing a homogeneous Neumann BC, i.e., KBBC, we can
begin with a similar case. In this case, it is the trial function provided

by Lagaris et al.”® for the Poisson problem, i.e.,
o* o
— — = 22
axz (X,y) +8y2 (X,y) f(x7y) ( )

with mixed BCs of y/(0,y) = fo(y), ¥(1,7) = fi(y), ¥(x,0) = go(x),
and 5’—}, ¥(x,1) = g1 (x). The suggested trial function by Lagaris et al.”®
for imposing these four BCs is

W, (x.3) = B(x.y) + x(1 - x)y [N(xmﬁ)
D )
—N(x,l,p)—any(x,l,p):|, (23)
B(x,y) = (1 = x)fo(y) + 2 () + go(x) — [(1 — x)g0(0) + xg0(1)]
+ y{g1(x) = [(1 — x)g1(0) + xg1 (1)]}, (24)

where N is the output of the neural network and p are the weights and
biases of the neural network. In the suggested trial function [Eq. (23)]
for the Poisson problem [Eq. (22)], the multipliers of x, (1 — x), and y
in Eq. (23) relate, respectively, to the three Dirichlet conditions of
V(0,y) = fo(y), ¥(1,y) = fi(y), and ¥ (x,0) = go(x). Since the trial
function we are looking for is supposed to only impose the KBBC, and
KBBC is a homogeneous Neumann BC, we do not need those three
multipliers. The term B(x, y) in Eq. (23) is also responsible to hold the
value of the Poisson function or its derivatives at the boundaries, which
is zero in our case. Therefore, Eq. (23) is updated accordingly and
turns to

¢t(x7 Z, t) = N(x7 z, t) - N('xv _h7 t) - %N(x7 _h7 t)7 (25)

where W(x, y) in Eq. (23) has turned to ¢,(x,z,t) in order to con-
form with the linear wave problem terminology, and p is not men-
tioned, since it is apparent that the output of the PINN is also a
function of weights and biases. The derivative of Eq. (25) with respect
tozonz = —his
0

&d)t(x? Z, t) _ = %N(X,Z, t) 2:7}1’ (26)
which includes a derivation of the PINN output and is not necessarily
zero, which violates requirement 1. One way to resolve this problem is
multiplying the bracket via a function of z, whose derivatives with
respect to z equal the original function. The only function with this
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FIG. 9. Schematic of the PINN used for the linear wave problem, having a periodic layer to meet the periodic BC of the problem, and a trial function to ensure that the neural

network output adheres to the required physical constraints (enforcing KBBC in this study).

characteristic is the exponential function.” The trial function in Eq.
(25) turns to

di(x,z,t) = ¢ {N(}g z,t) — N(x,—h,t) — 2N(x7 —h,t)|. (27)

0z
The derivative of Eq. (27) with respect tozon z = —h is
gq& (x,2,1) =0 (28)
az t\ < o — Y

which satisfies KBBC. Since the exponential function never becomes
zero, the PINN output always exists in the function, and no unwanted
Dirichlet BC is being imposed on the problem. Therefore, the trial
function in Eq. (27) meets both requirements to be a trial function for
imposing KBBC on the liner wave problem in the PINN.

For the second candidate for strictly imposing KBBC on the lin-
ear wave problem, the trial function for an initial value problem, with
Cauchy initial condition introduced by Lagaris et al,”® has been chosen
as a starting point. By adopting the trial function developed by Lagaris
et al”® for enforcing KBBC, we can end up with

(zbt(xvzv t) = (Z+h)2N(x7 2, t)- (29)

Therefore, two trial functions, i.e., Egs. (27) and (29), are devel-
oped for imposing the KBBC. The trial function in Eq. (27) satisfies
both previously mentioned requirements. Although the trial function
in Eq. (29) meets requirement 1, it fails in satisfying requirement 2 at
z = —h, where it becomes zero at the bottom of the domain. This con-
dition is not necessarily true for potential flow. However, the values of
¢ at the bottom are not expected to vary significantly across x and ¢,
and the level of ¢ generally does not influence its spatial derivatives

with respect to x and z, i.e., the velocity components u and w, which
are the focus of this study.

IV. SCENARIOS AND METRICS FOR PINNs WAVE
VERIFICATION

In this section, the analytical solution for the linear wave is pre-
sented as a benchmark, and the evaluation metrics are defined. The
vanilla PINN is described as a baseline for comparison.

A. Analytical solution for the linear wave

In order to analyze different approaches to solving the linear
wave problem, we compare the results with the analytical solution. The
free surface wave is defined in Eq. (4). With this free surface profile,
the wave problem stated in Egs. (1)-(5) can be linearized and solved
analytically to achieve the velocity potential distribution” as

_ Agcosh(k(h + z))

d)(X, z, t) = ET(I{I’[) sin(kx — U)t) (30)

The application of the DFSBC condition, i.e., Eq. (2), provides the rela-
tion between the wave angular frequency, o, and the wave number, k,
which is called the dispersion relation, as

w* = gktanhkh. (31)

The actual values of the velocity potential, ¢, do not play any role
in the governing equation and BCs. The values can end up at any level
while still satisfying the governing equations and boundary conditions. It
is only the gradients of ¢, ie., flow velocity components, that contribute
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FIG. 10. Distributions of u (a) and w (b) obtained by the analytical solution at time t = T/3.

to the linear wave problem. Therefore, in this study, only the distribu-
tions of d¢p/dx and d¢ /dz, which are equivalent to the velocity compo-
nents in the x and z directions, i.e., u and w, respectively, are reported.

The derivatives of the analytical solution in Eq. (30), with respect
to x and z, are the reference solutions that we compare to the PINN
results to examine the accuracy of the calculations. The analytical solu-
tion of u and w at time t = T/3, with k = 1, is shown in Fig. 10.

B. Metrics to evaluate accuracy

The trainable variables of a network are usually initialized ran-
domly before training. To mitigate the risk of dependence of the PINN
results on such initialization, all the PINN models in Secs. IV C and V/
are trained 100 times with random initializations. All the errors in the
PINN results are then calculated as the average error of those 100
training sessions. The total error for u, €,, is defined as

ne o N Ny

€ul%] = Z Z Z
nxnzi’ltmaX[uAnalyucal X, Z, t k 1 j=1 i=1

x 100, (32)

upinn (X4, Zj, tr)

— UAnalytical (xi7 Zj, tk)

where 7y, n,, and n, represent the number of collocation points in the
X, z, and t directions, respectively. The total error for w, €,, can be
found by replacing u with w in Eq. (32). The periodicity error of u, epy,
is defined as

m_ N

%| =
€Pu[ 0] nzntmax[uAnalytlcal X, Z, t ]Z Z

k=1 j=1

upinn (0, 2, 1)

— uplNN(L, Zj7 tk) X 100, (33)

and the periodicity error of w, ep,, can be found by replacing u with
win Eq. (33).

C. The vanilla PINN for the linear wave

In this subsection, the results of a vanilla PINN for the linear
wave problem are presented. These results serve as reference values

that will be improved by imposing hard boundary conditions in Sec.
V. We put the governing equation [Eq. (1)] and the kinematic bound-
ary conditions, i.e., Egs. (3) and (5), in the loss function to find the
velocity potential distribution below the sinusoidal wave, described by
Eq. (4). As the governing equation and boundary conditions are
imposed as soft constraints, the PINN can be called vanilla PINN.
Additionally, w, calculated using Eq. (31), is assumed as an input in
the vanilla PINN. The settings of this PINN are shown in Fig. 6.

The contours of u and w at time t = T/3, when k=1 and
@ = 3.13, are presented in Fig. 11. This figure shows that the general
distributions of u and w are captured relatively well by the PINN, com-
pared to the analytic solution seen in Fig. 10. The average errors of the
calculated u and w of the 100 training sessions of the vanilla PINN are
2.31% and 0.27%, with standard deviations of 3.37% and 0.19%,
respectively. The distributions of the errors, or the discrepancies
between the exact data (Fig. 10) and the PINN results, at t = T/3 for
both u and w are also shown in Fig. 11. The distributions of the errors
in these figures reveal that the regions of elevated error tend to form
near the boundaries of x. This pattern was consistently observed across
the majority of results from 100 sessions of training. Although the x-
dimension in Fig. 11 spans one full wavelength, the distributions of u
and w, as well as their error distributions, do not exhibit periodicity.
This issue will be addressed in Sec. V.

V. RESULTS AND DISCUSSION

This section is divided into three subsections. In Secs. V A and
V B, the free surface wave is considered to be fully known, and the val-
ues of the wave number, k, and the wave angular frequency, w, are set
so they satisfy the dispersion relation [Eq. (31)]. The impacts of the
soft and hard periodic boundary conditions are studied in Secs. V A 1
and V A 2, respectively. Hard imposing of the KBBC is investigated in
Sec. VB. In Sec. V C, the wave angular frequency, w, is considered
unknown. A PINN architecture is designed to find the distributions of
u and w and the value of w. Finding the correct value of @ by the
PINN can be viewed as the solution of the dispersion relation in the
analytical solution [Eq. (31)]. The calculated distributions of u and
w in these subsections are compared to the analytical results (Fig. 10)
to find the total error. The improvements caused by imposing the soft

Phys. Fluids 37, 087158 (2025); doi: 10.1063/5.0277421
© Author(s) 2025

37, 087158-11

L€:9%:01 G20z Isnbny 2}


pubs.aip.org/aip/phf

Physics of Fluids

0.027
0.018

Zz
0.009
0.000 Z

&
~0.009 =

3
—0.018
—0.027

10

00 02 04 06 08

:z:/L

2.96
_02 2.80

264
2435
2.32 £
2165
2.00
1.84
1.68

iC

(C)

ARTICLE pubs.aip.org/aip/pof

0.027

0.018
i
~
0.000 F
=
0000 Z
—0.009 &=
3

—0.018

—0.027

Lok
0.2 04 ).8
x/L

0.0 0.63

4

09 0.54
045
X
—0 0.36 2
=
0.6 0.27 (4
3

0.18

-0.8

0.09

-1.0 0.00

00 02 04 06 08 1.0
xz/L

(d)

FIG. 11. Distributions of u (a) and w (b) and error distributions of u (c) and w (d) obtained by the vanilla PINN at time t = T /3.

and hard periodic BCs and the hard KBBC BC are examined by com-
paring the results with those of the vanilla PINN in Fig. 11.

A. Periodic boundary conditions

The analytical results in Fig. 10 show that the distributions of u
and w are perfectly periodic in the x-direction. However, the distribu-
tions of the u and w velocity components obtained by the vanilla
PINN (Fig. 11) do not preserve such perfect periodicity. The average
epy and ep,, in the x-direction are 0.84% and 0.84%, with standard
deviations of 0.56% and 0.63%, respectively.

To address the imperfect periodicity of the PINN results, we need
to revisit the linear wave problem and how periodic BCs are imposed
in the theoretical solution. The solution’s periodicity in the x-direction
is not explicitly enforced by any BCs. In the analytical approach, the
periodicity of the wave profile imposed by the KFSBC automatically
extends to the solution, velocity potential ¢, and its derivatives.
However, PINN transforms the problem into an optimization process,
which does not necessarily maintain strict periodicity in the x-direc-
tion. Although the periodicity errors of the results in Sec. IV C might
be acceptable for some applications, achieving more consistent period-
icity may be crucial for other applications. Sections VA1 and VA2
explore and compare two methods for imposing periodic BCs on the
linear wave problem, i.e., the soft and hard approaches.

1. Soft periodic BC

To impose the periodic BC in the x-direction as a soft constraint,
additional loss terms are incorporated into the total loss function of
the neural network. Three periodic loss terms are used at the lower
and upper boundaries in the x direction to enforce periodic equality of
¢ and its spatial derivatives in the x and z directions (the u and w veloc-
ity components). Hence, the periodic loss terms are defined as

ng  hg

Loy = > > " 16(0,2, 1) — $(L, 5, )|, (34)
k=1 j=1
ne Nz a¢ 2
ZZ (02, ) =5 (L 25, )] (35)
ny ng 8 2
ZZ (0,2}, 1) — af (L,z, 1) (36)
=1 j=1

Even though these loss terms are designed to enforce the periodicity of
the solution, the resulting periodicity depends on how effectively the
PINN minimizes these loss terms.

When these terms are added to the total loss function of the
vanilla PINN, the loss function expands to six components. This new
PINN has been trained 100 times with random initializations. The
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results show that the incorporation of the periodicity-related loss terms
reduces the average periodicity errors for  and w to 0.10% and 0.10%,
respectively. The average training time was 220.28 s with a standard
deviation of 41.01 s, which is lower than that of the vanilla PINN con-
figuration reported in Table I. This reduction in training time can be
attributed to the role of periodic boundary conditions, which simplify
the optimization process.

Figure 12 compares the total errors and standard deviations of
this case (soft periodic) with the case studied in Sec. IV C, named as
vanilla PINN. The total average errors were reduced to almost 1/23 of
the reference value for u and to less than 2/5 of the reference value of
w, with significantly lower standard deviations. These results demon-
strate that enforcing periodicity constraints effectively reduces the peri-
odicity error, which leads to a more accurate prediction of the overall
results.

2. Hard periodic BC

A hard periodic BC is applied in this section, as outlined in Sec.
11T B and depicted in Fig. 8. The PINN includes a periodic layer that

ensures a perfect periodicity of the solution ¢. In fact, the periodicity
errors in these cases are on the order of machine precision. This con-
figuration is referred to as hard periodic BC.

The average and standard deviation of the total errors for differ-
ent periodic BC constraints are compared in Fig. 12. The PINN with
soft PBC is labeled as soft periodic BC. The results of the hard periodic
BC PINN demonstrate a lower error than vanilla PINN, although it
has slightly higher errors than the results of the soft periodic PINN,
probably due to its higher computational demands. All cases used the
same collocation points and optimization scheme, but the hard peri-
odic BC PINN has ten more trainable variables in the periodic layer
and needs more computational resources to reach the same accuracy
as the soft periodic BC PINN. The average training time was 319.41 s
with a standard deviation of 57.25 s, which is higher than that of both
the vanilla PINN and the PINN with soft periodic boundary condi-
tions. This increase can be attributed to the additional complexity
introduced by the periodic layer, which makes the optimization pro-
cess more computationally demanding. The conclusions drawn from
the results in Fig. 12 are summarized in the flow chart presented in
Fig. 13.

r

Y

Periodic Boundary Condition in| Benefits N
Linear wave PINN (

Lower total error]

> Lower periodic error
Types L
Y Y
[ Soft J [ Hard ]
Advantage imitation Advantage imitation

[ Lower cost } [Imperfect periodicity] [Perfect periodicity] { Higher cost ]

FIG. 13. Benefits of using the periodic BCs for modeling linear waves, and the advantages and limitations of each implementation approach.
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For the remainder of the paper, the periodic boundary condition
is imposed using the hard method. This approach is used to assess
how other adjustments to the PINN perform when the periodic
layer is included. Figure 14 shows the distributions of u and w at time
t = T/3 of hard periodic. Comparing these results with the analytical
distributions in Fig. 10 reveals that the general behavior of u and w is
captured well.

B. Hard kinematic bottom BC

So far, the KBBC has been imposed using a dedicated loss term.
This method, referred to as the soft approach, permits some error in
satisfying the BCs, depending on the success of the optimization prob-
lem. Although this level of error may be acceptable in certain applica-
tions, strict enforcement of BCs is sometimes required. To reach a
perfect satisfaction of the KBBC, this boundary condition is imposed
as a hard constraint by adding a trial function to the PINN architec-
ture, as explained in Sec. III C. Two different trial functions, introduced
in Egs. (27) and(29), are examined in this section to investigate the
accuracy of the solution while the KBBC was imposed as a hard
constraint.

A PINN architecture as illustrated in Fig. 9 was designed using
the trial function of Eq. (27). The model was trained, and the results
showed that the KBBC was satisfied to the machine precision, with
average total errors of 0.30% for u and 0.48% for w. The average
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training time was 571.53 s with a standard deviation of 119.74 s, which
is significantly higher than that of the models employing the soft
KBBC. This increase reflects the added difficulty in optimizing the net-
work when this specific trial function is imposed. The same PINN was
then trained to utilize the trial function from Eq. (29), also achieving
perfect KBBC satisfaction, though with higher average errors of 2.36%
for u and 2.10% for w. The average training time was 300.50 s with a
standard deviation of 82.36 s, indicating that this trial function for the
KBBC was more computationally efficient. However, this efficiency
came at the cost of a higher average error. The results in Fig. 15 com-
pare three cases: hard KBBC 1 using the trial function from Eq. (27),
hard KBBC 2 using the trial function from Eq. (29), and hard periodic
BC, discussed in Sec. V' A 2, which incorporates the KBBC boundary
condition as a loss term.

While the trial functions in Egs. (27) and(29) successfully satisfied
the KBBC, the results in Fig. 15 show that using these trial functions
increased the overall average and standard deviation of the total error.
This decline in accuracy may be due to the added complexity of the
trial function. Additionally, trial functions can introduce unintended
constraints that reduce accuracy, which can be difficult to identify but
may be revealed by examining the trial function and error distribution.

The results of the u and w velocity components of the hard
KBBC 1 case are shown in Fig. 16, and the corresponding results for
the hard KBBC 2 case are presented in Fig. 17. Both cases capture the
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FIG. 14. Distributions of u (a) and w (b) and error distributions of u (c) and w (d) obtained by the Hard Periodic BC PINN at time t = T/3.
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FIG. 15. Comparison of average and standard deviations of total errors for different methods of dealing with the KBBC.

overall distributions of u and w, aligning with the analytical results
(Fig. 10). The hard KBBC 1 results reveal a noticeable error pattern in
the bottom part of the domain for u, denoted by a red rectangle. Since
this pattern was not observed in the error distribution of previous
cases, it can likely be attributed to the application of the trial function
defined in Eq. (27). Although this trial function satisfies the two main
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requirements of a proper trial function, pointed out in Sec. V B, it
probably introduces unintended constraints that are not immediately
apparent, limiting the solution space in ways that are difficult to
recognize.

To discover the cause of the error increase in the hard KBBC 2
case, the error distribution in the hard KBBC 2 case can be examined.

FIG. 16. Distributions of u (a) and w (b) and error distributions of u (c) and w (d) obtained by the hard KBBC 1 PINN at time t = T/3.
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Figure 17 displays error distribution patterns similar to those in the
previous cases, indicating minimal to no unintended constraints
caused by the trial function. However, the trial function used in this
case [Eq. (29)] fails to meet requirement 2 by setting ¢, (x, —h,t) =0
at z = —h, which can be a significant cause of the error increase in the
hard KBBC 2 case. As the error distribution in Fig. 17 does not reveal
any significant anomalies, it can be concluded that the error patterns
may not fully reflect the issues caused by the trial function in the
PINN.

Considering the process of deriving the trial functions defined in
Egs. (27) and (29) and their corresponding results, limitations in using
the hard method based on trial functions can be articulated as follows:

1. Finding a suitable trial function for KBBC, which is a homoge-
neous Neumann boundary condition, is not always as straight-
forward as for Dirichlet BCs."*

2. A practical trial function is not necessarily unique, and finding
the best trial function demands efforts to find and compare dif-
ferent candidates.

3. Even if the trial function theoretically satisfies the two require-
ments mentioned in Sec. III C, there is no guarantee for conver-
gence of the solution in practice.

4. The use of trial functions for imposing BCs gives a risk of intro-
ducing unwanted constraints for the PINN. The more complex
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FIG. 17. Distributions of u (a) and w (b) and error distributions of u (c) and w (d) obtained by the hard KBBC 2 PINN at time t = T/3.

the function, the harder it becomes to detect these unwanted
constraints, either in the trial function or in the error
distribution.

The requirements, advantages, and limitations of specifying BCs
via trial functions are summarized in Fig. 18.

C. Finding the unknown wave angular frequency

So far, the DFSBC has not been incorporated into the PINN.
Instead, we have assumed the wave angular frequency, , as an input
to the problem with the value from the analytical solution of DFSBC,
namely, the dispersion relation [Eq. (31)]. However, ideally, w should
be obtained as a part of the solution. Thereby, in this section, e is con-
sidered unknown, and the PINN is expected to find this parameter at
the free surface by having another BC, which is DFSBC, introduced in
Eq. (2). Finding @ by the PINN can be interpreted as solving the dis-
persion relation, via PINN.

For this purpose, the PINN, schematically shown in Fig. 8, has
been used. A new term is added to the total loss function, dedicated to
the DFSBC as

My M

Lppspc = Z Z

i=1 k=1

AP(x;,0, 1 2
% + gn (i, t)| - (37)
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Requirement 1:

Limitation 1: On the boundaries of interest, the neural
It might be difficult to find a network output and its derivatives should
proper trial function for some BCs. ) vanish and only the values or the func-

tions imposed by the BCs should exist.

Limitation 2:
The trial function is not unique, and
it is difficult to find the best one.

Requirement 2:

In every location of the domain, other than
Hard Boundary Condition the boundaries of interest, the neural net-
Ao B8 N Through Trial Function work output or its derivative should exist.

There is no guarantee for conver-
gence with every trial function. Y

Limitation 4:
There is a risk of ending up with unwanted
constraints, which increases the total error.

Advantage:
The BC is set to the level of machine precision.

FIG. 18. Summary of limitations, requirements, and advantage of imposing boundary conditions through trial functions.

The trainable variables in this PINN include the weights and DFSBC loss terms. As before, this is followed by L-BFGS. The wave

biases of the neural network, the phase angles of the neurons in the number is k = 1 as in the previous cases.
periodic layer, and @ in KFSBC and DFSBC. The number of Adam The distributions of the u and w velocity components, as well as
epochs is increased to 20 000 as the optimization task has become the error distributions of u and w, at time t = T/3 are illustrated in

more complex by adding the trainable variable « in the KFSBC and Fig. 19. A comparison of the results in Fig. 19 with the corresponding
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FIG. 19. Distributions of u (a) and w (b) and error distributions of u (c) and w (d) obtained by the PINN with unknown e at time t = T/3.
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FIG. 20. Evolutions of loss values (a) and wave angular frequency (b) during the training.

analytical results in Fig. 10 indicates that the general distributions of u
and w are captured relatively well. The error distributions of both u
and w do not indicate any dominant pattern and look randomly dis-
persed, as was the case in most of the results Secs. [V, V A, and V B.
The evolutions of the total loss, as well as the losses of the governing
equation, KBBC, KFSBC, and DFSBC are shown in Fig. 20(a). The
convergence of o is shown in Fig. 20(b). During the L-BFGS optimiza-
tion in Fig. 20, we observe a sudden increase in the values of the loss
terms and o during the final epochs. These jumps might be associated
with the optimizer’s attempt to refine the solution near local minima,

1- DFSBC
&

Linear Wave Problem
Boundary Conditions

4- Periodic BC

resulting in abrupt changes in the solution space. However, the values
subsequently return to their previous range, consistent with the overall
convergence trend.

The average total errors of the calculated u and w are 0.16% and
0.14% with standard deviations of 0.05% and 0.05%, respectively. The
wave angular frequency, w, has been found by the average error of
0.03% and a standard deviation of 0.03% across 100 simulations. The
results suggest that the PINN has been successful in finding u and
w under the free surface [Eq. (30)] and also solving the dispersion rela-
tion [Eq. (31)].

Soft

° A noticeable increase in the
computational cost

e  Successfully enforced, but not
studied in particular in this paper

Low computational cost ]

Y

. High computational cost

. Risk of over-constraining

° Hard setup

e Potential negative impact on the
overall results )

. Low computational cost
e Enhancement of the overall results

e Unnecessary high computational

cost
e Enhancement of the overall results

FIG. 21. Important features of the different enforcing methods of BCs of the linear wave theory.
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VI. CONCLUSION

The current study demonstrates that the PINN framework is capa-
ble of calculating the wave-induced velocity field, based on the linear
wave theory, both with known and unknown wave angular frequencies.
The impacts of imposing the soft and hard approaches for different
boundary conditions (BCs) of the problem are investigated and summa-
rized in Fig. 21. In all cases, the soft approach cannot perfectly satisfy
the constraints, and its effectiveness in enforcing them depends signifi-
cantly on the optimization process. On the other hand, the hard
approach meets the constraints with machine precision accuracy.

The results showed that the inclusion of the periodic BC (PBC)
strongly contributes to the enhancement of the overall result, although
there is no separate PBC in the problem definition. By enforcement of
the PBC, the average error for u and w decreased from 2.31% and
0.27% to 0.10% and 0.10%, respectively. We found that the hard PBC
provides a good trade-off between satisfying the periodicity of the
results, enhancing overall results, and maintaining a reasonable com-
putational cost. Two different trial functions were designed for enforc-
ing KBBC. Unlike using PBCs, enforcing KBBC via trial functions
presented several challenges, as are briefly mentioned in Fig. 21.

The PINN was also capable to converge to the solution with an aver-
age error of less than 0.16% and 0.14% for u and w, respectively, when
the angular frequency, w, of the free surface wave was considered an
unknown. The value of » was found in this case with an error of 0.03%.

Since linear wave theory forms the basis of wave simulations, the
insights from this study will pave the way for modeling more complex
wave theories within the PINN framework. Higher-order terms can be
introduced to the linear wave theory via the Stokes’ expansion
approach. To further improve the results of this study, in addition to
general measures such as increasing the number of collocation points
and performing sensitivity analyses on various aspects of the PINN
(e.g., the type of activation function and learning rate), adopting an
adaptive distribution for the collocation points can potentially enhance
the outcomes. This suggestion stems from the observation that the
error distribution across the domain is often non-uniform. Therefore,
strategically populating collocation points in different regions during
training might be beneficial.
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