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Abstract. We introduce a new initialization method for 3D Gaus-
sians used in 3D occupancy estimation, a key task in autonomous
driving that involves identifying semantic elements in a vehicle’s sur-
roundings and accurately locating them in space. Our approach lever-
ages distance sensor data, such as from lidar or radar, to place 3D
Gaussians using farthest point sampling, ensuring coverage of mean-
ingful scene areas while avoiding redundant representation of empty
space. Unlike prior work that either densely voxelizes the scene or
spreads 3D Gaussians uniformly, our method uses real sensor signals
to drive object-centric placement, resulting in a more efficient and
precise representation of the environment. We further enhance per-
formance through a multimodal attention mechanism between 3D
Gaussian features and distance sensor inputs, improving the integra-
tion of geometry and semantics. Our results show that this strategy
consistently achieves state-of-the-art performance in 3D occupancy
estimation. This contributes to a scalable solution for real-world de-
ployment in autonomous vehicle perception systems, highlighting
the potential of sensor-informed initialization for spatial reasoning
in dynamic environments.

1 Introduction

In autonomous driving, robust scene understanding is critical for safe
and reliable operation. To achieve this, modern vehicles are equipped
with a diverse set of multimodal sensors such as cameras, lidar, and
radar strategically placed to provide a 360-degree view of the sur-
rounding environment. These sensors capture complementary types
of information: visual cues from cameras, depth and surface data
from lidar, and velocity or material-specific reflections from radar.
However, integrating these distinct sensor modalities into a unified
and consistent perception of the environment presents a significant
challenge. The perception system must not only reconcile differences
in resolution, range, and signal characteristics, but also fuse them to
predict both the semantic content (e.g., object categories) and geo-
metric structure (e.g., shape and location) of the scene.

A key task in this context is 3D occupancy prediction, which aims
to represent both what is in the scene and where it is located in space.
Traditional approaches [2, 3] often use dense voxel grids, where each
voxel encodes a learned feature vector regardless of whether the
voxel corresponds to an occupied or empty region. While effective
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Figure 1: Architecture of Guided Gaussians (G?). Distance signals
from lidar and/or radar are used to initialize the spatial means of the
3D Gaussians. Gaussian queries Q are employed to iteratively up-
date the properties of the 3D Gaussians. Encoded distance features
are integrated via cross-attention with the Gaussian queries Q and the
image features using the cross-attention mechanism from the Gaus-
sianFormer [1] baseline.

to some extent, this method is computationally expensive and ineffi-
cient, particularly in sparse outdoor driving environments.

To address this issue, recent works [1, 4], inspired by advances
in 3D Gaussian splatting [5], use an alternative object-centric repre-
sentation. These methods propose a sparse set of semantic 3D Gaus-
sians to model scenes more efficiently, capturing the relevant struc-
ture without densely populating empty space. This change allows for
more scalable and expressive modeling of complex real-world driv-
ing scenes. These methods rely on the initialization of the spatial
positions of the 3D Gaussians as a critical component.

GaussianFormer [1] learns positions during training, while Gaus-
sianFormer2 [4] samples them based on a learned occupancy proba-
bility distribution. Each method conduct iterative refinement of the



Gaussian mean through learned Gaussian queries. Although both
works improve the performance of scene modeling, they overlook
the raw distance signals from sensors such as lidar and radar, which
give a valuable source of spatial information and are usually available
in autonomous driving datasets. These signals inherently encode the
scene structure of the non-empty areas and can serve as an informa-
tive prior for semantic 3D Gaussian placement.

In this work, we introduce Guided Gaussians (G?) (see Figure 1), a
method that builds on the GaussianFormer framework [1] by explic-
itly leveraging multimodal distance signals to improve initialization
and fusion. First, we propose a novel initialization strategy that uses
Farthest Point Sampling [6] on lidar and/or radar distance returns
as a prior to guide the placement of 3D Gaussians. This helps the
model focus on the regions that are more likely to contain meaningful
scene objects. Second, we incorporate the multimodal cross-attention
mechanism [7] that further facilitates the interaction between Gaus-
sian queries and features extracted from distance signals, allowing
more effective multimodal fusion.

Through extensive experiments, we demonstrate that this sensor-
guided initialization strategy, when combined with multimodal atten-
tion, significantly boosts performance on the 3D occupancy predic-
tion task. Our approach not only improves upon the baseline Gaus-
sianFormer [1] but also outperforms other multimodal fusion meth-
ods for 3D Occupancy Prediction in terms of accuracy.

Our contributions are as follows:

e We propose a distance-signal-based initialization method for 3D
Gaussians, improving their spatial alignment with occupied re-
gions.

e We introduce a multimodal attention mechanism between Gaus-
sian queries Q and distance sensor signals to enhance semantic
and geometric fusion.

e We utilize less than ten percent of 3D Gaussians compared to
GaussianFormer [1] baseline while achieving higher performance.

e We achieve state-of-the-art performance on 3D occupancy predic-
tion benchmarks, compared to existing unimodal and multimodal
approaches.

2 Related work

Semantic occupancy prediction has emerged as a core component
of scene understanding in autonomous driving, enabling systems to
reason about both free space and semantic content in the 3D envi-
ronment. Early approaches often relied on dense voxel grids [2, 3],
which discretize the scene into regularly spaced cells and learn fea-
tures for each voxel. While effective in representing detailed struc-
ture, these methods are computationally expensive and suffer from
poor scalability, particularly in large-scale or outdoor scenes where
most of the space is empty.

To improve efficiency, more recent works have shifted toward
sparse representations. Inspired by 3D Gaussian splatting [5], Gaus-
sianFormer [1] and its extension GaussianFormer2 [4] represent the
scene using a set of semantic 3D Gaussians that can be rendered
onto voxel grids via splatting. These models can reduce unnecessary
computation in empty space by concentrating representation on re-
gions of actual occupancy. However, their initialization strategies ei-
ther learn Gaussian positions during training or sample from learned
occupancy distributions, which do not take full advantage of spatial
priors readily available from onboard sensors.

A separate line of work explores the integration of multimodal sen-
sor data, particularly cameras, lidar, and radar, in order to build more

robust scene representations. Fusion strategies range from early fu-
sion, where raw signals are jointly processed, to late fusion tech-
niques like BEVFusion [8] that align image and lidar features in
bird’s-eye view. BEVFusion4D [9] improves this by using lidar-
guided view transformations but assumes all modalities are always
available.

Other works have looked into radar-centric or radar-enhanced
perception. CRN [10] uses radar view transformations and cross-
attention to enhance visual features, and SimpleBEV [11] rasterizes
sensor signals into a unified grid before lifting them into 3D. How-
ever, methods that rely heavily on convolutional backbones often
struggle with capturing long-range dependencies and global context.
To overcome this, Deeplnteraction [12] introduces attention-based
modality interaction but suffers from scalability issues as the number
of modalities increases.

Multimodal robustness has become a key research direction. Occ-
Fusion [13] is a recent example that explicitly fuses camera, lidar,
and radar data to improve performance under adverse conditions.
Similarly, OpenOccupancy [14] establishes a benchmark for multi-
modal occupancy prediction, underscoring the value of integrating
multiple sensing sources.

Generative approaches are also gaining traction. OccGen [15] for-
mulates occupancy prediction as a generative task using a denoising
diffusion model to recover fine-grained structure. Such methods offer
not only strong performance but also uncertainty estimates, which are
particularly valuable for safety-critical applications like autonomous
driving.

Our method Guided Gaussians (G?) brings a new perspective
by unifying sensor integration, and reasoning within a single 3D
Gaussian-based framework. By directly initializing 3D Gaussians
using raw sensor signals and refining them through iterative trans-
former updates, our approach tightly couples sensor observations
with geometric structure from the very first layer. This enables effi-
cient attention, compact representations, and interpretability without
sacrificing performance, highlighting a path forward for structured
and scalable 3D perception.

3 Method

We introduce Guided Gaussian (G?), a method that effectively lever-
ages geometric information from distance signals, lidar and/or radar,
to guide the placement of 3D Gaussian towards spatial regions with
a high likelihood of occupancy. Furthermore, G? additionally ex-
ploits the semantic content of these distance signals through a cross-
attention mechanism with Gaussian queries Q and fuses them with
features of multiview images to enhance the semantic understanding
of scenes (see Figure 1).

3.1 3D Gaussian Prior

The 3D Gaussian is described as a set of properties m € R3 s €
R%, r € R* ¢ € RI°l where m is a mean i.e. spatial position, s
is scale, r is rotation and c is semantic embedding. To initialize the
spatial means of the 3D Gaussians in a way that aligns with the oc-
cupied regions of the scene, we adopt a two-stage strategy that com-
bines guided sampling and random initialization and it is performed
only once, prior to the start of the transformer block iterations.

The guided component leverages raw distance signals from lidar
and/or radar to select a subset of meaningful spatial locations using
Farthest Point Sampling (FPS) [6], while the remaining 3D Gaus-
sian means are initialized randomly to preserve diversity. We choose
FPS to represent the distribution of points more evenly across the



occupied space, ensuring that the selected points are spread out and
well-distributed, especially in areas with varying density.

We denote the set of 3D points obtained from the distance signal as
P ={p1,...,Pv} C R?®V, and the total number of 3D Gaussians to
initialize as 7', of which is the number of guided samples L (L < T)
selected through FPS.

FPS algorithm to initiate Gaussian means begins by randomly se-
lecting a seed point p, € P, which forms the initial element of the
guided set Mguidea. The selected point is removed from P, and the
Euclidean distances from all remaining points to p, are computed.
In each iteration, the algorithm updates the distance D; for every re-
maining point in P, setting it to the minimum of its current value
and the distance to the most recently selected point. This ensures that
each point in P always reflects its closest distance to any of the se-
lected guided means. The point with the greatest minimum distance
that is farthest from the current set of guided samples is then chosen
and added to the set Muidged, and removed from P.

Once L such guided samples are chosen, the remaining 7" — L
3D Gaussian means are initialized by randomly sampling spatial po-
sitions from a predefined spatial domain. The guided and random
samples are concatenated to form the full set of initialized 3D Gaus-
sian means, i.e., M = Muided U Mandom.

This hybrid initialization approach ensures that a portion of the 3D
Gaussians are placed in the informative regions of the scene, while
still retaining flexibility to capture unobserved or ambiguous regions
during training. The complete 3D Gaussian initialization is summa-
rized in Algorithm 1.

Algorithm 1 Guided Initialization of 3D Gaussian Means

Require: Distance signal point set ? = {pi,...,pv} C R*Y,
total number of Gaussians 7", number of guided samples L (L <
T)
Ensure: Initialized Gaussian means M = {my,..., mr} C R3T
: Randomly select p,, € P and set Migea < {Pv}
: Remove p,, from P
: Compute D; = ||pi — po||2 forall p; € P
for! =2to L do
for each i = 1to |P| do
D; + min(D;, ||p; — my—_1]|2)
end for
j + argmax; D;
m; < pj
Mguided — Mguidea U {my }
Remove p; from P
: end for
: Initialize Mangom With (7" — L) random points in 3D space
: Concatenate: M < M guiged U Miandom
: return M
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3.2 Feature Encoding

We incorporate both image data from multi-view placed cameras and
point cloud data from lidar and/or radar. Image data are denoted as
I € RVXOXHXW "where N, C, H, W stand for the number of
views, channels, height and width respectively. Distance signals from
lidar and radar are noted as D® € R¥*¥XCD where b is signal type
(lidar or radar), S is number of sweeps, K is the number of distance
signal signatures and C'p is the number of distance signal features.
Spatial feature representations are extracted by the image encoder
Enc;(-) and denoted as Ip = Encr(I) € RV*ErXCrxHpxWr

where Lr and Cr are the number of image feature levels and fea-
ture channel while W and Hr are width and height at each image
feature level. Similar to [16], the distance signal encoder Encp(-)
consists of three components: Voxelization, Backbone and FPN
[17]. It generates distance signal features D% = Encp,(D?) €
REF*HEXWr where C is feature channel while Wy and Hp are
spatial width and height of the distance signal feature map repre-
sented in Bird’s Eye View (BEV). The distance signals are thereby
reduced in the vertical dimension and represented as a 2D BEV fea-
ture grid.

3.3  Multimodal Cross-attention

Building upon the GaussianFormer [1], we follow its image cross-
attention module to extract semantic information from images via
Gaussian queries Q and image features Ir from image encoder
Enc;(-), and update 3D Gaussian properties.

To incorporate the GaussianFormer framework with additional
distance signal, we introduce a multimodal cross-attention mecha-
nism that allows the Gaussian queries Q to attend towards the dis-
tance signal features D’}. Motivated by [7], the multimodal attention
module adopts deformable attention [18], where the 3D Gaussians’
mean m serves as reference points m,. Since the distance features
are represented in the BEV space, the vertical dimension of the Gaus-
sian mean m is ignored. Gaussian queries QQ are used as attention
queries z4. From the attention queries z,, we generate multimodal
attention weights Ajpqr and reference point offsets Amyppqx as in
[18]. Here, h stands for attention heads, b distance signals, g for
query and k sampling coordinates index. Sampling coordinates are
defined as ms; = m, + Amyyg, and normalized my € [0,1]2
for bilinear sampling operator. Distance features D% are sampled
and attended using sampling coordinates m; and attention weights
Ak, aggregated over the spatial features space, distance signals
and different attention heads. The procedure is shown in the Equa-
tion 1. Wy, represents parameter matrix applied to sampled signals
and attention head.

CA(qu mg, D?«“) =
H B K
Z Z Z Anpgks Wiy D% (my + Amppgr), (1)

We integrate this cross-attention module for the distance signals
with the transformer of GaussianFormer [1], and it is followed by a
feed-forward network and layer normalization [19] as in [1], thereby
enhancing the model to fuse and interpret multimodal information.

3.4 Refinement

Following GaussianFormer [1], transformer block updates the 3D
Gaussian means using Gaussian queries Q at each iteration of
the refinement steps. Gaussian queries Q encode 3D information
through 3D sparse convolution, image cross-attention and multi-
modal cross-attention when using distance signals. A multi-layer per-
ceptron (MLP) decodes each query into updated Gaussian properties
by adding to a residual 1 to the Gaussian m mean and replacing the
scale s, rotation r, and semantic features c. This residual refinement
ensures consistent mean m updates across transformer blocks, while
substitution of other properties avoids vanishing gradient issues that
could be caused by sigmoid and softmax activation functions.

3.5 Gaussian-to-Voxel splatting

We follow GaussianFormer [1] to perform Gaussian-to-Voxel splat-
ting in the same way. The 3D Gaussians are first embedded into a



voxel grid based on their mean m i.e., spatial positions, and each
Gaussian’s voxel neighborhood is determined by its scale s property.
The indices of Gaussians and their affected voxels are stored as pairs
and sorted by voxel index to identify which Gaussians influence each
voxel. This allows the model to efficiently approximate occupancy
predictions using only the neighboring Gaussians for each voxel.

4 Experiment setup

We use Guided Gaussians (G?) with 3D semantic Gaussians to repre-
sent the scene in a compact and continuous manner. Each 3D Gaus-
sian encodes semantic and spatial information, allowing for flexi-
ble fusion of multimodal signals such as images and distance-based
measurements. Our experiments focus on the 3D occupancy predic-
tion task, where the goal is to infer which regions of space are oc-
cupied by physical objects. We evaluate our method on two widely
used multimodal autonomous driving benchmarks: NuScenes [20]
and SemanticKITTI [21], both of which provide synchronized image
and lidar data along with high-quality semantic annotations. These
datasets enable us to assess the effectiveness of G* in leveraging both
geometry and semantics for accurate scene understanding.

4.1 Data

Dataset. We conduct training and evaluation on the NuScenes [20]
and SemanticKITTI [21] datasets. For NuScenes [20], we utilize im-
ages from all six onboard cameras and aggregate data from six lidar
and/or radar sweeps. The lidar input comprises five channels: three
representing distance measurements, one for intensity, and one for
the timestamp. Radar input includes all 16 metadata channels along
with three positional channels, without applying the built-in outlier
filtering provided by the NuScenes API [20]. NuScenes [20] ground
truth for semantic voxels is generated from SurroundOcc [2].

For SemanticKITTI [21], we use images from one front-facing
RGB camera and single lidar sweep. The lidar data includes distance
measurements and intensity values associated with each return. Se-
maticKITTI ground truth [21] is provided by the dataset.

Data representation. For the NuScenes [20] dataset, we follow
the setup from the GaussianFormer baseline [1], defining the 3D
occupancy space as a voxel grid of size 200 x 200 x 16 along
the X, Y, and Z axes, respectively, with a voxel resolution of
0.5 meters. This configuration corresponds to a physical space of
100 mx 100 m % 8 m. The coordinate system adheres to the NuScenes
lidar convention, where the X -axis points to the right, the Y -axis for-
ward, and the Z-axis upward.

For the SemanticKITTI [21] dataset, we adopt the configuration
used in OccFormer [3], defining the 3D occupancy space as a voxel
grid of size 256 x 256 x 32 with a voxel resolution of 0.2 meters. This
yields a coverage of 51.2m x 51.2 m X 6.4 m. The coordinate system
is aligned with SemanticKITTI conventions, where the X -axis points
forward, the Y -axis to the left, and the Z-axis upward.

We use the same total number of Gaussian queries as the number
of 3D semantic Gaussians, though they are not explicitly paired. Both
the Gaussian queries and voxelized distance signal features have a
channel dimension of 128.

Augmentations. We follow baseline [1] and apply random flip and
photometric distortions.

4.2  Occupancy task

The 3D occupancy task is formulated as the prediction of semantic
labels within a voxelized 3D space, where evaluation is performed
by comparing predictions against ground-truth annotations for each

labeled voxel. Following the baseline [1] approach, we apply voxel
splatting to render the 3D scene representation encoded by the 3D
semantic Gaussians onto the voxel grid used for occupancy predic-
tion.

For the NuScenes dataset [20], we utilize voxel-wise semantic la-
bels provided by SurroundOcc [2] for both training and evaluation.
Each voxel is assigned one of 18 classes, comprising 16 semantic
categories, along with one empty and one unknown class.

For the SemanticKITTI dataset [21], we take the voxel labels pro-
vided by the dataset as ground truth for training and evaluation pur-
poses. Specifically, sequences 1 - 7, 9, and 10 are designated as the
training set, while sequence 8 is used as the validation set. We make
use of the learning map provided by the dataset to map the original
labels into the index range from O to 20. Additionally, a 21st class is
added to represent the empty category.

4.3 Training and evaluation setup

For the NuScenes dataset [20], we use input images with a resolu-
tion of 1600 x 900. For SemanticKITTI [21], we use the resolu-
tion 1241 x 376. To construct a dense representation of the scene,
for NuScenes [20] we aggregate six consecutive lidar and/or radar
sweeps. As the image encoder, we adopt ResNet101-DCN [22] pre-
trained on FCOS3D [23]. For SemanticKITTI [21], we use single
lidar sweep and image from a single camera.

To extract multi-scale image features, we use a Feature Pyra-
mid Network (FPN) [17], producing features at four downsampling
scales: 4%, 8, 16X, and 32x. For Farthest Point Sampling (FPS),
we use a CUDA optimized algorithm [24]. For initializing 3D se-
mantic Gaussians, we adopt a hybrid strategy: 70% of the Gaussians
are initialized using FPS on lidar signals, 20% using FPS on radar
signals (when available), and the remaining 10% are randomly ini-
tialized. A similar ratio (70/30 or 20/80) is applied even when only
one of the distance modalities is used.

We use 12800 3D semantic Gaussians and queries during training,
and report results for 6400 Gaussians for efficiency analysis. Scene
representations are refined over four transformer blocks, with dis-
tance signal initialization of the 3D Gaussians applied only at the
first refinement step.

Training follows the baseline setup from [1], using the AdamW
optimizer [25] with a weight decay of 0.01. The learning rate is
linearly warmed up to 2 x 10~ over the first 500 iterations, then
decayed according to a cosine schedule. We apply early stopping,
typically halting training before reaching 12 epochs. Our loss is the
same as in the GaussianFormer [1] with cross entropy L. and lovasz-
softmax [26] loss Liey with final loss being L = -7 | (Li. + Li,,).

For evaluation, we follow [27] and use mean Intersection-over-
Union (mloU) and Intersection-over-Union (IoU) defined as:

B TP.
T TP.+ FP. + FN.

1 & TP.
IoU mloU _Z;—TPC+FPC+FNC
where ¢ denote non-empty classes, A number of classes while TP,
FP., FN. are the number of true positive, false positive and false
negative predictions respectively.

All trainings and evaluations are performed using batch size 4 and
A100 GPUs. The runtime measured on the same single GPU for the
Guided Gaussians (G?) model using 6400 Gaussians is 0.26s without
initialization. The runtime for FPS initialization using 6 lidar sweeps
is 0.4s, making the total runtime for the model 0.4 4 0.26 = 0.66s.
The comparison runtime of the baseline [1] using the least number
of Gaussians (25600) is 0.32s.



Table 1: 3D semantic occupancy prediction results on NuScenes [20] validation set. Guided Gaussian (G?) is trained using a Gaussian prior,
where 70% of the Gaussians are initialized with lidar signals and the remaining 30% are randomly initialized. No cross-attention with distance
signals is employed. G2 outperforms existing state-of-the-art methods. The original TPVFormer [28] is trained using lidar-based segmentation
labels, while TPVFormer* is supervised with dense occupancy annotations. Values for individual semantic classes are reported as mIoU. Color

coding: red indicates the top-1 score, green the top-2 score, and blue the top-3 score.
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Figure 2: Comparison of Gaussian movements and occupancy predictions across models. From initialization through the final transformer
iteration, G positions Gaussians more effectively to minimize empty space and concentrate on occupied voxels. The first three rows show
outputs from GaussianFormer [1], GaussianFormer2 [4], and Guided Gaussians (G2), respectively, while the last column presents the ground
truth. Columns: Initialization, Transformer Iterations 1-4, 3D Occupancy Prediction, and Ground Truth.

Even with a reduced number of Gaussians, our method demon-
strates strong performance: using only 6400 Gaussians, we achieve
an IoU of 44.97 and mloU of 27.06, compared to 31.49 and 20.30
which are achieved by state-of-the-art SurroundOcc [2]. When in-
creasing the number of Gaussians to 12800, the accuracy of the pre-
diction increases further to an IoU of 46.31 and mloU of 28.54, il-
lustrating the scalability and robustness of our approach.

Furthermore, in Table 5, we provide a direct comparison between
our G* method and the baseline approaches, which are also reported
in their ablation study when utilizing lidar signals for 3D Gaussian
mean initialization. Notably, our method achieves superior results de-

5 Results and Analysis

We demonstrate the effectiveness of the Gaussian mean intitialization
and cross-attention with distance signals, lidar and/or radar.

5.1 Effects of the 3D Gaussian mean initialization

We first evaluate the impact of introduced 3D Gaussian prior, using
only lidar distance signals. As shown in Table 1, our proposed G*
method consistently outperforms all camera-only methods, including
GaussianFormer [ 1] and GaussianFormer2 [4], across both mloU and
IoU metrics, as well as on majority of a per-class basis.
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Figure 3: Comparison of the accuracy of G? versus GaussianFormer [1] and GaussianFormer2 [4]. Although the ground truth contains
noisy labels, G2 assigns semantic labels to voxels more accurately than the baseline methods.

Table 2: 3D semantic occupancy prediction results on NuScenes [20] validation set. Compared with other multimodal methods, Guided
Gaussians G2 outperforms state-of-the-art methods. Notations: Camera(C), Lidar(L), Radar(R), initialization(init), cross-attention (CA) and
Voxelization (VX). Values for individual semantic classes are reported as mIoU. Color coding: red indicates the top-1 score, green the top-2
score, and blue the top-3 score.
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Method Backbone Modality IoU mloU| = | u u | u | | |
OccFusion [13] R101+VoxelNet C+L 44.35 26.87(26.67 18.38 32.97 35.81 19.39 22.17 24.48 17.77 21.46 29.67 39.01 21.94 24.90 26.76 28.53 40.03
Co-Occ [31] R101+VX C+L 41.10 27.10{28.10 16.10 34.00 37.20 17.00 21.60 20.80 15.90 21.90 28.70 42.30 25.40 29.10 28.60 28.20 38.00
M-CONet [14,31] |- C+L 39.20 24.70 |24.80 13.00 31.60 34.80 14.60 18.00 20.00 14.70 20.00 26.60 39.20 22.80 26.10 26.00 26.00 37.10
G2(12800 gaussians)|R101-DCN +VX| C+L (CA, Linit) |46.93 28.52(29.06 19.43 31.46 36.35 21.02 21.92 21.44 17.26 23.34 29.68 42.67 24.53 27.86 29.04 36.58 44.73

OccFusion [13] R101+VoxelNet C+L+R

44.66 27.30 ‘27.09 19.56 33.68 36.23 21.66 24.84 25.29 16.33 21.81 30.01 39.53 19.94 24.94 26.45 28.93 40.41

G?2(12800 gaussians)|[R101-DCN +VX |C+L (CA, L+R init) |46.41 28.74 |28.73 20.07 32.35 36.76 21.62 22.42 22.11 18.34 21.77 29.92 42.96 24.36 28.20 28.76 36.41 45.00
spite using significantly fewer 3D Gaussians, highlighting the effec- manticKITTI [21] dataset reveals that sample representation is very
tiveness of our initialization and representation strategy. low for some classes like motorcycle (0.03%), bicycle (0.02%) and

In Figure 2, we present visual examples of the refinement pro- truck (0.16%), which likely contributes to our model’s poor perfor-
cesses applied to the Gaussian prior among GaussianFormer [1], mance on those classes. In contrast, our model performs relatively
GaussianFormer?2 [4] and our method G2. The Gaussian prior of G2 well on the classes trunk (0.51%), building (14.41%) and vegetation
using distance signals effectively locates the Gaussians toward re- (39.34%), which contributes to the overall superior performance in
gions in the scene that are more likely to be occupied. This improves terms of IoU and mloU.

the alignment of Gaussians with scene structures, making subsequent . .
. . I . 5.3 Ablation Studies

cross-attention operations, whether with image features, distance-

based signals, or both, more semantically informative. From the same In Table 4, we analyze how different combinations of initialization

figure, it is evident that neither GaussianFormer [1] nor Gaussian-  and cross-attention with distance signals influence 3D occupancy
Former2 [4] is capable of accurately placing Gaussians prior to re-  prediction. All experiments with G? use a fixed set of 12800 Gaus-
finement. sians.

Figure 3 demonstrates that the G> method achieves higher accu- Comparing row 1 in Table 4 with row 8 in Table 1, even with-
racy in assigning semantic labels to voxels compared to Gaussian- out any explicit initialization, the G* model with cross-attention to
Former [1] and GaussianFormer2 [4], even with the presence of noisy lidar and randomly initialized, learnable Gaussian means, already
and imprecise ground truth annotations. achieves strong performance, despite using fewer than 10% of the

Gaussians compared to GaussianFormer [1] (144000 Gaussians).
5.2 Effect of multimodal fusion on the 3D occupancy Using only radar as distance signal for cross-attention and initial-
prediction ization (row 3, Table 4) yields a better result than the case where
only lidar is used as distance signal, solely for cross-attention (row
We further compare our G> method in a multimodal configuration 1, Table 4). This suggests that the radar is an informative prior, al-
with other state-of-the-art fusion methods designed for 3D occu- though the signal is noisy and sparse, serving as a strong baseline
pancy prediction using the same voxel-wise semantic labels. As (compared to some state-of-the-art methods in Table 1) without any
shown in Table 2, our approach outperforms all existing methods distance signal.
of fusing image and lidar signals, achieving an IoU of 46.93 and an Lidar, being a precise and dense signal, proves especially effective:
mloU of 28.52. When adding radar to the 3D Gaussian initialization, the model that uses lidar for both cross-attention and initialization
the mIoU improves slightly from 28.52 to 28.74. (row 2, Table 4) achieves the best IoU. When radar is added to lidar-

Table 3 presents the results of the G? method on the Se- based initialization (row 4, Table 4), the model reaches the highest

manticKITTI [21] dataset, compared against other multimodal mloU, indicating that combining distance signals for initialization

fusion approaches. An analysis of class occurrence in the Se- can further enhance semantic reasoning.



Table 3: 3D semantic scene completion performance on SemanticKITTI validation set. Notation of Modality: Camera(C), Lidar(L),
Radar(R), initialization(init) and cross-attention (CA). Values for individual semantic classes are reported as mloU. Highlighted values in-
dicate the best scores.

E 3 7

g N =

o Q = - [3)
ERE z 5 2 £ s ¢ Z % E
3T £ 2 22 . tEg 2% OEOEEEZOEogo
Method Modality |loUmlUl € % & 3 2 8§ & £ € 3 ¢ &5 8 & 2 g & g E
MonoScene [27] C 37.12 11.50|57.47 27.05 15.72 0.87 14.24 23.55 7.83 0.20 0.77 3.59 18.12 2.57 30.76 1.79 1.03 0.00 6.39 4.11 2.48
TPVFormer [28] C 35.61 11.36|56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52
OccFormer [3] C 36.50 13.46|58.85 26.88 19.61 0.31 14.40 25.09 25.53 0.81 1.19 8.52 19.63 3.93 32.62 2.78 2.82 0.00 5.61 4.26 2.86
OccGen [15] C+L 36.87 13.74|61.28 28.30 20.42 0.43 14.49 26.83 15.49 1.60 2.53 12.83 20.04 3.94 32.44 3.20 3.37 0.00 6.94 4.11 2.77
G? |C+L(CA, L init)|49.53 14.11[54.39 27.09 8.65 0.01 27.12 30.74 0.25 0.00 0.77 0.11 33.49 15.78 31.84 0.04 0.00 0.00 10.03 21.40 6.40

Table 4: 3D semantic occupancy prediction results on NuScenes [20] validation set. Ablation study on various combinations of distance
signals used for cross-attention and 3D Gaussian initialization. All experiments use 12800 Gaussians, a ResNet101-DCN image backbone,
and voxelized distance signals. Initializing Gaussians with distance signals yields better performance than relying solely on cross-attention.
Among distance sensor setups, lidar outperforms radar. Notion of the used modality: Camera(C), Lidar(L) and Radar(R). Values for individual

semantic classes are reported as mloU. Color coding: red indicates the top-1 score,

the top-2 score, and blue the top-3 score.
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Cross-Attention |Initialization| IoU mlIoU | | u | | | u u
C+L - 30.25 19.16|18.04 12.98 26.27 28.98 10.81 14,94 12.47 9.73 13.02 20.60 39.19 21.89 24.28 22.80 10.22 20.37
C+L L 46.93 28.52(29.06 19.43 31.46 36.35 21.02 21.92 21.44 17.26 23.34 29.68 42.67 24.53 27.86 29.04 36.58 44.73
C+R R 31.28 19.53|18.73 13.19 24.85 29.35 12.45 15.41 12.38 10.28 12.19 21.82 38.72 21.41 23.65 21.68 15.51 20.89
C+L L+R 46.41 28.74(28.73 20.07 32.35 36.76 21.62 22.42 22.11 18.34 21.77 29.92 42.96 24.36 28.20 28.76 36.41 45.00
C+R L+R 45.52 27.06127.02 17.09 30.30 34.67 19.31 20.79 20.85 15.29 21.81 27.66 41.49 23.44 26.29 27.57 35.53 43.90
C+L+R L+R 46.46 27.48(27.67 16.99 29.76 34.26 20.50 20.38 20.97 16.97 21.00 28.94 41.98 24.00 27.49 28.52 35.99 44.31
Table 5: 3D semantic occupancy prediction results on Table 6: Ablation study on different ratios of Gaussian mean ini-

NuScenes [20] validation set. Compared with similar setup
on the initialization and reported metrics in the baseline Gaussian-
Former [1] and GaussianFormer2 [4], Guided Gaussians G* perform
better with smaller number of 3D Gaussians when 70% of Gaussians
are initialized by lidar.

Method | Gaussian Number | IoU | mloU
GaussianFormer [1] 51200 41.81 26.78
GaussianFormer2 [4] 25600 3491 21.17
G? 6400 44.97 | 27.06

G2 12800 46.31 | 28.54

However, in the full multimodal setup (row 6, Table 4), which
uses both lidar and radar for cross-attention and initialization, IoU
drops slightly to 46.46 and mloU to 27.48. It suggests that com-
bining distance signals from radar and lidar for both cross-attention
and initialization may slightly degrade overall performance. This ef-
fect is attributed to the inherent properties of the radar signals in the
dataset. Since no radar signal filtering is applied, the radar input con-
tains noise, and attending to radar alongside lidar adds the additional
challenge of mitigating the radar-induced noise.

Next, we explore how proportions of distance signal usage affect
Gaussian mean initialization. As shown in Table 6, initializing all
Gaussians using distance information performs worse than initializ-
ing only 70% of them. This suggests that leaving a portion of the
Gaussians uninitialized allows the model to adapt more flexibly, es-
pecially in dynamic or unobserved regions of the scene where the
lidar signal may be sparse or absent. Allowing some Gaussians to
move freely enables a better overall coverage and semantic represen-
tation.

tialization using lidar, radar and random placement with varying
number of Gaussians. Ratio represents how many Gaussians are ini-
tialized by different distance signals and randomly. The ratio values
(in percent) indicate the proportion of Gaussians initialized by each
source. For example, 30% radar means 30% of the Gaussians are ini-
tialized using radar signal. The optimal ratio of lidar initialization
appears to be around 70% of Gaussians. Notion: Lidar(L), Radar(R)
and Random (Rdm)

No. Gaussians | L (%) R (%) Rdm(%) | ToU mloU
12800 40 0 60 46.24 27.78
12800 70 0 30 46.32 27.92
12800 100 0 0 44.14 24.06
6400 30 20 50 38.81 23.10
6400 50 20 30 41.68 25.11
6400 70 20 10 43.81 25.85

6 Conclusion

We presented G*, a 3D occupancy prediction method based on
3D semantic Gaussians with guided initialization of the 3D Gaus-
sian means using structured distance signals from lidar and radar
to better capture likely occupied regions. On NuScenes [20] and
SemanticKITTI [21], G? outperforms existing unimodal and multi-
modal methods in both IoU and mloU metrics while using far fewer
3D Gaussians. G* shows strong results with lidar-only initialization
and competitive performance in full multimodal setups, highlighting
the method’s flexibility. Furthermore, naive fusion of radar and lidar
can reduce performance, requiring careful multimodal integration.
Despite computational overhead from FPS sampling, G* provides a
scalable framework for structured 3D scene understanding, with fu-
ture work targeting temporally consistent occupancy prediction.
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