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Abstract
Additive Manufacturing (AM) is a rapidly growing technol-
ogy with applications in aerospace, automotive, and medical
industries. Scalable AM requires in-situ qualitymonitoring to
detect defects promptly. However, in-situ monitoring intro-
duces scalability challengesdue tohighdatavolumes, rapidac-
quisition rates, and strict latency requirements. We introduce
Hephaestus, a continuous in-situmonitoring system for data
streams from optical monitoring sensors, able to detect poros-
ity risks promptly and to balance accuracy and timeliness
by adjusting thewindow of data used for porosity detection.
Using data from two builds, we study this trade-off and the
method’s cost-benefit towards early cancellation decisions.

CCS Concepts
• Applied computing→ Computer-aided manufacturing;
•Computingmethodologies→Machine learningapproaches.
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1 Introduction
AdditiveManufacturing (AM), commonly named 3D printing,
refers to a family of processes in which a digital 3D model
is built up layer by layer to create complex parts directly
from rawmaterials. AM has gained widespread adoption in
aerospace, medical implants, and automotive manufacturing
industries due to its ability to produce lightweight, geomet-
rically intricate components with minimal tooling. Among
metal-basedAM techniques, Powder Bed Fusion - Laser Beam
(PBF-LB) is a common method for metal-based AM used to
construct objects, frommultiple thin layers stacked on top of
each other, using a laser to melt powder layer by layer.

Despite thebenefits it offersover traditionalmetalmanufac-
turing - less waste, faster prototyping, and weight reduction
- PBF-LB is still held back by a lack of process repeatability
and inconsistent quality of build objects due to defects arising
during the manufacturing process [8]. One such type of de-
fect, porosity (empty volumes inside an object), can severely
impact objects’ durability and toughness [6]. Although some
degree of porosity is expected due to impurities in the mate-
rial used to print an object, limiting the occurrence of pores
is important to ensure the reliability of printed objects. To
assess quality, non-destructive evaluation of each constructed
part using, e.g., X-rayComputedTomography, is often used in
industries like the aerospace and medical ones [18]. However,
X-ray techniques have limited usefulness for large objects
due to their limited penetration depth and the size constraints
of scanning equipment. Also, when quality is assessed after
manufacturing is complete, ex-situ, such assessment increases
construction time and cost, especially when porosity occurs
early in the build process for an object that is then scrapped.
Since AM builds objects in increments, this shortcoming

could potentially be alleviated using in-situ, live monitoring
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to monitor continuously the build process using different sen-
sors such as cameras, photodiodes,microphones, and libraries
of sensor fingerprints that are indicative of successful or failed
build processes [5]. Build processes could then be stopped –
entirely, if porosity isobserved forall theobjectsbeingprinted,
or partially, only for affected objects – when data indicates
an object is likely defective or that the build process devi-
ates from the fingerprints of successful ones. Although such
monitoring does not observe defects directly, but rather condi-
tions under which defects may occur, the utility of observing
said conditions has been validated once their construction
was finalized [15, 26]. Hence, live monitoring could result in a
qualify-as-you-build paradigm,validating thepropertiesofob-
jects being printed and scrapping defective objects early [18].

1.1 Challenges and Contributions
Although there has been previous research interest in in-situ
monitoring for PBF-LB (see [8, 9] and references therein for a
detailed overview), existingworks propose batch-basedmeth-
ods inwhich all the data collected during the production of an
object is analyzed as a whole once said object is fully built. As
such, existingmethods cannot provide timely results and steer
a printing job based on the evolving quality of each printed
object, either to halt it (when defects cannot be fixed) or adjust
it (by continuing to build only non-defective objects).
To advance the state-of-the-art, we aim at designing and

implementing a method able to shift from processing sensor
data as a batch (suitable for ex-situ evaluation) to processing
it layer by layer as a stream, capturing the temporal nature
of the data and producing a monitoring result that utilizes
the data as it becomes available. In order to assess the good-
ness of the proposed method, we focus on its accuracy and
latency, which are key attributes for effectiveness. Moreover,
we present and discuss results about the possible cost savings
enabled by themethod.Wemake the following contributions:
- We propose a novel encoding method based on spatial out-
lier detectionandfingerprintingof thedistributionofoutlier
values for in-situmonitoring of optical tomography (OT) im-
ages, which are high-resolution long-exposure heat images
of eachprinted layer. Themethod,whichwenameHephaes-
tus, operates continuously, capitalizing on the streaming
nature of the data and allowing for trading results’ accuracy
for timeliness based on the number of consecutive layers
in which neighboring outliers are clustered and reported as
a single porosity defect.

- We create a prototype streaming implementation that, af-
ter each layer is constructed, can continuously create new
results based on the added data from the latest layer.

- We assess the performance of our prototype by measuring
the accuracy (ranging from 0.72 to 0.99 ROC-AUC, where
the Receiver Operating Characteristic - Area Under the

Curve (ROC-AUC) quantifies the model’s ability to identify
porosity defects correctly), the latency (ranging from 0.22 to
10.42s on a commercial server), and how these change over
time as more data becomes available from the build process.
Combining these results, we also estimate the impact on the
cost of making an early cancellation decision at different
points during the build process.

- We make the datasets used in the evaluation public at [4],
enabling the research community to replicate and build
further on the presented methodology.
The rest of the paper is structured as follows: Section 2 pro-

vides an overview of the background and the streaming prob-
lem formulation. Section 3 explains the streaming method
and its settings, followed by an analysis of the properties of
the method as well as its possible impact on production costs
in Section 4.We assess our proposedmethod, in terms of both
accuracy and processing performance, in Section 5. Section 6
discusses other related work and Section 7 summarizes the
outcomes and outlines possible future research.

2 Preliminaries and problem description
2.1 Optical Tomography - sensor and data
Numerousmethodsexist tomonitorPBF-LBbuildprocesses [8].
One increasingly common setup uses a camera with a band-
pass filter, mounted at a static angle relative to the powder
source. In such a setup, theheat ismeasured across thepowder
bed, producing an𝑋 x𝑌 matrix of numerical values propor-
tional to the heat, which is commonly visualized as an image
with warmer or brighter colors such as red, yellow, or white
representing higher heat values and blue, purple, or black rep-
resenting lower heat values. Figure 1 shows one such image,
from the data used in the evaluation (see Section 5). This kind
of data is commonly referred to as OT data, a designation we
use for the remainder of this paper. Similar to howPBF-LB cre-
ates a three-dimensional object by layering two-dimensional
slices on top of each other to form a three-dimensional rep-
resentation of the build.

2.2 Stream Processing
Stream processing refers to the real-time analysis of contin-
uous data streams, a methodology that sees an increasing
amount of applications (cf. [12, 22, 31] and references therein).
Its continuous processing is carried out by queries expressed
as graphs of operators, each performing either stateless opera-
tions such asfiltering, or stateful ones such as aggregation (e.g.
to calculate statistics such as average, median, and quantiles),
and joining to match elements from pairs of streams (e.g., to
support the calculation of the correlations between streams’
elements). Stateful computations using stream processing are
done over sequences of data defined aswindows over the data
stream(s), characterized by two key parameters:window size
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Figure 1: Single layer of optical tomography data (see
Section 5). Yellow pixels indicate a higher heat, while
purple pixels indicate a lower heat.

andwindow advance (denotedWs andWa, respectively). The
window size defines the amount of past data considered for
analysis. For instance, if, in the context of the problem at hand,
the window size is set to 10 layers, each stateful operation is
performed over the data of 10 layers. The window advance
dictates the shift between two successive windows. Using a
concrete example, if the window size is set to 10 layers and
the window advance is 5, the analysis is run over data points
from layers [1-10], [6-15], [11-20], [16-25], etc.

2.3 Problem formulation
AnOT setup reports the relative temperature of the powder
bed, generating one OT image per layer. These images form
a bounded data stream, 𝑆 =𝑠1,𝑠2,...,𝑠𝑛 , with 𝑠1 corresponding
to the first layer of the constructed object and 𝑠n the last layer.
Upon completion of each window of data in the stream, we
want to determine whether the layers included in the win-
dow have a porosity higher or lower than a given level, e.g.,
0.5%. That is, whether these layers – and thus the object – are
conforming (non-porous) to standards or defective (porous).

The following properties are of interest in our work:
- The rate of false positives, false negatives, and true positives,
i.e., the rate atwhich amethodmisclassifies objects as defec-
tive, fails to identify defective objects, and correctly classi-
fies defective objects, respectively, relative to ground truth
(e.g., from a destructive evaluation method, see Section 5).

- The latency, the time it takes to receive a result from the
monitoring method about a window after the data from the
last layer of that window is made available.

- The resulting cost reduction of using themonitoringmethod,
enabling early detection in the presence of defects, which
is directly affected by the other three properties.
Aswe show in the paper (see Section 4), there are trade-offs

associated with these properties and Hephaestus provides
ways to navigate such trade-offs by tuning its parameters.

For the assessment of Hephaestus’s detection accuracy
based on the rate of false positives, false negatives, and true
positives, we note that the three depend on the data under
study and the chosen classification method, and that many
classifiers can reduce the rate of false positives by accepting
a higher rate of false negatives, or vice versa. To jointly study
these rates and assess their interdependency, we rely on the
Receiver Operating Characteristics (ROC) [29] curve and Asso-
ciated area Under the Curve (ROC-AUC) [6]. The ROC curve of
a detection method, showing the tradeoff between true posi-
tive rateandfalsepositiverate (i.e., therateof falsealarms),has
been used in related work on AM [14, 15]. Note that an ROC-
AUC of 0.5 can be obtained by guessing, whereas 1.0 indicates
perfect classification. Figure 2 shows a sample ROC curve,
taken fromone of the experiments later discussed in Section 5.
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Figure 2: Sample ROC curve from an experiment in Sec-
tion 5. The dashed line is the true/false positive rate de-
pendencyofarandomclassifier.Theareaunderthediag-
onal andcurve (Hephaestus) is 0.5 and0.81, respectively.

To assess whether the latency incurred by Hephaestus
can support timely detection of defective objects, we note
that there exists a desirable upper limit given by the time that
passes from themoment theOT sensor produces an output for
themonitoringmethod toprocessuntil the constructionof the
next layer begins, which is commonly in the realm of seconds,
for instance up to 3 seconds [11]. If the classifier succeeds in
marking an object as conforming or defectivewithin this time
frame, the build plan could be changed to cancel defective
objects before the next layer begins construction. As in [11],
in our study, such a limit is set to 3 seconds (see Section 5).
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Finally, to put in context the different costs involved in a
printing job, we introduce an adaptation of the recent model
of AM cost by Colosimo et al. [5], suited for the context of
stream-based analysis and classification, in Section 4.2.

3 TheHephaestusmethod

(a) Elevation

−2
−1
0
1
2
3

A

B

(b) Local Z-score

Figure 3: 1D spatial dataset of elevation values of a
sample road with corresponding Local Z-score values.

3.1 Core idea – Spatial Outlier Detection
As observed in [16], areas with high porosity tend to radiate
more heat due to worse thermal conductivity. Our core idea
builds on that observation. Viewing an OT image as a map,
we are interested in areas whose heat radiation deviates con-
siderably from their surrounding area. Areas like this can be
detected using a spatial outlier detectionmethod.
Figure 3 exemplifies the concept of a spatial outlier with

1D data about the elevation of a road. Intuition suggests that
points close to each other on a road have similar elevations.
This phenomenon, knownas spatial autocorrelation, describes
the tendency for close-bypoints to exhibit similar values. Stan-
dard features that display this behavior include wind speed,
temperature, and population density measurements.

Building on this, a spatial outlier is a point different enough
(based on a given threshold) from its surroundings to appear
as from a different distribution. Note that what sets a spatial
outlier apart is not necessarily its value, but also its location.
That is, it can be a normal data point but in an abnormal
location. Regarding the road example, Figure 3a shows the
absolute elevation of points of a sample road. Although point
A is thehighest point in the set, pointB sticksout becauseof its
location. This can be quantified using spatial outlier detection.
Spatial outlier treats each point as a pivot point for its im-

mediate neighboring points. In Figure 3b, the value of each
pivot point is the Local Z-score (Deviation from Local Mean):
the distance between the average of the corresponding point
and the preceding and subsequent points, and themean value
of all points, divided by all points’ standard deviation. As

shown, the value of B exceeds that of A, highlighting how B
is a potential outlier for the given dataset.

Spatial outlier detection is not restricted to one dimension.
In the example in Figure 3, the neighborhood of a point is sim-
ply the point itself as well as the points directly to its left and
right. For two dimensions, such as an image with pixels, the
neighborhood can be expanded to include a central pixel and
all surrounding pixels. For three dimensions, such as multiple
images layered on top of each other (e.g., multiple stacked OT
images), the neighborhood can include a central pixel with
its surrounding pixels in one image, and the same area of the
contiguous images before and after the central image.
Spatial outlier detection combines nicely with the nature

of AM build process data and stream processing: data points
that are close in space become available shortly after each
other as layers are printed. For each point in a layer, neigh-
bors fromprevious layers are available right away,whilemore
neighbors become available as the next layers are printed.

3.2 Hephaestus’ overview
Hephaestus combines spatial outlier detection and stream
processing inadataprocessingpipeline.Algorithm1overviews
the main parameters used in the pipeline, Figure 4 overviews
said pipeline, while Algorithm 2 presents its main steps as
pseudocode. The first step takes each OT image produced by
the camera as input. The final output classifies an object as
non-porous or porous depending on the current window of
the object’s data (i.e., the latest reported layer and a given
amount, given by the window size, of the preceding contigu-
ous layers). The pipeline starts processing a layer as soon
as it becomes available and does not need all layers to clas-
sify an object. Instead, it produces a classification for each
window once all the layers belonging to such a window are
received. In a nutshell, each OT image is filtered to remove
background data (i.e., unrelated to the object being printed).
Every data point is assigned a score reflecting its likelihood
of being an outlier. Points that are later classified as outliers
are interpreted as potential indicators of porosity based on
their aggregated property (e.g., their quantity).
For ease of exposition and without lack of generality, we

consider a build printing a single object. To support multiple
objects in a build, Hephaestus keeps track in each step of
which object the data it is operating on belongs to.

Algorithm 1 Parameters of the Hephaestus algorithm
1: 𝑊𝑠 ,𝑊𝑎 ⊲Window size and window advance
2: Bt ⊲ Threshold used for background elimination
3: x ⊲Width and length of a neighborhood (in number of pixels)
4: h ⊲ The height of a neighborhood (in number of layers)
5: min,max, bins ⊲Min,maxvalues andnrof bins forfingerprinting
6: classifier ⊲ e.g., a K-nearest neighbor ML-classifier
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Figure 4: Overview of theHephaestus pipeline proposed in this work.

Algorithm 2 Overview of the Hephaestus’s steps upon reception of an OT image. For ease of exposition and without lack
of generality, we assume a single object is being printed in each printing job. Also, we show the list 𝑙𝑎𝑦𝑒𝑟𝑠 as a growing list,
while in practice, a circular buffer of size𝑊𝑠 suffices.
1: list 𝑙𝑎𝑦𝑒𝑟𝑠 ⊲A list of OT images
2: 𝑖←0 ⊲ index of the current layer, initially 0
3: upon reception of 𝑛𝑒𝑥𝑡𝐿𝑎𝑦𝑒𝑟 , the latest OT image do
4: 𝑙𝑎𝑦𝑒𝑟𝑠 [𝑖]←𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑛𝑒𝑥𝑡𝐿𝑎𝑦𝑒𝑟,𝐵𝑡) ⊲ Remove background data
5: 𝑖←𝑖+1
6: if 𝑖 ≥𝑊𝑠∧(𝑖−𝑊𝑠 ) %𝑊𝑎 =0 then
7: 𝑜𝑠←𝑐𝑜𝑚𝑝𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑆𝑐𝑜𝑟𝑒𝑠 (𝑙𝑎𝑦𝑒𝑟𝑠 [𝑖−𝑊𝑠 :𝑖],𝑥,ℎ) ⊲Assign outlier scores for all points in the window
8: 𝑓 𝑝←𝑚𝑎𝑘𝑒𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 (𝑜𝑠,𝑏𝑖𝑛𝑠,𝑚𝑖𝑛,𝑚𝑎𝑥) ⊲ Bin points based on their outlier score, capturing their distribution into a fingerprint
9: 𝑐𝑙𝑎𝑠𝑠←𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 .𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 (𝑓 𝑝) ⊲ Classify the fingerprint, comparing it to fingerprints from a training dataset with known classes
10: Output(𝑐𝑙𝑎𝑠𝑠)

3.3 Preprocessing
To capture only features related to the printed object, this step
filters out background pixels from each OT image. Since the
background radiates less heat than the object being printed,
we remove all points below a certain heat threshold. Alterna-
tively, filtering can rely on the printing specifications, stating
which areas of each layer belong to an object.

3.4 Outlier quantification
This step relies on an outlier detection method to transform
the values in the window into a multiset of values indicating
howmuch of an outlier each data point is. Our pipeline can in-
tegrate different methods for spatial outlier detection. Since it
is not within our scope to assess the quality of different meth-
ods, we only focus on the method we have chosen, following
earlier studies [3], based onMoran scatter plots. We first nor-
malize each data point 𝑝 using the mean and standard devia-
tionof all thepoints part of the streamingwindowof size𝑊𝑠 to
which𝑝 belongs.Next, theoutlier scoreassigned to𝑝 isdefined
as the distance from the point itself and the least squares re-
gression line fitting all𝑝’s neighbouring points in thewindow.

x
h

x

(a) Neighbourhood

W s

(b) Neighbourhood inside a window

Figure 5: Illustration of a 3x3x3 neighbourhood. The
neighbourhood (blue) is centered around its pivot point
(green), on its own in (a) and inside a window in (b).

The size of 𝑝’s neighbourhood is defined by two hyperpa-
rameters: 𝑥 , the size of the neighbourhood within a layer, and
ℎ, the size in terms of number of layers1. Figure 5a illustrates
1Weassume𝑥 andℎ areoddandthat𝑝 falls in thecenterof theneighbourhood.
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how these hyperparameters affect the neighbourhood: ℎ is
bounded by𝑊𝑠 : a neighbourhood cannot span more layers
than the window;𝑊𝑠 can be set to a value greater thanℎ how-
ever, leading to a better normalization and often more precise
classification (see Section 5.3). For each point 𝑝 , we only con-
sider neighbourhoods for which exactly 𝑥 andℎ points can be
found along the three dimensions, thus excluding points from
neighbourhoods located at the edge of the printed objects.

3.5 Fingerprinting
To capture the distribution of the outlier score values from
the previous step, we bin such values into a histogram, using
bins of the same size. This summarization acts as a fingerprint
of the process, which can be compared to previous builds’ fin-
gerprints to assess the likelihood of the build being defective.

As aforementioned in Section 1, state-of-the-art quality as-
sessment is currently conducted by post-completion inspec-
tion of printed objects. Hence, there usually exist datasets
with data referring to successful/unsuccessful jobs. In our
case study, we had access to such data (see Section 5), con-
taining information about objects that (1) were printed with
a setup resulting in both non-porous and porous objects and
(2) were also analyzed after their complete printing to label
them as non-porous or porous. The minimum and maximum
values we chose are determined using such data, representing
the smallest and largest outlier values, respectively.

Figure 6 shows one fingerprint obtained from a porous ob-
ject visualised as a histogram (orange, transparent) compared
to the average of a larger set of objects (blue), out of which
some are non-porous and some are porous.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Outlier value

10 1

100

101

102

103

104

105

106

Data set average
High porosity object

Figure 6: Histogram of outlier score values obtained us-
ingMoran scatter plot. Orange (transparent) values cor-
respondtoonehighlyporousobject, andblue is theaver-
age of numerous objects (both non-porous and porous).

3.6 Classification
The fingerprint is then used as input to a machine learning
classifier, which outputs a yes/no answer to whether the win-
dow indicates a porosity level above the threshold.
Similarly to what is said in Section 3.4, it is not within the

scope of our work to assess the quality of different classifiers
(k-nearest neighbours, random forest, multi-layer perceptron,
or logistic regression [29]). We opt for the k-nearest neigh-
bours method since, as also discussed in [28], it supports the
explainability of the outcomes reporting objects as porous.
In Hephaestus, the k-nearest neighbour classifier is first

given a training data set of fingerprinting outcomes whose
class (i.e., non-porous or porous) is already known. Then, the
classifier constructs a search tree, e.g., a KD-tree [2]. When
queried for the classification of a newfingerprinting outcome,
the classifier finds the𝑘 closest fingerprinting outcomes in the
training data using the tree and lets those fingerprinting out-
comes vote for which class the new fingerprinting outcome
should belong to. As a result, it is possible to inspect the result
to find outwhich fingerprinting outcomes in the training data
were the closest and see why any given classification was
made. This is of interest in particular to improve the classifier
when the latter leads to incorrect classification.

Also in this case (see Section 3.5), we rely on data from
previous builds for training purposes (see Section 5).

4 Properties of theHephaestusmethod
Recalling from Section 2, key aspects we use to assess Hep-
haestus’s performance include the latency for producing
results and the impact on production costs. In the following
subsections, we elaborate on both aspects.

4.1 Latency and time complexity
The latency metric quantifies the time required to obtain a
result for a complete streaming window once data from the
last layer is available. As discussed in Section 2.3, a key consid-
eration is whether this latency remains within the time going
from the moment the OT sensor produces an image to that
at which the construction of the next layer starts, typically a
few seconds [11]. Hephaestus’s time complexity influences
the latency metric according to the individual steps of the
processing pipeline. Based on the outlier quantification (see
Section 3.4), fingerprinting (see Section 3.5), and classification
(see Section 3.6) techniques we chose, we next estimate the
time complexity of the work performed by Hephaestus to
process all the data points within a window noting that:
- The first stage (preprocessing), which uses a static threshold
to remove background data points, requires checkingwhich
points in each layer have a value above said threshold before
addingsuchpoints to thewindowitself, implyingan𝑂 (𝑊𝑠𝑛)
time complexity,𝑛 being the number of data points in a layer.
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- The subsequent stage, outlier quantification, involves a con-
stantnumberof stepsperpoint perwindow(dependingonly
on the local neighbourhood, which is defined by the 𝑥 andℎ
constants), hence also implying an𝑂 (𝑊𝑠𝑛) time complexity.

- The fingerprinting stage incurs a number of steps linear in
the window size and number of points in a layer, leading
also to an𝑂 (𝑊𝑠𝑛) time complexity.

- Finally, the k-nearest neighbor classifier used by Hephaes-
tus with a K-D tree for neighbourhood search leads to
an𝑂 (𝑙𝑜𝑔(𝑎)) time complexity per window in expectation,
where 𝑎 is the number of examples used for training.

Accounting for all these costs, we note that:

Lemma 4.1. The time complexity of Hephaestus for any
window of size𝑊𝑠 is𝑂 (𝑊𝑠𝑛+𝑙𝑜𝑔(𝑎)).

As discussed in Section 2.2 and shown in Algorithm 2, for a
given𝑊𝑎 , a result is producedbyHephaestus every𝑊𝑎 layers.
Since𝑊𝑎 affectshowoften theprocessingofawindow’sdata is
triggered, we can estimate the per-layer average complexity:

Lemma 4.2. Given Lemma 4.1, the average complexity of
Hephaestus per layer is𝑂 (𝑊𝑠𝑛+𝑙𝑜𝑔 (𝑎)

𝑊𝑎
).

Lemma 4.2 implies that Hephaestus provides two knobs
that can be turned to tweak performance trade-offs, accord-
ing to e.g. quality of service requirements and the hardware
available. In particular, using a smaller window size𝑊𝑠 will
improve latency. Also, using a smaller window advance𝑊𝑎

will create more frequent results at the expense of needing
more computations per layer. If the hardware doing the pro-
cessing cannot keep upwith the rate of new layers (i.e., by the
time a new layer has finished, previous layers are still being
processed),𝑊𝑎 can be increased to reduce the amount ofwork.

4.2 Impact on production cost
The production cost metric estimates the influence of mak-
ing timely cancellation decisions on the construction cost,
based on e.g., material, energy, and time. Such a metric has
been proposed by e.g., Colosimo et al. [5]. In state-of-the-art,
though, such ametric refers to assessmentsmade at the end of
a printing process, while we aim at porting it to the streaming
context, as discussed next.

From [5], the cost for producing a single object is:
𝐶𝑛𝑒𝑡 =𝐶𝑝𝑟𝑒+𝐶𝑝𝑟𝑜𝑐+𝐶𝑝𝑜𝑠𝑡 +𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (1)

where 𝐶𝑝𝑟𝑒 , 𝐶𝑝𝑟𝑜𝑐 , 𝐶𝑝𝑜𝑠𝑡 , and 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 are the costs for pre-
processing, processing, postprocessing, and materials, re-
spectively. Preprocessing includes setting up the machine
by preparing the powder, loading the files containing the in-
formation aboutwhat is to be printed, etc. Processing refers to
the task of physically constructing the object in the machine.
Postprocessing includes removing the build objects from the
chamber, cutting them from the base, and investigating the

object for defects. We refer to the defect investigation cost,
part of𝐶𝑝𝑜𝑠𝑡 , as𝐶𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 . Finally, thematerial cost is mainly
referring to the cost of the metal powder used for the process.

Construction processes have two potential outcomes: they
can result in a successfully constructed object, a part, or a
defective one that needs to be discarded, a scrap. The ratio of
scrap to all constructed objects is called the scrap ratio and is
denoted𝛾 . When accounting for the scrap ratio we obtain the
base case,𝐶𝑏𝑎𝑠𝑒 , i.e., the cost of producinga single part success-
fully when not using any monitoring to influence the build:

𝐶𝑏𝑎𝑠𝑒 =
𝐶𝑛𝑒𝑡

1−𝛾 (2)

However, if anobject is identified as a scrapbefore construc-
tion has finished, there is no need to continue constructing it,
resulting in a reduced processing cost if the classification is
correct. The reduction inprocessing cost is proportional to the
completion ratio,𝐶𝑅, i.e., the ratio of the object completed. For
the sake of simplicity, we assume this is the same as the frac-
tionoffinished layers to the total number of layers of anobject.
Since scraps are not usually inspected, we note the cost of
inspection𝐶𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 can be deducted from𝐶𝑝𝑜𝑠𝑡

2. With this
inmind, Equation 3 breaks down the cost of producing a scrap.

𝐶𝑠𝑐𝑟𝑎𝑝 =𝐶𝑝𝑟𝑒+(𝐶𝑝𝑟𝑜𝑐+𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 )∗𝐶𝑅+𝐶𝑝𝑜𝑠𝑡−𝐶𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛

(3)
Assuming that the construction of individual objects can be

canceled based on the result of an in situ monitoring method,
we need to know the rate of false positives 𝛼 and the rate of
false negatives 𝛽 of said method to calculate its cost. a frac-
tion of (1−𝛾) (1−𝛼) of all objects that begin construction
also finish construction successfully, whereas𝛾𝛽 of all objects
are finished constructing despite being defective. Meanwhile,
(1−𝛾)𝛼 of all objects are incorrectly cancelled ahead of time,
and a (𝛾) (1−𝛼) fraction of them are correctly cancelled ahead
of time. Putting all of this together we obtain the cost of stop-
ping once a defect is detected,𝐶𝑆𝑂𝐷 (stop-on-defect):

𝐶𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 =𝐶𝑛𝑒𝑡 ((1−𝛾) (1−𝛼)+𝛾𝛽) (4)

𝐶𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑 =𝐶𝑠𝑐𝑟𝑎𝑝 ((1−𝛾)𝛼+𝛾 (1−𝛽)) (5)

𝐶𝑆𝑂𝐷 =
𝐶𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑+𝐶𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑

(1−𝛾) (1−𝛼) (6)

Note that the cost of producing apartwhoseproduction can
be halted based on a monitoring method can be lower than,
equal to, or greater than that of producing said part without

2As mentioned in Sections 3.5 and 3.6, scrap could be inspected to create
data later used to train defect-assessment methods such as Hephaestus.
This would apply only to a finite set of selected scrap parts. We thus do not
account for it as part of the regular production costs. Our metric can be
easily modified to account for that.

217



DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Sievers, et al.

monitoring. Intuitively, if the part is scrap and correctly classi-
fied as such, themonitoringmethodwill lead to reduced costs.
Conversely, if the part is not scrap but incorrectly classified
as such, the costs incurred in building a part later classified as
scrapwill bewasted. An interesting observation is that amon-
itoring method that always flags all objects as conforming
leads to the same costs as a systemwithout monitoring:

Lemma 4.3. 𝐶𝑆𝑂𝐷 =𝐶𝑏𝑎𝑠𝑒 if the false positives 𝛼 and false
negatives 𝛽 rate of amonitoringmethod are 0 and 1, respectively.

This level of performance can serve as a baseline: any
method that has a performance resulting in 𝐶𝑆𝑂𝐷 > 𝐶𝑏𝑎𝑠𝑒

(that is, the cost of not using it is lower than actually using it)
is not worth using. This outcome is not unrealistic, particu-
larly for processes with very low scrap ratios, as shown in [5].

4.3 Trade-offs and relation betweenmetrics
To minimize the cost in Equations 3 and 6, it is desirable to
have a low false positive rate 𝛼 , a low false negative rate 𝛽 ,
and a low completion ratio𝐶𝑅 for defective objects. Machine
learningmodels can be tweaked to trade𝛼 for 𝛽 (or vice versa).
For Hephaestus, 𝛼 and 𝛽 are mostly influenced by the win-
dow size,𝑊𝑠 , creating though a dependency with𝐶𝑅 and the
latency too. On the one hand, a greater𝑊𝑠 leads to a larger
time in producing results, both because of requiring a whole
window to be complete before producing the very first result
(seeAlgorithm2), andalsobecauseof the increasedprocessing
time (see Section 4.1), directly increasing𝐶𝑅 and latency. On
the other hand, a larger𝑊𝑠 results in a larger number of outlier
scores within each window, and thus a larger fingerprint be-
fore a classification ismade.Asweshow later in the evaluation
(Section 5.3), this often results in a more precise classification,
i.e., a reduction in 𝛼 and/or 𝛽 . Effectively,𝑊𝑠 – together with
𝑊𝑎 , see Lemma 4.2 – act as knobs that can be turned to find
a balance between timeliness and precision, influencing in
turn the impact in cost savings (depending on time, material,
energy) by timely and accurate detections of defects.

5 Evaluation
5.1 Data Set Description
The evaluation uses one build for training and one for testing.
The training set consists of 56 objects with two geometries:
28 of them are a five-tiered pyramid shape printed lying down
(Figure 7, left), and the remaining 28 are a stack of three rect-
angular blocks printed standing upright (Figure 7, right).
The testing set contains 25 objects, all using the stacked

block shape. The model is thus trained on a diverse set of
shapes but evaluated solely on one geometry to assess gen-
eralization. Figure 8 shows the layout of both builds. The
material, for both, is IN718, a nickel-based Inconel superalloy.

The five-tiered lying down pyramid objects consist of 187
layers, while the stacked block objects used for testing consist
of 225 layers. In the stacked block objects, the bottom, middle,
and top blocks consists of 150, 37, and 38 layers, respectively.

Bothshapeshavebeendesignedbysystemexperts, account-
ing for shape changes in consecutive layers and sharp corners
in the printed objects that are sensitive in real-world print-
ing jobs. Also, both builds use a range of process parameters,
including scan speed, laser power, and hatch distance, both
within and outside of recommended ranges. This variability
ensures the presence of porosity-related defects, making the
dataset representative of real-world conditions. The bottom
13 layers are excluded from training/testing as the thermal
conductivity differs due to reduced surrounding material.
For ground truth labeling, porosity analysis is performed

using an optical microscope. Before being inspected, the ob-
jects are cut across the middle, and etching is applied. The
porosity can then be calculated as the fraction of the dark,
empty area over the total area. The threshold used to classify
an object as non-porous or porous is set to 0.5%, similar to [6]
and [15]. The classification results are:
- Training set: 42 non-porous objects, 14 porous objects.
- Testing set: 18 non-porous objects, 7 porous objects.
This dataset design allows evaluating howwell the model,

trained on a mix of geometries, performs when tested on a
single shape under varying process conditions.

Figure 7: The two shapes used in the evaluation (picture
taken from [4]). The cutting lines indicate where
objects are cut/etched before being inspected for
porosity using an optical microscope.

5.2 Hardware and Software Setup
The OT data has been collected from an EOSM290 machine,
recording the near-infrared radiation generated by the laser
beam. The recording is done layer by layer, integrating across
the whole build, using a 5 MP CMOS camera on top of the
printing chamber (Filter: 900 nm ± 12.5 nm, FoV: 2000 × 2000
px - pixels per layer, 125 µm/px).
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(a) Layout of the first build.
28 objects of each shape for
a total of 56 objects.

(b) Layout of the second
build.25objectswithastack
of three rectangular blocks.

Figure 8: Layout of the two builds on the powder bed.
The OT images are from layer 10, the squares being the
base of the stack shape, shown in Figure 7, right.

On average, the recoating process taking place in between
the printing of each layer lasts three seconds. As such, we
assume the latency threshold for Hephaestus to produce a
timely classification is of three seconds.

Theevaluation runsonan IntelXeonE5-2637v4@3.50GHz
(4 cores, 8 threads) server with 64 GB of RAM, with Ubuntu
18.04. Hephaestus is implemented in Python, using Numpy,
OpenCV, and scikit-learn [23]. The timing is measured using
the time module from the Python standard library.

For Hephaestus’s parameters (see Section 3), various win-
dow sizes𝑊𝑠 are used, specifically 5, 25, 75, 105, and 212,
with the window advance𝑊𝑎 set to half of𝑊𝑠 (i.e., 2, 12, 37,
52, and 106, respectively). The chosen𝑊𝑠 values range from
small windows that provide early results starting from the
5th layer to very large windows that produce essentially a
single post-completion result. The window advance𝑊𝑎 is
fixed at half of𝑊𝑠 to ensure that each new result is generated
only after at least half of the data in the window has been
updated. Note that the largest𝑊𝑠 is set to 212, accounting
for the aforementioned bottom 13 layers excluded from the
analysis. The values for 𝑥 , ℎ, the number of bins, and 𝑘 are
1, 5, 20, and 3, respectively. These were determined through
five-fold cross-validation on the training set.

5.3 Quality of the Classification
As each window is processed, the ROC-AUC is calculated for
that window. A specific ROC-AUC curve from the𝑊𝑠=25 set-
ting has been previously shown in Figure 2. Figure 9a shows a
boxplot of theROC-AUC for the different𝑊𝑠 and𝑊𝑎 combina-
tions. Generally, the median score grows as the window size
increases, and a similar trend is observed for quartile values.
Results donot further improve fromawindowsize of 75 to 105,
but reach score 1 once all the data from the build is processed
together when𝑊𝑠 =212 layers. As mentioned in Section 2.3,

the rates of false positives, false negatives, and true positives,
upon which the ROC-AUC values are computed, depend on
both the classification method as well as the data under study.
We note that, given the geometry of the object and the afore-
mentioned number of layers of each block, a window size
larger than 75 layers implies that layers from all three blocks
will be present in at least one window, in this case resulting
in a slight decrease in the classification accuracy.

5.4 Latency
Figure 9b shows how the latency changes for the different
𝑊𝑠 and𝑊𝑎 combinations. The latency scales proportionally
to window size, which is expected given Hephaestus’s time
complexity (see Section 4.1). The median is close to the 75th
percentile for all window sizes: this is due to the geometry
of the object. The time needed for Hephaestus to process
a layer is proportional to the size of the cross-section of the
object at the layer, and the base of the object is the widest and
spans more layers than the rest of the object.
For𝑊𝑠 < 75, Hephaestus meets the 3-second deadline

imposed by the recoating process. For some of the windows
when𝑊𝑠 =75 and all windows when𝑊𝑠 > 75, this is not the
case, however. This means that the result is only available
once the next layer has started processing. In addition, re-
ducing𝑊𝑠 means the first result is available earlier, which is
useful when making cancellation decisions to reduce cost.

5.5 Estimated impact on production cost
We assess the potential cost reduction by simulating a cancel-
lation at a given stage, using the formulas in Section 4.2. For
𝑊𝑠 values that meet the three-second deadline (i.e.,𝑊𝑠 =5 and
𝑊𝑠 =25), we assume that classification occurs immediately af-
ter receiving the final layer of thewindow and before the next
layer begins printing. Accordingly, we set𝐶𝑅=𝑊𝑠+13

225 , where
13 represents the bottom layers excluded from the analysis.
For the remaining𝑊𝑠 values, we assume classification occurs
after thenext layerhasalreadystartedprinting. In this case,we
set𝐶𝑅=𝑊𝑠+14

225 . The cost parameters are set to the same values
as those used for the machinery in the case study presented
in [5]. To account for parameter stochasticity, we run the eval-
uation 10000 times and examine scrap rates from 10% to 40%.
As discussed in Section 4.2, a difference compared to [5]

is the separation of the inspection and postprocessing costs,
which we make since there is no need to inspect objects that
do not finish construction, although other postprocessing
costs (e.g., removal of objects from the build chamber) remain.

The result of this estimation is shown in Figure 10. It shows
the fraction of the cost using early cancelation,𝐶𝑆𝑂𝐷 , and al-
ways finishing builds,𝐶𝑏𝑎𝑠𝑒 . Values greater than 1 indicate an
increase in cost, while values lower than 1 indicate a decrease.
Larger windows yield more accurate classification (Figure 9a)
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Figure 9: Results for different window sizes.

but require larger parts of the object to be constructed. As a
consequence, a trade-off exists between the classification’s
accuracy and the extent of object constructionwhen selecting
the optimal window size for cancellation decisions.
When the scrap ratio is 20% or more, the ideal observed

setting is a window size of 25 layers. For the lower scrap ratio
of 10% the best results are observed for a window size of 25
layers or the largest window.
Summarising, the chosen window size and advance com-

binations have an impact on both the ROC-AUC and latency,
which behave as expected. Increasing𝑊𝑠 results in improved
ROC-AUC and higher latency, influencing the estimated cost.
While not all𝑊𝑠 values allow for the classification of porous
objects within the strict three-second threshold, certain con-
figurations, such as𝑊𝑠 =25, achieve a strong balance between
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Figure 10: Estimated reduction in cost for different win-
dow sizes. The reduction ismeasured as the estimated
cost of using Hephaestus compared to not using any
monitoring method. Less is better, the dashed black
line is 1.0 (i.e., the same as not using any monitoring
method). The solid lines are themeans, dotted lines are
two standard deviations away from themean.

accuracy and efficiency. Specifically, this configuration main-
tainsamedianaccuracyabove0.8,meets therequireddeadline,
and can contribute to a reduction in production costs. These
findings highlight the feasibility of real-time in-situ monitor-
ing for timely defect detection and process optimization.

6 Related work
Interest in in-situ monitoring for PBF-LB has grown in re-
cent years [9, 10]. Still, most research has been conducted
outside of in-situ or real-time settings, not accounting for the
temporal aspect of the problem (e.g., [1, 6, 14, 15, 17, 25]) nor
providing solutions for timely detection of defective objects.
Although considering a different problem, some studies

have exploredonlinemonitoring comparingComputer-Aided
Design (CAD) models with OT images to detect deviations
in object shape rather than porosity [10]. Similarly, [11] pro-
poses an architecture for a stream processing framework for
in-situ monitoring. Hephaestus contribution is complemen-
tary to that of [11], and could stimulate future work by being
implemented within said framework to benefit from com-
putational efficiency and automation provided by solutions
building on fully-fledged Stream Professing Engines (SPEs),
the platforms commonly used to run streaming applications.

It is also worth noting that existing research encompasses
porosity detection across entire objects (cf. [6]), individual lay-
ers (cf. [18, 26, 27]), or small cuboids (cf. [7, 15]). By tweaking
𝑊𝑠 ,Hephaestuscanoperateonwindowsof layersofarbitrary
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size and thus encapsulate all thesedifferent options,while also
processing together several layers while incurring latencies
lower than those reported in other related works focusing on
intra-layer analysis only (e.g., up to 2.4 seconds in [27]).

Regarding data analysis in AM, [8, 9] comprehensively cat-
egorize monitoring problems and mention machine learning
approaches as candidates, emphasizing, as also elaborated
in e.g., [18, 19], the high data rates and the need for in-situ
monitoring latencies to shift from seconds to milliseconds.

Cost reduction, one of the main drivers in AMmonitoring
methods, depends on both the accuracy and timeliness of
said methods. Nonetheless, to the best of our knowledge, the
only relevant study attempting to evaluate the impact mon-
itoring methods have on cost is [5], which nonetheless does
not focus on streaming monitoring (see Section 4.2). Other
commonly employed classification metrics in the field, such
as ROC-AUC [6, 15] and F1-score [30], are also not assessed
within the context of streaming-based solutions.

7 Conclusions and FutureWork
We proposed a method, named Hephaestus, to bring in-situ
monitoring closer to production for AM printing processes.
Namely, a streaming pipeline for conducting in-situ monitor-
ing, one layer at a time, at the pace at which OT images are
produced. Aswe show, the accuracywithwhichHephaestus
can timely detect defective objects improves as more data
from the same object is processed together, a possibility that
can be easily tuned in Hephaestus’s streaming-based tech-
nique. Furthermore, we also showHephaestus allows tuning
the tradeoff between timely and accurate results to balance
the two in the interest of cost minimization.

Future work includes the study of stream-processingmeth-
ods that can further improve accuracy, in particular for small
windows (which could bedoneby investigating thepossibility
for other streaming-based monitoring methods in the litera-
ture [7, 9, 13, 20, 21, 24–26] tobeadapted toanAM-monitoring
context). Also, there is a need to improve the timeliness (in
particular for large windows), for instance, by incrementally
processing each layer as it finishes. In particular, it is of inter-
est to investigate methods that can produce results quickly
and accurately with very small windows in the interest of
fixing defects as they arise. Alongside improvements in accu-
racy and timeliness, further research is needed to transition
from stream-based monitoring focused on early job cancel-
lation to one enabling live job adjustments. This approach
would allow real-time modifications, such as adjusting laser
intensity to remelt the topmost layers and correct emerging
defects [7], ensuring that monitoring data actively guides the
object construction process. Finally, it can also be of interest
to study howHephaestus can support in-site monitoring in

connection with other types of defects besides porosity, e.g.,
to identify spattering [26] promptly.
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