
Automated Discovery of CEP Applications with Evolutionary Computing

Downloaded from: https://research.chalmers.se, 2025-10-15 17:08 UTC

Citation for the original published paper (version of record):
Appetito, G., Medvet, E., Gulisano, V. (2025). Automated Discovery of CEP Applications with
Evolutionary Computing. Debs 2025 Proceedings of the 19th ACM International Conference on
Distributed and Event Based Systems: 33-38. http://dx.doi.org/10.1145/3701717.3730548

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Automated Discovery of CEP Applications with
Evolutionary Computing

Giulio Appetito
Department of Civil Engineering

and Computer Science
Engineering (DICII)

University of Rome Tor Vergata
Roma, Italy

giulio.appetito@alumni.uniroma2.eu

Eric Medvet
Department of Engineering and

Architecture
University of Trieste

Trieste, Italy
emedvet@units.it

Vincenzo Gulisano
Department of Computer Science

and Engineering
Chalmers University of

Technology and University of
Gothenburg

Gothenburg, Sweden
vincenzo.gulisano@chalmers.se

Abstract
Complex event processing (CEP) is key for detecting patterns
in digital systems (e.g., smart grids and vehicular networks)
through platforms like Apache Flink CEP that decouple ap-
plication logic from distributed execution in cloud-to-edge
infrastructures. Yet, a barrier remains: system experts can
identify relevant patterns but often lack programming skills
to implement CEP applications, limiting effective use.
We present a preliminary study on using evolutionary

computation to automate CEP application discovery from
data. Experts provide examples of relevant event sequences
for an evolutionary algorithm to evolve applications to detect
similar patterns. Initial results are promising and highlight
CEP-related challenges that open new research directions.

CCS Concepts
• Information systems→ Data management systems;
• Theory of computation → Evolutionary algorithms;
Streaming models.

Keywords
Complex Event Processing; Evolutionary Computing

ACM Reference Format:
Giulio Appetito, Eric Medvet, and Vincenzo Gulisano. 2025. Au-
tomated Discovery of CEP Applications with Evolutionary Com-
puting. In The 19th ACM International Conference on Distributed
and Event-based Systems (DEBS ’25), June 10–13, 2025, Gothenburg,
Sweden. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3701717.3730548

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
DEBS ’25, Gothenburg, Sweden
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1332-3/25/06
https://doi.org/10.1145/3701717.3730548

1 Introduction
Complex event processing (CEP) is key for monitoring/de-
tecting service status and performance patterns in cloud-to-
edge architectures and digital systems that rely on event-
producing sensors (e.g., smart grids and vehicular networks).
Its growing adoption is driven by the ability to define rich
and complex event patterns through expressive application
programming interfaces (APIs) and decouple application
semantics from deployment and execution, allowing CEP
applications to scale up and out in cloud-to-edge continua.
As CEP systems gain traction, their usage expands from

cloud programmers to system experts with deep domain
knowledge. The latter can identify meaningful patterns, but
often lack skills to program CEP applications in modern
frameworks, a gap limiting broad adoption of CEP systems.

To address this challenge, we study the automated discov-
ery of CEP applications, which has received limited attention
despite the success of automatic program discovery in other
domains [19]. On the one hand, automated discovery can
help find patterns like those marked by an expert. On the
other hand, a pattern found through automated discovery
can support inference through a concise description of the
matching sequences if an underlying common pattern exists.

Specifically, we investigate using evolutionary computation
(EC) to generate applications from sample event sequences
of desired patterns. EC iteratively evolves a population of
candidate solutions through mechanisms inspired by nat-
ural selection (e.g., mutation, crossover, and selection) [7].
In this context, candidate solutions are CEP applications
whose fitness depends on how accurately they detect the
expected patterns in input event streams. For representing
applications in a way that can be evolved with an evolu-
tionary algorithm (EA), we rely on context-free grammar
GP (CFG-GP), an EA where candidate solutions are strings
of a language defined by a user-provided grammar [20]. A
key advantage of CFG-GP is its inherent explainability. Since

33

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0006-1509-2608
https://orcid.org/0000-0001-5652-2113
https://orcid.org/0000-0002-2136-9179
https://doi.org/10.1145/3701717.3730548
https://doi.org/10.1145/3701717.3730548
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3701717.3730548
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701717.3730548&domain=pdf&date_stamp=2025-06-09

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Giulio Appetito, Eric Medvet, and Vincenzo Gulisano

CEP applications are explicitly defined and interpretable, sys-
tem experts can understand/refine the generated solutions,
ensuring alignment with domain-specific requirements.
Our initial study on user access tracking shows this ap-

proach is promising. Key research challenges remain, though:
(1) reducing the vast search space introduced by CEP system
APIs and (2) ensuring scalable fitness evaluations.

Organization: we introduce preliminary concepts about
CEP and EC in Section 2, we cover our problem statement in
Section 3, discuss our initial use case and result in Section 4,
present related work in Section 5, and conclude in Section 6.

2 Preliminaries
2.1 Complex event processing (CEP)
CEP is a stream processing paradigm used to identify key
patterns from streams of events carrying a timestamp and
application-specific attributes. CEP systems like Apache
Flink CEP [8] offer an API which allows users to define
patterns declaratively, specifying which events to detect, in
what order, the time constraints between consecutive or all
events, and event grouping using key-by partitioning.
Key features are contiguity constraints and skip strategies

for overlapping matches. For the former, strict contiguity
requires exact sequence matches; relaxed ignores interven-
ing events but restarts after each match; non-deterministic
relaxed allows overlaps and new matches to start at any
qualifying event. For the latter, different strategies control
the number of matches each event can contribute to. We fo-
cus on the skipToNext strategy, discarding any partial match
starting with an event for which a complete match is found.
Contiguity/skip strategy choices greatly affect performance:

Example 2.1. Suppose a stream carries the number of daily
failed login events from a set of servers. A pattern might
detect servers whose failed logins grow above a threshold
𝑇1, keep growing for 1 to 5 events, and eventually grow over
threshold 𝑇2 during a week, indicating a security threat.

1 P a t t e r n . beg in (" s t a r t ") . where (even t .
f a i l e d _ l o g > 𝑇1)

2 . f o l l owedBy (" midd le ") . t imes (1 , 5)
3 . where (c u r r e n t . f a i l e d _ l o g > prev .

f a i l e d _ l o g)
4 . f o l l owedBy (" f i n a l ") . where (even t .

f a i l e d _ l o g > 𝑇2)
5 . w i th in (Time . weeks (1)) . keyby (even t .

s e r v e r _ i d) ;

Strict contiguity matches only non-decreasing sequences.
Relaxed contiguity allows sequences with occasional drops.
Non-deterministic relaxed contiguity enables overlapping
matches, potentially causing a combinatorial explosion and
high computational cost.

2.2 Evolutionary computation (EC)
EC [7] encompasses optimization methods inspired by natu-
ral evolution; EAs implement these via iterative, population-
based search. Given a search space 𝑆 and a fitness function
𝑓 : 𝑆 → R (we assume, without loss of generality, to be max-
imized), an EA: (1) generates a population of many candidate
solutions (i.e., elements of 𝑆 , also called individuals) with
some non-deterministic initialization procedure, (2) repeats
the following steps until some termination criterion is met:
(i) it builds an offspring of many new individuals starting
from the current population (called parents) by repeatedly
selecting good individuals and modifying or combining them
(this step is called reproduction), (ii) it merges the offspring
and the parents to form a larger population, and (iii) trims
to the size of the initial population by selecting survival in-
dividuals. Individual selection for reproduction and survival
is specific to each EA, but is generally independent of the
search space 𝑆 . In both cases, selection is non-deterministic
but based on the comparison of the fitness of pairs of indi-
viduals: i.e., given an 𝑠1, 𝑠2 |𝑓 (𝑠1) > 𝑓 (𝑠2), 𝑠1 has a greater
probability of reproduction or surviving than 𝑠2.
The iterative procedure ends after 𝑛evals evaluations of 𝑓 .

Themechanisms according to which individuals are modified
or recombined are 𝑆-dependent and called genetic operators.
Typical operators include mutation 𝑜mut : 𝑆 → P(𝑆) and
crossover 𝑜xover : 𝑆 × 𝑆 → P(𝑆), where P(𝑆) is the set of
probability distributions over 𝑆 . In practice, 𝑜mut can be seen
as a non-deterministic operator over 𝑆 and 𝑜xover as a non-
deterministic bi-operator. The population initialization step
can be formalized as a probability distribution over 𝑆 .
The genetic operators 𝑜mut, 𝑜xover (and the initialization

step) are key in making an EA capable of solving a problem,
establishing how the population moves (and where it starts
from) in 𝑆 , hopefully towards a point 𝑠★ which maximizes 𝑓 .
Ideally, they should have a good locality, i.e., make similar
solutions have similar fitness, while granting the closure
property, i.e., ensuring that each operator application pro-
duces a solution in 𝑆 . Meeting these requirements for an
arbitrary 𝑆 is hard. We use an EA, CFG-GP, which meets this
challenge with an indirect representation of solutions.

CFG-GP [20] is a form of genetic programming (GP) [11]
(an EA initially adopted to evolve computer programs) where
solutions are strings of a language defined by a context-free
grammar (CFG). Internally, CFG-GP manipulates solutions
through their genotypes, which are production trees.

Formally, a CFG 𝐺 is a tuple (𝑇, 𝑁, 𝑅, 𝑛0) where 𝑇 is a set
of terminal symbols, i.e., the alphabet including all the sym-
bols the strings of the language L(𝐺) are made of, 𝑁 is a
set of non-terminal symbols (disjoint from 𝑇), 𝑛0 ∈ 𝑇 ∪ 𝑁 is
the starting symbol, and 𝑅 is a set of production rules. Each
production rule is composed of a left-hand-side non-terminal

34

Automated Discovery of CEP Applications with Evolutionary Computing DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

symbol and a right-hand-side sequence of terminal or non-
terminal symbols. A common way to concisely represent a
grammar is through the Backus-Naur form (BNF). In this
work, we designed a grammar for CEP applications: we in-
clude symbols and rules for representing fixed constructs (as,
e.g., the where and followedBy clauses) and others for rep-
resenting variable parts depending on the problem at hand
(as, e.g., the event . failed_log property name).

In CFG-GP, genotypes are production trees: ordered trees
where nodes are labeled with symbols in 𝑁 ∪ 𝑇 , the root
with 𝑛0, terminal nodes with symbols in𝑇 , and non-terminal
nodes with symbols in 𝑁 . Each non-terminal node labeled
with𝑛 ∈ 𝑁 has children matching (in order and labels) one of
the production rules having 𝑛 as left-hand side. By traversing
terminal nodes from the first to the last, one can obtain a
string of the language L(𝐺) defined by 𝐺 .

CFG-GP’s operators act directly on production trees, ran-
domly replacing a subtree with a newly generated one com-
patible with𝐺 and the replaced subtree’s root (mutation), and
randomly exchanging two compatible subtrees of the two
parents (crossover). The initialization procedure produces
random production trees with depth in a given interval.
Concerning the EA components not depending on 𝑆 , in

this work we use a standard version of GP backing CFG-
GP. Namely, we use tournament selection with size 𝑛tour in
reproduction, truncation for survival selection, a population
of 𝑛pop individuals, and an offspring with the same size 𝑛pop.
When doing reproduction, we apply the crossover operator
with probability 𝑝xover, otherwise, we apply mutation.

3 Evolution of complex event processing
applications

Figure 1 overviews the automated discovery of CEP appli-
cations we envision: 1 Data sampling: A sample event
dataset is created from the live input stream. 2 Identifi-
cation of sample patterns: An expert marks relevant event
sequences. 3 Automated customization of the grammar: The
expert possibly selects some attributes of interest or imposes
bounds to thresholds or durations, which are then reflected
in the problem-dependent parts of the grammar. 4 Evo-
lutionary optimization: CFG-GP runs an evolution with the
customized grammar and a fitness function working on the
sample dataset through the CEP engine. 5 Deployment of
CEP applications: The best evolved CEP application is de-
ployed on live data. 6 Continuous drift monitoring: The
expert monitors the CEP application performance, assessing
whether new applications are needed or if some are obsolete.

Our preliminary study focuses on steps 2 – 4 . We
simulate 2 by defining a target CEP application and
marking all matching events as those identified by an expert.
Then, 3 – 4 run the evolutionary process to generate CEP

CEP platformlive data stream
sampling1

sample
dataset

system
expert

identification of sample patterns2

3 extraction of genotype building blocks EC platform

evolutionary
optimization4 fitness eval. - sample data

deployment5

continuous drift monitoring6 patterns

Figure 1: CEP application discovery process (overview).

applications. We analyze these steps to evaluate the appli-
cability of EC (i.e., the quality of candidate applications and
the computational cost to assess their fitness) and identify
the challenges arising from the joint use of a CEP and an EA.

We assess quality using the 𝐹𝛽 score, a common effective-
ness measure for information retrieval and binary classifi-
cation. 𝐹𝛽 is a weighted harmonic mean of precision (Prec)
and recall (Rec), defined as 𝐹𝛽 = (1 + 𝛽2) Prec Rec

𝛽2Prec+Rec , where 𝛽
determines the relative precision vs. recall importance. In
our context, the precision is the rate of sequences the appli-
cation matches that are actually to be matched; the recall
is the rate of sequences to be matched that are matched by
the application. We set 𝛽 = 1 and hence operate with the 𝐹1
score as fitness since both precision and recall are equally
critical for complex events detection.
The computational cost for each candidate application is

defined as the time required to deploy said application at the
CEP engine, execute it, collect the matched sequences, and
compare them with the ones marked by the system expert.
Concerning the grammar 𝐺 , we design it to contain the

following constructs from the API of Flink CEP:
Event pattern An individual event within a sequence, the

fundamental building block of a CEP application.
Simple conditions Conditions applied to an event, deter-

mining whether it should be included in the pattern
based solely on its attributes. Multiple conditions can
be combined using boolean operators (and, or).

Quantifiers The expected number of occurrences of an
event in a pattern, including:
• oneOrMore(), for one or more occurrences of an
event;

• optional () , to possibly match but not require an
event;

• times(n), tomatch exactly n occurrences of an event;
• times(a , b) to specify that the event occurs between
a and b times (inclusive).

• timesOrMore(n), to match an event n or more times.
Contiguity conditions Conditions on how events are

matched with one another, including:
• next () , for strict contiguity, i.e., consecutive events;
• followedBy(), for relaxed contiguity;
• followedByAny(), for non-deterministic relaxed con-
tiguity, allowing multiple possibly overlapping se-
quences.

35

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Giulio Appetito, Eric Medvet, and Vincenzo Gulisano

Time constraints Constructs like within(time), imposing
a maximum time window for a sequence to match a
pattern or to be discarded otherwise.

Keying mechanism Constructs like key_by(key), enabling
the partitioning of event streams by a set of attributes.

Our code is found at https://zenodo.org/records/15299657.

4 Use case and Preliminary Results
4.1 Experimental setup
Our use cases focus on user access tracking on a server
based on a live stream of login attempts. The sample dataset
consists of≈ 600 login events, each a tuple carrying the UNIX
time of the attempted login, the IP address attempting the
login, and a Boolean indicating if the login was successful.

For the first use case, we aim to identify sequences of failed
logins followed by a successful login for each unique IP ad-
dress in the sample dataset (≈ 90 distinct IPs). 100 sequences
are matched, with lengths ranging from 2 to 57 tuples. For
the second use case, we aim to identify 5 to 10 failed logins
(from any IP) within 10 s. The number of matched sequences
is 674, with sequence lengths ranging from 5 to 10 tuples.

For both experiments, we choose the skipToNext strategy
(see Section 2.1). This choice reduces the computational cost
required by looser skip strategies in which, e.g., every pos-
sible match is potentially emitted. All experiments run on
a server equipped with an Intel(R) Core(TM) i7-4790 CPU
running at 3.60GHz. The system features 4 physical cores
and 8 logical threads. The machine has 8GB of memory and
runs Java 21. We utilize JGEA [16] for the CFG-GP implemen-
tation and Apache Flink CEP [8] for the CEP engine. JGEA
evaluates concurrently the fitness of candidate individuals in
the same iteration of the EA: we set it to use all the 8 logical
threads. We set a limit of 𝑛evals = 5 000 fitness evaluations
as the stopping criterion for CFG-GP and we set 𝑛pop = 100,
𝑛tour = 5, and 𝑝xover = 0.8 (widely adopted settings for GP).
To avoid handling too large trees, we enforce a maximum
depth 𝑑max = 16 for the production trees built in the process.
We deploy Apache Flink CEP using Docker Compose,

with separate Docker containers for the JobManager and
TaskManager. Each TaskManager is configured with 16 Task
Slots, ensuring efficient parallel processing of Flink CEP jobs
(EA individuals). We allocated 2GB of process memory for
the JobManager and 5GB for the TaskManager.
To minimize computational costs in the experiments, we

capped each individual evaluation at 60 s. We determined
this time limit based on the observed average execution time
of Flink CEP jobs when evaluating different individuals, en-
suring that only a negligible number of cases were excluded,
thereby minimally impacting the EA behavior. The presence
of CEP patterns exceeding the 60 s threshold is because, upon
reaching the timeout, the Flink CEP client signals the Flink
CEP cluster to cancel the job, but additional time is required
to complete the cancellation once the request is issued.

0 2 000 4 000
0

0.5

1

0 2 000 4 000
N. of fitness evaluations

𝐹
1

Use case 1

N. of fitness evaluations

Use case 2

Figure 2: Fitness 𝐹1 of the best individual in the popula-
tion during the evolution for the two use cases: the line
shows the median across 10 repetitions of the evolu-
tionary optimization; the shaded area shows the first-
third quartile range.

0 20 40 60 80
0
2
4
6
8
10

0 20 40 60 80
Duration [s]

D
en
si
ty

[×
10

−2
] Use case 1

Duration [s]

Use case 2

Figure 3: Distribution of the evaluation time for all the
CEP applications generated during the 10 evolutionary
runs for the two considered use cases.

4.2 Results and discussion
We run CFG-GP 10 times for each use case by varying EA’s
random seed. Figure 2 shows the fitness (i.e., 𝐹1) of the best
individual in the population (median/interquartile across rep-
etitions) during the evolution. Figure 3 shows the distribution
of the evaluation time for all individuals (i.e., applications).
Results show that EC can be used to automate the discov-
ery of CEP applications, though its current effectiveness is
limited—some of the repetitions do not find any application
with an 𝐹1 greater than zero. Several challenges highlight
open research directions in the EC for CEP context, though.

Long evaluation times for fitness assessment. As Figure 3
shows, evaluating the fitness of candidate applications is
computationally expensive. We believe that this is due to
(a) our non-trivial practical settings, where JGEA submits ap-
plications to a Flink CEP cluster not running in the same JVM,
and (b) the potential high complexity of candidate applica-
tions. While the former cause might be mitigated by running
the CEP engine closer to JGEA, this might only change the
trade-off between deployment time (shorter, because net-
work communication is faster) and running time (potentially
longer, since the engine would run on a single machine). For
the latter cause, several techniques could reduce the complex-
ity of generated artifacts by, e.g., simplifying them during

36

https://zenodo.org/records/15299657

Automated Discovery of CEP Applications with Evolutionary Computing DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

or after the evolution [6], imposing a secondary objective
other than just fitness [5], and enforcing simplicity directly
in the search space [4]. Further research can thus study the
benefits of these approaches in this context.

A key observation is that, for a candidate application, low
fitness does not necessarily imply low computational cost. In
early generations, individuals with poor fitness may define
patterns that match most of the input data most of the time,
leading to substantial computational overhead. It is thus
important to implement early termination mechanisms. If
certain patterns are not detected at specific positions within
a stream, their evaluation could be, e.g., halted early. Also,
initial fitness evaluations could run on portions of the sample
dataset, expanding only when individuals exceed a prede-
fined fitness value. Another strategy is threshold-based early
termination to stop evaluations if the number of detected
patterns exceeds a limit over a portion of the stream.

Efficient exploration of large search spaces. The search
space for candidate applications is inherently large due to
the extensive APIs provided by CEP systems, composable in
multiple ways. In our setup, the search space is narrowed by
automating the extraction of information from sample pat-
terns. System experts can be prompted to specify constraints
like: (a) Should all attributes be used, or can some be ignored?
(b) Are constant-value attributes within a pattern possible
key-by attributes? (c) Do overlapping sequences represent
instances of the same pattern? An open research question
remains: how can an optimal API subset be automatically se-
lected (at least initially) to reduce the search space and boost
evolutionary approaches’ efficiency for CEP applications?
Another observation stems from the difference between

the results of use case 1 and 2. While for the former the
fitness continuously increases (in median) to good values,
it soon stagnates for the latter to a rather low value for all
the repetitions. We believe this might be due to the popu-
lation falling in a local optimum, i.e., an application that is
relatively good but far from the optimal one. Previous works
exist where this problem has been addressed successfully:
for example, in the context of the evolutionary inference
of regular expressions, [2] proposes to split the problem of
learning a single regex for many kinds of desired extractions
into several simpler problems, each with more homogeneous
extractions. We leave to future work the investigation about
the use of this approach in the context of CEP applications.

5 Related work
To the best of our knowledge, no other studies investigate
CEP applications discovery from data using EC and tested on
CEP engines widely used in production systems. There are,
however, other works for (partially) automatic discovery of

applications and other usages of EC for inferring applications,
or other artifacts (as, e.g., regular expressions) from data.

CEP applications discovery alternatives. While we rely on
EC to evolve applications from sample event sequences, other
studies explored, e.g., rule-based learning, machine learning
classification, and deep learning-based pattern recognition.

Margara et al. [14] propose iCEP, a framework for automat-
ing application generation from historical event traces. iCEP
refines constraints iteratively to extract event patterns using
a modular approach to define time windows, event attributes,
and sequence constraints. Unlike traditional machine learn-
ing, it models event traces as sets of constraints.

Mehdiyev et al. [17] explore machine learning techniques
for automatic application extraction. They apply rule-based
classifiers to identify event patterns and match complex
event rules, leveraging historical data to improve accuracy
and reduce manual effort in defining applications.
Liu et al. [13] present a framework that integrates a two-

layer LSTM with an attention mechanism and a decision
tree-based data mining algorithm, enabling the automatic
extraction of meaningful applications from IoT data streams,
with a specific application to air pollution forecasting.

Unlike our work, such approaches as well as others
such as [9, 10, 12], while proposing relevant techniques,
are not evaluated with an engine like Apache Flink CEP,
which is widely used in production systems. Evaluating with
production-level engines is crucial not only to ensure the ap-
plicability and usefulness of the results in practical settings
but also to realistically assess the computational costs associ-
ated with the fitness evaluation of candidate solutions, which
impacts the feasibility and scalability of such approaches in
real-world deployments. The only exception is [13] which,
however, only refers to the final deployment of a CEP ap-
plication on Flink CEP without assessing its computational
costs or detailing which Flink CEP APIs are being used.

EC for other applications generation. For their ability to op-
timize over non-trivial search spaces, EAs have been widely
used to infer artifacts acting as rules, binary classifiers, or ex-
tractors from data, including regular expressions [3], signal
temporal logic formulae [18], and access control policies [15].
In most cases, the space of solutions can be defined as a

regular language, hence through a CFG. Also, the quality
of candidate solutions is often assessed by applying them
to some data and measuring how close their outcome is
to a target outcome. For example, in [3], where the goal
is to synthesize a regular expression that matches all and
only the text snippets marked by the user, the quality of
candidate solutions is assessed using the precision at the
level of matches and the character level.

Our work shares several aspects of other studies applying
EAs for inferring rules from data: the definition of the search

37

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Giulio Appetito, Eric Medvet, and Vincenzo Gulisano

space through grammar and the use of understandable infor-
mation retrieval indexes for driving the search. However, we
remark that our search space is particularly expressive due
to the large APIs of CEP systems. Also, as applying a CEP
application may be computationally expensive, as it may
match a large number of events, special care has to be taken
when exploring the space of CEP applications with an EA.
From this point of view, our scenario resembles that of signal
temporal logic [1]. Indeed, the similarity of this framework
to stream processing has been noted [4].

6 Conclusions and future work
Our initial study aims at simplifying the design of CEP appli-
cations for system experts with deep domain knowledge but
lacking programming skills. We thus explore how EC can
automate the discovery of CEP applications, with experts
providing sample patterns from a dataset and automatically
evolving candidate applications that detect similar patterns.
To the best of our knowledge, ours is the first study that

investigates the combined use of EC and CEP with an empiri-
cal assessment based on Apache Flink CEP, a widely adopted
production-level framework. Our initial results are promising
and can stimulate research (1) towards improving feedback
mechanisms based on active learning, or integrating hu-
man-in-the-loop feedback through grammar customization
(pre-optimization) and direct marking of example sequences,
and (2) towards further enhancing the scalability of fitness
evaluation for candidate applications when jointly using EC
and CEP frameworks in evolutionary processes.

Acknowledgments
Work supported by the Marie Skłodowska-Curie Doctoral
Network project RELAX-DN, funded by the European Union
under Horizon Europe 2021-2027 Framework Programme
Grant Agreement number 101072456, Chalmers AoA Energy
projects DEEP and INDEED, the Swedish Energy Agency
(SESBC) project TANDEM, the Wallenberg AI, Autonomous
Systems and Software Program and Wallenberg Initiative
Materials for Sustainability project STRATIFIER.

References
[1] Ezio Bartocci, Cristinel Mateis, Eleonora Nesterini, and Dejan Nick-

ovic. 2022. Survey on mining signal temporal logic specifications.
Information and Computation 289 (2022), 104957.

[2] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao.
2015. Learning text patterns using separate-and-conquer genetic pro-
gramming. In Genetic Programming: 18th European Conference, EuroGP
2015, Copenhagen, Denmark, April 8-10, 2015, Proceedings 18. Springer,
16–27.

[3] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tar-
lao. 2016. Inference of regular expressions for text extraction from
examples. IEEE Transactions on Knowledge and Data Engineering 28, 5
(2016), 1217–1230.

[4] Luca Bortolussi, Vincenzo Gulisano, Eric Medvet, and Dimitrios
Palyvos-Giannas. 2019. Automatic translation of spatio-temporal
logics to streaming-based monitoring applications for IoT-equipped
autonomous agents. In Proceedings of the 6th International Workshop
on Middleware and Applications for the Internet of Things. 7–12.

[5] Karina Brotto Rebuli, Mario Giacobini, Sara Silva, and Leonardo Van-
neschi. 2023. A comparison of structural complexity metrics for ex-
plainable genetic programming. In Proceedings of the Companion Con-
ference on Genetic and Evolutionary Computation. 539–542.

[6] Lulu Cao, Zimo Zheng, Chenwen Ding, Jinkai Cai, and Min Jiang.
2023. Genetic programming symbolic regression with simplification-
pruning operator for solving differential equations. In International
Conference on Neural Information Processing. Springer, 287–298.

[7] Kenneth De Jong. 2017. Evolutionary computation: a unified approach.
In Proceedings of the Genetic and Evolutionary Computation Conference
Companion. 373–388.

[8] flinkcep [n.d.]. Apache Flink CEP. https://nightlies.apache.org/flink/
flink-docs-release-1.20/docs/libs/cep/ Accessed:2024-02-28.

[9] Lars George, Bruno Cadonna, and Matthias Weidlich. 2016. Il-miner:
Instance-level discovery of complex event patterns. Proceedings of the
VLDB Endowment 10, 1 (2016), 25–36.

[10] Sarah Kleest-Meißner, Rebecca Sattler, Markus L Schmid, Nicole
Schweikardt, and Matthias Weidlich. 2023. Discovering Multi-
Dimensional Subsequence Queries from Traces–From Theory to Prac-
tice. In BTW 2023. Gesellschaft für Informatik eV, 511–533.

[11] John R Koza. 1994. Genetic programming as a means for programming
computers by natural selection. Statistics and computing 4 (1994),
87–112.

[12] Yan Li and Tingjian Ge. 2021. Imminence monitoring of critical events:
A representation learning approach. In Proceedings of the 2021 Interna-
tional Conference on Management of Data. 1103–1115.

[13] Yuan Liu, Wangyang Yu, Cong Gao, and Minsi Chen. 2022. An Auto-
Extraction Framework for CEP Rules Based on the Two-layer LSTM
Attention Mechanism: A Case Study on City Air Pollution Forecasting.
Energies 15, 5892 (2022). https://doi.org/10.3390/en15165892

[14] Alessandro Margara, Gianpaolo Cugola, and Giordano Tamburrelli.
2014. Learning From the Past: Automated Rule Generation for
Complex Event Processing. In Proceedings of the 8th ACM Interna-
tional Conference on Distributed Event-Based Systems (DEBS). 47–58.
https://doi.org/10.1145/2611286.2611289

[15] Eric Medvet, Alberto Bartoli, Barbara Carminati, and Elena Ferrari.
2015. Evolutionary inference of attribute-based access control poli-
cies. In Evolutionary Multi-Criterion Optimization: 8th International
Conference, EMO 2015, Guimarães, Portugal, March 29–April 1, 2015.
Proceedings, Part I 8. Springer, 351–365.

[16] Eric Medvet, Giorgia Nadizar, and Luca Manzoni. 2022. JGEA: a modu-
lar java framework for experimenting with evolutionary computation.
In Proceedings of the genetic and evolutionary computation conference
companion. 2009–2018.

[17] Nijat Mehdiyev, Julian Krumeich, David Enke, Dirk Werth, and Peter
Loos. 2015. Determination of Rule Patterns in Complex Event Process-
ing Using Machine Learning Techniques. Procedia Computer Science
61 (2015), 395–401. https://doi.org/10.1016/j.procs.2015.09.168

[18] Federico Pigozzi, Laura Nenzi, and Eric Medvet. 2024. BUSTLE: a
Versatile Tool for the Evolutionary Learning of STL Specifications
from Data. Evolutionary Computation (2024), 1–24.

[19] Dominik Sobania, Dirk Schweim, and Franz Rothlauf. 2022. A compre-
hensive survey on program synthesis with evolutionary algorithms.
IEEE Transactions on Evolutionary Computation 27, 1 (2022), 82–97.

[20] Peter A Whigham. 1995. Inductive bias and genetic programming.
(1995).

38

https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/libs/cep/
https://nightlies.apache.org/flink/flink-docs-release-1.20/docs/libs/cep/
https://doi.org/10.3390/en15165892
https://doi.org/10.1145/2611286.2611289
https://doi.org/10.1016/j.procs.2015.09.168

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 cep
	2.2 ec

	3 Evolution of complex event processing applications
	4 Use case and Preliminary Results
	4.1 Experimental setup
	4.2 Results and discussion

	5 Related work
	6 Conclusions and future work
	Acknowledgments
	References

