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2D histogram features to enable online 
battery diagnosis and knee-onset detec-
tion.
A hybrid model for battery degradation 
mode estimation and phase detection.
A fine-tuning strategy to create local 
models for online deployment.
The method enables advanced battery 
management system functions in the 
cloud.
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 A B S T R A C T

The techno-economic and safety concerns of battery capacity knee occurrence call for developing online knee 
detection and prediction methods as an advanced battery management system (BMS) function. To address this, 
a transferable physics-informed framework that consists of a histogram-based feature engineering method, a 
hybrid physics-informed model, and a fine-tuning strategy, is proposed for online battery degradation diagnosis 
and knee-onset detection. The hybrid model is first developed and evaluated using a scenario-aware pipeline in 
protocol cycling scenarios and then fine-tuned to create local models deployed in a dynamic cycling scenario. A 
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2D histogram-based 17-feature set is found to be the best choice in both source and target scenarios. The fine-
tuning strategy is proven to be effective in improving battery degradation mode estimation and degradation 
phase detection performance in the target scenario. Again, a strong linear correlation was found between 
the identified knee-onset and knee points. As a result, advanced BMS functions, such as online degradation 
diagnosis and prognosis, online knee-onset detection and knee prediction, aging-aware battery classification, 
and second-life repurposing, can be enabled through a battery performance digital twin in the cloud.
1. Introduction

Lithium-ion batteries in electric vehicles and stationary energy stor-
age systems are critical for the cost-effective decarbonization of the 
transportation and power sectors [1,2]. One of the most challenging re-
quirements of these applications is a long battery lifetime to achieve the 
economic return on investment [3]. However, batteries are designed 
and used for a wide range of applications, and exhibit path-dependent 
degradation (i.e., the rate and extent of battery degradation depend 
not only on operating conditions but also on the specific sequence 
in the usage history), which leads to considerably dispersed battery 
lifetime [4–6]. This is caused by complex interactions of various me-
chanical and chemical degradation mechanisms, many of which are 
influenced by operating conditions [7]. In experimental aging tests of 
commercial batteries, it is commonly observed that batteries exhibit 
abrupt capacity fade (also called knee occurrence) which severely 
limits battery performance and lifetime [8–11]. Moreover, severe safety 
issues, such as thermal runaway, may arise if batteries are reused after 
knee occurrence [12]. Therefore, avoiding or at least delaying knee 
occurrence is essential to ensure a long battery lifetime.

As a key step to avoid or delay knee occurrence throughout a 
battery’s service life, an online capacity knee detection and prediction 
method, with a possibility of real-time degradation diagnosis and prog-
nosis to unravel why a knee occurs, is sought. As a result, a number of 
recent research efforts have been made to develop such a method. The 
data-driven methods focusing on knee detection and prediction aspects 
can be generally divided into two categories, i.e., intersection-based 
methods [13–15], and learning-based methods  [16–20]. Specifically in 
the former category, the slope-changing ratio method [13], the Bacon–
Watts method [14], and the bisector method [15] have been proposed, 
which are based on finding the intersection between a straight line 
approximating the early fade and a second line approximating the fade 
after knee occurrence. In the latter category, the quantile regression 
method [16], convolutional neural networks [17,18], long short-term 
memory [19], and a transformer-based model [20] have been proposed, 
which are based on learning machine learning models with specifically 
extracted input features from time-series battery data. In summary, 
the performance of intersection-based methods is greatly affected by 
the shape of capacity fade curves which can be linear, sublinear, 
superlinear or a combination of the three [21]. Moreover, they are 
not applicable for online detection as they need more or less complete 
capacity fade curves. In contrast, learning-based methods can be used 
for online detection and prediction, even with battery degradation 
diagnosis to some degree [20], but they require large amounts of 
labeled data for model training purposes and are prone to failure when 
generalizing to usage scenarios unseen at the training stage.

Another important aspect of online capacity knee detection and pre-
diction is non-invasive battery degradation diagnosis, whose methods 
can be divided into model-based methods [22–27], and curve-based 
methods [28–32]. Specifically in the former category, electrochemical 
models derived from first principles using porous electrode theory 
(e.g., the pseudo-two-dimensional model [22,23] and the single particle 
model (SPM) [24]), and equivalent circuit models [25,26] have been 
proposed. The model parameters that are highly correlated with under-
lying degradation mechanisms or modes are then identified and tracked 
for battery degradation diagnosis. Another example is a mechanistic 
model proposed by Dubarry et al. [27] that can simulate various 
2 
‘‘what-if’’ scenarios of battery degradation modes (e.g., loss of lithium 
inventory and loss of active material at both electrodes) and enable 
non-invasive battery degradation diagnosis via incremental capacity 
(IC) and differential voltage (DV) curves. In the latter category, curve-
based methods that utilize measurements from cell characterization 
tests, such as electrochemical impedance spectroscopy (EIS) [28], dis-
charge voltage curves [29], pseudo open circuit voltage (OCV) [30], 
incremental capacity analysis (ICA) [31] and differential voltage anal-
ysis (DVA) [32], provide alternative solutions to non-invasive battery 
degradation diagnosis. In summary, model-based methods can simulate 
path-dependent battery degradation under a range of operating con-
ditions, which can be used for online battery degradation diagnosis 
with a trade-off between physical accuracy and model complexity. 
However, there are still many degradation mechanisms that remain 
poorly understood, and existing physics-based models suffer from poor 
identifiability, which limits their applications for online degradation 
diagnosis [33]. In contrast, curve-based methods require either EIS 
measurements over a frequency range at an electrochemical equilib-
rium point or pseudo-OCV measurements at a low rate (i.e., C/25 or 
lower [34]), which are challenging to acquire in an onboard BMS.

Contribution: The goal of this work is to fill the gaps indicated 
above by proposing a transferable physics-informed framework for 
online battery degradation diagnosis, knee-onset detection, and knee 
prediction. Specifically, the model takes histograms aggregated from 
time-series voltage and current data, which are easy to acquire in an 
onboard BMS. In addition, its performance can be generalized to unseen 
battery usage scenarios at a satisfactory level using a small amount of 
labeled data in a target scenario. Our key results and contributions are 
as follows:

• As a result of curvature-based knee and knee-onset identification, 
the concept of ‘‘degradation phases’’ is introduced, with which 
batteries can be classified according to which degradation phase 
they are in. Specifically, Phase 1 is defined as the period from 
the beginning of life to the knee-onset point in which batteries 
may continue their usage in first-life applications; Phase 2 is 
defined as the period from the knee-onset point to the knee point 
in which batteries may either continue their usage in first-life 
applications or be repurposed to second-life applications in which 
the knee occurrence may be avoided; Phase 3 is defined as the 
period beyond the knee point in which batteries may potentially 
be repurposed to very mild second-life applications in which the 
knee occurrence can be stopped, or be recycled.

• A transferable physics-informed framework is proposed, which 
consists of a histogram-based feature engineering method, a hy-
brid physics-informed model, and a fine-tuning strategy. The 
2D histogram-based 17-feature set retains the correlation be-
tween current and voltage with its predictive power generalizing 
across different usage scenarios. The proposed hybrid physics-
informed model is the first application of a deep hidden physics 
model (DeepHPM) for battery degradation mode estimation and 
an XGBoost model for battery degradation phase detection.

• The hybrid model using a 2D histogram-based 17-feature set is 
found to be the best choice for estimating battery degradation 
modes in both source and target scenarios. The fine-tuning strat-
egy was proven to be effective in improving battery degradation 
mode estimation and phase detection performance in the target 
scenario. With degradation phases detected with high accuracy, 
online prediction of battery capacity knee points can also be 
achieved by leveraging the strong linear correlations identified 
between knee-onset and knee points.
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Fig. 1. The identified degradation phases and estimated degradation modes of cell E4B (left) and E4E (right) in the ICL dataset.
 

2. Methods

2.1. Related definitions

Definition 2.1 (Degradation Mechanisms [30,35]). A degradation mech-
anism is a mechanical or chemical mechanism that degrades the differ-
ent components of a battery, such as the electrodes, the electrolyte, the 
separator, and the current collectors. In this work, three degradation 
mechanisms are considered, namely, solid electrolyte interphase (SEI) 
growth, lithium plating, and particle cracking.

Definition 2.2 (Degradation Modes [30,36]). A degradation mode is a 
degradation mechanism that has a unique and measurable effect on, 
for example, the capacity, impedance, and open circuit voltage (OCV) 
of lithium-ion cells, caused by one or multiple interacting degradation 
mechanisms. Three degradation modes are considered here, loss of 
lithium inventory (LLI), loss of active material at the negative elec-
trode (LAM_NE), and loss of active material at the positive electrode 
(LAM_PE). Notably, another degradation mode, i.e., conductivity loss 
(CL), describes ohmic resistance increase.

Definition 2.3 (Knee [37]). The capacity knee is defined as the point 
when ‘‘the capacity slowly declines throughout most of the battery’s 
life, but begins to decrease rapidly in the latter stages’’ (see Fig.  1(a)).

Definition 2.4 (Knee-Onset [14]). The capacity knee-onset is defined 
as ‘‘the point that marks the beginning of the accelerated degradation 
rate at which the capacity fade can no longer be approximated as a 
linear function’’. The knee-onset point shows the very first signs of the 
transition to the accelerated degradation rate, which provides much 
earlier warning than the knee point, where the accelerated degradation 
is already taking place (see Fig.  1(a)).

Definition 2.5 (Degradation Phases [38]). A battery degradation process 
with knee occurrence on the capacity fade curve has three discrete 
phases 𝑺 = [𝑠1, 𝑠2, 𝑠3] separated by two boundaries 𝑩 = [𝑏1, 𝑏2]. Here, 
the first phase (𝑠1) represents the battery degradation process from the 
beginning of life to the knee-onset point (𝑏1), the second phase (𝑠2) 
represents the battery degradation process from the knee-onset point 
(𝑏1) to the knee point (𝑏2), and the third phase (𝑠3) represents the 
battery degradation process from the knee point (𝑏2) to the end of life.

Definition 2.6 (Path-Dependent Degradation [4]). The rate and extent 
of degradation depend not only on aging conditions but also on the 
specific sequence of aging conditions in the usage history.
3 
Definition 2.7 (Knee Pathways [21]). A knee pathway is a family 
of battery internal state (associated with degradation mechanisms) 
trajectories that lead to a knee on the capacity fade curve, such as 
lithium plating, electrode saturation, resistance growth, electrolyte and 
additive depletion, percolation-limited connectivity, and mechanical 
deformation.

2.2. Aging-aware battery classification

Lithium-ion batteries are designed, manufactured, and used for 
a wide range of applications, such as portable electronics, electric 
vehicles (EVs), and stationary energy storage systems. As a result of 
complex interactions between multiple degradation mechanisms that 
are influenced by operating conditions (e.g., charge/discharge current, 
temperature, state-of-charge (SoC) window, etc.), batteries can exhibit 
capacity fade curves that are linear, sublinear, superlinear or a combi-
nation of the three [21]. In particular, superlinear capacity fade infers 
a knee on the capacity fade curve, which may significantly shorten a 
battery’s lifetime and pose safety risks [39]. Therefore, batteries with 
knee occurrence are recommended to retire immediately for safety 
concerns [40]. As a result, retired EV batteries with knee occurrence 
will have no second-life value. However, if we can classify EV batteries 
during their first-life applications, and then repurpose them to well-
controlled second-life applications in which the knee occurrence can 
be delayed or even avoided, then enormous quantities of EV batteries 
could potentially have substantial second-life value with guaranteed 
safety.

Our previous work proposed a curvature-based identification method
to identify knee-onset and knee points on the battery capacity fade 
curve [38]. Identified knee-onset and knee points divide the battery 
degradation process into three phases (see Definition  2.5), and then 
batteries can be classified based on which degradation phase they are 
in:

Phase 1: From the beginning of life to the knee-onset point. 
Batteries in this phase may continue their usage in first-life ap-
plications.
Phase 2: From the knee-onset point to the knee point. Batteries in 
this phase may either continue their usage in first-life applications 
or be repurposed to very mild second-life applications in which 
the knee occurrence may be avoided or at least significantly 
delayed.
Phase 3: From the knee point to the end of life. Batteries in 
this phase may either be repurposed to second-life applications 
in which the knee occurrence can be stopped, or be recycled.
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Table 1
Example variable bounds for cells in Experiment 5 of ICL dataset.
 Percentile Voltage (V) Current (A) 
 1st 2.803 −5  
 33rd 3.711 0.181  
 67th 4.068 1.501  
 99th 4.200 1.505  

To demonstrate how the curvature-based identification method facili-
tates the classification of batteries, we use two sample cells, one with 
knee occurrence and one without knee occurrence, from the Imperial 
College London (ICL) dataset [41]. As illustrated in Fig.  1, it can be 
seen that at the end of the experiments cell E4B is in Phase 3 while 
cell E4E is in Phase 2. Since the knee on the capacity fade curve can 
be caused by different knee pathways (see Definition  2.7), it is natural 
to correlate identified degradation phases with estimated degradation 
modes (see Definition  2.2). The degradation of cell E4B begins with a 
square root dependence on time until it reaches the knee-onset point 
(201 cycles) at which its degradation process transits from Phase 1 to 
Phase 2, and then continues growing until the knee point (478 cycles) 
at which the degradation process transits from Phase 2 to Phase 3. In 
contrast, the degradation of cell E4E also begins with a square root 
dependence on time until the knee-onset point (201 cycles) at which its 
degradation process transits from Phase 1 to Phase 2. However, there is 
no knee occurrence before the end of the experiment, and thus, Phase 
3 is never reached.

2.3. Histogram-based feature engineering

To achieve online battery degradation mode estimation and phase 
detection, the objective of feature engineering is to reduce the dimen-
sionality of time-series usage data and generate aging-relevant features. 
A simple histogram-based feature engineering method was found to be 
able to extract features from time-series usage data, whose excellent 
predictive power can be generalized across different battery usage 
scenarios [15,42].

This histogram-based feature engineering method consists of two 
steps, i.e., first determining the variable bounds; and then extracting 
features from time-series usage data. We assume that voltage and 
current measurements are available for each cell in a battery pack, 
we will therefore focus on features extracted from the time series of 
these two variables in this work. Specifically, we first determine the 
variable bounds, for which a histogram and a cumulative histogram are 
generated from the measured voltage and current data. An example of 
the histogram and the cumulative one generated from the voltage data 
can be seen in Figs.  2(a) and 2(b), respectively. Similarly, an example 
of the histogram and the cumulative one generated using the current 
data can be seen in Figs.  3(a) and 3(b), respectively. Each bar in the 
histograms represents the time spent within a specific voltage or current 
range. The 1st, 33rd, 67th, and 99th percentiles of each variable are 
given in Table  1. Based on these bounds, a voltage-based 3-feature set 
was selected as the optimal set for online capacity estimation by Green-
bank and Howey [15]. Although battery capacity fade is attributed to 
the growth of internal degradation modes, this feature set may not be 
the best feature set for online battery degradation mode estimation. 
Moreover, time spent in extreme ranges, for example, ranges outside 
charge/discharge cut-off voltages, should also be monitored due to its 
evident degradation effects [43]. As listed in Table  2, five feature sets 
are generated for online battery degradation mode estimation.

2.4. Hybrid model architecture design

A knee on the capacity fade curve may be contributed by multiple 
degradation modes, and each of these modes may be contributed 
by multiple degradation mechanisms. Although it can be extremely 
4 
challenging to independently identify each degradation mechanism due 
to direct and indirect interactions between them, degradation modes 
are quantifiable using pseudo-OCV measurements and the degradation 
model proposed by Birkl et al. [30].

Specifically, SEI growth can contribute to LLI by immobilizing 
lithium ions; lithium plating can contribute to LLI by forming dead 
lithium; particle cracking can contribute to LLI by creating new surfaces 
for SEI growth and lithium plating, and it can also contribute to 
stress-driven LAM through island formation and binder decomposition. 
Therefore, modeling LLI requires modeling these three degradation 
mechanisms and their interactions, while modeling stress-driven LAM 
requires modeling one degradation mechanism. Moreover, depending 
on the root cause of the capacity knee, the degradation mechanisms 
contributing to each degradation mode may also differ in each knee 
pathway (see Definition  2.7). For example, in a cracking-induced knee 
pathway, the intercalation and deintercalation of lithium ions during 
cycling can cause alternating mechanical stress in the electrodes, which 
can lead to particle cracking. New surfaces can be created for SEI 
growth as the cracks propagate, which accelerates LLI. The accelerated 
LLI contributes to the accelerated capacity fade, and eventually, a knee 
on the capacity fade curve. Therefore, modeling LLI in a cracking-
induced knee pathway requires modeling two degradation mechanisms 
(SEI growth and particle cracking) and their interactions. However, the 
exact degradation mechanisms that contribute to LLI and LAM are not 
known as a prior for each cell, which makes it almost impossible to 
model LLI and LAM accurately enough for online degradation mode 
estimation.

In this study, to capture key dynamics in each knee pathway, we 
propose to model each degradation mode as a multivariate function 

𝑢𝑖 = 𝑓𝑖(𝑡,𝒙), 𝑖 = 1, 2, 3, (1)

where 𝑡 ∈ R denotes time, 𝒙 ∈ R𝑚 denotes an input vector and can 
be one of five feature sets, excluding the calendar time 𝑡 (see Table  2), 
and 𝑢𝑖 ∈ R denotes each of the three degradation modes (see Definition 
2.2). The degradation mode growth rate is defined as how quickly a 
degradation mode grows with respect to time, and can be described 
using a nonlinear partial differential equation (PDE) in the general form 

𝑢𝑡 =
𝜕𝑢
𝜕𝑡

= 𝑔(𝑡,𝒙, 𝑢, 𝑢𝒙), (2)

where we have omitted the index 𝑖 to simplify, 𝑔(⋅) is a nonlinear 
function of time 𝑡, the input vector 𝒙, solution 𝑢, and its derivatives 
with respect to the input vector, for example, 𝑢𝒙 = [ 𝜕𝑢

𝜕𝑥1
, 𝜕𝑢
𝜕𝑥2

,… , 𝜕𝑢
𝜕𝑥𝑚

]𝑇 . 
The function 𝑔(⋅) comprises battery internal degradation dynamics and 
can represent different forms of degradation, such as linear, sublinear, 
superlinear, or combination of the three [21]. However, the explicit 
form of 𝑔(⋅) is unknown and almost impossible to obtain. Inspired by the 
deep hidden physics model (DeepHPM) proposed by Raissi et al. [44], 
we approximate the function 𝑓 (⋅) in Eq. (1) and the nonlinear function 
𝑔(⋅) in Eq. (2) with two neural networks (NNs) and define a DeepHPM 
 to model battery degradation mode: 

(𝑡,𝒙;𝛷,𝛩) ∶=
𝜕 (𝑡,𝒙;𝛷)

𝜕𝑡
− (𝑡,𝒙, 𝑢, 𝑢𝒙;𝛩), (3)

where  (⋅) denotes the surrogate NN that approximates the hidden 
solution of the dynamical models, (⋅) denotes the dynamic NN that 
approximates the battery degradation dynamics, and 𝜕 (𝑡,𝒙;𝛷)

𝜕𝑡  denotes 
the partial derivatives of the surrogate NN  (⋅) with respect to 𝑡. No-
tably, we only consider the first-order partial derivatives in the dynamic 
NN, to achieve a good trade-off between accuracy and complexity. The 
parameters 𝛷 of the surrogate NN  (⋅) and 𝛩 of the dynamic NN (⋅)
can be learned by minimizing the sum of squared errors by the loss 
function 

 =  +  +  , (4)
𝑢  𝑡



H. Zhang et al. Journal of Power Sources 657 (2025) 238028 
Fig. 2. The histogram (left) and cumulative histogram (right) generated using the voltage data in Experiment 5 of ICL dataset.
Fig. 3. The histogram (left) and cumulative histogram (right) generated using the current data in Experiment 5 of ICL dataset.
Table 2
Five feature sets using histogram-based method.
 Feature set Input feature  
 
1D voltage-based 3-feature set

Time spent between 1st and 33rd voltage percentiles (i.e., 𝑉12)  
 Time spent between 33rd and 67th voltage percentiles (i.e., 𝑉23)  
 Calendar time (i.e., 𝑡)  
 

1D voltage-based 5-feature set

Time spent less than 1st voltage percentile (i.e., 𝑉01)  
 Time spent between 1st and 33rd voltage percentiles (i.e., 𝑉12)  
 Time spent between 33rd and 67th voltage percentiles (i.e., 𝑉23)  
 Time spent greater than 67th voltage percentile (i.e., 𝑉34)  
 Calendar time (i.e., 𝑡)  
 
1D current-based 3-feature set

Time spent between 1st and 33rd current percentiles (i.e., 𝐼12)  
 Time spent between 33rd and 67th current percentiles (i.e., 𝐼23)  
 Calendar time (i.e., 𝑡)  
 

1D current-based 5-feature set

Time spent less than 1st current percentile (i.e., 𝐼01)  
 Time spent between 1st and 33rd current percentiles (i.e., 𝐼12)  
 Time spent between 33rd and 67th current percentiles (i.e., 𝐼23)  
 Time spent greater than 67th current percentile (i.e., 𝐼34)  
 Calendar time (i.e., 𝑡)  
 

2D current–voltage 17-feature set

Time spent less than 1st current percentile and in 4 voltage ranges 
(i.e., 𝐼01𝑉01, 𝐼01𝑉12, 𝐼01𝑉23, 𝐼01𝑉34)

 

 Time spent between 1st and 33rd current percentiles and in 4 voltage ranges 
(i.e., 𝐼12𝑉01, 𝐼12𝑉12, 𝐼12𝑉23, 𝐼12𝑉34)

 

 Time spent between 33rd and 67th current percentiles and in 4 voltage ranges
(i.e., 𝐼23𝑉01, 𝐼23𝑉12, 𝐼23𝑉23, 𝐼23𝑉34)

 

 Time spent greater than 67th current percentile and in 4 voltage ranges 
(i.e., 𝐼34𝑉01, 𝐼34𝑉12, 𝐼34𝑉23, 𝐼34𝑉34)

 

 Calendar time (i.e., 𝑡)  
5 
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where

𝑢 =
𝑛
∑

𝑖=1
[ (𝑡𝑖,𝒙𝑖;𝛷) − 𝑢𝑖]2 (5)

 =
𝑛
∑

𝑖=1
[(𝑡𝑖,𝒙𝑖;𝛷,𝛩)]2 (6)

𝑡
=

𝑛
∑

𝑖=1
[𝑡(𝑡𝑖,𝒙𝑖;𝛷,𝛩)]2 (7)

where 𝑛 is the number of training samples and 𝑡 = 𝜕
𝜕𝑡 . The data 

loss term 𝑢 aims to find the parameters of the surrogate NN  (⋅)
so that it fits the data, while the PDE loss term  aims to find the 
parameters of the dynamic NN (⋅) so that it satisfies the PDE defined by 
Eq. (2) at the evaluated points (𝑡𝑖,𝒙𝑖). Moreover, it has been empirically 
demonstrated that embedding the gradient of the PDE residual into the 
loss function can further improve the accuracy of the DeepHPM [45]. 
Therefore, the PDE gradient loss term 𝑡

 that aims to reduce fluctu-
ations and makes the PDE residual closer to zero is also added here. 
During the training process, the derivatives of the surrogate NN w.r.t. 
time 𝑡 and input 𝒙, and the derivatives of the DeepHPM function w.r.t. 
time 𝑡 are evaluated using automatic differentiation [46].

With the availability of battery degradation modes estimated by 
the DeepHPM, the degradation phase of a battery can be detected. 
Mathematically, the degradation phase detection can be formulated as a 
multi-class classification problem to classify each battery into one of the 
three possible classes (see Section 2.2) given its estimated degradation 
modes and calendar time. As an efficient and scalable machine learning 
system for tree boosting, proposed by Chen and Guestrin [47], XGBoost 
has demonstrated outstanding performance in battery state of health 
estimation [48,49], and remaining useful life prediction [50]. Thus, it 
is reasonable to explore its potential for addressing the classification 
problem here.

In practice, the XGBoost model can be learned by minimizing a 
general loss function at each boosting iteration, which consists of a 
training loss term 𝑙(⋅) and a regularization term 𝜔(⋅)

(𝑡) =
𝑛
∑

𝑖=1
𝑙(𝑦𝑖, 𝑦̂

(𝑡−1)
𝑖 + ℎ𝑡(𝒗𝑖)) + 𝜔(ℎ𝑡) + constant, (8)

where 𝑛 is the number of training samples, 𝑦𝑖 is the value of the 𝑖th 
sample, 𝑦̂𝑡−1𝑖  is the prediction of the 𝑖th sample up to the (𝑡 − 1)th 
iteration, ℎ𝑡(𝒗𝑖) is the output of the 𝑡th tree for the 𝑖th sample. In our 
case, the XGBoost model is to approximate a function that predicts the 
class 𝑦 ∈ {1, 2, 3} given an input vector 𝒗 = [𝑢1, 𝑢2, 𝑢3, 𝑡]𝑇 . Note that 𝑢1, 
𝑢2, and 𝑢3 represent three ‘‘true’’ degradation modes governed by three 
Eq. (1), respectively. Thus, the general loss function in Eq. (8) must be 
modified to account for multi-class classification as 

(𝑡) =
𝑛
∑

𝑖=1

3
∑

𝑘=1
𝑙(𝑦𝑘𝑖 , 𝑦̂

𝑘,(𝑡−1)
𝑖 + ℎ𝑘𝑡 (𝒗𝑖)) + 𝜔(ℎ𝑡) + constant, (9)

where the multi-class loss for a sample is typically a categorical cross-
entropy loss given by 

𝑙(𝑦𝑖, 𝑦̂𝑖) = −
3
∑

𝑘=1
𝑦𝑘𝑖 log 𝑝̂

𝑘
𝑖 , (10)

where 𝑦𝑖 is the observed class label of sample 𝑖, 𝑦𝑘𝑖 ∈ {0, 1} indicates 
whether the observed class of the 𝑖th sample is class 𝑘, 𝑝̂𝑘𝑖  is the 
predicted probability of the 𝑖th sample belonging to class 𝑘 calculated 
using the softmax function: 

𝑝̂𝑘𝑖 =
exp

(

𝑦̂𝑘,𝑡𝑖

)

∑3
𝑗=1 exp

(

𝑦̂𝑗,𝑡𝑖
) . (11)

Therefore, the loss function for a 3-class XGBoost classifier can be 
written as 

(𝑡) = −
𝑛
∑

3
∑

𝑦𝑘𝑖 log 𝑝̂
𝑘
𝑖 + 𝜔(ℎ𝑡) + constant. (12)
𝑖=1 𝑘=1
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The resulting hybrid physics-informed model is illustrated in Fig.  A.8, 
Appendix  A.

2.5. Transfer learning-based battery degradation mode estimation

The battery degradation process is best understood and most studied 
in a laboratory environment, in which cycling conditions can be closely 
controlled and reference performance tests (RPTs) can be periodically 
conducted to characterize the battery degradation. With high-quality 
laboratory data, the hybrid physics-informed model (see Fig.  A.8, Ap-
pendix  A) can be first developed in specific cycling scenarios (or source 
scenarios). However, different and even uncontrollable usage scenarios 
still pose a major challenge to deploying the trained model for online 
battery degradation mode estimation and phase detection in target 
scenarios. To address this, transfer learning (TL) is emerging as a 
promising strategy for transferring existing knowledge from different 
but related domains to a target domain in the field of advanced battery 
management [51].

In this study, a fine-tuning strategy is proposed to create local 
models deployed in a target scenario. For the same type of battery, 
we assume that the parameters in Eq. (2) remain unchanged across 
different usage scenarios, while the parameters in Eq. (1) vary with 
battery usage scenarios. Some physical parameters in Eq. (2) may 
indeed change significantly with battery aging, which is contradictory 
to this assumption. However, adapting the parameters in both models 
is computationally demanding and also increases the need of labeled 
data in a target scenario. Our experience with the DeepHPM also indi-
cates that fine-tuning both the surrogate and dynamical NNs achieves 
performance comparable to fine-tuning the surrogate NN alone. Thus, 
the battery degradation modes in the target scenario could be estimated 
with satisfactory performance by freezing the dynamic NN (⋅) and fine-
tuning the surrogate NN  (⋅) using only a small amount of labeled data 
obtained from maintenance in the target scenario. In this way, the pre-
trained DeepHPM using a large amount of data in the source scenario 
can be adapted to a target scenario that differs from the source.

2.6. Experimental design

2.6.1. Dataset description
The battery dataset was generated by Imperial College London and 

the Faraday Institution [41]. This high-quality open-source dataset con-
sists of 40 lithium nickel manganese cobalt oxide (NMC 811)/graphite-
SiOx cylindrical cells manufactured by LG Chem (model GBM50T2170, 
5 Ah nominal capacity with a lower voltage cut-off of 2.5 V and an up-
per voltage cut-off of 4.2 V). The test aims to characterize battery degra-
dation behaviors (i.e., capacity fade, resistance growth, and degrada-
tion mode analysis) under 15 different operating conditions (i.e., am-
bient temperature, SoC window, and discharge profile) throughout 
5 experiments. Specifically, all the cells were charged with a 0.3C 
constant-current and constant-voltage (CC-CV) charging step, and then 
discharged with a 1C CC discharging step except for Experiment 4 in 
which cells were discharged with the World wide harmonized Light 
vehicle Test Protocol (WLTP) driving profile. Two battery health met-
rics, i.e., capacity (C/10 discharge, 25 ◦C) and internal resistance were 
measured periodically from RPTs. Moreover, three degradation modes, 
i.e., LLI, LAM_NE, and LAM_PE, were also quantified using pseudo-OCV 
measurements. Specifically, the pseudo-OCV data for degradation mode 
analysis was obtained using C/10 discharge–charge cycles at 25 ◦C be-
tween the voltage limits (2.5 V and 4.2 V). The C/10 discharge–charge 
curve of a sample cell is illustrated in Fig.  4, and the sampling interval 
of discharge–charge data is 10 s. Considering the well-controlled low-
rate cycling conditions and the good quality of measured OCV data, 
we, therefore, took the quantified degradation modes as the ‘‘true’’ 
degradation modes in our work. To address possible cumulative er-
rors or amplification effects in the model output, we will incorporate 
uncertainty quantification into our model in future work.
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Table 3
Summary of cells.
 Scenario Charge/Discharge profile Cell Ambient temperature Knee occurrence  
 

Cycling protocol A 
(Source scenario)

0.3C CC-CV charge/1C galvanostatic discharge 
0%–30% SoC window

E1A 10 ◦C Yes  
 E1B 10 ◦C Yes  
 E1E 25 ◦C Yes  
 E1F 25 ◦C Yes  
 E1K 40 ◦C No  
 E1L 40 ◦C No  
 

Cycling protocol B 
(Source scenario)

0.3C CC-CV charge/1C galvanostatic discharge 
0%–100% SoC window

E5B 10 ◦C No  
 E5C 10 ◦C No  
 E5D 25 ◦C No  
 E5E 25 ◦C No  
 E5F 40 ◦C No  
 E5G 40 ◦C No  
 

Dynamic cycling 
(Target scenario)

0.3C CC-CV charge/WLTP discharge 0%–100% 
SoC window

E4B 10 ◦C Yes  
 E4C 10 ◦C Yes  
 E4D 25 ◦C No  
 E4E 25 ◦C No  
 E4F 40 ◦C No  
 E4G 40 ◦C No  
Fig. 4. The C/10 discharge–charge curve of a sample cell.

In this study, 6 cells in Experiment 1 and 6 cells in Experiment 5 
are selected for source scenarios as they were aged under two different 
cycling protocols, and 6 cells in Experiment 4 are selected for the 
target scenario as they were aged under a dynamic cycling protocol 
(see Table  3). Their capacity fades are illustrated in Fig.  5. It can be 
seen that 6 of the cells (E1 A, E1B, E1E, E1F, E4B, and E4C) have 
capacity knee occurrence, which is likely due to lithium plating at the 
negative electrode as they were cycled at low temperatures [41]. Note 
that the charging protocols in both source and target scenarios are the 
same, i.e., 0.3C CC-CV charge, while the discharging protocol in source 
scenarios (1C galvanostatic discharge) differs from that in the target 
scenario (WLTP discharge). Therefore, histogram features extracted in 
source scenarios cannot encode cycling conditions that lead to data 
leakage.

2.6.2. Scenario-aware model development
Large amounts of battery data have been generated under well-

controlled operating conditions in the past few years [52]. With these 
high-quality laboratory data, various battery degradation models can be 
developed for a range of applications throughout a battery’s life [53]. 
However, there is a lack of frameworks that enable the transfer of 
battery models to target scenarios different from those for which they 
were initially developed. To address this, we have proposed a scenario-
aware pipeline to develop the best model using input features with 
predictive power generalized across different scenarios [42]. With the 
aid of this pipeline, the hybrid physics-informed model for battery 
degradation mode estimation and phase detection is first developed in 
the source scenarios and then deployed in the dynamic cycling target 
scenario (see Fig.  A.9, Appendix  A).
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Fig. 5. Normalized capacity fade curves of 18 cells in the ICL dataset. Note that 
capacity (C/10 discharge, 25 ◦C) from RPTs are used here.

At the offline training stage, the structure of surrogate NN  (⋅) is 
set the same as that of the dynamics NNs (⋅), and the hyperbolic 
tangent function is used as the activation function in the DeepHPM. 
Then, the optimal structure of a hybrid physics-informed model is 
searched for using a Bayesian hyperparameter optimization framework 
in the source scenarios [54]. Specifically, the DeepHPM was learned 
by minimizing the loss function defined in Eq. (4). Xavier Normal was 
used for weight initialization, and Adam was used as the optimizer 
in the training process. The XGBoost classifier was learned separately 
by minimizing the loss function defined in Eq. (12). Since there is no 
cell with knee occurrence in cycling protocol B but 4 cells with knee 
occurrence in cycling protocol A, we use 6 cells in cycling protocol A 
for developing the XGBoost classifier, and 6 cells in cycling protocol B 
for developing the DeepHPM. Specifically, the ambient temperature is 
first used as the criterion to classify cells into low-temperature (10 ◦C) 
cells, medium-temperature (25 ◦C) cells, and high-temperature (40 ◦C) 
cells. Then the battery data in each cycling protocol scenario is split 
into a training set (3 cells) and a test set (3 cells). Notably, equal ratios 
of low-temperature, medium-temperature, and high-temperature cells 
are kept in the training and test set at each split. Finally, the XGBoost 
classifier and DeepHPM using the feature set with the best performance 
over 5 train-test splits are used for developing the final hybrid physics-
informed model. The optimal structures of the DeepHPM and XGBoost 
classifier can be found in Tables  B.8 and B.9 in Appendix  B.

At the online deployment stage, there are 2 cells with knee occur-
rence in the dynamic cycling scenario. Therefore, whether or not a 
knee occurred on the capacity fade curve is used as the criterion to 
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first classify cells into knee-occurrence cells and no-knee-occurrence 
cells. Then the battery data is split with 4 cells in a training set and 
2 cells in a test set. It is also ensured that there is always one cell 
with knee occurrence and one cell without knee occurrence in the test 
set at each train-test split. Then different amounts of labeled data in 
the dynamic cycling scenario are used to fine-tune the surrogate NN 
 (⋅) in the pre-trained hybrid physics-informed model to determine the 
minimum amount of data needed for satisfactory model performance in 
the dynamic cycling scenario. Lastly, to reduce the randomness effect, 
the train-test split is repeated 5 times and the averaged experimental 
results are reported.

2.6.3. Model performance evaluation metrics
To measure the performance of battery degradation mode estima-

tion, the root mean square error (RMSE) metric is used, i.e., 

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑢𝑖 − 𝑢̂𝑖)2, (13)

where 𝑢𝑖 and 𝑢̂𝑖 denote the estimated and observed degradation mode 
of sample 𝑖, and 𝑁 denotes the number of samples in the test set. To 
measure the performance of battery degradation phase detection, we 
use four metrics, i.e., precision, recall, F1-score, and accuracy, defined 
as [55]

Precision =
TP𝑘

TP𝑘 + FP𝑘
(14)

Recall =
TP𝑘

TP𝑘 + FN𝑘
(15)

F1-score = 2 × Precision × Recall
Precision + Recall

(16)

Accuracy = 1
𝑁

𝑁
∑

𝑖=1
1𝑦𝑖=𝑦̂𝑖 (17)

where 1𝑦𝑖=𝑦̂𝑖  is an indicator function that equals 1 if the predicted class 
𝑦̂𝑖 is the same as the observed class 𝑦𝑖 of sample 𝑖 and 0 otherwise. 
TP (true positives) are the samples that have been predicted as class 
𝑘 by the model when they actually belong to class 𝑘, while FP (false 
positives) are the samples that have been predicted as class 𝑘 by the 
model when they actually belong to other classes. Similarly, TN (true 
negatives) and FN (false negatives) can be defined. The precision for 
class 𝑘 measures the proportion of correctly predicted samples as class 
𝑘 out of the total number of samples predicted as class 𝑘. The recall 
for class 𝑘 measures the proportion of correctly predicted samples as 
class 𝑘 out of the total number of samples that actually are in class 𝑘. 
The F1-score for class 𝑘 aggregates precision and recall for class 𝑘 into a 
harmonic mean of both. The harmonic mean can be used to find a trade-
off between precision and recall for class 𝑘. The accuracy measures the 
proportion of correctly predicted samples of all three classes out of the 
total number of samples. Precision, recall, and F1-score are calculated 
for each class 𝑘 in the test set, while the accuracy is calculated for all 
three classes over the entire test set.

3. Results and discussion

To comprehensively evaluate the proposed transferable physics-
informed framework, this section is divided into three subsections. 
First, the battery degradation mode estimation and phase detection 
performance of the proposed model are evaluated in source scenar-
ios at the offline training stage. Secondly, battery degradation mode 
estimation and phase detection performance of the pre-trained model 
and the proposed transfer learning strategy are evaluated in the target 
scenario at the online deployment stage. Lastly, a case study discusses 
advanced battery management system functions that can be enabled in 
a performance digital twin.
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Table 4
DeepHPM degradation mode estimation performance in the source sce-
nario.

Feature set

Target variable 
LLI LAM_NE LAM_PE

1D voltage-based 3-feature set 0.0080 0.0124 0.0128
1D voltage-based 5-feature set 0.0066 0.0123 0.0132
1D current-based 3-feature set 0.0083 0.0119 0.0132
1D current-based 5-feature set 0.0079 0.0118 0.0126
2D current–voltage 17-feature set 0.0071 0.0140 0.0076

Bold values denote the minimum RMSE in each column.

Table 5
XGBoost degradation phase detection perfor-
mance in the source scenario.

Metric

Phase 
1 2 3

Precision 0.99 0.94 0.96
Recall 0.96 0.98 0.83
F1-score 0.97 0.96 0.89
Accuracy 96%

3.1. Model evaluation in the source scenario

At the offline training stage in the source scenario, the battery 
degradation mode estimation results of the optimal hybrid physics-
informed model using 5 different feature sets are summarized in Ta-
ble  4. The model’s battery degradation phase detection results are 
summarized in Table  5.

From the RMSE results in Table  4 we conclude that the voltage-
based 5-feature set (see Table  2) performs the best in LLI estimation, 
the current-based 5-feature set performs the best in LAM_NE estimation, 
and current–voltage 17-feature set performs the best in LAM_PE estima-
tion. The time spent outside the upper and lower cut-off voltages, which 
correspond to overcharge or over-discharge conditions, can increase 
the likelihood of lithium-consuming degradation mechanisms like elec-
trolyte decomposition, which irreversibly consumes lithium ions in the 
process of forming additional SEI layers as well as lithium plating. This 
may explain why the voltage-based 5-feature set performs the best in 
LLI estimation. In contrast, the current-based 5 feature set performs 
the best in LAM_NE estimation while the current–voltage 17-feature set 
performs the best in LAM_PE estimation. It can be rationalized that high 
currents drive rapid intercalation and deintercalation of lithium ions, 
which can induce alternating mechanical stress within the electrodes. 
Over time, these mechanical stresses can result in particle cracking and 
stress-driven LAM. Moreover, higher currents generate more heat inside 
the cell, and the resulting temperature increase can accelerate thermal-
driven LAM, such as binder decomposition. Interestingly, current-based 
features are sufficient to achieve the best LAM estimation for the 
graphite-SiOx anode but the combination of current and voltage fea-
tures is necessary to achieve the best LAM estimation for the NMC 811 
cathode. However, current features alone do not provide information 
about the electrochemical potential of the cell and therefore cannot 
be independently utilized for the estimation of battery degradation 
modes. The voltage-based and current–voltage feature sets may be 
better choices for estimating degradation modes.

The battery degradation phase detection performance, as measured 
by precision, recall, F1-score, and accuracy, are given in Table  5. The 
XGBoost classifier performs the best (closest to 1) in predicting Phase 
1 and the least in predicting Phase 3. It can be rationalized that all the 
cells in the source scenario (i.e., cycling protocol A) have undergone 
Phase 1, and are now in either Phase 2 or 3. Consequently, the XGBoost 
classifier has been predominantly trained on data from Phase 1, with 
a smaller amount of data from Phase 2, and the least data from Phase 



H. Zhang et al. Journal of Power Sources 657 (2025) 238028 
Table 6
DeepHPM degradation mode estimation performance in the target scenario.

Feature set
Model 

Pre-trained

Fine-tuned with
1 cell without
knee occurrence

Fine-tuned with
1 cell with

knee occurrence
Fine-tuned with

2 cells
1D voltage-based, 3-feature set [0.0489,0.0433,0.0429] [0.0500,0.0477,0.0478] [0.0359,0.0325,0.0288] [0.0231,0.0266,0.0312]
1D voltage-based, 5-feature set [0.0479,0.0521,0.0434] [0.0516,0.0502,0.0488] [0.0361,0.0360,0.0278] [0.0203,0.0240, 0.0278]
1D current-based, 3-feature set [0.0531,0.0530,0.0419] [0.0494,0.0482,0.0491] [0.0422,0.0373,0.0333] [0.0351,0.0305,0.0336]
1D current-based, 5-feature set [0.0479,0.0461,0.0440] [0.0503,0.0485,0.0484] [0.0395,0.0320,0.0326] [0.0244,0.0263,0.0317]
2D current–voltage, 17-feature set [0.0764,0.0597,0.0590] [0.0524,0.0510,0.0477] [0.0373,0.0406,0.0443] [0.0222,0.0220,0.0281]

[𝑥, 𝑦, 𝑧] denotes RMSE values for LLI, LAM_NE, and LAM_PE, respectively. The bold values denote the minimum RMSE.
Table 7
XGBoost degradation phase detection performance in the target scenario.

Metric

Model 
Pre-trained

Fine-tuned with
1 cell without
knee occurrence

Fine-tuned with
1 cell with

knee occurrence
Fine-tuned with

2 cells
Precision [0.63,0.71,0.00] [0.97,0.76,0.00] [0.96,0.83,1.00] [0.97,0.83,1.00]
Recall [1.00,0.69,0.00] [0.96,0.98,0.00] [0.95,0.98,0.40] [0.96,0.98,0.39]
F1-score [0.78,0.70,0.00] [0.96,0.86,0.00] [0.96,0.90,0.57] [0.96,0.90,0.57]
Accuracy 67.24% 82.11% 88.19% 88.29%

[𝑥, 𝑦, 𝑧] denotes each classification metric value for three degradation phases, respectively.
3. For the detection of Phase 1, the precision indicates that 99% of the 
time the model correctly predicted samples as Phase 1 out of the total 
number of samples predicted to be in Phase 1 in the test set. The recall 
indicates that 96% of the time the model correctly predicted samples 
as Phase 1 out of the total number of samples that actually are in Phase 
1 in the test set. The F1-score can be interpreted as a weighted average 
between precision and recall for Phase 1, and the high value (97%) 
indicates a good trade-off between precision and recall for Phase 1. Fi-
nally, the accuracy indicates that the model correctly classified samples 
in the test set to each of the three degradation phases 96% of the time.

Overall, these results indicate that the pre-trained hybrid physics-
informed model is effective in estimating battery degradation modes 
using five histogram-based feature sets, as well as detecting degradation 
phases in the source scenario. In the next subsection, the pre-trained 
model will be deployed in the target scenario.

3.2. Model evaluation in the target scenario

At the online deployment stage in the target scenario, the battery 
degradation mode estimation performance using five histogram-based 
feature sets and battery degradation phase detection performance of 
the pre-trained hybrid models are first evaluated on two cells in the 
test set, i.e., one cell with knee occurrence, and the other without knee 
occurrence. Then, the pre-trained models are fine-tuned using different 
amounts of labeled data, i.e., one cell with or without knee occurrence, 
or two cells with and without knee occurrence in the target scenario. 
Lastly, the fine-tuned models are evaluated using two cells in the test 
set. The battery degradation mode estimation results are summarized 
in Table  6 and Table  B.10, Appendix  B, while the battery degradation 
phase detection results using estimated degradation modes as inputs 
are summarized in Table  7.

According to the results in Table  6, the hybrid model developed 
using the voltage-based 5 feature set and then fine-tuned using data 
from two cells (i.e., one with and the other without knee occurrence) 
in the target scenario performs the best in LLI and LAM_PE estimation 
and the hybrid model developed using the current–voltage 17-feature 
set performs the best in LAM_NE estimation. To retain the correlation 
between current and voltage in terms of time spent, the current–voltage 
17-feature set is chosen to estimate different degradation modes in this 
target scenario and possibly in field applications as well. In addition, 
a robustness analysis is also conducted, in which we simulate two 
cases. In the first case, two Gaussian noises, i.e.,  (0, 0.04𝜎2𝑥) and 
 (0, 0.25𝜎2𝑥), are added separately to the test data of 2D histogram 17-
feature set in the target scenario. 𝜎𝑥 denotes the standard deviation 
per input feature estimated in the source scenario; In the second case, 
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considering that the 1D voltage-based or current-based 5-feature sets 
have been demonstrated to provide better model performance than 
their corresponding 1D 3-feature ones (see Table  6), the test data of four 
histogram features in extreme ranges (i.e., 𝐼01𝑉01, 𝐼01𝑉34, 𝐼34𝑉01, and 
𝐼34𝑉34 in Table  2) in the target scenario are set to zero. The robustness 
analysis results are reported in Table  B.11, Appendix  B. It can be 
concluded from Table  B.11 that adding Gaussian noise makes model 
performance worse than missing four histogram features in extreme 
ranges. Thus, mitigating model performance degradation due to input 
noise should be prioritized in the field. Lastly, the performance of 
the DeepHPM degradation mode estimation is compared against that 
of the Gaussian process (GP) regression surrogate model. The results 
in the source scenario are reported in Table  B.12, and the results in 
the target scenario are reported in Table  B.13, Appendix  B. It can 
be concluded that the GP regression surrogate model performs better 
than the DeepHPM model in estimating three degradation modes in the 
source scenario but the GP regression surrogate model pretrained in the 
source scenario performs worse than the fine-tuned DeepHPM model in 
the target scenario. This is because the standard GP regression model 
lacks the mechanisms to incorporate the degradation mode dynamics 
defined in Eq. (2), which makes it difficult to transfer degradation 
knowledge learned in the source domains to the target domain.

By estimating the three degradation modes using the current–
voltage 17-feature set, the battery’s degradation phase can also be 
monitored online. The degradation phase detection performance, as 
measured by precision, recall, F1-score, and accuracy, can be seen 
in Table  7 that the classification performance significantly improved 
after fine-tuning the model, i.e., accuracy improves from 67.24% to 
82.11%, using one cell without knee and to 88.19% using one with 
knee occurrence. Using both one cell with and one cell without knee 
occurrence improved accuracy only slightly more, to 88.29%. Notably, 
the model did not successfully detect Phase 3 (i.e., precision, recall, 
and F1-score for Phase 3 are all 0.00) if fine-tuned using only one cell 
without knee occurrence but becomes capable if fined-tuned using one 
cell with knee occurrence.

To demonstrate the effectiveness of the proposed fine-tuning strat-
egy, we showcase the battery degradation mode estimation and phase 
detection results of a sample cell [E4C] before fine-tuning in Fig.  6, 
and after fine-tuning using one cell with knee occurrence in Fig.  7, 
respectively. The three degradation modes of the sample cell all begin 
with a square root dependence on time until they reach the knee-onset 
point (close to the inflection point), after which degradation modes 
grow exponentially. As a result, the sample cell then transfer to Phase 
3. However, the pre-trained model does not predict the exponential 
growth of the degradation modes, and as a result, Phase 3 was not 
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Fig. 6. Predicted and observed degradation modes (left) and detected and observed degradation phase (right) of a sample cell [E4C] in the test set without fine-tuning.
Fig. 7. Predicted and observed degradation modes (left) and detected and observed degradation phase (right) of a sample cell [E4C] in the test set with hybrid model fine-tuned 
using 1 cell with knee occurrence.
successfully detected using the estimated degradation modes (see Fig. 
6). After fine-tuning the pre-trained model using one cell with knee 
occurrence in the target scenario, the model does not only successfully 
predict the exponential growth of three degradation modes, but also 
detect Phase 3 although with some delay. With degradation phases 
detected with high accuracy, the knee-onset point can also be detected 
online as the transition point from Phase 1 to Phase 2 (see Fig.  7). 
Notably, strong linear correlations were found between knee-onset 
and knee points identified using the curvature-based method in our 
previous work [38]. We again find a strong linear correlation between 
knee-onset and knee (𝜌 = 0.962) using this curvature-based identifica-
tion method. With this strong linear correlation, online battery capacity 
knee prediction can be made from detected knee-onset points.

Lastly, based on the results reported in Tables  6 and 7, it can be 
concluded that the effectiveness of the proposed fine-tuning strategy 
highly depends on whether or not the fine-tuning cell has a capacity 
knee or not in the target scenario. Moreover, using more cells in 
the target scenario to fine-tune the model does improve the model 
performance further. However, considering that labeled data is often 
scarce in field applications, it can be essential to use a minimum 
amount of labeled data required to achieve sufficiently high model 
accuracy. Using data of only one cell with knee occurrence would set 
a lower bar for this. 
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In Ref. [56], a physics-informed neural network (PINN) is proposed 
for battery state-of-health (SoH) estimation, and a fine-tuning strategy 
is proposed to transfer the PINN model for SoH estimation of batteries 
with different chemistries and charge/discharge protocols. The key 
differences between Ref. [56] and our work are specified as follows: 
(1) Problems & Models: The PINN is used to capture battery capacity 
fade dynamics and estimate battery state-of-health (SoH) in Ref. [56], 
while in our work, the PINN is used to capture battery degradation 
mode dynamics, i.e., loss of lithium inventory (LLI) and loss of ac-
tive material (LAM), and its estimated degradation modes are then 
taken as inputs to an XGBoost model to perform battery degradation 
phase detection and online battery classification; (2) Input features & 
Data: The cycle-based features, i.e., mean, standard deviation, kurtosis, 
skewness, charging time, accumulated charge, curve slope, and curve 
entropy, extracted from charge data before the battery is fully charged, 
are used as the inputs to the PINN for SoH estimation in Ref. [56], 
while the histogram-based features, i.e., time spent within specific 
voltage and/or current ranges, extracted from full charge–discharge 
data regardless of battery usage, are used as the inputs to the PINN 
for degradation mode estimation in our work; (3) Outputs: The output 
of the PINN model is battery capacity in Ref. [56], while the outputs of 
our model (PINN+XGBoost) are three degradation modes, degradation 
phase. With accurately detected degradation phase, the knee-onset 
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Fig. A.8. Hybrid physics-informed model.

point can also be detected online as the transition point from Phase 
1 to Phase 2. The advantages of our method are as follows: (1) The 
capacity fade is attributed to the growth of degradation modes (LLI and 
LAM). Our method is capable of estimating these degradation modes, 
which provides diagnostic information for the occurrence of battery 
capacity knee. With these estimated degradation modes, degradation 
phases and knee-onset point can be detected in the target scenario 
(CC-CV charge/WLTP driving discharge profiles) with high accuracy; 
(2) Instead of extracting from either charge or discharge data, the 
2D histogram features are extracted from full charge–discharge data 
regardless of battery usage, and are proven to be effective in esti-
mating battery degradation modes, detecting degradation phase and 
knee-onset point.

Transformer-based models have shown excellent performance of 
estimating battery SoH in recent studies [57,58]. However, the pro-
posed hybrid physics-informed model and Transformer-based models 
offer distinct advantages in battery SoH estimation and degradation 
diagnosis. The hybrid physics-informed model aims to embed bat-
tery degradation dynamics into the neural network (NN) architecture, 
leveraging the advantages of both, i.e., the flexibility of NNs and 
the interpretability of physics. In contrast, Transformer-based models 
excel in battery SoH estimation accuracy without physical insights. The 
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choice between the hybrid physics-informed and Transformer-based 
models depends on the specific requirements in battery applications.

3.3. Computational requirements

The offline training and online deployment of the hybrid model 
(DeepHPM and XGBoost) are performed on a desktop (OS: Windows 
10, Memory: 64 GB, CPU: Intel Core i7-13700, GPU: NVIDIA GeForce 
RTX 3070). At the offline training stage, the search time for the 
optimal hybrid model structure using one histogram-based feature set 
is approximately 10 h. The optimal structure of the hybrid model can 
be found in Tables  B.8 and B.9, Appendix  B. The training time for the 
hybrid model using one histogram-based feature set is approximately 
4 min. At the online deployment stage, the fine-tuning time to create 
one local model in the target scenario is approximately 30 s. The test 
(or inference) time per sample is in milliseconds, which is negligible 
compared to the battery degradation rate, the sampling rate, and the 
histogram aggregation rate.

3.4. A case study: advanced battery management system functions in a 
performance digital twin

The histogram-based feature engineering method, hybrid physics-
informed model, and the proposed fine-tuning strategy are key enablers 
for a concept of battery performance digital twin (PDT), or cloud bat-
tery management system (BMS) [59]. They can enable advanced BMS 
functionalities, such as online degradation diagnosis and prognosis, 
aging-aware battery classification, and second-life repurposing. Time-
series voltage and current data are commonly measured for all cells 
connected in series inside a battery pack. The onboard BMS can first 
aggregate these time-series voltage and current data as histograms and 
then communicate to the PDT on request or at a very slow sampling rate 
via the Internet-of-Things (IoT) gateway [59]. The global battery PDT, 
or the hybrid physics-informed model in this work, first uses a small 
amount of labeled data to create a local PDT in a target scenario. The 
local PDT is then used to estimate degradation modes and detect the 
degradation phase for each cell in a battery pack. Based on cell-level 
estimated degradation modes and degradation phase, the cell-to-cell 
heterogeneity inside a battery pack can be determined for aging-aware 
battery classification later on. For example, the sample cell [E4C] in 
Fig.  7 was detected to be in Phase 3. The pack or module where the 
cell is located may be either repurposed to second-life applications in 
which the knee occurrence can be stopped, or be recycled. The specific 
second-life repurposing, however, also requires additional information, 
such as battery energy and power capabilities, technical requirements 
of second-life applications, residual value estimation, etc. [60].

4. Conclusions

To alleviate the technical, economic, and safety concerns arising 
from capacity knee occurrence during the service life of a battery, a 
transferable physics-informed framework that consists of a histogram-
based feature engineering method, a hybrid physics-informed model, 
and a fine-tuning strategy was proposed for online battery degra-
dation diagnosis and knee-onset detection. Specifically, pre-trained 
hybrid physics-informed models were first developed using 1D or 2D 
histogram-based feature sets and their battery degradation mode esti-
mation and phase detection performance were evaluated in the source 
scenarios using a scenario-aware pipeline. The pre-trained hybrid mod-
els were then fine-tuned using different amounts of labeled data, and 
deployed in the target scenario. Among the five histogram-based fea-
ture sets investigated, it was demonstrated that the 2D histogram-based 
17-feature set was the best for battery degradation mode estimation in 
both source and target scenarios, here and possibly in field applications 
as well. The fine-tuning strategy was proven to be effective in improv-
ing not only battery degradation mode estimation but also degradation 
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Fig. A.9. The scenario-aware model development pipeline for degradation mode estimation and phase detection.
 

phase detection using 3 estimated degradation modes in the target 
scenario. With degradation phases detected with high accuracy, online 
prediction of battery capacity knee points can also be achieved by 
leveraging the strong linear correlation identified between knee-onset 
and knee points. Lastly, it has been found that using one cell with 
knee occurrence in the target scenario may be enough to achieve a 
satisfactory model accuracy.

As key enablers for the concept of battery performance digital twin 
(DPT) in the cloud, the proposed framework can enable advanced 
BMS functions, such as online degradation diagnosis and prognosis, 
aging-aware battery classification, and second-life repurposing. As a 
result, the overall value of electric vehicle batteries can be maximized 
before recycling. In terms of future work, (1) it would be interesting 
to quantify the aleatoric uncertainty arising from the noisy data and 
the epistemic uncertainty from the model structure using the Bayesian 
approach; (2) we will further evaluate the performance of the proposed 
framework in real-world applications (e.g., electric vehicles and grid 
storage) once battery data in the field are available; (3) Considering 
abundant unlabeled data in the field that poses new challenges to 
the fine-tuning strategy. Active learning algorithms that iteratively 
expand the labeled data in the lab will be investigated; (4) For different 
types of batteries or accelerated aging mechanisms, we will conduct 
a systematic study to quantify the accuracy loss of the proposed fine-
tuning strategy once degradation modes of other types of batteries or 
accelerated aging mechanisms become available.
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Table B.8
Optimal DeepHPM structures for battery degradation mode estimation in 
the source scenario.

Feature set

Target variable 
LLI LAM_NE LAM_PE

1D voltage-based 3-feature set [2, 64] [6, 32] [4, 64]
1D voltage-based 5-feature set [2, 56] [2, 56] [6, 48]
1D current-based 3-feature set [4, 64] [2, 48] [8, 40]
1D current-based 5-feature set [4, 56] [2, 40] [6, 64]
2D current–voltage 17-feature set [2, 32] [2, 32] [4, 48]

[𝑥, 𝑦] denotes the number of hidden layers and neurons per layer.

Table B.9
Optimal XGBoost structures for battery degradation phase detection in the source 
scenario.
 Hyperparameter Value  
 Number of trees 100  
 Learning rate 0.0207 
 Maximum depth of a tree 8  
 Minimum sum of instance weight 7  
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Table B.10
DeepHPM degradation mode estimation performance in the target scenario.

Feature set
Model 

Pre-trained

Fine-tuned with
1 cell without
knee occurrence

Fine-tuned with
1 cell with

knee occurrence
Fine-tuned with

2 cells
1D voltage-based, 3-feature set [0.0465,0.0413,0.0423] [0.0457,0.0457,0.0423] [0.0329,0.0324,0.0269] [0.0228,0.0247,0.0307]
1D voltage-based, 5-feature set [0.0474,0.0454,0.0413] [0.0465,0.0470,0.0426] [0.0357,0.0343,0.0269] [0.0218,0.0198,0.0261]
1D current-based, 3-feature set [0.0468,0.0377,0.0401] [0.0456,0.0451,0.0428] [0.0386,0.0359,0.0304] [0.0337,0.0327,0.0304]
1D current-based, 5-feature set [0.0442,0.0385,0.0425] [0.0459,0.0447,0.0428] [0.0362,0.0302,0.0300] [0.0256,0.0268,0.0276]
2D current–voltage, 17-feature set [0.0670,0.0595,0.0570] [0.0478,0.0482,0.0426] [0.0381,0.0404,0.0371] [0.0214,0.0210,0.0265]

[𝑥, 𝑦, 𝑧] denotes standard deviation values for LLI, LAM_NE, and LAM_PE, respectively. The bold values denote the minimum standard deviation.
Table B.11
Robustness analysis of DeepHPM degradation mode estimation in the target scenario.

Case

Model 
Pre-trained

Fine-tuned with
1 cell without
knee occurrence

Fine-tuned with
1 cell with

knee occurrence
Fine-tuned with

2 cells
2D current–voltage, 17-feature set [0.0764,0.0597,0.0590] [0.0524,0.0510,0.0477] [0.0373,0.0406,0.0443] [0.0222,0.0220,0.0281]
Additive Gaussian noise,  (0, 0.04𝜎2

𝑥) [0.1061,0.0723,0.0672] [0.0534,0.0532,0.0476] [0.0538,0.0630,0.0481] [0.0269,0.0267,0.0297]
Additive Gaussian noise,  (0, 0.25𝜎2

𝑥) [0.1101,0.0791,0.0682] [0.0568,0.0592,0.0487] [0.0677,0.0772,0.0598] [0.0395,0.0407,0.0358]
Missing histogram data [0.0768,0.0589,0.0583] [0.0518,0.0531,0.0475] [0.0473,0.0299,0.0570] [0.0237,0.0245,0.0282]

[𝑥, 𝑦, 𝑧] denotes RMSE values for LLI, LAM_NE, and LAM_PE, respectively. The bold values denote the minimum RMSE.
𝜎𝑥 denotes the standard deviation per input feature estimated in the source scenario.
Table B.12
Gaussian process regression degradation mode estimation performance in 
the source scenario.

Feature set

Target variable 
LLI LAM_NE LAM_PE

1D voltage-based 3-feature set 0.0061 0.0119 0.0067
1D voltage-based 5-feature set 0.0046 0.0135 0.0075
1D current-based 3-feature set 0.0069 0.0093 0.0084
1D current-based 5-feature set 0.0078 0.0094 0.0086
2D current–voltage 17-feature set 0.0046 0.0138 0.0073

Bold values denote the minimum RMSE in each column.

Table B.13
Gaussian process regression degradation mode estimation perfor-
mance in the target scenario.

Feature set

Model 
Pre-trained

1D voltage-based, 3-feature set [0.0359,0.0328,0.0347]
1D voltage-based, 5-feature set [0.0395,0.0380,0.0337]
1D current-based, 3-feature set [0.0407,0.0422,0.0441]
1D current-based, 5-feature set [0.0501,0.0525,0.0481]
2D current–voltage, 17-feature set [0.0368,0.0333,0.0377]

[𝑥, 𝑦, 𝑧] denotes RMSE values for LLI, LAM_NE, and LAM_PE, respec-
tively.
The bold values denote the minimum RMSE.
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