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Assessment of real-world driving patterns for electric vehicles: an on-board 
measurements study from Sweden
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Department of Space, Earth and Environment, Chalmers University of Technology, Hörsalsvägen 7, 41296 Gothenburg, Sweden

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Driving and charging patterns of electric 
vehicles (EVs) are analyzed.

• The analysis is based on cross-seasonal 
GPS logging data from 334 EVs in 
Sweden.

• The most-frequent overnight parking 
duration is four-times longer than 
charging.

• The EV owners who are living in a de
tached house shift charging time more 
often.

• The EVs arrive home with a high SOC 
regardless of battery capacity.
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A B S T R A C T

This study presents an analysis of the driving and charging patterns of passenger, battery-powered electric ve
hicles (EVs) in Sweden. The analysis is based on 1 year of GPS logging data acquired through the on-board 
diagnostics port for 334 randomly selected EVs in Sweden. Included are 55 EV models with battery capacities 
in the range of 16–100 kWh. The results show that 70 % of the electricity is charged at the home location, of 
which 86 % is charged during overnight parking events. The maximum share of the investigated EV fleet 
charging simultaneously is 13 % on average (at 00:10 h). For 56 % of the overnight parking events, the EVs arrive 
home with a state of charge (SOC) of 60 % or more. For the EVs that arrive at the home location with 60 % SOC, 
they are charged during 64 % and 34 % of the overnight charging events at home for the small (16–50 kWh)- 
battery and large (54–100 kWh)-battery EVs, respectively. The most-frequent parking duration is 14 h, which is 
about four-times longer than the time needed for charging and, thus, offers possibilities for flexible charging in 
time and vehicle-to-grid services. In summary, this study shows that there is a large potential for smart/flexible 
charging at home, since the EVs often arrive home with a relatively high SOC and are parked at home, between 
two trips, for a much longer time than is needed to recharge the battery.

* Corresponding author.
E-mail address: yuki.kobayashi@chalmers.se (Y. Kobayashi). 

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

https://doi.org/10.1016/j.apenergy.2025.126608
Received 26 March 2025; Received in revised form 18 July 2025; Accepted 6 August 2025  

Applied Energy 401 (2025) 126608 

Available online 20 August 2025 
0306-2619/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:yuki.kobayashi@chalmers.se
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2025.126608
https://doi.org/10.1016/j.apenergy.2025.126608
http://creativecommons.org/licenses/by/4.0/


1. Introduction

In order to limit global warming in line with the Paris Agreement [1], 
electrification is a key measure to reduce emissions from transportation. 
The number of electric vehicles (EVs) is increasing worldwide [2]. In the 
European Union, the number of battery-powered EVs reached 1.5 
million in 2023 [3]. The number of registered EVs in Sweden, which is 
the country in focus in this study, has increased dramatically during the 
last few years, from 9122 in 2016 to 291,678 in 2023 [4], corresponding 
to 5.9 % of the passenger car fleet [4].

The electricity system in Europe, and that in Sweden, will most likely 
contain a larger share of wind and solar power in the future [5]. Since 
wind and solar power generation levels vary depending on the wind 
velocity and solar radiation, respectively, it is important to balance the 
demand and supply of electricity through short response times and the 
ability to store electricity using, for example, batteries. When EVs are 
parked, their batteries might be used to shift load in time, i.e., moving 
charging to low-demand hours. EVs might also be adapted to discharge 
energy back to grid, so-called vehicle-to-grid (V2G) services. Studies are 
needed to estimate: (i) the impact of EVs on the electric grid; (ii) the 
need for charging infrastructure; and (iii) the potential, and possible 
benefits, of smart charging and V2G, such studies require knowledge of 
the driving and charging patterns of EVs. One also needs to understand 
the attitudes and motivation of EV owners with respect to the use flex
ible charging. To date, only a limited number of studies have been 
conducted on the charging and driving patterns of passenger EVs. This 
likely reflects the fact that it is only recently that there has been a dra
matic increase in the number of EVs, with the main growth seen over the 
last few years. Thus, until recently, there were limited numbers of EVs in 
each region, and most of the passenger EVs were owned by high-income 
individuals living in the larger cities, so not necessarily representative of 
the typical EV passenger fleet of a country.

Previous studies on the charging and/or driving patterns of privately 
owned EVs have typically suffered from one or several of the following 
limitations: 

a) They are based on EV driving patterns using data collected from 
travelling surveys or diaries [] [] [] [][6–9];

b) The logged data are from fossil-fueled vehicles or plug-in hybrid 
vehicles with small batteries [7,10–14];

c) They include a low number of EVs [14–17];
d) They cover only a few EV models [8,18] [19–21];
e) They are limited to charging data that are collected at chargers 

(driving behavior cannot be acquired) [] [] [][22–24];
f) The vehicles included are not privately owned [25–27];
g) They consist of only EVs with a low battery capacity, i.e., relatively 

old models [28–30]; and
h) They are based on the data collected over a short period [6,7,15,25].

Calearo et al. [31] reviewed articles on vehicle charging and driving 
patterns published during the last two decades until 2021. Among the 
articles reviewed, there were 14 articles that based their results on 
driving and charging data collected from surveys, 15 articles with data 
collected from internal combustion engine vehicles (ICVs) and/or EVs, 
and 21 articles with data from private and public chargers. However, 
Calearo et al. [31] concluded that all the datasets of driving and 
charging patterns were either based on ICVs or a low number of EVs.

Patil et al. [32] reviewed 44 articles published between 2017 and 
2021 that used driving and/or charging data from surveys and the 
logging of vehicles (20 articles from surveys, 18 from logging EV/ICVs, 6 
with data from chargers), to investigate actual or possible charging 
behaviors from the perspective of the charging infrastructure. Andre
nacci et al. [33] also reviewed studies that investigated the charging 
behaviors and charging decisions of EV owners. The articles reviewed in 
the paper of Andrenacci et al. [33] consist of 46 survey-based studies 
and 18 studies based on data logged from individual EVs or chargers. All 

of the studies reviewed by Patil et al. [32] and Andrenacci et al. [33] can 
be categorized as one of the assumptions listed above (a–h).

Alemanno et al. [6] used a survey conducted among EV owners to 
analyze how EVs can meet the driving needs of car drivers in six Euro
pean countries (France, Germany, Italy, Poland, Spain, and the UK). The 
data were collected from 3723 EV owners by asking them to write a trip 
diary for 7 consecutive days. The participants in the study of Alemanno 
et al. [6] were chosen based on city size, gender, age, level of education, 
and occupational status. Alemanno et al. [6] concluded that the average 
daily driving distance differs between the countries, with 70–90 km for 
Spain and Poland, 50–60 km for Italy, France and Germany, and around 
40 km for the UK. They proposed that the average daily driving distance 
was within the battery range for most EV models, and that it was similar 
for weekdays and weekends. Furthermore, they concluded that the 
average duration of parking during night-time was 16 h or longer in all 
six countries. However, the data only covered 1 week of a year, and since 
they were not measured but based on a log written by the participants, 
there may have been mistakes and missed trips.

Zhang et al. [17] analyzed the driving and charging patterns of 41 
privately owned EVs (10 different vehicle models) in Beijing, China, 
using data collected via the on-board diagnostics (OBD) port over a 
period of 6–25 months depending on the car. The aim of the study was to 
predict more accurately the future charging demands, so as to design an 
efficient charging infrastructure. They concluded that the EV owners 
typically started the first trip of the day during the time interval of 
06:00–09:00 and completed the last trip of the day between 17:00 and 
22:00. They also showed that the state of charge (SOC) when starting to 
charge was between 40 % and 60 % for 34 % of the EVs, and that the 
average charging duration was 173 min. However, 41 vehicles is a rather 
limited sample, and the study included 10 mainstream EV models and 
the participants were recruited online or on the spot as volunteers, 
which are limitations in terms of obtaining reliable results for a whole 
fleet.

Taljegard et al. [10] analyzed the benefits of smart charging and V2G 
for the electricity systems in Sweden, Norway, Denmark and Germany 
using a cost-optimization model. The driving patterns in the model were 
based on GPS-logging data from 429 ICVs in Västra Götaland County in 
Sweden collected in the data-logging campaign conducted by Björnsson 
[13] and Karlsson et al. [12]. Karlsson et al. [12] concluded that 7 % of 
the cars were being driven at 17:00 (the hour when most cars are driven) 
and 5 % were being driven at 08:00. Using these data, Taljegard et al. 
[10] concluded that installing EVs contributes to a gain in terms of wind 
power generation and a smoothing of the net load, reducing the need for 
investments in peak-power plants. However, since the GPS logging was 
based on ICVs, the assumption made in that study was that EVs have the 
same driving patterns as ICVs. Thus, there is no information about 
charging patterns.

Suzuki et al. [21] developed a simulator that generates synthetic 
charging profiles assuming different charging strategies, using driving 
and charging patterns data derived from the telematics of 14,000 Nissan 
LEAF 24 kWh EVs in the US (January 1, 2015 to December 31, 2016). 
The aim was to clarify the impact of EVs on the future charging demand. 
They conclude that EV owners make the decision to charge EVs 
depending on the SOC when they arrive home or at their workplace. 
However, the results obtained from charging pattern analyses can vary if 
the battery capacity is changed.

Xu et al. [28] and Sun et al. [29] analyzed charging modes and lo
cations based on the data from 500 EVs (250 private EVs and 250 
commercial EVs) over a period of 2 years. Each EV was logged for about 
a year all around Japan. Although the models of the logged EVs were not 
disclosed, Sun et al. [29] stated that the logged EVs had only two battery 
sizes, corresponding to driving ranges of 120 km and 180 km. Since the 
logging for the study carried out by Sun et al. [29] was conducted from 
2011 to 2013, the EV models were limited and contained only small 
batteries.

Dodson et al. [22] analyzed the data for 8.3 million charging events 
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collected from public/private/workplace chargers across the UK in the 
period of 2017–2018, with the aim of improving a model of the EV 
charging demand. The study concluded that the peak charging demand, 
as observed between 19:00 and 20:00 during weekdays, was dominated 
by charging at home. However, in order to analyze the potential for 
smart charging, one needs to follow the charging and driving patterns of 
individual vehicles and not only separate charging events.

To the best of our knowledge, there are no published studies that 
have analyzed charging and driving data collected from hundreds of 
randomly selected EVs for a cross-seasonal period using on-board GPS 
equipment and taking into account the various models and battery sizes 
that represent the entire EV market in a country. Thus, there is a need to 
collect and study real driving and charging patterns, including SOC, for a 
high number of EVs of various models, located in both urban and rural 
settings, over a longer time period (such as an entire year).

The aim of this study is to analyze the characteristics of the charging 
and driving patterns among EV owners, so as to define the potential for 
smart charging and V2G at the home location. This study uses data on 
driving and charging patterns, as well as the battery status for 334 
randomly selected EVs distributed across Sweden. The collection of data 
is performed using on-board GPS equipment plugged into the OBD port. 
The dataset enables us to draw conclusions about the driving and 
charging patterns of current EVs, using Sweden as an example. In this 
paper, the collected data are used to analyze the driving distances of 
EVs, the parking time at the home location, and the parking/charging 
behaviors at the home location during night-time.

2. Method

This chapter is divided into the following subsections: logging 
equipment and parameters logged (2.1); the process of selecting the EV 
owners (2.2); the methods used for handling missing data and problems 
with the logging equipment (2.3); description of the parameters 
analyzed in this study (2.4); and the method used to estimate the home 
location (2.5).

2.1. Logging equipment and parameters

Equipment from Geotab Inc. (Oakville, ON, Canada) was used for 
logging the driving and charging patterns in this study. The logging was 
performed using the OBD port in the EVs. The Geotab-device draws 
power from the auxiliary battery with 2.5 mA. It should therefore not 
have an impact on the performance of the EV battery. The logged data 
were transmitted to a database provided by Geotab [34]. The Geotab 
database consists mainly of trip data (see Table 1) and status data for 
vehicles and batteries (see Table 2). A trip event is defined as the time 
period during which the EV is not parked. Parking is defined as the 
period during which the “ignition” is turned off and/or the driving speed 
is kept at 0 km/h for more than 200 s. Trip data are a dataset of pa
rameters recorded for each trip event. The parameters include the start 
time and end time of a trip, the coordinates of the EV at the end of a trip, 
and distance traveled (see Table 1). Other parameters in the trip dataset 
not used in this study include the maximum and average speed and 
idling duration.

Table 2 presents the parameters in the status dataset, including in
formation on the two logging methods (1 and 2) used for storing the 
values recorded for the parameters. The start and end of charging are 
recorded when the EV shows the signal for start or end of AC or DC 
charging as part of the status dataset, as well as the SOC, odometer 
values, energy to battery during charging, energy demand for driving 
and charging power, as shown in Table 2. Other parameters in the status 
dataset not used in this study include the battery and outside tempera
tures and energy charged to an on-board charger. In order to limit the 
amount of stored data, the status data are recorded only when there is a 
change in the parameters using one of the following two methods (see 
also Geotab [34]): 

Method 1. Parameters are recorded with a certain difference compared 
to the previous value. The parameters using Method 1 to 
decide which data to store are the SOC and odometer values. 
For a more-detailed description of Method 1, see Fig. A1 in 
Appendix A. Odometer values are typically stored for every 
1–10 km and SOC is stored for every 0.5–2.0 % change in 
value (depending on the car model).

Method 2. For the parameters in the status dataset other than the start 
and end of charging, SOC, and odometer values, only some 
measured data-points are stored using the Ramer-Douglas- 
Peucker algorithm [35]. The reason for using this algo
rithm is to reduce the volume of logged data to be stored, 
without losing important information. The algorithm works 
as follows. Draw a line from a logging data-point A to B. If the 

Table 1 
Parameters included in the trip dataset in this study.

Parameter Description Unit

Time of start/end of a trip 
event

Start time and end time of a trip 
event

YY:MM:DD HH: 
MM:SS

Coordinates of the end of a 
trip event

Longitude and latitude when the 
trip ended

(x,y)

Driving distance Distance between the start and 
end of a trip

km

Table 2 
Parameters included in the status dataset in this study.

Parameter Description Unit Logging 
method

Start/end of a charging 
event The type of charging (AC or DC) is distinguished.

0: End 
1: Start AC 
charging 
2: Start DC 
charging

–

SOC State of charge of the battery capacity. % 1
Odometer values Reading of the odometer km 1
Energy to battery during 

charging The energy going into the battery via charging accumulated from the first logged data. kWh 2

Energy demand for 
driving

The energy discharged from the battery from all non-charging sources accumulated from the first logged data. kWh 2

Charging power

Charging power measured at the battery. The electricity voltage is 230 V in Sweden (e.g., single-phase, 16 A is 
assumed to be 3.68 kW). Note that the charging power measured in this study is the charging power to the battery of 
the EV, which represents the charging power after losses incurred in the on-board charger and during other processes 
in the vehicle. The efficiency of the charging power depends on the car model and the charging current and varies 
between 65 % and 95 % [36].

kW 2
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most-distant point recorded between A and B (let us say 
point A′) is more distant than a threshold from the line AB, 
point A′ is stored. Then draw a line from A′ to B and repeat 
the same process until the distance from the line to the most- 
distant point becomes less than the distance of the threshold 
value. See Fig. A2 in Appendix A for an example of Method 2, 
as well as Geotab [34].

2.2. Participants in the study

The participants of this study were private EV owners resident in 
Sweden who were randomly selected by Statistics Sweden (SCB) among 
owners of EVs. The selection by SCB was conducted using data from the 
Swedish Vehicle Register (Fordonsregistret) (December 31, 2021), the 
Register of the Total Population (Registret över totalbefolkningen), the 
Database of Household Residences (Hushållens boende) from 2021, and 
the Geographical Database (Geografidatabasen) from December 31, 2020 
to December 31, 2021. The data collected from the above databases 
were limited to: 

• Passenger EVs.
• Vehicles in traffic.
• Privately owned vehicles.
• Pure EVs (i.e., no hybrids or plug-in hybrids).
• EV models for which the Geotab-device could be connected to the 

OBD port and transfer charging and driving data.

The result was a total of 33,260 EV in the sampling frame to invite for 
the logging according to the five selection criteria listed above. In total, 
55 models (definitions based on the EV Database [37]) were included in 
the selection of EVs to be invited for the study. A random selection was 
made within six strata after excluding unspecified urban area type, 
unspecified housing type, and special housing and other houses. From 
this, the following residential categories and house types were included: 

• Residential categories: 
o Non-urban area, i.e., with fewer than 200 inhabitants
o Small town, i.e., town with fewer than 25,000 inhabitants
o Large urban area, i.e., urban area with 25,000 or more inhabitants
o Unspecified (not included in this study).

• Housing types: 
o Detached houses
o Apartment buildings
o Special housing (not included in this study)
o Other houses (not included in this study)
o Unspecified (not included in this study).

From the six selected strata (33,260 EV owners), 4436 EV owners 
were selected as a stratified unbound random sample. Among the 4436 
candidates who were invited, 480 accepted the invitation. Yet, the 
number of logged vehicles analyzed in this paper is limited to 334. The 
reason for not including all the EVs where the owners accepted the 
invitation is that some were excluded due to issues with the logging 
equipment in the car and in some cases the EV owners had sold the car. 
Table 3 gives an overview of the participants and how they are 
distributed according to housing type, and how these housing types are 

distributed between non-urban areas, small towns and large urban areas 
(i.e., the six strata), as illustrated in Fig. 1. The participants are in a 
broad range of age from 23 to 87 years old (57 years old on average). In 
this study, 84 % of the participants are more than 40 years old, corre
sponding number for all privately owned passenger cars in Sweden is 80 
% [38]. The age and gender distribution of the participants in this study 
is shown in Figs. D1 and D2 in Appendix D.

Fig. 2 shows the number of registered EVs in 2023 [4] (2a) partici
pating in this study (2b) per county in Sweden. Fig. 3 shows the battery 
capacity and registration year for all the EVs included in this study. The 
x-axis of Fig. 3 shows the individual EVs numbered in ascending order 
according to battery capacity (light-green bar). The y-axis to the left 
indicates the battery capacity of each EV. Each dot in Fig. 3 represents 
the year of registration for each EV, with the year on the right-hand y- 
axis. The battery capacity was retrieved based on information on the car 
model name, model year, year registered in Sweden, and vehicle weight. 
The battery capacity is the nominal capacity collected from the EV 
Database [37]. As shown in Fig. 3, the battery capacity tends to increase 
with year of registration, although there is a broad span of battery ca
pacities (there are only four cars included that were registered in Year 
2023, as seen in Fig. 3). According to Fig. 3, all of the EVs registered in 
2016 or before have a 25-kWh or smaller battery, while all of the EVs 
which have a 50-kWh or larger battery were registered in 2018 or later.

The first logged data are from October 11th, 2022 and the last logged 
data used in this study are from September 18th, 2024. The number of 
logged EVs each day is shown in Fig. 4a. The first phase of the logging (i. 
e., until December 2022) was a test phase designed to make sure that the 
equipment was working properly. In the second phase, equal numbers of 
participants were included from each of the population/housing types. 
In Phase 2 of this study (i.e., January 2023 to December 2023), the 
majority of the data used in this study were logged, as shown in Fig. 4a. 
Phase 3 started in December 2023, in which additional EV owners 
invited to the study were divided equally between the strata (see Ap
pendix B for more information on the different phases). Fig. 4b shows 
the number of logging days per EV. In this study, 192 EVs were logged 
for longer than 365 days and 305 EVs were logged for longer than 180 
days. Due to technical issues with the installation of the equipment, nine 

Table 3 
Numbers of participants and candidates summed for all three phases.

Total Detached houses Apartment buildings

Non-urban area Small town Large urban area Non-urban area Small town Large urban area

EVs in the sampling frame (meeting the eligibility criteria) 33,260 5337 12,869 9538 27 899 4590
Invited EVs (randomly selected from the sampling frame) 4449 336 1540 911 27 737 898
EV owners accepting the invitation 480 66 148 86 7 89 84
Participants included in this study 334 48 93 63 4 69 57

Fig. 1. Number of participants included in this study for each housing type and 
each residential category.
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EV models were excluded from the study in the pilot/s phase after the 
invitation and before the logging started. In the third phase, these 
technical issues were resolved and these models were included in the 
study.

2.3. Handling missing data and problems with logging equipment

There are three possible categories of missing data: (1) periods for 
which all data are missing: (2) periods for which trip data are missing 
while status data are recorded; and (3) periods for which each parameter 
of the status data is missing during charging or trip events. Each of these 
types of missing data are described below and the ways in which they are 
handled are also described. In this study, we have also calculated the 

rates of missing data for all parameters for all EVs. Equations defining 
periods for which data are missing and the rate of missing data are listed 
in Appendix C. Table 4 shows the degree of missing data of each 
parameter calculated in Sections 2.3.1–2.3.3.

2.3.1. Periods for which all data are missing
The main reasons for data not being measured and/or stored are: (1) 

problems linked to communication between the OBD unit and car; (2) 
long-term loss of connection between the OBD unit and database; (3) 
software problems in the OBD unit; and (4) the OBD unit being un
plugged by the EV owner for a period of time. Fig. 5a shows (red part) 
the EVs for which the data logging is complete (“All/Part of the data 
complete”) and those for which all the data are missing (black part). 

Fig. 2. (a) Number of registered EVs and (b) the number of participants included in this study in each county in Sweden.

Fig. 3. Battery capacities (light-green bars with left y-axis) and the years of registration (dots with right y-axis) for the 334 EVs included in this study. Each dot for the 
years of registration represents each EV. The individual EVs are in ascending order according to battery capacity. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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Fig. 5b shows the same data for the logging days for each individual EV.
Periods with missing status and trip data can be identified using the 

odometer values and SOC. This is possible because these parameters are 
recorded with a certain difference from the previous value (see logging 

Method 1 in Section 2.1). During a recorded trip event and/or charging 
event, the differences from the previous data for the odometer values 
and SOC are recorded as shown in Fig. 6. As can be seen in Fig. 6, most of 
the odometer values (99.998 %) are recorded within a 10-km increase 
from the previous value. In the same way, most of the SOC data (99.7 %) 
are recorded within a 2 % increase or decrease from the previous value.

Periods for which all data are missing are defined as follows (all the 
criteria listed below must be met): 

• The difference between two odometer values recorded after each 
other exceeds a threshold value of 10 km.

• The difference between two recorded SOC values exceeds a threshold 
value of 2 %.

• The driving distance based on the trip data does not satisfy the dif
ference observed for the two odometer values.

• Status data are not recorded. (Only periods longer than 1 h without 
recording status data are taken into account, so as to avoid defining 
the period between the status data during the same trip or charging 
event as a missing period.)

• Trip data are not recorded.

2.3.2. Trip data are missing while status data are recorded
Periods for which trip data are missing but status data are recorded 

Fig. 4. (a) Number of logged EVs on different days during the logging period in this study and (b) number of logging days for each EV. The individual EVs are in 
descending order according to the number of logging days.

Table 4 
Missing shares of data for the different parameters investigated in this work.

All 
EVs

75 % 
percentile

95 % 
percentile

EV with the highest 
rate (per parameter)

All data 6 % 6 % 31 % 93 %
Trip event 0 % 0 % 1 % 75 %
Start/end of a 

charging event
10 
%

8 % 62 % 100 %

Odometer values 8 % 5 % 48 % 100 %
SOC during trip 

event 7 % 4 % 43 % 100 %

SOC during 
charging event

0 % 0 % 1 % 100 %

Energy charged to 
battery during 
charging

0 % 0 % 0 % 1 %

Energy demand for 
driving 5 % 3 % 35 % 96 %

Charging power 2% 0 % 5 % 100 %

Fig. 5. (a) Number of logged EVs per day and (b) number of logging days per EV with all or part of the data complete (red) and all data missing (black). Panel (a) is in 
chronological order, while in panel (b) individual EVs are in descending order according to logging days with all/part of the data complete. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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can be defined based on the odometer values. If the odometer values are 
recorded without missing data-points between two recorded trip events 
(i.e., recorded at an interval shorter than the 10-km threshold), the 
difference in odometer values between two recorded trip events is 
regarded as the distance of the missing trip data. The locations where the 
EVs are charged and from which they started to drive cannot be iden
tified if trip data are missing before the events, since the information on 
the coordinates is composed of only the locations where the trip events 
end. The locations where charging events start and end, and where trip 
events start after missing trip event data are regarded as unknown places 
if trip data are missing.

2.3.3. Status data are missing
If the SOC is increased without any charging data recorded between 

two trips and/or charging events, charging data are missing. This is the 
case if the SOC is increased by more than the threshold value of 2 % 
between two trip events or charging events. Periods for which the other 
status data (i.e., SOC, odometer values, energy to battery during 

charging, energy demand for driving, charging power) are missing 
during trip events or charging events are defined with the periods of trip 
or charging events without recording the evaluated parameter.

2.3.4. Rates of missing data for trips and status
Table 4 shows the shares of missing data for all the parameters 

together and individually (i.e., how large share of the data that is 
missing). The shares of missing status data for parameters during trip 
and charging events (i.e., odometer values, SOC, charging energy, 
consumed energy during trip, charging power) are evaluated in com
parison to the duration of the recorded trip or charging events. Fig. 7
shows the shares of missing data for each parameter and EV in 
increasing order. As shown in Table 4 and Fig. 7, the data for most of the 
parameters are complete (i.e., a small share of the data is missing). In 
total for all the EVs, 6 % of the logging duration is estimated to be pe
riods for which all data are missing. Overall, 95 % of the EVs are missing 
all data for 31 % or less of the logging period. However, some vehicles 
are missing a major share of the data for some parameters, e.g., for 5 % 

Fig. 6. Differences from the previous (a) odometer values and (b) SOC. Each line shows one EV, so there are 334 lines in total.

Fig. 7. Shares of missing data for: (a) all data and trip/charging events; (b) odometer values, SOC during trip event, and energy demand for driving; and (c) charging 
power, SOC during charging event, and energy charged to the battery during charging.
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of the EVs, 48 % or more of the odometer values are missing. About 1 % 
of the EVs are missing charging power data for more than 50 % of the 
duration of the charging events. The rate of missing for trip events for all 
EVs is significantly low, although a few EVs have a high missing rate 
(evidenced as the highest missing rate of 75 % in Table 4). Charging 
events are missing for 10 % of the parking events for all the EVs when 
SOC was increasing.

The missing data rate differs depending on car model. Table E1 in 
Appendix E shows the number of EVs per car model with missing data 
rate for different parameters higher than 20 %. Renault ZOE tend to miss 
a lot of data compared to other models, e.g., 35 % of the Renault ZOE in 
this study show a missing data rate higher than 20 % for start/end of a 
charging event. Another example is Volkswagen ID series, where 27 % 
are estimated to miss more than 99 % of the data of start/end of a 
charging event. Half of the BMW i3 EVs are estimated to miss more than 
70 % of the data of SOC during trip.

2.4. Analyses conducted in this study

Table 5 defines important terms used in this study. Table 6 shows the 
number of EVs included in each analysis in this study based on a 
threshold for missing data. Only EVs with less than 20 % missing data for 
the parameters in focus are included if (1) missing data have a large 
influence on the results, such as charging probability during an over
night parking event depending on SOC, and (2) the analyses require a 
reasonable amount of data. Furthermore, in the analysis of some 

parameters that require a reasonable amount of data only EVs recorded 
for at least 180 days where included (excluding periods with all data 
missing) as seen in Table 6.

2.5. Estimation of home location

The locations for parking and charging are in this study categorized 
into home locations and other locations, to enable an analysis of the 
potential for smart charging/V2G at the home location. The home 
location for each EV is defined based on both the coordinates of the 
parking location and the address of the residence of the EV owners 
provided by SCB. All parking locations are grouped into several parking 
areas, since many EV owners will use different parking locations when at 
home (except for those having their own parking lot). The Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithm [39] 
is used for grouping coordinates of parking events into the same parking 
area. DBSCAN is a clustering method that links spatial data-points that 
are close to each other. DBSCAN has the advantage that the number of 
clusters does not need to be defined beforehand. In addition, nearby 
points can be distinguished within the same cluster regardless of the 
shape of the clusters. Given these features, DBSCAN is suitable for 
grouping the coordinates with locations whose number is not fixed, and 
parking areas can take many geographic forms, such as streets. The 
home location of each EV is defined as the location where the EV was 
parked the most times during night-time (at 03:00). Parking locations 
farther than 1 km from the address of the EV owner’s residence are 

Table 5 
Concepts used in this study.

Definition of concept

Large-battery EVs 
Small-battery EVs

• Large-battery EVs: 54–100 kWh
• Small-battery EVs: 16–50 kWh
Note that there was no EV with a battery capacity lower than 16 kWh or higher than 100 kWh, and there was no vehicle with a 
battery capacity between 51 kWh and 53 kWh.

Yearly driving distance The odometer values when logging has reached 365 days.
Logging days All days when the OBD unit is plugged in, excluding periods for which all the data are missing.

Driving days All days that the EVs are driven, i.e., days for which trip data have been recorded. Days with missing trip data or days with 0 km of 
driving are not counted as “driving days”.

Daily driving distance The sum of the distances of all trips that started during a day (i.e., within 24 h). If no trip occurs during a day, the daily driving 
distance is 0 km. Days with 0 km are not included when calculating, e.g., the median daily driving distance.

Home location
The location at which the EV is parked most often at 03:00 within 1 km of the address of the EV owner’s residence (for a detailed 
description of the method used to find home location see Subsection 2.5).

Night-time parking event
Parking event during which EVs are parked at 00:00 (midnight) but not parked before 12:00 (noon) on the day before or after 12:00 
on the same day. This means that the maximum number of hours that an EV can be parked during a night-time parking event is just 
under 24 h. This can be compared to overnight parking events that can be an unlimited number of days.

Daytime parking event
Parking event during which the EV is parked at 12:00 (noon) but not parked before 00:00 on the same day or after 00:00 the next 
day. Parking events, other than those defined as night-time parking events or daytime parking events, are not used for the analyses 
of night-time/daytime parking events.

Overnight parking event
The last parking event of the day (i.e., before 00:00 the next day) at the home location. This can be an unlimited number of days and 
can start before 12:00, compared to night-time parking that is limited to 24 h and starts always after 12:00.

Overnight charging event
Charging that takes place during an overnight parking event. The charging events during an overnight parking event are combined, 
i.e., overnight charging event is counted as one even if several charging events occur during an overnight parking event.

Charging probability (during an overnight 
parking event)

The number of overnight charging events at the home location divided by number of overnight parking events at the home location. 
Only the events by the EVs which experienced charging at home location are counted.

Charging probability (outside home location) The number of days that the EV is charged at locations other than the home location divided by the number of driving days.

Location and charging/trip or not

Numbers of EVs divided into the following five  

• Parked at home without charging
• Parked at home and charging
• Parked outside home and charging
• Parked outside home without charging
• Driving
All days in the logging period for each EV are included, except if there is a period for which all trip data are missing.

Number of driving days between two overnight 
charging events

Counted only in the case where no charging event is recorded and no charging event is missing between the two overnight charging 
events.

Maximum charging power at home location

The highest charging power measured at the home location. The analysis of maximum charging power is conducted with two 
groups:  

• Low maximum charging power: 3–4 kW
• High maximum charging power: 9–10 kW
The EVs with maximum charging power other than the above (i.e., other than 3–4, 9–10 kW) are excluded so as to clarify the 
difference in charging pattern depending on the maximum charging power.
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excluded.
Fig. 8 gives an example of the estimation of home location made for 

one EV in this study. The longitude and latitude are on the x-axis and y- 
axis, respectively. In Fig. 8, we have adjusted the left-bottom point to 
0 degrees, so as not to reveal the exact location of the EV owner. The red 
cross represents the location of the home address. In this example, the 
parking locations are classified into six clusters as a result of the clus
tering made with DBSCAN.

The home location is assumed to be only one for each EV, although 9 
EV owners may have moved to other locations during the logging 
period. In addition, vacation houses, which are common to own in 
Sweden, are not defined as home locations in this study, even though 
EVs might be parked there for long time periods and be charged with a 
private charger.

3. Results

3.1. Daily and yearly driving patterns

Fig. 9 shows the yearly driving distances for EVs that were driven for 
at least 1 year. The results show that the median yearly driving distance 
is 14,442 km and that 40 % of the EVs have an annual driving distance of 
more than 16,000 km. The average yearly driving distance for EVs is 
16,530 km (95 % confidence interval: [15,360 km, 17700 km]), which is 
longer than the average yearly driving distance of all privately owned 
vehicles in Sweden in 2022, which was 11,260 km [40]. This suggests 
that EV owners may be taking advantage of the relatively low driving 
costs of EVs. Furthermore, this study only includes models that were 
registered in Year 2014 or later. In general, old EVs tend to be driven 
shorter distances per year, as evidenced by the finding that all of the EVs 
registered before 2017 had driving distances shorter than 13,000 km.

Fig. 10 gives the share of driving days out of all the logging days 
without missing trip data for each EV. It can be seen that 89 % of the EVs 
are driven more frequently than once in two days, i.e., the share of 

driving days is higher than 50 %. The logging data also show that 74 % 
of the EVs are driven in a day on average (only the days during which 
more than 100 EVs are logged are included in the calculation).

Fig. 11 shows the daily driving distances for small-battery EVs 
(Fig. 11a) and large-battery EVs (Fig. 11b), as well as the cumulative 
share of these, with the lines showing each battery capacity group 
(Fig. 11c). As can be seen in Fig. 11, a and b, the peaks in the histogram 
are for 10–15 km (average:53 km) and 5–10 km (average:59 km) for 
small-battery and large-battery EVs, respectively. Fig. 11c shows that 77 
% of the daily driving distances are shorter than 80 km for both battery 
capacity groups. Furthermore, there are only 3.5 % of days with driving 
distances >200 km (both groups counted), as can be seen in Fig. 11c.

Fig. 12 gives the histograms of the median (Fig. 12a, b) and 
maximum (Fig. 12c, d) daily driving distances of the logged EVs for the 
two battery capacity groups. There is only a weak dependency of the 
median daily driving distance on the battery capacity, with the peak at 
around 30 km (for small-battery EVs, 44 km; for large-battery EVs, 39 
km, on average). Yet, Fig. 12, c and d shows that the maximum daily 
driving distances differ significantly between the small-battery EVs 
(average: 284 km) and large-battery EVs (average: 429 km), which is as 
expected. Calculations of the two-sided p-values of the median daily 
driving distance (Fig. 12 a and 12b) and max daily driving distance 
(Fig. 12 c and 12d) when using Mann-Whitney U test [41] is performed 
showing a result of 0.17 and 1.4e-10, respectively, which means the 
distribution of the median daily driving distance is similar between the 
battery capacity groups while the distribution of the max daily driving 
distance differs. These results imply that the advantage of EVs with large 
batteries is only occasionally exploited. According to the data, the 
average energy consumption for driving is 0.156 kWh/km, which is not 
significantly different between the battery sizes (small battery, 0.144 
kWh/km; large battery, 0.162 kWh/km).

Table 6 
Conducted analyses and thresholds to choose EVs and number of EVs for each analysis.

Conducted analyses EVs included in the analysis Number of 
EVs

• SOC when arriving home for overnight parking events
• Daily driving distance
• Overnight parking duration
• SOC when ending overnight charging events
• Time when starting overnight charging events
• Time of arriving/leaving home for night-time/daytime 

parking events
• Location and charging/trip or not

All EVs 334

• Elapsed time from arriving home to the beginning of 
overnight charging events

• Overnight charging duration
All EVs where a rate of missing data for start/end of charging events is <20 % 283

• Driving days
• Median and maximum daily driving distances for each EV

All EVs with a logging period of >180 days (when excluding days for which all data are missing) and 
where the rate of missing data for trip events is <20 % 289

• Average energy consumption for driving
All EVs with a logging period of >180 days (when excluding days for which all the data are missing), 
and the rate of missing data for trip events is <20 %, and the rate of missing data for energy demand 
for driving is <20 %

271

• Charging probability during an overnight parking event 
(depending on SOC)

All EVs where the rate of missing data for start/end of charging events is <20 %, and the rate of 
missing data for start/end of SOC during trip event is <20 % 257

• Charging probability during an overnight parking event 
(depending on next daily driving distance)

• Charging probability outside the home
• Number of driving days between two overnight charging 

events

All EVs with a logging period of >180 days (when excluding days for which all data are missing), and 
the rate of missing data for trip events is <20 %, and the rate of missing data for start/end of a 
charging event is <20 %

253

• Share of energy charged at home locations
All EVs with a logging period of >180 days (when excluding days for which all data are missing), and 
the rate of missing data for start/end of a charging event is <20 %, and the rate of missing data for 
energy charged to the battery during charging is <20 %

242

• Yearly driving distance All EVs where the difference from first to last time reading of odometer value >365 days 169

• Overnight charging duration (depending on maximum 
charging power)

All EVs where the rate of missing data for charging power is <20 %, and the rate of missing data for 
start/end of a charging event <20 %, 
and only EVs with battery capacity >54 kWh and a charging power of 3–4 or 9–10 kW.

62
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3.2. General parking and charging patterns

The number of hours that EVs are being parked without charging (for 
driving needs) and the time of the day for parking are important pieces 
of information for determining the potentials for flexible and smart 
charging. Fig. 13 shows the shares of the EVs that are parked either at 

the home location or at other locations, and the shares of the EVs that are 
charging at these two locations at each time of the day on average. As 
can be seen in Fig. 13, the share of EVs that are driven at a certain time of 
the day is small, at less than 10 %, which occurs at 16:40 h. Two small 
peaks can be seen, with one in the morning at around 08:00 and one in 
the evening at around 17:00.

The maximum number of EVs charging at the same time is 13 % on 
average, which occurs at 00:10 h, i.e., just after midnight (see the sum of 
the red- and green-colored fields in Fig. 13). Out of all the hours logged, 
not more than 28 % of the EVs are charging at the same time. From 
Fig. 13, one can also see that the share of EVs parked at the home 
location without charging is large (see the orange-colored field in 
Fig. 13). At midnight, about 83 % of the EVs are parked at home. The 
share of EVs parked at home decreases from 05:00 h and reaches the 
lowest values between 11:00 and 15:00 h, as seen in Fig. 13. Overall, at 
least 50 % are parked at home during daytime, on average. At least 33 % 
of the fleet is parked at the home location during any of the logged 
hours, which occurs during daytime (12:30), and 60 % at midnight (note 
that only those hours during which more than 100 EVs are logged at the 
same time are included). Therefore, there seems to be a strong potential 
for flexible charging at home location, since at any point during the day 
a large share of the EVs is parked at home without charging. The 
duration of the parking without charging, together with the battery 
capacity, determines the theoretical potential for smart charging. The 
real potential for smart charging depends, of course, also on the pref
erences of the EV users.

Fig. 8. Clusters of parking places and the home address for one of the EVs 
examined in this study. The x-axis and y-axis are longitude and latitude, 
respectively, with adjustment of the left-bottom point to 0 degrees, in order not 
to reveal the exact location of the EV owner.

Fig. 9. Yearly driving distance. Bin width is 2000 km. Data shown are for 
169 EVs.

Fig. 10. Shares of driving days per logged EV in descending order. Data shown 
are for 289 EVs.

Fig. 11. Daily driving distances of the logged EVs with battery capacities of: (a) 
16–50 kWh; and (b) 54–100 kWh. (c) Cumulative shares of driving days. Bin 
width for (a) and (b) is 5 km. Note that only the driving days are counted, i.e., 
the x-axis shows only values >0. Data shown are for 80,587 driving days by 
334 EVs.
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Fig. 12. Median and maximum daily driving distances of the EVs with battery capacities of (a, median; c, maximum) 16–50 kWh; and (b, median; d, maximum) 
54–100 kWh. Bin widths are 10 km for (a) and (c); and 50 km for (b) and (d). Data shown are for 289 EVs.

Fig. 13. The shares of EVs being parked with/without charging at the home location or at the other locations, and the shares of EVs driving at each time of the day, 
on average. The resolution is 10 min. Data shown are for 334 EVs.

Fig. 14. Times when arriving and leaving home for: (a) night-time parking events; and (b) daytime parking events. Data shown are for: a, 37,868 parking events by 
334 EVs; and b, 6673 parking events by 334 EVs.
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Fig. 14 shows the time when arriving and when leaving home of a 
night-time (14a) and daytime (14b) parking event. As shown in Fig. 14a, 
the EVs are likely to arrive home in the evening around 16:00–20:00 h 
(with a peak at 17:00) and leave home in the morning around 
06:00–07:00 h. The EVs that are parked at noon (Fig. 14b) tend to arrive 
home just before noon, between 10:00 and 12:00 h, and leave home 
again between 12:00 and 16:00 h. Note that Fig. 14 does not include 
parking at home that is longer than 24 h or short parking events that 
occur exclusively in the morning/afternoon (see Table 5 for the defini
tion of night-time/daytime parking events).

Comparing the results depicted in Fig. 14, a and b, it can be 
concluded that, as expected, the night-time parking events tend to be 
longer (average of 14 h) than the daytime parking events (average of 5 
h) at home. Furthermore, daytime parking events are shorter than the 
nighttime parking events at the home location, where (22 % of the 
daytime parking events are shorter than 3 h. EVs parked during daytime 
at home location have the possibility to perform other grid services on a 
shorter time-scale. It can also be beneficial for the grid to have vehicles 
parked at home, even for 3 h, as they can utilize local solar power 
generation. Thus, Figs. 13 and 14 show – as expected - that the potential 
for flexible/smart charging is significantly higher during night-time than 
during daytime. This is because more EVs are parked and for longer 
parking events during night-time. Nonetheless, the EVs parked during 
daytime can play an important role, such as the storage of solar energy 
during the daytime, and can contribute to ancillary services.

3.3. Characteristics of charging and parking at home during night-time

Among the EVs that were charged at least once at their home loca
tion, 70 % of the charged energy was charged at the home location (95 % 
confidence interval: [66 %, 74 %]). Furthermore, 86 % of the energy 
charged at home was charged during overnight parking events. Fig. 15
shows the SOC when arriving home for an overnight parking event for 
the two battery-capacity groups of 16–50 kWh (Fig. 15a) and 54–100 
kWh (Fig. 15b). Comparing the two figures, it is clear that there is almost 
no difference in the results between the two battery-capacity groups, as 
more than half (56 %) of the trips for all EVs arriving at home for 
overnight parking events have an SOC of 60 % or higher.

Yet, Fig. 16 indicates that EV owners decide to charge based on the 
SOC when arriving home (Fig. 16a), as well as on the expected driving 
distance the next driving day (Fig. 16b). As can be seen in Fig. 16a, large- 
battery EVs tend to be charged during fewer overnight parking events 
than smaller-battery EVs. For example, when the EVs have 60 % SOC, 
the small-battery and large-battery EVs are charged during 64 % and 34 
% of the overnight parking events, respectively. It can also be noted that 
even if the battery is almost full (90 % SOC) when arriving home for 
overnight parking events, some of the EV owners tend to charge the 
battery (36 % and 19 % of the overnight parking events, for the small- 
battery and large-battery EVs, respectively). The two lines in Fig. 16a 
can be fitted with y = − 0.79x + 105.0 for small battery EVs (R2 = 0.97) 
and y = − 1.06x + 100.7 for large battery EVs (R2 = 0.97), where 
10–90 % SOC and 10–80 % SOC are fitted for small and large battery 
EVs, respectively.

Fig. 16b shows that for the small-battery EVs, the charging proba
bility increases when the following daily driving distance exceeds 140 
km, and stabilizes at around 80 % charging probability if driving farther 
than 140 km the next driving day. The charging probability for large- 
battery EVs is instead 70 % when the following daily driving distance 
exceeds 180 km. The two lines in Fig. 16b can be fitted with y = 0.34x +

37.1 for small battery EVs (R2 = 0.96) and y = 0.25x + 21.5 for large 
battery EVs (R2 = 0.98), where 10–150 km and 10–190 km next daily 
driving distance are fitted for small and large battery EVs, respectively.

Fig. 17 shows the charging probability outside the home location for 
different daily driving distances (only the first driving days after an 
overnight charging event are included). As shown in Fig. 17, the 
charging probability outside the home increases steeply for daily driving 
distances that exceed 120 km for the small-battery EVs and 180 km for 
the large-battery EVs.

The differences in charging probabilities between the large-battery 
and small-battery EVs in Fig. 17 and the similarity in the SOC when 
arriving home (Fig. 15) result in a difference in the frequency of over
night charging events. Fig. 18 shows the number of driving days for two 
overnight charging events. On average, the large-battery EVs spend 2.5 
driving days between two overnight home charging events, as compared 
with 1.6 driving days for the small-battery EVs. About 50 % of the 
overnight charging events (the two battery groups together) are made 
only one driving day after the last time that the EVs were charged during 
overnight parking events at the home location.

Fig. 19 shows the SOC at the completion of the overnight charging 
events. It is evident that most of the charging events are continued until 
the SOC reaches almost 100 %. However, there are sharp peaks at 80 % 
and 90 %, especially for the large-battery EVs. Most likely, the large- 
battery EVs use a function built into the car or charger that automati
cally stops charging at 80 % or 90 % SOC level, so as to avoid battery 
degradation. Some of the owners of large-battery EVs take advantage of 
the opportunity to decide when to charge, as well as the opportunity to 
stop charging at a lower SOC in daily life, possibly to prolong the life
time of the battery.

3.4. Flexibility of charging time at home during night-time

Fig. 20 shows the duration of overnight parking events at home. It is 
clear that there is a large spread in the durations of the parking events, 
with the most-frequent parking duration being 14 h. 94 % of the over
night parking events last for 10 h or longer, for obvious reasons. Fig. 21
shows the duration of charging events during the overnight parking 
events for the small-battery EVs (Fig. 21a) and large-battery EVs 
(Fig. 21b), and for the 3–4 kW (Fig. 21c) and the 9–10 kW (Fig. 21d) 
maximum charging powers for the large-battery EVs. As can be seen in 
Fig. 21, a and b, the most-frequent charging duration differs slightly 
between the small-battery and large-battery EVs. Since many EVs are 
parked at the home location for a long time without charging, there 
appears to be a large potential for flexibility in charging time. The 

Fig. 15. SOC when arriving home for overnight parking events assuming bat
tery capacities of: (a) 16–50 kWh; and (b) 54–100 kWh. Bin width is 2 %. Data 
shown are for 62,026 parking events by 334 EVs.
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possibility to shift charging in time also depends on the maximum 
charging powers of the chargers at the home locations, as can be seen by 
comparing Fig. 21, c and d. As expected, a higher maximum charging 
power gives a shorter average charging duration. The histogram for the 
EVs that have a maximum charging power of 3–4 kW shows a broad 
distribution of charging duration (Fig. 21c), while that for the EVs with 
maximum charging power of 9–10 kW shows a peak at around 4 h 
(Fig. 21d). The median charging durations are 9 h and 4 h for the 
maximum charging powers of 3–4 kW and 9–10 kW, respectively.

Fig. 22 shows the elapsed time from arriving home to the beginning 
of charging, divided between apartments and detached houses. For the 
EV owners living in apartments, 77 % started to charge within 1 h after 
returning home (Fig. 22), while this was the case for 50 % of those living 
in detached houses. This pattern is also seen in Fig. 23, where the dis
tribution of the starting time for charging is skewed towards later times 
for those living in detached houses, as compared with the distribution 
for those living in apartments. In addition, there are concentrations of 

starting charging at exactly 22:00, 23:00, and 00:00 h, indicating that 
the start time for automatic charging is a direct response to electricity 
price signals or is indirectly triggered by some App or timer. As can be 
seen in Fig. 23, these peaks are more pronounced for the EV owners 
living in detached houses. This is likely to be because EV owners living in 
detached houses are more likely to have a flexible electricity price 
contract than EV owners living in multifamily buildings.

4. Discussion

The results of the analyses of the driving and charging patterns of the 
logged EVs show that there is strong potential for shifting charging in 
time, especially during night-time at home. This can be concluded from 
the high number of parked EVs, the high SOC when arriving home, and 
the short time needed for charging compared to the duration of parking. 
The dataset collected and analyzed in this study provides the informa
tion required to clarify the driving and charging patterns of currently 

Fig. 16. Charging probability at home location in overnight charging events versus (a) SOC when arriving home and (b) next daily driving distance. Data shown are 
for: a, 46,599 parking events by 257 EVs; and b, 50,712 parking events by 253 EVs.

Fig. 17. Charging probabilities outside home location for different daily driving distances (only the first driving days after an overnight charging event are included). 
Data shown are for 21,132 driving days by 253 EVs.

Y. Kobayashi et al.                                                                                                                                                                                                                             Applied Energy 401 (2025) 126608 

13 



operated EVs in Sweden.
Compared to previous studies, the yearly driving distance for EVs 

calculated in the present work (16,530 km) is slightly shorter than that 
based on the driving patterns of ICVs in Sweden (17,400 km) assessed by 
Taljegard et al. [10], while the average yearly driving distance for pri
vately owned vehicles in Sweden is 11,260 km [40]. Taljegard et al. [10] 
have pointed out that their dataset includes a larger share of diesel cars 
than is the average for Sweden. The EVs in the present study tend to 
drive longer distances than gasoline-fueled cars but shorter distances 
than diesel-fueled cars. This implies that EV owners are early adopters 

who want to gain greater economic benefits from buying an electric car. 
However, the owners of diesel cars want EVs with large batteries, as the 
results show that the EVs with battery capacities >77 kWh are driven 
20,574 km per year on average. According to Smart et al. [20], the 
annual driving distance of a Nissan LEAF (24 kWh) in the US is 15,600 
km, while the national average driving distance for all vehicles in the US 
is 18,300 km. This implies that the driving range of an EV with a 24-kWh 
battery is not sufficient to fulfill the requirements of the average driving 
pattern in the US. Focusing on EVs with battery capacities of up to 30 
kWh in the present study, the average yearly driving distance is 11,138 
km. Although this is a much shorter distance than the average for all EVs 
(16,530 km) logged in this study, it is similar to the average for all 
privately owned vehicles in Sweden (11,260 km).

The average daily driving distance of the participants in this study 
(small-battery EVs: 53 km, large battery EVs: 59 km, on average) is close 
to that of the averages in European countries. Alemanno et al. [6] have 
reported a similar average driving distance for Italy, France and Ger
many. Moreover, the large-battery EVs in this study show an average 
daily driving distance that is close to the Swedish ICV data (58 km) used 
in the study of Taljegard et al. [10], which are based on the driving 
patterns measured by Karlsson [12]. However, the peaks of the histo
grams in Fig. 11a (small-battery EVs: 10–15 km) and 11b (large-battery 
EVs: 5–10 km) are similar to the results (around 10 km) obtained from 
the analyses of the data for the 24-kWh EVs (Nissan LEAF) in the US by 
Suzuki et al. [21]. The present study shows that 80 % of the daily driving 
distances are shorter than 80 km, similar to what is seen in the results of 
Suzuki et al. [21]. Although the average daily driving distance is similar 
to those reported in some of the previous studies, the present study re
veals that the median daily driving distance for each EV is similar for the 
two battery capacity groups investigated, while the EVs with larger 
battery capacities show a longer average maximum driving distance.

In terms of the share of parked and driving EVs, the results of this 
study show that 10 % of EVs are driven at most at the same time at 16:40 
h on average, while Karlsson et al. [12] have shown that 7 % of the 
logged ICVs are driven at most at 17:00 h based on the data on ICVs in 
Sweden. This result and the shape of the graph for the share of cars being 
driven is similar to the graph with another peak share of cars being 
driven in the morning (this study: 6 % at 07:50; Karlsson et al. [12]: 5 % 
at 08:00). The share of cars being driven is slightly higher for EVs than 
for ICVs, probably because the EV owners drive on more days, albeit for 
shorter distances.

The probability of charging at home in this study is similar to the 
plug-in probability at home described in Suzuki et al. [21]. Suzuki et al. 
[21] have reported a plug-in probability of 30 % with 60 % SOC when 
arriving at home, while the charging probability in the present study for 
small-battery EVs is 64 % for the same SOC. This is likely because only 
overnight parking events are counted in the present study. When 
calculated for all parking events at home, the charging probability be
comes 45 %. According to the analysis conducted by Dodson et al. [22], 

Fig. 18. Numbers of driving days between two overnight charging events 
assuming battery capacities of (a) 16–50 kWh and (b) 54–100 kWh when the 
EVs are not charged at any location between the overnight charging events. Bin 
width is 1. Data shown are for: 14,414 pairs of charging events by 253 EVs.

Fig. 19. SOC at the end of overnight charging events assuming battery ca
pacities of (a) 16–50 kWh; and (b) 54–100 kWh. Bin width is 2 %. Data shown 
are for: 24,751 charging events by 334 EVs.

Fig. 20. Durations of overnight parking events at the home location. Bin width 
is 30 min. Data shown are for: 66,375 parking events by 334 EVs.
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for EVs in the UK the peak demand for charging is seen at 19:00–20:00 h, 
whereas the highest number of EVs charging in the present study is at 
around 00:10 h (13% for the sum of the red and green areas in Fig. 13). 
This difference is possibly because more EV owners in Sweden in 
2022–2024 shifted their charging time than EV owners in the UK in 
2017–2018, as can be seen in Figs. 22 and 23.

As mentioned above, the yearly driving distance results imply that 
EV owners are early adopters (the share of EVs in Swedish traffic was 
5.9 % in 2023) who want to get as much out of their cars as possible, and 
that it is more economically beneficial for people who are driving longer 
yearly distances to buy an EV. Yet, it could also be because the driving 
cost per kilometer is low and people tend to drive more. The share of EVs 
in Sweden is still small (5.9 %), but the share of new sales was 39 % in 
2023 [42]. Since the EV share is increasing, the driving and charging 
patterns should be monitored to allow the design and dimensioning of 
infrastructure, so that EV market diffusion is not hindered by inadequate 
infrastructure.

The share of EVs in new car sales in Sweden was the third highest 

among the EU-27 countries [42], which means more non-early adopters 
are starting to purchase EVs in Sweden compared to many other EU 
countries. Many of the participants in this study use their EV to visit their 
vacation houses (36 %) which might differentiate the driving and 
charging patterns from the other countries. As mentioned earlier, the 
driving and charging patterns differ between countries, e.g., the yearly 
driving distance differs between Sweden and the US [20]. Another 

Fig. 21. Durations of overnight charging events at home location for battery capacities (a) 16–50 kWh and (b) 54–100 kWh, and for maximum charging powers of (c) 
3–4 kW and (d) 9–10 kW for the large-battery EVs (54–100 kWh). Bin width is 30 min. Data shown are for: a and b, 21,769 charging events by 283 EVs; c and d, 
10,499 charging events by 62 EVs.

Fig. 22. Elapsed time from arriving home to starting to charge by housing type. 
Data shown are for: 21,784 charging events by 283 EVs.

Fig. 23. Time of the day when charging starts at an overnight charging event 
for EV owners: (a) living in detached houses; and (b) living in apartments. Bin 
width is 10 min. Data shown are for: 24,766 charging events by 334 EVs.
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example is the difference in charging demand between Sweden and the 
UK [22]. However, there are also similarities such as daily driving dis
tance in Sweden and the US [21]. The yearly driving distance on average 
for all vehicles in Sweden (11,260 km) is similar to the yearly driving 
distance in Norway (11,097 km), Netherlands (11,015 km) and Croatia 
(11,733 km), while it is significantly different from Austria (12,600 km), 
Belgium (15,893 km), Denmark (14,585 km), Finland (14,000 km), 
France (10,830 km) and Latvia (14,690 km) [43]. The driving and 
charging patterns depend on many things, such as the lifestyle, elec
tricity price contract, access to charging infrastructure, working hours, 
etc. Thus, it is important to monitor the driving and charging patterns in 
each country and from many EV users to understand the need for 
charging infrastructure, as well as understand how EV charging might 
impact the grid.

Future work will analyze a survey sent out to the EV owners 
participating in this study. The survey will help further define the at
tributes of the participants and their preferences for smart charging. An 
analysis of attribute could point at different reasons for certain driving 
and charging patterns. Yet, also the present results in this paper provide 
such information. For example, the results show that EV owners living in 
detached houses tend to delay charging, but future analysis is needed to 
also correlate with, e.g., type of electricity contract, electricity spot price 
and access to charging infrastructure. In the present study, charging at 
the home location was in focus. However, a more-extensive geographic 
analysis that includes also charging at workplace, summerhouse loca
tions and other locations, as well as, analysis of differences of driving 
and charging patterns between city sizes (i.e. urban cities, small towns 
or countryside) is required to clarify the potential for flexible charging 
and the need for charging infrastructure. However, such analysis is 
considered outside the scope of this paper. Further analysis is also 
needed to understand how driving and charging patterns might differ 
between weekdays and between different seasons. This is important in 
order to understand when and where to build charging infrastructure, e. 
g., from the perspective of policy. Yet, further analysis will require a 
comprehensive analysis which is out of scope of this work. The results 
presented in this study show that some of the owners of large-battery 
EVs take advantage of the opportunity to end the charging event at a 
lower SOC than those with a smaller battery, with the reason possibly 
being that they want to prolong the lifetime of the battery. Yet, further 
analysis is outside the scope of this work. The driving and charging 
patterns recorded in this study will also be useful for simulating the 
electricity grid, so as to determine how EV charging affects the current 
grid.

5. Conclusions

The results obtained from analyzing the charging and driving pat
terns of 334 GPS-logged EVs in Sweden show that there is strong po
tential for the total electricity load from EVs to be flexible in time, i.e., to 
allow smart charging, including V2G. This is the case because: 

• For more than half (56 %) of the overnight parking events, the EVs 
arrive home with a SOC of 60 % or higher. The EV owners charge 
during overnight parking events (to fulfill their driving needs) on 
average every 2.5 driving days (for a large battery capacity) or every 
1.6 driving days (for a small battery capacity).

• The most-frequent overnight parking duration at home is 14 h, which 
is four-times longer than the most-frequent overnight charging 
duration at home for logged EVs, indicating a large potential for 
moving charging in time. Obviously, the duration of charging also 

depends on the power of the chargers at home. With a 3–4 kW 
maximum charging power, the median duration of charging per day 
is 4 h, while with a maximum charging power of 9–10 kW the median 
charging duration is 9 h.

• The maximum share of the investigated EV fleet charging simulta
neously is 13 % on average, which occurs at 00:10 over the logged 
period. This small share is because the battery capacity is large in 
relation to the average daily driving distance. This implies that there 
is a large potential for using the EVs in smart charging strategies that 
shift the load in time.

• The analysis shows that the EV owners who are living in a detached 
house avoid charging immediately when arriving home for 50 % of 
the overnight charging events, which is 27 percentage points higher 
than for those who live in an apartment. This is probably because the 
owners of detached houses tend to have hourly electricity contracts. 
This indicates a willingness among EV owners to move charging in 
time, given an economic incentive.

Furthermore, around 70 % of the charging energy is charged at the 
home location, and 86 % of the energy is charged during overnight 
parking events. The results also show that the median daily driving 
distance of each EV is weakly dependent upon the battery capacity, 
while the longest daily driving distance of each EV is 284 km for the EVs 
with battery capacities of up to 50 kWh (small-battery EVs) and 429 km 
for EVs with larger battery capacities. This suggests that the advantage 
of using EVs with large batteries for long trips is only occasionally 
exploited, although the owners of EVs with larger batteries have more 
flexibility in choosing when they charge their vehicles, e.g., the proba
bility of charging when they arrive home with 60 % SOC is 1.9-times 
higher for large-battery EVs than for small-battery EVs.

In terms of future work, the studies will be based on the answers to 
surveys received from the EV owners regarding the context of their EV 
ownership. We will also analyze charging locations other than the home 
location as well as analyze temporal differences of driving and charging 
patterns such as in different seasons. The analysis will be extended to 
analysis of charging patterns regarding battery life and charging cost.
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Appendix A.

Logging methods.
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Odometer values are stored according to storing Method 1 (Section 2.1) in this study. Fig. A1 shows an example of the stored odometer values for 
one vehicle over a period of 40 min. The odometer values are stored every 1 km for this vehicle. All data-points that are measured will be stored.

Fig. A1. Example of stored odometer values for one vehicle during 40 min. Storage of data is according to Method 1 in this study.

Method 2 for storing data entails the Ramer-Douglas-Peucker algorithm. The process of storing data according to Method 2 is described in Fig. A2, 
which depicts the charging power for 40 min for one vehicle. The first step (Fig. A2a) is to draw a line from logging data-points A to B (red line). In 
Fig. A2a, there are several measured data-points in between points A and B. A measured data-point that is most-distant from the line AB (green arrow 
in Fig. A2a indicates the distance), i.e., point A′, is recorded if the distance to the red line is longer than a certain threshold value. In the example in 
Fig. A2, the threshold value is 1 kW. The second step is to draw a line from A′ to B (Fig. A2b) and from A′ to A (Fig. A2c) and then repeat the same 
process. In Fig. A2b, another point A″ (most-distant from the line A′B) can be recorded if the distance (green arrow) from the red line A′ to B is longer 
than the threshold value. However, no such point can be found in Fig. A2c, which means that no data are stored between A′ and A. These steps are 
repeated until the distance from the line to the most-distant point is lower than the threshold value. Fig. A2d shows which data-points were stored 
according to the example in Fig. A2

Fig. A2. The process for selecting stored data-points using Method 2. This is an example using the charging power for one vehicle during 40 min. The green arrows 
indicate the distance from the red line to the most-distant measurement point. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

Appendix B.

Number of EVs in the different phases.
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Table B1 
Number of participants in the pilot phase.

Total Detached houses Apartment buildings

Non-urban 
area

Small town Large urban area Non-urban 
area

Small town Large urban area

EVs in the sampling frame (that meet the eligibility criteria) 35,209 5620 13,510 10,173 0 988 4918
Invited EVs (randomly selected from the sampling frame) 300 60 60 60 0 60 60
EV owners who accepted the invitation 34 13 4 5 0 7 5
Participants included in this study 23 10 3 2 0 4 4

Table B2 
Number of participants in the second phase.

Total Detached houses Apartment buildings

Non-urban 
area

Small town Large urban area Non-urban 
area

Small town Large urban area

EVs in the sampling frame (that meet the eligibility criteria) 33,260 5337 12,869 9538 27 899 4590
Invited EVs (randomly selected from the sampling frame) 4449 336 1540 911 27 737 898
EV owners who accepted the invitation 340 50 140 79 3 70 73
Participants included in this study 250 27 78 52 2 49 42

Table B3 
Number of participants in the third phase.

Total Detached houses Apartment buildings

Non-urban 
area

Small town Large urban area Non-urban 
area

Small town Large urban area

EVs in the sampling frame (that meet the eligibility criteria) 55,217 8917 21,439 15,488 65 1290 8018
Invited EVs (randomly selected from the sampling frame) 2200 427 427 427 65 427 427
EV owners who accepted the invitation 106 19 20 18 4 25 20
Participants included in this study 61 11 12 9 2 16 11

Appendix C.

Method to quantify missing data.
Eqs. C1 to C16 describe how the share of missing data has been quantified in this study. Identifications of the missing data periods are described 

below.

Table C1 
Parameters and sets in the equations.

Sets

Nodo Recorded data-points of odometer values
Nsoc Recorded data-points of SOC
Ntrip Recorded data-points of trip data
Nstatus Recorded data-points of status data
Nevent Recorded data-points of trip or charge event data
Nsocuppark Recorded data-points of parking events with SOC increased by more than 2 %
Nsocmisstrip Recorded data-points of trip event without recording SOC starts or ends
Nodobetweentrip Recorded data-points of odometer values between trip events
Mmissall Data-missing periods (no data are recorded)
Mmisstrip Periods when trip events are missing
Mmisscharge Periods when charging events are missing
X Start or end of event data
Parameters
Odonodo Odometer values at recorded data-point nodo

SOCnsoc SOC at recorded data-point nsoc

SOCX
nevent SOC when a trip or charge event starts or ends at recorded data-point nevent

SOCX
nsocuppark SOC when a parking event with SOC increased by more than 2 % starts or ends at recorded data-point nsocuppark

ODOX
ntrip Odometer values when a trip event starts or ends at recorded data-point ntrip

ODOX
nmisstrip Odometer values when periods when trip events are missing starts or ends

ODOX Odometer values when the logging period starts or ends
todo
nodo Time for odometer values at recorded data-point nodo

(continued on next page)
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Table C1 (continued )

Sets

tsoc
nsoc Time for SOC at recorded data-point nsoc

Sumdistnodo Total driving distance obtained from trip data during all the trip events between two odometer values at recorded data-point nodo − 1 and data-point nodo

TripX
ntrip Time when a trip event at recorded data-point ntripstarts or ends

TripX
nsocmisstrip Time when a trip event data at recorded data-point nsocmisstrip starts or ends without recording SOC during the event

EventXnevent Time when trip or charging event starts or ends at recorded data point nevent

TX Time when logging period of the EV starts or ends
MissallXnmissall Time when data-missing periods (no data are recorded) start or end at recorded data-point nmissall

MisschargeX
nmisscharge Time when periods during which charging events are missing start or end at recorded data-point nmisscharge.

Periods when all data are missing
Periods when all data are missing are defined as Eqs. C1 to C4. 

• If the difference between two recorded odometer values (ODOnodo ) is larger than the total driving distance obtained from trip data during all the trip 
events between the same two odometer values (data-point nodo − 1 and data-point nodo) when adding a threshold (10 km), as in Eq. (C1):

ODOnodo − ODOnodo − 1 > Sumdistnodo + 10km∀nodo ∈ Nodo (C1) 

• And if the absolute difference between two recorded values of SOC is larger than the threshold (2 %), as in Eq. (C2):

|SOCnsoc − SOCnsoc − 1| > 2%∀nsoc ∈ Nsoc (C2) 

• And if no data are recorded.
• Only periods of missing status data longer than 1 h are taken into account, as shown in Eq. (C3), in order to avoid defining the periods between 

status data during the same trip or charging event as missing periods.

Missallend
nmissall − Missallstart

nmissall > 1hour∀nmissall ∈ Mmissall (C3) 

The missing rate for all data is calculated in Eq. (C4) as the ratio of the total duration of the periods when all data are missing against the duration of 
total logging period. 

∑

nmissall∈Nmissall

(
Missallend

nmissall − Missallstart
nmissall

)
/
(
Tend − Tstart)× 100 (C4) 

Trip data are missing while status data are recorded
The cases in which trip data are missing while status data are recorded are defined as follows: 

• If the difference in odometer values between two trip events is longer than 10 km, as expressed in Eq. (C5):

ODOstart
ntrip − ODOend

ntrip − 1 > 10km∀ntrip ∈ Ntrip (C5) 

• The interval odometer values are always shorter than 10 km between two trip events, as in Eq. C6:

max
nodo∈Nodobetweentrip

(ODOnodo − ODOnodo − 1) ≤ 10km (C6) 

where nodo satisfies Eq. (C7): 

Tripend
ntrip − 1 < todo

nodo − 1 < todo
nodo < Tripstart

ntrip ∀ntrip ∈ Ntrip, nodo ∈ Nodo (C7) 

The missing rate of trip data is calculated based on the difference in odometer values, as in Eq. (C8): 
∑

nmisstrip∈Mmisstrip

(
ODOend

nmisstrip − ODOstart
nmisstrip − 1

)
/
(
ODOend − ODOstart)× 100 (C8) 

Charging data are missing
The period during which charging data are missing is defined as follows: 

• The difference in SOC from the previous event (trip or charge) to the next event (trip or charge) is higher than the threshold (2%), as in Eq. (C9):

SOCstart
nevent − SOCend

nevent − 1 ≥ 2%∀nevent ∈ Nevent (C9) 

• The parking events in which the event neventshown in Eq. (C9) are regarded as the periods for which charging data are missing, i.e., the period 
including missing charging data starts at the end of the trip events, as seen in Eq. (C10):
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Misschargestart
nmisscharge = tripend

ntrip − 1∀ntrip ∈ Ntrip, nmisscharge ∈ Mmisscharge (C10) 

• And it ends at the beginning of the next trip events, as in Eq. (C11):

Misschargeend
nmisscharge = tripstart

ntrip ∀ntrip ∈ Ntrip, nmisscharge ∈ Mmisscharge (C11) 

• Where these trip events (tripend
ntrip − 1 and tripstart

ntrip ) satisfy Eq. (C12):

tripend
ntrip − 1 ≤ Eventstart

nevent ≤ Eventend
nevent ≤ tripstart

ntrip ∀ntrip ∈ Ntrip, nevent ∈ Nevent (C12) 

To evaluate the missing rate of the charging data, this number of parking events is compared with the number of parking events with SOC increased 
by more than 2%, Nsocuppark, i.e., the parking events likely to be associated with charging events, as defined by the parking events in Eq. (C13): 

SOCend
nsocuppark − SOCstart

nsocuppark − 1 ≥ 2%∀nsocuppark ∈ Nsocuppark (C13) 

The rate of missing data is calculated using the number of parking events with a difference in SOC increased by more than 2% between events 
divided by the number of parking events with SOC increased by more than 2%, as expressed in Eq. (C14): 

count
(
Mmisscharge)/count

(
Nsocuppark)× 100 (C14) 

The other parameters of status data are missing
The completeness of parameters other than charging data in the status data are evaluated using the duration of the recorded trip events or charging 

events during which the data are recorded. Eqs. (C15) and (C16) show the completeness of the SOC data during trip events as an example.
If no SOC is recorded during a trip event, the SOC is regarded as missing, as in (Eq. C15): 

tsoc
nsoc − 1 < Tripstart

nsocmisstrip < Tripend
nsocmisstrip < tsoc

nsoc∀nsoc ∈ Nsoc, nsocmisstrip ∈ Nsocmisstrip (C15) 

The missing rate of SOC data during trip events is calculated using the duration of trip events without SOC divided by the duration of trip events, as 
in Eq. (C16): 

∑

nsocmisstrip∈Nsocmisstrip

(
Tripend

nsocmisstrip − Tripstart
nsocmisstrip

)
/

∑

ntrip∈Ntrip

(
Tripend

ntrip − Tripstart
ntrip

)
× 100 (C16) 

Appendix D.

Age and gender distribution of the participants.

Fig. D1. The age distribution of the participants in this study. Bin width is 5 years.
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Fig. D2. The gender of the driver using the EV most of the time in this study according to a survey sent out to the participants.

Appendix E.

EV models with large missing rates.

Table E1 
Number of EVs with a missing data rate higher than 20 % by model and parameter. Note that e.g., the model name “Nissan Leaf” includes every battery size of Nissan 
Leaf as well as Nissan Leaf e + .

Total 
number of 
EVs

All 
data

Trip 
event

Start/end of a 
charging event

Odometer 
values

SOC during 
trip event

Energy charged to 
battery during 
charging

SOC during 
charging 
event

Energy 
demand for 
driving

Charging 
power

AUDI E TRON 1 0 0 0 1 1 0 1 0 0
BMW I3 10 1 0 3 1 5 0 1 0 0
BMW IX1 1 1 0 1 0 0 0 0 0 0
HYUNDAI KONA 32 2 0 0 3 2 0 2 0 0
KIA NIRO 81 4 0 11 8 6 1 7 0 0
KIA SOUL 5 1 0 1 2 1 0 1 0 0
NISSAN LEAF 23 2 0 0 1 1 0 1 0 0
PEUGEOT E 208 6 0 1 0 0 0 0 0 0 0
POLESTAR 2 18 1 0 0 2 3 0 3 0 0
RENAULT ZOE 53 14 0 19 10 2 0 2 0 9
SEAT MII 

ELECTRIC 2 0 0 1 0 0 0 0 0 0

SKODA ENYAQ 1 1 0 1 1 0 0 0 0 0
VOLKSWAGEN 

ID3
11 2 0 2 0 0 1 0 0 1

VOLKSWAGEN 
ID4

10 2 0 3 1 1 0 1 0 0

VOLKSWAGEN 
ID5 1 1 0 1 0 0 0 0 0 0

VOLKSWAGEN E 
GOLF 21 2 0 3 3 3 0 3 0 0

VOLVO C40 2 0 0 0 1 1 0 1 0 0
VOLVO XC40 11 2 0 0 1 4 0 4 0 0
OTHER MODELS 45 0 0 0 0 0 0 0 0 0
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Data availability

The data cannot be shared currently. But part of the data will be 
available on request.
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