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Abstract
Energetic ions have the potential to drive instabilities with toroidal mode number nϕ = 0 in
tokamak fusion plasmas. A necessary condition is that their distribution function is either
anisotropic or exhibits a region of phase space with a positive slope in the energy direction
(so-called ‘bump-on-tail’ distribution). Here an exploration of both possibilities is presented for
Ion Cyclotron Range of Frequency (ICRF) accelerated energetic ions. It is found that ion
cyclotron resonance layers placed on the high-field side of the magnetic axis provide the most
conducive conditions for the drive of vertical nϕ = 0 modes. We also discuss to what extent
sawtooth redistribution of the ICRF accelerated ions can transiently lead to distribution
functions that are locally inverted in the energy direction. However, the latter effect appears to
be less efficient in driving nϕ = 0 vertical modes than velocity space anisotropy for
high-field-side resonances.

Keywords: tokamak, axisymmetric modes, ion cyclotron resonance frequency accelerated ions

(Some figures may appear in colour only in the online journal)

1. Introduction

Auxiliary heating of tokamak plasma by waves in the Ion
Cyclotron Range of Frequencies (ICRFs) has proven to be
effective and has the potential to provide ion heating in reactor
grade plasmas [1, 2]. A characteristic of high power ICRF
heating in present day tokamaks is the generation of aniso-
tropic high energy tails on the distribution functions of the
resonating ions [3]. Such tails can drive fast ion instabilities,
which are routinely observed in experiments, see, e.g. [4, 5]
and other references cited therein.
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The mode number spectrum of fast-ion-driven instabilit-
ies is intimately linked to the phase-space distribution of the
resonating ions. A special case is presented by axisymmetric
modes, that is, modes with toroidal mode number equal to zero
(nϕ = 0). For such modes to be driven by energetic ions, a
necessary condition is that their energy distribution be locally
inverted in the energy direction (i.e. the derivative of the dis-
tribution function in the energy direction of phase space must
be positive), or be strongly anisotropic in velocity space. In the
current article, we examine both possibilities.

There are four different types of nϕ = 0 modes in toka-
maks. The first type is axisymmetric vertical displacements.
These are zero-frequency modes, which grow on the relat-
ively slow resistive wall time scale (under conditions of pass-
ive wall stabilisation), and which are normally suppressed
by active feedback stabilisation. If left uncontrolled, these
modes would cause a vertical displacement event and undesir-
able disruption of the tokamak discharge [6, 7]. The second
type is Geodesic Acoustic Modes (GAMs) [8]. These are
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modes that oscillate with a frequency close to the sound fre-
quency. The third and fourth types are, respectively, Global
Alfvén Eigenmodes (GAEs) [9] and Vertical Displacement
Oscillatory Modes (VDOMs) [10], which both oscillate with a
frequency close to the Alfvén frequency based on the poloidal
magnetic field. The main point of distinction between GAE
and VDOM is that, while the GAE is an internal plasma mode
whose frequency of oscillation and spatial structure are sensit-
ive to details of the safety factor q and plasma density profiles,
the VDOM frequency depends on the elliptical elongation of
the plasma cross section and on the plasma-wall distance, but
is rather insensitive to details of the q profile. Also, the VDOM
has a global spatial structure corresponding to a nearly rigid
vertical shift of the plasma core, with a return flow localised
near the plasma edge.

The three finite-frequencymodes, GAM,GAE andVDOM,
can all be driven unstable by fast ions, provided their distribu-
tion functions in velocity space possess special features, as dis-
cussed e.g. in [11–14] and also alluded to in the second para-
graph of this introduction. We point out that nϕ = 0 modes
have been observed on DIII-D [15] and on JET tokamak
experiments [12, 13, 16]. The main purpose of the present art-
icle is to investigate whether these special features can develop
for minority ions accelerated by ICRF heating. As a case
study, we shall focus on VDOM, although many of the res-
ults obtained here can be applied also to GAM and GAE.

ICRF accelerates resonating ions mainly in the perpen-
dicular direction and during high power heating they can
reach energies in the multi MeV range. Furthermore, pitch
angle scattering due to collisions decreases with energy.
Consequently, strongly energetic and anisotropic tails tend to
develop on the distribution functions of resonating species dur-
ing high power ICRF heating. Regarding nϕ = 0 modes driven
unstable by ‘bump-on-tail’ distributions, the generation of a
distribution function with region of a locally positive energy
derivative is not trivial. However, a few mechanisms exist.
Recent examples are alpha particles generated in DT reactions
where their source rate is modulated by sawteeth oscillations
in the centre of the plasma [17] and NBI injection with mod-
ulated power [15]. In the case of fast ions generated by ICRF
heating, it is harder to generate energy inverted distributions
because the acceleration of the resonating particles is governed
by a diffusive process in velocity space [3]. A characteristic of
diffusion is that it tries to smooth out the energy distribution.
For instance, a modulation of the ICRF power only leads to
a modulation of the averaged energy of the resonating ions
without affecting the monotonic decrease of their distribution
with energy. On the other hand, there is evidence that MHD
activity can lead to locally energy inverted distributions of
ICRF accelerated ions [18]. Another possibility is presented by
the redistribution of fast ions during a sawtooth crash because
if, as has been argued [19], fast trapped ions are less redistrib-
uted than lower energy ones, it is possible to create an inverted
energy distribution in the centre of the plasma. An explorat-
ory study of this mechanism in presented in the current paper.
More specifically, we examine the period during which such

an inverted distribution is maintained. This period turns out to
be relatively short because the ICRF-induced velocity space
diffusion tries to restore a monotonic distribution function.
Furthermore, there is no sharp dividing line in energy between
ions that are redistributed and those that are not [20] and the
energy around which the transition takes place scales with the
sawtooth crash time [19]. The influence of these factors on
the potential for creating distribution functions inverted in the
energy direction is investigated in this article.

In order to investigate the potential drive of vertical nϕ = 0
modes by ICRF-accelerated ions, two approaches have been
employed. First, a semi-analytical procedure, using a model
distribution function, has been utilised to shed light on the key
factors for the drive of the nϕ = 0mode through the anisotropy
of the distribution function. Secondly, numerical simulations
of the distribution of the resonating ions have been performed
and used as input to a code that analyses the linear stability
criterion for the nϕ = 0 modes. The drive for the nϕ = 0 mode
through the anisotropy of the distribution function, and for loc-
ally inverted energy distribution following a sawtooth crash,
has been assessed in these numerical simulations.

2. Necessary conditions for fast ion driven modes

The nϕ = 0 VDOM modes of interest in the current work are
characterised by ω0 << ωc, where ω0 is the real part of the
instability angular frequency and ωc is the ion cyclotron angu-
lar frequency. Resonant wave particle interaction, implying
exchange of energy, with a low frequency instability, takes
place when a global resonance condition,

ω0 = pωb + nϕ⟨ϕ̇⟩ (1)

is fulfilled. Hereωb is the bounce/transit frequency of a particle
(note that we use the same notation, i.e. ωb, for the bounce fre-
quency of trapped particles and for the transit frequency of
passing ones), ⟨ϕ̇⟩ is its toroidal precession frequency, and p
is an integer (typically a small number). The physical mean-
ing of this resonance condition is simply that a particle on an
unperturbed orbit feels the same wave phase after one revolu-
tion of the orbit (otherwise changes of the energy would not
accumulate in the linear phase).

The distribution function, f 0, of energetic ions on time
scales much longer than the bounce time can be characterised
by three invaraints of the unperturbedmotion, see e.g. [21]: the
particle kinetic energy E ; a generalised pitch angle variable,
Λ = µB0/E , where µ is the magnetic moment; and the toroidal
angular momentum Pϕ = mRv∥Bϕ/B+Zeψ, where ψ is the
poloidal flux function; it is also necessary to introduce a vari-
able σ that takes the value −1 and 1 depending on the sign of
v∥ at the minimum magnetic field point along an orbit (to sep-
arate ions on co- and counter-current passing orbits). During
resonant interaction, the changes in energy, Λ, and Pϕ are
related through: ∆Λ=−(Λ/E)∆E and ∆Pϕ = (nϕ/ω)∆E ,
see e.g. [22] (the latter also follows from a quantum mech-
anical consideration: a resonant particle either emitting or
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absorbing a wave quantum receives a change of its energy
∆E =±h̄ω, while its toroidal angular momentum changes
by an amount ∆Pϕ =±Rkϕh̄=±nϕh̄, therefore ∆Pϕ/∆E =
nϕ /ω; the expression for the change in Λ is simply a con-
sequence of the magnetic momentum remaining constant in
the presence of low frequency modes). Thus, the resonant
wave particle interaction implies a ‘kick path’ in phase space.
Assuming that the wave particle phase is random and there are
more particles at the higher energy end of this path than at the
lower end, there will be a finite transfer of energy from the
particles to the wave instability. Therefore, we can write the
necessary condition for an instability as

∂f0
∂E

+
∂f0
∂Λ

∂Λ

∂E
+
∂f0
∂Pϕ

∂Pϕ
∂E

=
∂f0
∂E

− Λ

E
∂f0
∂Λ

+
nϕ
ω0

∂f0
∂Pϕ

> 0,

(2)
where f0 = f0(E ,Λ,Pϕ, t).

Equation (2) can be seen as a generalisation of the standard
‘bump on tail’ argument for instability drive. Loosely speak-
ing, the criterion depends on the direction of the tail in phase
space (i.e. the direction of the kick path). For finite toroidal
mode numbers nϕ, instabilities can be driven by gradients in
Pϕ, and because trapped fast ions have Pϕ = Zeψt.p., where
‘t.p.’ stands for turning point, one can see that gradients in Pϕ
are linked to pressure gradients of the fast ions. On the other
hand, for nϕ = 0 modes, only gradients in E and Λ come into
play.

Here it should be remarked that in this work a region with
a pure energy inverted distribution is taken to mean,

∂f0
∂E

∣∣∣∣
Λ=const.

> 0. (3)

This is in contrast to [12], where an energy inverted distri-
bution function is discussed in the context of,

∂f0
∂E

∣∣∣∣
µ=const.

> 0. (4)

When analysing the anisotropy of the distribution function,
the first choice is more natural (µ and E are far from being
orthogonal, especially for ICRF accelerated ions that are accel-
erated mainly in the perpendicular direction).

Regions of phase space where equations (1) and (2) are ful-
filled are necessary conditions for instability. However, they
are not sufficient because other regions in phase space, as well
as core plasma dissipation or wall resistivity (the latter being
relevant for the VDOM case) can provide damping, giving rise
to instability thresholds. More details on the instability cri-
terion are presented in the next section.

3. Linear theory of nϕ = 0 modes driven by
energetic ions

In this section we present a very brief summary of the linear
theory of nϕ = 0 modes driven unstable by fast ions. For more
details, the reader is referred to [10, 14] and appendix A. The

relevant dispersion relation for the complex mode frequency
ω can be written as

ω2 = ω2
0 − 2iω0γη + iω2

0λh+O
(
γ2/ω2

0

)
, (5)

where ω0 is a real quantity approximately equal to the nϕ = 0
oscillation frequency, γη is the damping rate due to various
mechanisms (such as core plasma dissipation and wall res-
istivity), and λh is a dimensionless parameter representing
the non-adiabatic part of the normalised energy functional,
Im(δŴh,nad), of the energetic ions, as defined, e.g. in [23].
Assuming γtot ≪ ω0, the imaginary part of themode frequency
ω then takes the form γtot = ω0λh/2− γη. The threshold con-
dition for instability is

λh ⩾
2γη
ω0

. (6)

In [14], it was shown that λh is proportional to the fast
particle density, nh, and that, for realistic values of γη, instabil-
ity requires ratios of fast particle to core plasma density ran-
ging between 10−3 and 10−2. However, the sign and value of
the constant of proportionality between λh and nh depends on
details of the fast ion distribution, as explained in the discus-
sion that follows.

By definition we have,

λh =
−2

ω0Winst

dWh

dt
, (7)

where Wh is the energy content of the energetic ions, and the
kinetic energy associated with the instability is taken to be

Winst =
1
2
ρcω

2
0ξ

2, (8)

ρc is the mass density of the plasma and ξ = |ξ⃗| represents the
magnitude of the displacement vector ξ⃗ of a field line. In order
to connect with the notation frequently found in the literat-
ure and used in [14], one should note that ω0Im(δWh,nad)/2=
dWh/dt. The expression for λh can be obtained from a straight-
forward generalisation of equation (11) in [14]. However, for
completeness, a brief alternative derivation is presented in
appendix A, where dWh/dt is calculated starting from quasi-
linear theory.

In the thin banana width limit one finds,

λh = ζ
∑
σ

ˆ [∑
p

|Υp|2

hωb
E3/2

(
∂f0
∂E

− Λ

E
∂f0
∂Λ

)]
E=E∗

p

ρdρdΛ

=
∑
p

ˆ
λ ′
h,p (ρ)dρ (9)

where λ ′
h,p(ρ) is the contribution from a given flux surface, and

the summation is over the harmonics of the orbit periodicity at
equilibrium. The flux surface label is defined as,

ρ=
√
ψ/ψa, (10)
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Figure 1. Illustration |Υ1|2 for typical case, with circular flux surfaces and r/R= 0.1.

ψ is the poloidal flux function here defined to be zero on the
magnetic axis, ψa is the value of ψ at the plasma boundary.
Following [14], the normalisation constant ζ is defined by

ζ =
16
√
2π4R0qψa

Vρcω2
0ξ

2B0m3/2
, (11)

and we have introduced the function hωb(Λ,ρ) = ωbR0q/v
(valid in the thin banana width limit). For a given Λ and ρ,
the resonant energy E∗

p is defined by the resonance condition
for ions interacting with nϕ = 0 modes,

ω0 = pωb
(
E∗
p ,Λ,ρ

)
. (12)

Thus,

E∗
p (ω0,Λ,ρ) =

m
2

[
ω0R0q

phωb (Λ,ρ)

]2
. (13)

Furthermore, |Υp|, is the modulo of the Fourier-
decomposed, complex perturbed Hamiltonian, H1, which is
derived in appendix A and given by,

|Υp|=
∣∣∣∣ 1τb
ˆ τb

0
E
(
2−Λ

B
B0

)
ξ⃗ · κ⃗e−ipωbτdτ

∣∣∣∣
≈
∣∣∣∣ 1τb
ˆ τb

0
E (2−Λ) ξ⃗ · κ⃗e−ipωbτdτ

∣∣∣∣ , (14)

where dτ is the bounce time differential and κ⃗ is the magnetic
curvature vector. The physics behind the perturbation of the
particle Hamiltonian reflected in Υp is the force of the per-
turbed electric field in the drift direction, H1 ∼ E⃗1 · v⃗D, of a
resonating ion. In order to establish contact with [14], we note
that in perturbation theory the perturbed Lagrangian, L1 is just
the negative of the perturbed Hamiltonian, see e.g. [23], i.e.
|L1|= |H1|.

The analysis up to equation (14) is valid for all three types
of nϕ = 0 modes mentioned in the Introduction, i.e. GAM,
GAE, and VDOM. Now, we specialise to the case of VDOM.

Because in this case plasma displacements are along the ver-
tical direction, the curvature related to the toroidal magnetic
field component will not contribute to the scalar product κ⃗ · ξ⃗.
Instead, it is the curvature of the poloidal field component that
plays the key role for VDOM. One finds approximately

ξ⃗ · κ⃗≈ ξ0
B
∂Bθ
∂ρ

ẑ ·∇ρ, (15)

where ξ0 is the amplitude of the vertical displacement on the
magnetic axis. For a tokamak equilibrium such that the cross
sections of the flux surfaces can be approximated by concent-
ric circles, this expression up to corrections of the order of the
local inverse aspect ratio ϵ= r/R0 is given by,

ξ⃗ · κ⃗≈ ϵ2ξ0
q2r

sin(θ). (16)

In what follows, we will also use a normalised form of Υp,

Υp =
Υp

E
√
hωbξ0

(17)

The dominant term corresponds to p= 1. The quantity
|Υ1|2 as function ofΛ is shown if figure 1 for parameter values
that are typical of a tokamak equilibrium.

One should note that ξ⃗ · κ⃗ is an odd function of θ and there-
fore only the sin(pωbτ) part of the exponential in equation (14)
can contribute to the integral in an up-down symmetric plasma.
Furthermore, for p= 2 we have, sin(pωbτ) = 0 at the turn-
ing point of a trapped particle. For reasons of symmetry, the
integration appearing in equation (14) along the outer leg of
a trapped orbit is then cancelled by the integration along the
inner leg in the thin banana width limit. Thus, for an up-down
symmetric plasma and in the thin banana width limit Υp van-
ishes in the trapped particle region for even values of p. This
corrects an erroneous statement made in [14], which attrib-
uted a nonzero value of Υ2 in the trapped particle region.
Furthermore, we have verified that the harmonics of Υp with

4
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p⩾ 3 typically have very small values. Therefore, we limit
ourselves to values of p= 1 in this work.

Below, we use both a semi-analytical approach and
a numerical implementation based on equations (9), (14)
and (15) to assess the potential for ICRF accelerated ions driv-
ing nϕ = 0 modes in the presence of nϕ = 0 VDOM.

4. Models and properties of the ICRF accelerated
ion distribution function

For the current exploratory study, we adopt a simplifiedmodel.
The distribution function of the ICRF heated ions is simu-
lated by the PION code [24]. The code adopts a model ICRF
wave propagation that was designed to approximate the res-
ults of a full wave code [25], and a Fokker–Planck solver for
the pitch angle averaged distribution function of a flux surface
labelled by ρ, F(E ,ρ), together with a model for the aniso-
tropy of the distribution function [24]. The power deposition
and Fokker–Planck calculations in PION are self-consistent
in the sense that: (i) an effective parallel temperature of the
distribution function is obtained from the Fokker–Planck cal-
culation and used in the wave propagation module to account
for the Doppler broadening of the cyclotron resonance; (ii) the
absorption strength in the wave propagation code is updated
to be consistent with that of the Fokker–Planck module as the
resonating ion distribution function evolve in time [26]. In this
work we neglect finite orbit width effects.

As outlined above, for the purposes of analysing the poten-
tial for the ICRF accelerated ions to drive nϕ = 0 modes, it
is necessary to have an adequate description of the anisotropy
of the distribution function of the resonating ions. A key fea-
ture of ICRF wave particle interaction is that the change in Λ
experienced by a resonating particle as it passes a resonance
ωIC − k⃗ · v⃗g = nωci (where ωCI is the ICRF wave angular fre-
quency, k⃗ the wave vector, vg is the guiding centre velocity
and ωci is the ion cyclotron frequency of the resonating spe-
cies; the label IC is used throughout to distinguish the ICRF-
related quantities from those of the nϕ = 0 wave) is related to
the change in energy as

∆Λ=
nωci,0 −ΛωIC

ω E
∆E , (18)

where ωci,0 is the cyclotron frequency on the magnetic axis.
This expression is derived from the characteristics of the quasi-
linear operator describing the wave particle interaction (see
e.g. [27]). Consequently, as ions resonating with the ICRF
wave are accelerated to higher energies, their pitch angle Λ
approaches the value

ΛIC =
nωci,0

ωIC
. (19)

Collisional pitch angle scattering, on the other hand, will
limit the narrowness of the distribution function of the high
energy resonating ions around Λ = ΛIC. The strength of pitch
angle scattering diminishes with the energy of a resonating
ions, i.e. the width of the distribution function aroundΛ = ΛIC

decreases with energy. The result is a distribution function,

in the thin banana with limit, with the well known rabbit-ear
shape of the level surfaces [28] when expressed in the invari-
ants (v⊥0,v∥0) (the perpendicular and parallel velocities in the
mid-plane of a resonating ion). In order to model the aniso-
tropy of the distribution function in PION, we use an updated
version of the Fokker–Planck package designed to capture
the rabbit-ear-shaped distribution function. The salient fea-
tures of the extended Fokker–Planck scheme are provided in
appendix B. An example of the distribution function obtained
with this augmented version of PION is shown in figure 2.

For on-axis resonances, i.e. for ωIC = ωci,0, Λ = ΛIC = 1
corresponds to trapped particles with turning points at a mag-
netic field B= B0, i.e. an almost vertical line through the mag-
netic axis in a low beta plasma. On the other hand, resonances
on the low field side with ωIC > nωci,0 and flux surfaces being
close to having ωIC = nωci in the mid-plane, Λ = ΛIC < 1 cor-
respond to ions that are close to the trapped-passing limit. As
will be seen below, this will turn out to be important when ana-
lysing the drive of nϕ = 0 modes by ICRF-accelerated ions.

With the aim of illustrating a few key features of the drive
of nϕ = 0 modes by anisotropic ICRF accelerated ions, we
note that in the high energy range, the distribution function
becomes very narrow in the Λ direction, as shown in figure 3.

Consequently, we can adopt an ad-hoc model of the dis-
tribution function suitable for a semi-analytical analysis by
approximating the Λ dependence at high energy by a delta
function. The derivation of such a model for the distribution
function is outlined in appendix C, which results in

f0 (E ,Λ,ρ)≈ F(E ,ρ)δ (Λ−ΛIC) , (20)

where

F(E ,ρ) = cF (ρ)
exp
(
− E

Ttail(ρ)

)
√
E

(21)

and

cF (ρ) = nh (ρ)
m3/2
h hωb (ΛIC,ρ)

23/2πTtail (ρ)
, (22)

where nh is the density of resonating ions in the tail of the
distribution function and mh their mass. Moreover, this Ttail
corresponds to the asymptotic perpendicular tail temperature
found in [29]. It is important to note that equation (21) is valid
only in the region where the distribution function is highly
anisotropic, i.e. at energies much greater than thermal.

For a simplified numerical exploration of the effect of the
width of the distribution in theΛ direction, on the nϕ = 0 drive,
we will use a version of the above equation with a finite width
for the pitch-angle distribution,

f0 (E ,Λ,ρ)≈ F(E ,ρ) g(Λ,ρ) (23)

where,

g(Λ,ρ) = Cg exp

[
−
(
Λ−ΛIC

∆Λtail

)2
]

(24)

and Cg is a normalisation constant such that equation (B.3) in
appendix B is fulfilled.
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Figure 2. Level surfaces of the simulated distribution function of ICRF accelerated ions for JET like parameters (3He minority heating in a
deuterium plasma, ωc,3He(B0) = ωIC, ρa/R0 = 0.04, pICRF = 3 MW m−3, ne,0 = 3.5 · 1019, Te = Ti = 6 keV).

Figure 3. Distribution function at a velocity v= 30vth as a function of Λ for the case in figure 2.

5. Analysis of the nϕ = 0 mode drive due to the
anisotropy of ICRF accelerated fast ions
distribution function

In this section, we first use the simplified model distribution
functions discussed above to provide a rudimentary overview
of the conditions under which the anisotropy of the distri-
bution of ICRF accelerated ions can drive nϕ = 0 modes for
p= 1. The output of the PION simulations is then used as
input to equation (9) in a fully numerical calculation of λh,1
for a more realistic evaluation of the nϕ = 0 drive. For illus-
trative purposes, the nϕ = 0 mode frequency is scanned up
to values of the order of 300 kHz, keeping in mind that the

realistic frequency range for both VDOM and GAE modes
in present-day tokamak experiments such as JET is between
100 kHz and 400 kHz.

In order to get insight into factors that are key for the drive
of nϕ = 0 modes, it is instructive to first consider the model
of the high-energy distribution with a finite width in Λ centred
around ΛIC. It is evident from equation (9) (where only the
term with p= 1 is important see our discussion in section 3)
that, unless there are regions in phase space where ∂F/∂E is
positive, only the term involving ∂f0/∂Λ can contribute to a
possible drive of nϕ = 0 modes. Moreover, only the part of the
distribution with Λ> ΛIC results in a positive contribution to
the mode growth rate, while particles withΛ< ΛIC give rise to
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Figure 4. Critical ratio of E∗
1 /Ttail above which λ ′

h,1 is positive as a function of the cold ICRF resonance location.

damping. When using our model distribution equation (23) in
equation (9), the ∂f0/∂Λ contribution to λh,1, which we denote
λh,1,Λ, takes the form,

λh,1,Λ

=−ζ
∑
σ

ˆ [∣∣Υ1

∣∣2 E5/2ΛF(E ,ρ) ∂g(Λ,ρ)
∂Λ

]
E=E∗

p

ρdρdΛ.

(25)

In the limit where the width ∆Λtail tends to zero, such that
the distribution function can be approximated by a delta func-
tion δ(Λ−ΛIC), a positive drive of nϕ = 0 modes requires that
the term multiplying ∂g(Λ,ρ)/∂Λ in equation (25) has a pos-
itive derivative around Λ = ΛIC. In this limit, one finds after
some straightforward algebra,

λ ′
h,p =ζr

[( E∗
p

Ttail
+

1
2

)
α1 +α2

]
|Υp|2

(
E∗
p

)5/2
F
(
E∗
p

)
(26)

with,

α1 =

[
2Λ
hωb

∂hωb
∂Λ

− 1

]
Λ=ΛIC

(27)

and,

α2 =

[
5Λ
hωb

∂hωb
∂Λ

− Λ

|Υp|2
∂|Υp|2

∂Λ

]
Λ=ΛIC

− 1 (28)

where the coefficients α1 and α2 can be easily calculated
numerically. These coefficients are functions of ρ and of ΛIC.
In the thin banana width limit (with ρ replacing Pϕ), the
resonance condition, ω0 = pωb(E ,Λ,ρ), implies a resonant
energy E∗

p = E∗
p (ΛIC,ρ;ω0). One can see from equation (26)

that for instability frequencies corresponding to resonant ener-
gies above a critical energy, E∗

p,crit, given by,

E∗
p > E∗

p,crit =

(
α2

α1
− 1

2

)
Ttail (29)

there will be a finite contribution from a flux surface to the
drive of the nϕ = 0 mode. In view of the E∗

p ∝ ω2
0 dependence,

equation (29) equates to a condition on the minimum reson-
ant frequency that the energetic ions can drive in the limit of
∆Ttail → 0. A plot of E∗

1,crit/Ttail as function of resonance pos-
ition RIC in the midplane for aρ/R0 = 0.1 is shown in figure 4.
Noting that ΛIC ≈ (RIC −R0)/R0, one can see that reasonable
values of the critical resonant energy can be obtained for val-
ues of ΛIC below unity, i.e. when the ICRF resonance is on the
high field side. When the resonance is on the low field side, the
required values for the instability drive become very high, 5 to
30 times the energy of the tail, which makes effective VDOM
destabilisation under such conditions very questionable.

In figure 5, the resonant energy is plotted again as func-
tion of ρ for two values of ΛIC, i.e. ΛIC = 1, corresponding
to on-axis ICRF heating, and ΛIC = 0.95, corresponding to
ICRF heating on the high field side. Again, one can see that
much lower values E∗

p can drive the nϕ = 0 mode for a high
field side resonance (RIC < 0) than for an on-axis resonance
(RIC = R0). In fact, the fast ion energy that is required for
instability drive in the on-axis resonance case is very high, and
for realistic cases the thin banana limit would break down. A
weaker instability drive would likely result when nonstandard
fast ion orbits are considered. The main conclusion of this ana-
lysis is that instability drive is favoured when the ICRF reson-
ance is on the high field side, as the energies of the resonating
ions driving themode are more realistic under such conditions.

It should also be noted that according to equation (29), the
critical energy, E∗

p,crit, is independent of the resonant species. In
view of the resonant energy having a mass dependence E∗

p ∝

7
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Figure 5. Critical ratio of E∗
1 /Ttail above which λ ′

h,1 is positive as a function of flux surface radius for ΛIC = 1, red full line, and ΛIC = 0.9
blue dashed line.

Figure 6. The term multiplying ∂g(Λ,ρ)/∂Λ in equation (9). The red solid line corresponds to ω0 = 100 kHz and the blue dashed line is for
ω0 = 200 kHz, the tail energy is Ttail = 600 keV, and the flux surface where the quantity in the figure is evaluated corresponds to a value
Λb = 0.9 at the trapped-passing region.

ω2
0/mh, for a given frequency ω0 which is determined by core

plasma parameters, it is clear that for heavier fast ions (e.g.
He3 instead of H) the instability drive favours lower values of
the mode frequencies ω0.

We now turn to the effect of the width of the pitch angle
distribution, ∆Λtail, which turns out to be important. In this
case a more careful evaluation of the integral in equation (25)
is necessary, especially if ΛIC falls near the region in phase
space corresponding to the trapped-passing boundary at Λ =
Λb, since the term multiplying ∂g(Λ,ρ)/∂Λ in equation (25)
varies rapidly in that region. This term is plotted in figure 6 as
a function of Λ for two different values of ω0, assuming a tail
temperature Ttail = 600 keV. The resonating species for both
curves is hydrogen. The region of rapid variation of the two
curves is at the passing-trapped boundary at Λb ≈ 0.9, which
corresponds to the flux surface at aρ/R0 = 0.1 chosen for this
plot (a is theminor radius on the outboard side of the tokamak).

Note that the two curves go to zero for values ofΛ correspond-
ing to deeply trapped orbits, i.e. Λ = 1.1 for the parameters of
figure 5. This is due to the fact that VDOM are vertical dis-
placements, with ξ⃗ · κ⃗∝ sinθ, and deeply trapped particles are
localised at θ= 0 (it is an important differentiation factor when
comparing the drive of VDOM in this article to nϕ = 0 GAE
and GAM). At lower frequency (blue dotted curve), the res-
onant energy is lower and the region of rapid variation around
Λb (where the curve drops and increases quickly) is not fully
resolved, as it is for the red curve obtained for a higher fre-
quency and resonant energy. The key factor that provides for
a range with a positive Λ derivative of the term multiplying
∂g/∂Λ, in the trapped region, is F(E∗

1 ,ρ).
Now, if ∆tail tended to zero, the function g(Λ,ρ) would

approach Cg δ(Λ−ΛIC), and then a destabilising contribution
would be obtained if the value of ΛIC corresponded to a value
of Λ such that the function plotted in figure 6 has a positive
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Figure 7. Normalised λ ′
h,1 as a function of the resonant frequency for ΛIC = 0.94 and three different values of ∆Λtail: mauve solid line

∆Λtail = 0.1, red dashed line∆Λtail = 0.05, blue dot-dashed line ∆Λtail = 0.025, and black dotted line a delta function of Λ.

slope, as pointed out before (but note that the damping con-
tribution from ∂F(E ,ρ)/∂E term must be overcome for the
aggregate to result in destabilisation). However, if the inter-
val of Λ values of width ∆Λtail around ΛIC included regions
of positive and negative slopes, then a more careful balance
represented by the integral in equation (25) may lead to a
reversal of the result obtained in the limit of∆Λtail → 0, which
is shown below.

In order to study this point, we have used the distribu-
tion given by equation (23) together with a full numerical
integration according to equation (9). The result is shown in
figure 7 for a case of ICRF-accelerated hydrogen minority
ions with ρa/R= 0.1, R= 3m, q= 1.05 (safety factor at the
considered flux surface), Ttail = 600 keV, ΛIC = 0.94 (which
corresponds to a flux surface that crosses the inner mid-plane
just to the high field side of RIC) and four different widths:
∆Λtail = 0.1, ∆Λtail = 0.05, ∆Λtail = 0.025 and a delta
function g(Λ).

One can see from figure 6 that the term multiplying ∂g/∂Λ
has a negative slope at Λ = 0.94 for the ω0/(2π) = 100 kHz
case. Consequently, damping is expected when ΛIC = 0.94 in
the case of a very narrow pitch angle distribution g(Λ,ρ). This
is indeed the case, as can be seen in figure 7. However, when
the width of the pitch angle distribution is increased, destabil-
isation of VDOM occurs at some point. Figure 7 shows that a
finite drive of the VDOM at ω0/(2π) = 100 kHz is present for
∆Λtail = 0.05. A key factor behind the drive of the mode with
this wider pitch angle distribution is that a fraction of the res-
onating ions are in the passing region. It is clear from figure 6
that for ω0/(2π) = 100 kHz the passing ions only contribute
weakly in the direction of damping the VDOM, while the con-
tribution from the drive for Λ> ΛIC is comparatively strong.
On the other hand, the figure also shows that when the width
is further increased, the strength of the drive is diminished.
This is because the spread is too large and the contribution
from energetic ions with Λ≳ 1 to the drive is comparatively
weak.

An important point is the characteristic energies of the ener-
getic ions that effectively contribute to the drive of the VDOM.
An indication can be obtained by plotting λ ′

h,1 as a function of
the resonant energy evaluated at Λ = ΛIC, i.e. E∗

1 (ω0,ΛIC,ρ) .
The result for the case of ∆Λtail = 0.05 is shown in figure 8.

In the frequency range up to around Ω0 = 150 kHz
(i.e. roughly up to where λ ′

h,1 is maximum), figure 8 shows
that fast-ion VDOM instability drive peaks for energies just
below 2MeV.

After this basic analysis of the potential for ICRF accel-
erated ion to drive nϕ = 0 VDOM modes, we now exam-
ine a full simulation of the energetic ion distribution with
the PION code in accordance with the model presented in
appendix B. The main parameters used for the PION simu-
lation are as follows: H minority heating in a JET sized deu-
terium plasma, (H)D, with amagnetic field on axis ofB0 = 3T;
a density profile ne(ρ) = (ne,0 − ne,edge)(1− ρ2)0.5 + ne,edge,
with ne,0 = 3.5 · 1019 and ne,edge = 4 · 1018; Te(ρ) = Ti(ρ) =
(Te,0 −Te,edge)(1− ρ2)+ Te,edge, with Te,0 = 6 keV and
Te,edge = 0.5 keV; the ICRF frequency is f = 50MHz (placing
the fundamental hydrogen resonance, ωIC ≈ ωc,H, on the high
field side and intersecting the mid-plane around ρ= 0.3); an
ICRF power of PRF = 8MW; the antenna spectrum used is
representative of dipole phasing in JET. According to the sim-
ulation, about 80% of the ICRF power is absorbed by the
hydrogen minority ions, 9% by the deuterium ions (second
harmonic absorption) and 11% by the electrons (through elec-
tron Landau damping and transit timemagnetic pumping). The
deposition profile of the hydrogen ions is shown in figure 9.

The figure shows that the power density peaks a little
inside ρ= 0.3 (an effect of the Doppler broadening of the
ICRF resonance). The contribution to λ ′

h,1 from flux surface
ρ= 0.25 is shown in figures 10 and 11. According to the
PION calculations, the averaged ‘tail temperature’ of the res-
onating hydrogen ions was about 400 keV on this flux sur-
face. It therefore comes as no surprise that the contribution
resembles those obtained with the model distribution above.
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Figure 8. Normalised λ ′
h,1 black line as a function E∗

1 evaluated at Λ = ΛIC; the blue line is contribution from the ∂f0/∂E term, the red line
is the contribution from the ∂f0/∂Λ term.

Figure 9. Power density, pH, absorbed by the hydrogen minority ions as a function of the flux surface label ρ.

The peak of λ ′
h,1 is found around 125 kHz, which trans-

lated into the resonant energy, E∗
1 evaluated at Λ = ΛIC of

around 2MeV. One can also see that there is effective damp-
ing from above 200 kHz, corresponding to particles roughly
above 4MeV.

The typical tail temperature of the energetic ions in current
simulations (∼400 keV) is relatively moderate, and the width
of the orbits of the resonating energetic ions should there-
fore be comparatively modest. Consequently, the adopted thin
banana width approximation should provide results that are, at
least qualitatively, reasonable for an initial exploration of the
drive of nϕ modes through the anisotropy of ICRF accelerated
energetic ions.

To have the complete picture it is of course essential to cal-
culate λh,1 itself, i.e. evaluating the integral of d λ ′

h,1 over all
flux surfaces and the constant ζ for the parameters used in the
PION simulation. The resulting λh,1 is shown in figure 12 as

a function of the frequency ω0. As can be seen, the poten-
tial drive is up to frequencies around ω0/(2π) = 175 kHz. At
ω0/(2π) = 150 kHz we have λh,1 ≈ 0.7, which corresponds to
a contribution to the growth rate of ω0λh,1/2≈ 3.8 · 105 1/s.
This value exceeds the estimated value of the damping for typ-
ical JET parameters reported in [14].

The conclusion of this section is clear: a significant drive
of the nϕ = 0 VDOM only occurs for ICRF resonance on
the high-field side. A key effect is the dispersion of particles
into the passing region, which is caused by collisional pitch
angle scattering. The passing fraction of the energetic ions
onlyweakly contributes to reducing the drive of themode up to
moderate instability frequencies, resulting in a dominant drive
of the VDOM by energetic ions with Λ≳ ΛIC. For parameters
representative of a JET like device, λh,1 is found to be suf-
ficiently high at frequencies up to around 150 kHz to drive a
VDOM.
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Figure 10. Normalised λ ′
h,1 at ρ= 0.25 as a function of the instability frequency, black solid line; the blue line is contribution from the

∂f0/∂E term, the red line is the contribution from the ∂f0/∂Λ term.

Figure 11. Normalised λ ′
h,1 at ρ= 0.25 as a function of the resonant energy evaluated at Λ = ΛIC, black solid line; the blue line is

contribution from the ∂f0/∂E term, the red line is the contribution from the ∂f0/∂Λ term.

In the next section, we will investigate if a transient inver-
sion of the distribution function in the energy direction fol-
lowing a sawtooth crash can drive modes more effectively for
on-axis resonances.

6. Sawtooth redistribution of energetic ions

During a sawtooth crash and subsequent reconnection, the
hot core plasma inside the q= 1 surface is mixed with the
colder plasma outside within the so-called mixing radius. This
plasma redistribution is a result of the reconnecting magnetic
field and the fact that most low to moderate energy plasma
particles are tied to the field lines. However, energetic trapped
ions have wider orbits and process in the toroidal direction,
i.e. they experience different phases of the MHD perturbation
associated with the sawtooth instability. Consequently, ener-
getic ions, especially trapped ones, can be expected to be less

redistributed than thermal ones [19]. A criterion for the energy
of ions where they start to experience reduced redistribution
was given in [19] as,

Ecrit = 2πmhksrsR0ωb/τcr (30)

where mh is the mass of the energetic ion species; ks is the
ellipticity and rs is the radius at the q= 1 surface; ωb is the
bounce frequency; and τcr is the sawtooth crash time. Of course
Ecrit does not represent a sharp boundary, and for detailed stud-
ies it is necessary to follow energetic particles in the perturbed
fields associated with the sawtooth crash [19, 20]. The study
in [20] indicates that the transition region in energy, ∆Etran,
may extend up to the order of 0.5Ecrit. There is naturally also a
difference between trapped and passing fast ions, but because
most energetic ions accelerated by ICRF heating tend to be
trapped, for this work we only need to consider the critical
energy for the trapped ions given in equation (30).
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Figure 12. λ ′
h,1 as function of the instability frequency.

In order to take into account that the trapped ions above the
critical energy Ecrit are becoming less and less redistributed, it
is assumed that only a fraction of the fast ions are redistributed
at each energy level FRedist(E), and an ad hoc expression is
used.

FRedist (E , t−)

= F(E , t−)
{
1−

[
1
2
+

1
π
arctan

(
E −Ecrit
∆Etran

)]
ftrapped

}
(31)

where Mv2crit/2= Ecrit and t− indicate a time point just before
the sawtooth crash. Thus, when a sawtooth crash is applied in
the code, the FRedist(E , t−) is sent to the redistribution model,
which calculates the post sawtooth redistributed distribution
function, FRedist(E , t+). The normal PION simulations are then
resumed with,

F(E , t+) = F(E , t−)
[
1
2
+

1
π
arctan

(
E −Ecrit
∆Etran

)]
ftrapped

+FRedist (E , t+) . (32)

We use the model outlined in [30] to redistribute the ener-
getic ions prescribed by equation (31). It assumes aKadomtsev
reconnection and that the redistributed ions follow the recon-
necting field lines.

In the current paper, we neglect finite orbit width effects
in the Fokker–Planck calculations. This is of course a limit-
ation because ICRF accelerated ions in a machine like JET
tend to acquire energies in the MeV range during high power
heating. On the other hand, the critical energy Ecrit is typic-
ally of the order of 500 keV for representative ICRF heated
JET plasma [19] and at such energies finite orbit width effects
should be moderate. Thus, for this initial assessment of inver-
ted energy distributions, neglecting finite orbit width effects
should be acceptable. It should also be noted that our model
for the anisotropy of the distribution function is adapted to the
phase before a crash, while some differences are expected in

the post crash phase that are not captured by our simplified
modelling. Thus, there is room for improvement by usingmore
complex modelling. However, we do not expect it to affect the
general conclusions of the simulations presented below.

7. Analysis of locally energy inverted distributions
following sawtooth redistribution

In order to assess the impact of sawtooth crashes on the energy
distribution of ICRF accelerated ions, full PION simulations
have been carried out, using the model in appendix B and
the sawtooth redistribution model described in the previous
section. As a base case, minority on-axis heating of 3He ions
in a deuterium plasma, (3He)D, is considered, with an ICRF
frequency of f = 30.5MHz and other plasma parameters the
same plasma as used in section 5. Here, it should be noted that
on-axis heating is the most relevant because sawtooth redistri-
bution for off-axis resonances would not have the same impact
on the energy distribution of the energetic ions.

We first consider a case with the q= 1 surface before the
sawtooth crash located at ρ= 0.22, a minority ion concen-
tration n3He/nD = 4%, PRF = 6MW, a critical energy Ecrit =
500 keV, and ∆Etran = 0.1Ecrit. The simulations are driven up
to a near steady state before the sawtooth crash is applied.
The profile of the power density absorbed by the resonating
3He ions just before the crash is shown in figure 13. This
figure shows that in the simulation most of the ICRF power
is absorbed within the assumed q= 1 surface.

Figure 14 shows the pitch angle averaged distribution func-
tion at ρ= 0.1 just before and after the sawtooth crash. As
can be seen, the post crash distribution function has a posit-
ive energy slope below the critical energy. The reason is that
because of the peaked ICRF power deposition profile, the dis-
tribution near the centre has more energetic particles in the
region around 100 to 500KeV than distribution functions on
flux surfaces outside the q= 1 surface. Consequently, when
the region below Ecrit becomes redistributed in the sawtooth
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Figure 13. ICRF power deposition profile of the resonating 3He ions just before a sawtooth crash is applied.

Figure 14. Pitch angle averaged distribution function just before the sawtooth crash, solid red line; and just after the crash dashed blue line.

crash, the energetic particles below Ecrit are expelled and
there is an influx of colder particles originating from outside
of q= 1.

Following the sawtooth crash, the ICRF induced velocity
space diffusion drives the distribution function back towards
being monotonic. The positive slope of the energy distri-
bution will only exist rather transiently. This is shown in
figure 15, which shows max[∂F(E ,ρ= 0.1)/∂E ,0], where the
‘max’ function signifies values greater than zero. A positive
slope of the distribution function is only maintained for about
25ms. Of course, this is assuming that the sawtooth period is
longer than the time period during which the distribution is
locally energy inverted.

One can conjecture that the main factor influencing the
period during which the a locally energy inverted distribu-
tion can be maintained is the ICRF induced velocity space
diffusion. Roughly speaking, the time scale on which the
inversion can be maintained is of the order of the time it takes

for a resonant ion to traverse the inverted region due to velo-
city space diffusion. Because we are dealing with a diffus-
ive process, a particle will explore a velocity region of the
order of ∆v±

√
2DRF∆t during a period ∆t, where DRF is

the ICRF diffusion coefficient in velocity space. If we neglect
finite Larmor radius (FLR) effects, it is given by [29],

DRF ≈
pRF

3nresmres
, (33)

where nRes is the density of the resonating minority ions, mres

is their mass, and pRF is the absorbed flux-surface-averaged
power density. The excursion in velocity gives rise to an excur-
sion in energy,

(∆E)2 ∼ E 4pRF
3nres

∆t. (34)

Thus, the time it will take to explore a region of energy space
of the order of the critical energy after which the distribution
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Figure 15. max value of ∂F/∂E taken over all flux surfaces and energy levels.

should have been returned to monotonic is roughly given by,

∆tinv ∼ Ecrit
3nres
4pRF

. (35)

In the simulation with PRF = 6MW, the typical power dens-
ity absorbed by the hydrogen minority ions in the centre
of the plasma is around pRF = 3MWm−3 (i.e. near ρ= 0.1,
see figure 13), and for a minority concentration of 4% we
have n3He = 1.1 · 1018m−3. If we insert these parameters in
the formula above with Ecrit = 500 keV we obtain ∆tinv ≈
12ms, which is the right order of magnitude. Thus, this ele-
mentary analysis indicates that the duration of a region with
∂F(s,E , t)/∂E > 0 is largely set by the ICRF induced velocity
space diffusion, with the minority density and the absorbed
power density playing key roles.

In order to further explore the duration and the radial
extent of a region with ∂F(ρ,E , t)/∂E > 0 following a saw-
tooth crash, we have carried out simulations with scans in
ICRF power and the minority density. Two types of power
scans have been performed, one in which all parameters except
the power have been kept constant and the second in which the
ratio PRF/nres has been kept constant. The results of the power
scans can be seen in figure 16.

The power scans show that the duration of the inverted
energy distribution decreases with ICRF power if the minor-
ity concentration is kept constant. In fact, it decreases more
quickly with power than the simple estimate equation (35)
suggest. One should note that above a power of about PRF =
12MW it is no longer possible to create a positive slope of the
distribution function in the centre of the plasma. The reason
for this is that at high power levels, a sufficiently strong tail on
the distribution function develops also outside the q= 1 radius,
such that enough energetic ions are redistributed towards the
centre to prevent a region with ∂F(ρ,E , t)/∂E > 0. The scan
with PRF/nminority held constant shows much less variation
with the RF power as expected from the simple estimate of
equation (35). These scans support the notion thatPRF/nminority

is indeed a key factor determining the duration under which a

region with an inverted energy distribution persists following a
sawtooth crash. However, it is of course the case that the phys-
ics is more complicated than suggested by the simple estim-
ate given in equation (35). For instance, the change of minor-
ity concentration leads to a modification of the polarisation
of the ICRF waves, which in its turn affects the details of the
ICRF diffusion coefficient (it plays a role already at energies
of a few hundred keVs). Furthermore, effects such as the non-
linear change of the power deposition owing to high energy
tails on the resonating ion distribution functions also have an
effect. Obviously, these types of effects are difficult to capture
in a simple expression.

The width of the transition region around Ecrit between
strong and weak redistribution determines the extent of the
region of velocity space for which the fast particle distri-
bution can have a positive slope as a function of energy.
This is illustrated in figure 17, which shows the maximum
of (∂F/∂E) just after the sawtooth crash as a function of
the radial coordinate for widths ∆Etran corresponding to a
transition region in energy,∆Etran, of 0.1Ecrit, 0.2Ecrit, 0.3Ecrit,
and 0.4Ecrit. As expected, the radial extent of the region with
an energy-inverted distribution is within the mixing radius
(ρmix = 0.3), and both the radial region and the magnitude of
∂F/∂E decrease as the transition region gets wider in energy.
For values of ∆Etran ⩾ 0.5Ecrit, energy-inverted distributions
no longer appear. Thus, in view of the results presented in [20],
it may indeed be the case that for realistic values of the width
of the transition region it will not be easy to produce bump-
on-tail-like distributions of fast ions with ∂F(ρ,E , t)/∂E > 0.

It is also of interest to investigate how the critical energy
influences the locally inverted energy distribution. Not least
because the sawtooth crash time can vary significantly and the
critical energy is inversely proportional to it. Figure 18 shows
the distribution function before and after redistribution for a
case with Ecrit = 1.5 MeV. As can be seen, the distribution
again becomes hollow, but the region with positive slope is
fairly shallow, and the maximum of ∂F/∂E is therefore relat-
ively weak.
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Figure 16. Duration of inverted energy distribution as a functions of ICRF power, blue points (and curve) are with a constant minority
density of 4% whereas the red crosses (and curve) are for when PRF/nmin has been held constant.

Figure 17. Max value of ∂F/∂E over all energy levels just after the sawtooth redistribution has taken place for∆Etran = 0.1Ecrit, dotted line,
∆Etran = 0.2Ecrit solid line, ∆Etran = 0.3Ecrit dashed line and ∆Etran = 0.4Ecrit dash dotted line.

The radius of the q= 1 surface when a sawtooth is triggered
in a tokamak can vary significantly. In particular, the presence
of energetic ions can lead to so-calledmonster sawteeth, which
are characterised by longer periods between crashes and larger
radii of the q= 1 surface. We have therefore run simulations
with different q= 1 radii. It is found that the bump on tail fea-
ture is not much affected by the q= 1 radius provided that most
of the ICRF power deposition falls inside this radius. On the
other hand, for q= 1 radii smaller than the deposition width,
the local inversion of the distribution function in the energy
direction becomes less pronounced.

The results presented in this section indicate that a locally
inverted, bump-on-tail-like distribution in the energy direction
of ICRF accelerated ions can form as a result of sawtooth
redistribution. However, the distribution will remain inverted
for a fairly short period of time. Furthermore, there is signific-
ant uncertainty regarding the width of the transition region in
energy between redistributed ions and those that suffer very
little redistribution. In the next section, we investigate the
potential for VDOM modes to be driven by sawtooth-induced
energy-inverted distributions assuming ∆Etran = 0.1Ecrit to
ensure a significant inversion.
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Figure 18. Pitch angle averaged distribution function for Ecrit = 1500 keV just before the sawtooth crash, solid red line; and just after the
crash dashed blue line.

Figure 19. Pitch angle averaged distribution function just before the sawtooth crash, solid red line; and a Maxwell distribution with a ‘tail
temperature’ of 4MeV.

8. Numerical evaluation of the nϕ = 0 drive for
locally energy inverted energetic ion distributions
following a sawtooth crash

In this section we study the instability drive for the distri-
bution functions simulated by PION in the previous section.
First, the simulated distribution function just before the saw-
tooth crash is considered. We limit ourselves to looking at
the contribution from a single flux surface ρ= 0.15, corres-
ponding to r/R0 ≈ 0.04 for a JET like plasma. The simu-
lated distribution function at this flux surface is shown in
figure 19 together with a Maxwellian with a temperature of
4MeV arranged to roughly coincide with the high energy tail
of the simulated distribution function. As can be seen, the
4MeV Maxwellian fits the high energy tail beyond 5MeV
quite well. It should, however, be noted that the averaged
‘temperature’ of the whole distribution function defined

w3He = (3/2)n3HekTav is calculated to be around 600 keV. It
is largely the strong FLR effects in the RF-diffusion coeffi-
cients for (3He)D heating that are responsible for the high
asymptotic tail temperature. The analysis of section 5 sug-
gests that in the current case instability drive would become
important at resonant energies E∗

1 of the order of 15–20MeV,
i.e. 4–5 times higher than the asymptotic tail temperature at
4Mev. The resonant energy for particles with turning points
at the cold ICRF resonance, i.e. Λ = 1 for on axis heating,
is shown in figure 20. It shows that an instability in this
energy range would correspond to an instability frequency of
around 200 kHz.

The result of calculating λh,1 as a function of the instabil-
ity frequency with the simulated distribution function and
equation (9) is shown in figure 21. In line with the simple
estimate above, the figure shows that there is an instability
drive for frequencies slightly above 200 kHz. In this context
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Figure 20. Resonant energy as a function of the instability frequency.

Figure 21. Normalised λh,1, red line, as a function of the instability frequency just before the sawtooth redistribution. The blue and black
lines are the contributions from the ∂f0/∂E and ∂f0/∂Λ equation (9) respectively.

it should be remarked that the number of particles in the 15–
20MeV range is small, and it goes without saying that the
small banana width approximation adopted here completely
breaks down in the energy range where the resonant ions con-
tribute to drive. However, more accurate estimates are beyond
the scope of this exploratory study and will have to be left for
future work.

The question is now whether the locally inverted dis-
tribution function in the energy direction is sufficient to
drive the nϕ = 0 instability considered here. It turns out
that using the post crash distribution makes little differ-
ence to the overall picture presented in figure 21, the
damping because of the ∂f/∂Λ is almost unchanged and
dominates. The contribution from the ∂f/∂E term remains
small and in order to see difference between the pre
and post crash contribution more clearly the contribution
from ∂f/∂E , which we denote by λh,1,E , is shown in
figure 22.

There is a distinct difference, before the redistribution the
∂f/∂E term clearly contributes to the damping of the VDOM
while just after the redistribution it provides an almost neut-
ral contribution for frequencies up to around 70 kHz. Here
it should be noted that E∗

1 is around 1MeV for Λ = 1 and
ω0 ≈ 80 kHz, i.e. one can clearly identify the impact of the
energy inverted region on λh,1,E . However, the contribution of
the bump on tail feature is not sufficient to drive the instability,
especially because the values of ∂f0/∂Λ have a strong damp-
ing effect in the energy region in question. Furthermore, the
width of the pitch angle distribution in this energy range is not
negligible. As a result, the Λ integral in equation (9) spans a
rather wide E∗

1 range and the driving contribution of the energy
inverted region is virtually cancelled by contributions of the
regions outside it. Several values of Ecrit have been analysed
and in none of the cases was the inversion in the energy dis-
tribution sufficient to overcome the damping provided by the
∂f0/∂Λ term.
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Figure 22. Normalised contribution, λh,1,E , from the ∂f/∂E term to λh,1 as a function of the instability frequency, the blue dashed line is
the contribution from just before the sawtooth redistribution while the red line is from just after the redistribution.

Thus, the conclusion is that while ICRF accelerated ions in
a JET-like device could have a locally energy inverted distribu-
tion function following a sawtooth crash, this is not sufficient
to drive the considered nϕ = 0 vertical mode, at least for the
cases studied here. Of course, it should be emphasised that this
finding is specific to ICRF accelerated energetic ions that are
mainly trapped with a narrow pitch angle distribution.

9. Conclusions

The potential for ICRF accelerated energetic ions to drive
nϕ = 0 VDOMs in a tokamak has been investigated. In prin-
ciple, they could drive these modes either because of the aniso-
tropy in velocity space that characterises ICRF-accelerated
ions, or through locally inverted distribution functions in the
energy direction. The latter could arise transiently because of
particle redistribution during a sawtooth relaxation. A condi-
tion is that more trapped energetic particles are less redistrib-
uted than lower energy ones, which has been suggested to be
the case [19].

The PION code has been used to simulate distribution func-
tions of ICRF accelerated ions, and they have subsequently
been used as input to linear stability calculations of the drive of
nϕ = 0 VDOM. A key feature of this code is that it allows for
time dependent simulations on a routine basis, which is neces-
sary for evaluating distribution functions following a sawtooth
crash. Because the anisotropy of the distribution function plays
a key role, the standard PION code has been augmented with a
routine for approximately reproducing the ‘rabbit-ear’ shape,
see e.g. [28], of the level surfaces of the distribution function.
Moreover, a simple model, with a transition region around a
critical energy Ecrit, has been used to simulate the redistribu-
tion of the ICRF accelerated ions following a sawtooth crash
assuming a Kadomtsev type reconnection.

The main conclusion of the presented study is that the
anisotropy of the distribution function of ICRF heated ions can

provide a significant drive for nϕ = 0 VDOM when ICRF res-
onance layers are placed on the high field side of a tokamak. A
key factor in this case is that, owing to pitch-angle scattering,
the width of distribution function in the Λ direction implies
that there is a fraction of resonating energetic ions dispersed
into the passing region on flux surfaces that intersect the mid-
plane close to the ICRF resonance radius ωIC = ωCI(RIC). For
moderate instability frequencies, the passing ions contribute
little to the damping of the nϕ = 0 mode, leaving the drive by
energetic ions with Λ> ΛIC largely uncompensated. On the
other hand, for on-axis resonances, a finite drive only occurs at
high instability frequencies and sufficiently narrow pitch angle
distributions of the ICRF accelerated ions. This implies unreal-
istically high energies of the ions that are resonating with the
mode, and thus a very low fraction of the energetic ions is
being effectively involved. Amore realistic assessment of such
on-axis ICRF resonances requires a proper treatment of finite
orbit width effects, which is beyond the scope of this initial
study. Nevertheless, our current assessment indicates that the
drive would be rather weak for on axis resonances.

The results of the simulations where sawtooth crashes are
applied show that it is indeed possible to create a region of
energy below Ecrit with a positive slope of the distribution func-
tion in the energy direction. However, the distribution function
stays energy inverted for a short period of time only, of the
order of a few tens of milliseconds, mainly because the ICRF
heating is a diffusive process in phase space. Furthermore,
for sawtooth redistribution to be effective in creating locally
energy inverted distribution functions, the ICRF resonance
layer must be close the magnetic axis (well inside the q= 1
surface). The simulations show that in the region where the
energy distributions is locally inverted, the damping due to
ICRF accelerated ions with Λ< ΛIC is very strong. For this
reason, the appearance of a region with an energy-inverted,
bump-on-tail-like distribution following a simulated sawtooth
crash was found to be insufficient to drive nϕ = 0 VDOMs in
the tested cases.

18



Nucl. Fusion 65 (2025) 092005 L.-G. Eriksson and F. Porcelli

It should, however, be noted that sawtooth redistribution
of other types of fast ion populations could contribute to the
drive of vertical nϕ = 0 oscillatory modes. For example, in the
case of fusion-born alpha particles, one would expect that pos-
itive values of ∂f0/∂E will play a more dominant role than the
anisotropy represented by the ∂f0/∂Λ term in equation (9) fol-
lowing a sawtooth redistribution (even if there would be some
anisotropy in the post crash distribution since the trapped high
energy ions are less affected by the redistribution than circulat-
ing ones). Furthermore, as mentioned in the introduction, there
are other mechanisms that can create regions in phase space
with pure bump on tail features, especially because of particle
sources [15, 17] modulated on time scales that are shorter than
the sawtooth period, which have the potential to drive nϕ = 0
modes.

As mentioned in the introduction, there are features of the
presented analysis that should be relevant also to other nϕ = 0
modes. In particular, any drive due to the anisotropy of distri-
bution functions of ICRF heated ions is expected to be more
effective for high field side ICRF resonances than other loca-
tions. Furthermore, the local ‘bump on tail’ regions found in
the simulations of the distribution functions following a saw-
tooth crash should be too weak to drive to nϕ = 0 modes in
general.

While this exploratory assessment of the drive of vertical
nϕ = 0 VDOMs by ICRF accelerated ions provides insight
into features that are key for its effectiveness, it is clear that
a more quantitative analysis would require taking finite orbit
width effects into account. This is, however, quite a formid-
able task since there are few available codes that could do this
efficiently. As an intermediate step, one may perhaps consider
developing a simplified modelling of the distribution function
including finite orbit width effects.
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Appendix A. Linear theory for the drive of nϕ = 0
modes

In order to derive the growth rate for nϕ = 0 modes driven by
fast ions, we need to evaluate the change in energy content of
the energetic ions in the presence of a perturbation. In the lin-
ear phase of an instability, the time derivative of the energy
content can be obtained in different ways, see for instance
[21, 23]. Here we follow more closely the latter, obtaining the
time derivative of the fast ion energy content by evaluating the
energy moment of a quasi-linear operator for the instability
wave-particle interaction. The formulation of the quasi-linear
operator for the orbit averaged distribution function f 0 presen-
ted in [21] use action angle variables (⃗J, θ⃗)

Qinst (f0) =
∂

∂Ji

[
D̄ij

inst
∂f0
∂Jj

]
(A.1)

where the orbit averaged distribution function is defined by

f0
(⃗
J
)
=

1

(2π)2

ˆ
fd3θ (A.2)

and D̄ij
inst tensor are given by,

D̄ij
inst = π

∑
n⃗

∣∣∣H̃1

(⃗
J, n⃗,ω

)∣∣∣2 δ(ω− n⃗ · Ω⃗
)
ni nj (A.3)

Here J1 = mµ/Ze is the normalised magnetic moment,
whereµ= mv2⊥/2B is themagneticmoment, J2 has a complic-
ated expression and it is not needed in what follows, J3 = pϕ is
the canonical toroidal angular momentum. Roughly speaking,
the first angle θ1 describes the position of the particle in the
Larmor rotation, θ2 the position along the guiding-centre orbit,
and θ3 the bounce averaged toroidal position of a particle;
these angles evolve linearly in time with frequencies,

θ̇i =
∂H0

∂Ji
=Ωi, (A.4)

where H0 is the unperturbed Hamiltonian of the particle
motion, Ω1 is the orbit averaged Larmor frequency, Ω2 =
ωb is bounce frequency and Ω3 the toroidal precession fre-
quency of a particle (to lighten the notation, we do not
use the subscript ‘0’ for the instability angular frequency
in this appendix). Finally, the Fourier transformed perturbed
Hamiltonian, H̃1(⃗J, n⃗,ω) is formally given by,

H̃1

(⃗
J, n⃗,ω

)
=

ˆ
H1

(⃗
J, θ⃗,ω

)
e(−i n⃗·θ⃗) d3θ

(2π)3
. (A.5)

The perturbed Hamiltonian can be written as,

dH1

(⃗
J, θ⃗, t

)
dt

= Ze⃗v · E⃗1 = Ze
(⃗
v∥ + v⃗d+ v⃗⊥,L

)
· E⃗1 (A.6)

Where E⃗1 is the perturbed electric field, v⃗⊥,L is the velocity
associatedwith the Larmor rotation and v⃗D is the drift velocity,

v⃗D =
1
ωc
b⃗×

(
v2∥κ⃗+

1
2
v2⊥∇lnB

)
(A.7)

Because we are here interested in modes with frequencies
much lower than the cyclotron frequency of the energetic ions
and nϕ = 0 modes, i.e. the perturbed Hamiltonian has no tor-
oidal dependence, the resonance condition dictates that we
only need to evaluate H̃1 for n1 = 0 and n3 = nϕ = 0. Denoting
n2 = p we find for this Fourier component,

H̃1

(⃗
J,p,ω

)
=

i
ω

ˆ 2π

0
⟨H1⟩e(−ipωbτ) dθ2

(2π)

=
i
ωτb

ˆ τb

0
⟨H1⟩e(−ipωbτ)dτ (A.8)

with,

⟨H1⟩=
1
2π

ˆ 2π

0
H1dθ

1 =

[
Ze
(⃗
v∥ + v⃗d

)
· E⃗1 +µ

∂B1,∥

∂t

]
(A.9)

19



Nucl. Fusion 65 (2025) 092005 L.-G. Eriksson and F. Porcelli

where B1,∥ is the perturbed magnetic field in the direction of
the equilibrium magnetic field. Following [23] we consider an
MHD perturbation, i.e. one that satisfies the constraint,

B⃗1 =∇×
(
ξ⃗⊥ × B⃗

)
(A.10)

where ξ⃗⊥ is identified as the displacement of a field line. This
implies a gauge with a perturbed vector potential perpendicu-
lar to the equilibrium magnetic field,

A⃗1 = ξ⃗⊥ × B⃗ (A.11)

Like in [23] we assume that the perturbed electric potential,
ϕ1, is zero and therefore E1,∥ = 0. Thus, we find,

H̃1

(⃗
J,p,ω

)
=− 1

τb

ˆ τb

0

[
ZeB⃗vd ·

(
ξ⃗⊥ × b⃗

)
−µB1∥

]
e(−ipωbτ)dτ

=
1
τb

ˆ τb

0

[
ξ⃗⊥ ·

(
mv2∥κ⃗+µ∇B

)
+µB1∥

]
e(−ipωbτ)dτ

(A.12)

Returning to the diffusion tensor components, with n1 = 0
and n3 = 0, the only non-zero component of the diffu-
sion tensor is then DJ2J2 (i.e. D22 in the notation used in
equation (A.1)). However, in order to take the energy moment
of the quasi-linear operator it is convenient to change from
the actions J⃗ to the set of invariants I⃗= (E ,Λ = µB0/E ,Pϕ),
where I1 = E is the kinetic energy. In addition, a variable
σ which takes the value σ = v∥/

∣∣v∥∣∣ evaluated at the outer
crossing of the mid-plane by a particle orbit (in the standard
limit to separate between co and counter passing ions). For
the transformation of the components of the diffusion tensor
into the new coordinates we now only need ∂E/∂J2 =Ω2 and
∂Λ/∂J2 =−ΛΩ2/E (where we have used the fact that E is
the unperturbed Hamiltonian of the particle movement). The
quasi-linear operator now takes the form,

QN=0
Inst ( f0) =

∑
σ

1
√
g
∂

∂E

[
√
g

(
DEE ∂f0

∂E
+DEΛ ∂f0

∂Λ

)]
+
∑
σ

1
√
g
∂

∂Λ

[
√
g

(
DΛΛ ∂f0

∂Λ
+DΛE ∂f0

∂Λ

)]
(A.13)

where the Jacobian is given by,

√
g=

∣∣∣∣∣∣
∂
(⃗
J, θ⃗
)

∂
(⃗
I, θ⃗
)
∣∣∣∣∣∣=
∣∣∣∣∣∂J⃗∂⃗I

∣∣∣∣∣= E
ZeB0m2ωb

(A.14)

and,

DEE = D̄J2J2 ∂E
∂J2

∂E
∂J2

= ω2D0

DEΛ = DΛE = D̄22 ∂E
∂J2

∂Λ

∂J2
=−ω2Λ

E
D0

DΛΛ = D̄22 ∂Λ

∂J2
∂Λ

∂J2
=

(
ω
Λ

E

)2

D0 (A.15)

with,

D0 = π
∑
p

∣∣∣H̃1

(⃗
I,p,ω

)∣∣∣2 δ (ω− pωb) (A.16)

Note that by virtue of the resonance delta function, we have
replaced pωb with ω. The energy moment of the this quasi-
linear operator now gives us the time derivative of the energy
content of the energetic ion distribution in the liner phase, i.e.

dWh

dt
=

ˆ
EQN=0

inst ( f0)
√
gdEdΛdPϕd3θ

=−(8π)3ω2
∑
σ

ˆ
√
gω2D0

(
∂

∂E − Λ

E
∂

∂λ

)
f0dEdΛdPϕ.

(A.17)

For a given instability wave frequency ω, the resonance
condition determines a resonant energy E∗

p as a function of p,
Λ and Pϕ, defined by ω = pωb(E∗

p ,Λ,Pϕ). We can eliminate
the delta function in D0 by integrating over energy to arrive
at,

dWh

dt
=−8π4ω2

∑
σ

ˆ

×

[
√
g
∑
p

∣∣H̃1

∣∣2(p∂ωb
∂E

)−1(
∂f0
∂E − Λ

E
∂f0
∂λ

)]
E=E∗

p

dΛdPϕ.

(A.18)

Using the definition of the variable λh in the main text we
find,

λh =− 8π4

Winst
ω
∑
σ

ˆ

×

[
√
g
∑
p

∣∣H̃1
∣∣2(p∂ωb

∂E

)−1(
∂f0
∂E − Λ

E
∂f0
∂λ

)]
E=E∗

p

dΛdPϕ

(A.19)

We now turn to the thin banana width limit in which case
dPψ → Zedψ. Furthermore, we introduce ρ=

√
ψ/ψa as flux

surface coordinate, where we have defined ψ to be zero on
the magnetic axis and ψa is the ψ at the plasma boundary.
Following [14], we introduce hωb(Λ,r) = ωbR0q/v and take
Winst = Vρcω2ξ2/2, where V is the plasma volume and ρc is
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the core mass density. The expression for λh can then be cast
in the form,

λh =
16
√
2π4R0qψa

Vρcω2ξ2B0m3/2

∑
σ

ˆ

×

[∑
p

∣∣H̃1

∣∣2
hωb

E3/2

(
∂f0
∂E

− Λ

E
∂f0
∂λ

)]
E=E∗

p

ρdρdΛ (A.20)

where,
√
2E∗

p /m= ω0R0q/[phωb(Λ,ρ)].

At this point it is important to note that in order to assess
the potential for instability, the whole energy functional must
be minimised. As discussed in detail in [23], this implies min-
imising B1∥. It is shown in [22, 23] that with an appropriate

choice of ξ⃗, B1∥ is of order O(ϵξ /R). Hence, to leading order
we can neglect it in the expression for λh above. Furthermore,
in order to establish contact with [14], we now assume a low
β plasma and neglect the distinction between κ⃗ and B−1∇B,
leading to,

H̃1

(⃗
J,p,ω

)
=

1
τb

ˆ τb

0
E
(
2−Λ

B
B0

)
ξ⃗ · κ⃗e(−ipωbτ)dτ

≈ 1
τb

ˆ τb

0
E (2−Λ) ξ⃗ · κ⃗e(−ipωbτ)dτ (A.21)

We now turn to ξ⃗ · κ⃗. As indicated in [14], ξ⃗⊥ a rigid vertical
shift in our case. Consequently, the curvature of Bϕ does not
contribute to ξ⃗ · κ⃗, instead ∂Bθ/∂z is the key factor for ξ⃗ · κ⃗,
and one finds,

ξ⃗ · κ⃗≈ ξ

B
∂Bθ
∂ρ

ẑ ·∇ρ (A.22)

For tokamak with circular flux surfaces, this expression is
approximately given by,

ξ⃗ · κ⃗≈ ξ ϵ2

q2r
sin(θ) (A.23)

Together equations (A.20)–(A.22) constitute the general-
ised form, taking into account the anisotropy of the distribu-
tion function, of equation (11) in [14]. It should be noted that
|H̃1(⃗J,p,ω)| is equivalent to |Υp| in [14], and we adopt the lat-
ter notation in the main text.

Appendix B. Model of ICRF heated distribution
function

The evolution of the distribution function of ions resonating
with ICRF waves in a toroidal plasma can be described by a
3D orbit averaged Fokker–Planck equation [31],

∂f0
∂t

= ⟨C( f0)⟩+ ⟨Q( f0)⟩ (B.1)

where ⟨C( f0)⟩ i the orbit averaged collision operator and
⟨Q( f0)⟩ a quasi-linear operator representing the effect of
the wave particle interaction on the distribution function.

The orbit averaged distribution function, f 0, is a function of
three invariants of the unperturbed particle motion, e.g. the
kinetic energy, E , a generalised pitch angle variable, Λ =
µB0/E = (1− ξ2)B0/B and the toroidal angular momentum
Pϕ = mRv∥Bθ/B+Zeψ, where B0 is the magnetic field on the
magnetic axis, ψ is the poloidal flux function (poloidal flux
over 2π), Z is the charge number of the resonating species
The quasi-linear description of the wave particle interaction
is valid provided the relative phase between the waves and
the Larmor motion of the resonating ions is sufficiently ran-
domised between successive transits of an orbit [32], which is
assumed to be the case.

Resolving the full 3D orbit averaged Fokker–Planck
equation is cumbersome and costly numerically, and it is not
suitable for the current exploratory study. For this reason, we
seek to simplify the equation. The first step in the simplifica-
tion procedure is to neglect spatial transport of the resonating
ions (either by neoclassical effects or by wave-induced trans-
port). Furthermore, we adopt the small banana width limit (i.e.
Pϕ ≈ Zeψ). In this case the distribution function on a flux sur-
face is just a function of f0 = f0(E ,Λ) and the operator derived
in [31] reduces to,

⟨Q( f0)⟩=
1
√
g
∂

∂E

[
√
gDEE ∂f0

∂E

]
+

1
√
g
∂

∂E

[
√
gDEΛ ∂f0

∂Λ

]
+

1
√
g
∂

∂Λ

[
√
gDΛE ∂f0

∂E

]
+

1
√
g
∂

∂Λ

[
√
gDΛΛ ∂f0

∂Λ

]
where

√
g= E/(m2ZeB0ωb),

DEE = ω2
ICD0

DWΛ = DΛE =
ωIC (nωci,0 −ΛωIC)

E
D0

DΛΛ =

(
nωci,0 −ΛωIC

E

)2

D0

ωci,0 is the ion cyclotron frequebcy on the magnetic axis and,

D0 =
1
2τb

(
Ze
ωIC

)2 ∣∣∣∣˛
orbit

×v⊥
[
E+Jn−1

(
k⊥v⊥
ωc

)
+E−Jn+1

(
k⊥v⊥
ωc

)]
eiϕ
∣∣∣∣2 dt

dϕ
dt

= nωc−ωIC + k∥v∥.

In the PION code D0 is approximated by,

D0 = E2
norm

∣∣∣∣Jn−1

(
k⊥v⊥
ωc

)
+
E−

E+
Jn+1

(
k⊥v⊥
ωc

)∣∣∣∣2
R

where R stands for the quantity evaluated at a local resonance
point and the normalising factor, E2

norm is adjusted such that
the flux surface averaged power density is consistent with that
obtained from the wave propagation model.

We now define the pitch angle averaged distribution func-
tion as,

F(E) =
ˆ
f0JdΛ (B.2)
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where,

J=
π vτb
2 dV
dψB0

. (B.3)

V(ψ) is the volume enclosed by a flux surface labelled by the
poloidal flux ψ. This is the natural definition because if we
take a velocity independent moment y(E) of the distribution
function (e.g. y= E to calculate the energy density of the res-
onating ions species) we find,

⟨y⟩fl.s = lim
∆ψ→0

´
dE
´
dΛ
´ ψ+∆ψ

ψ
y(E) f0

√
g8π3Zedψ

dV
dψ∆ψ

= 4π
ˆ
y(E)F(E)

√
2E

m3/2
dE

= 4π
ˆ
y(v)F(v)v2dv.

(B.4)

(The 8π3 stems from the integration of the three action
angles employed in e.g. [31])

We now make the ansatz that the distribution function can
be written as,

f0 (v,Λ) = F(E)h(E ,Λ) (B.5)

where the function h is normalised such that,

ˆ B0/Bmin

0
Jh(E ,Λ)dΛ = 1. (B.6)

The PION code solves for the pitch angle averaged distri-
bution function,

∂F
∂t

= ⟨⟨C(F)⟩⟩Λ + ⟨⟨Q(F)⟩⟩Λ (B.7)

where

⟨(. . .)⟩Λ =

ˆ B0/Bmin

0
(. . .)JdΛ (B.8)

For the function h(E ,Λ), we change the coordinate Λ to
the pitch angle where the orbit crosses the mid-plane on the
low field side, ξ =±

√
1−ΛBm/B0, where Bm is the mag-

netic field at the mid-plane. Furthermore, consider the point
on the flux surface where the poloidal angle is given by,
ωIC = nωc(ρ,θR), and denote the local pitch angle at θ = θR by
µ= v∥,R/v. Thus, we have µ=±

√
[1− (1− ξ2)Bm/BR] and

the local distribution function at θ = θR is given by,

f0 (E ,µ,θR) = f0 (v, ξ (µ,θR)) . (B.9)

In order to obtain an h representing the characteristic ‘rabbit
ear’ shape of the level surfaces of ICRF heated distribution
functions, see [28], we make the ansatz,

h(E , ξ) = Knorm

[
e(

ξ−ξR
σ(E) )

2

+ e(
ξ+ξR
σ(E) )

2
]

(B.10)

with the normalisation constant, Knorm, determined from
equation (B.6), and ξR =

√
1−Bm/BR. In order to determine

the width, σ, the µ2 moment is calculated at the point θ = θR
and as an approximation σ is adjusted such that this mome-
net matches the µeff(E) used in PION to estimate the parallel
energy content of the resonating ions,

µ2
eff (E)≈

ˆ
µ2h [E , ξ (µ,θR)]dµ, (B.11)

with,

µ2
eff (E) =

1
3

1+ E
E∗

1+ E
E∗

+
(

E
E∗

)2 (B.12)

and E∗ = Eγ/4, where Eγ is the characteristic velocity asso-
ciated with pitch angle scattering [29]. The factor 1/4 was
obtained by comparison with simulations by the 2D bounce
averaged Fokker–Planck code BAFIC [33].

This model has been implemented in an updated version of
the PION code, which calculates σ and Knorm from which the
2D distribution function can then be reconstructed.

Appendix C. Heuristic model of the high energy
distribution function

As discussed in section 4, the distribution of ICRF accelerated
ion becomes very narrow around the value ofΛ corresponding
to the turning point of trapped ions just reaching the cold res-
onance defined by ωIC = nωc(BRes). We use this fact in order
to construct a heuristic, or mock-up model, of the high energy
distribution suitable for analytic work. Taking inspiration from
appendix B we start from the following approximate form for
the distribution function,

f0
(
v⊥R,v∥R,r

)
≈ C0

√
m

2πT0
exp

(
−mv2⊥R

2Ttail

)
exp

(
−
m
(
v∥R−σϵv

)2
2T0

)
(C.1)

where v⊥R and v∥R are the perpendicular and parallel velocities
of accelerated high energy ions measured at ωIC = nωc(RIC),
σ = v∥R/|v∥R| and ϵv a small velocity introduced to ensure that
the average turning point of resonant ions is just beyond the
cold resonance (note: here ϵ is just a small parameter and not
the inverse aspect ratio). We can now express v⊥R and v∥R in
terms of v and Λ,

v2⊥R = v2
Λ

ΛIC
(C.2)
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v2∥R = σv

√
1− Λ

ΛIC
(C.3)

where ΛRes =
B0
BR
. We now take the limit T0 → 0, to obtain,

f0 (E ,Λ,ρ)≈ C0 exp

(
− E
Ttail

Λ

ΛIC

)
δ

[
σv

(√
1− Λ

ΛIC
− ϵ

)]
.

(C.4)

In the main text, we employ integrals over Λ of the dis-
tribution function and therefore transform the delta function
yielding,

f0 (E ,Λ,r)≈ C0
2ϵ
v
exp

(
− E
Ttail

Λ

ΛIC

)
δ
[
Λ−ΛIC

(
1− ϵ2

)]
.

(C.5)

In order to fix C0 we take the density moment of the dis-
tribution, which should yield the density of the energetic ions,
nf. Using the results in appendix B, we have,

nres (r) =

√
2π

m3/2

ˆ
f0 (E ,Λ,r)

√
E

hωb (Λ)
dEdΛ

=
2πC0ϵ

mhωb [ΛIC (1− ϵ2)]

ˆ ∞

0
exp

(
− E
Ttail

(
1− ϵ2

))
dE .

(C.6)

Thus, C0ϵ= nreshωb [ΛIC(1− ϵ2]/[2πTtail(1− ϵ2)] and
finally in the limit ϵ→ 0 we obtain,

f0 (E ,Λ,r)≈
nfm3/2hωb (ΛIC)

23/2πTtail

exp
(
− E

Ttail

)
√
E

δ (Λ−ΛIC) .

(C.7)

The key point to observe here is the 1/
√
E ∼ 1/v depend-

ence, which stems from the fact that, loosely speaking,
when the distribution is very narrow in Λ effectively one
degree of freedom has been removed from the particle
motion. Intuitively v→ v⊥ and therefore (. . .)(1/v)v2dv→
(. . .)v⊥dv⊥. Of course, it must be emphasised that the above
model distribution is only valid in the high energy range and
cannot be extrapolated to thermal energies.

As is shown in section 5, the 1/
√
E dependence does have

an influence on the threshold for flux surface to provide a pos-
itive contribution to the nϕ = 0 instability that cannot always
be neglected.

In the limit of very strong tail formation, the tail temper-
ature is related to the absorbed ICRF power density and the
ion–electron collisional slowing down time by,

nresTtail (r)≈ pICRF (r) ts/2. (C.8)
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