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ABSTRACT

We analyze the existence of Kéhler—Einstein metrics of positive curvature in the neigh-
borhood of a germ of a log terminal singularity (X, p). This boils down to solving
a Dirichlet problem for certain complex Monge-Ampere equations. We establish a
Moser-Trudinger inequality (MT), in subcritical regimes v < veit (X, p) and show the
existence of smooth solutions in those cases. We show that the expected critical expo-
nent Yerit (X, p) = ((n+1)/ n)\jgl(X ,p)Y/™ can be expressed in terms of the normalized
volume, an important algebraic invariant of the singularity.
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1. Introduction

Let (X, p) be a germ of an isolated singularity. We analyze the existence of local Kéhler—Einstein
metrics of positive curvature in a neighborhood of p. It follows from [BBEGZ19, Proposition 3.8]
that the singularity has to be log terminal, a relatively mild type of singularity that plays a central
role in birational geometry. We refer the reader to Definition 2.8 for a precise formulation and
simply indicate here that a prototypical example is the vertex of the affine cone over a Fano
manifold. Consider indeed

X ={zeC" P(2)=0},

P a homogeneous polynomial of degree d € N* so that H = {[z] € CP", P(z)=0} is a smooth
hypersurface of the complex projective space. Then (X,0) is log terminal if and only if H is
Fano (which is equivalent here to d <n+ 1). Thus, log terminal singularities can be seen as a
local analogue of Fano varieties.

Given a local embedding (X, p) < (C",0), constructing such a local Kéhler-Einstein metric
boils down to solve a complex Monge—Ampere equation

—YP d
(ddop)r = —— PP
(MA), 40 Joe? duy
Pl = ¢,

where € is a smooth neighborhood of p, ¢ is a smooth boundary data, 1, is an adapted volume
form (see Definition 2.9), and v > 0 is a parameter. We seek for a solution ¢ € C>*(Q2\ {p})N
C%(Q2) which is strictly plurisubharmonic in Q\ {p}, so that wkg :=dd°yp is a Kihler form in
O\ {p} satisfying the Einstein equation

Ric(wkg) = YwKE-

An important motivation comes from the global study of positively curved Kahler—Einstein
metrics wgg on Q-Fano varieties. Such canonical singular metrics have been constructed in
[BBEGZ19] and further studied in [BBJ21, LTW21, Li22], extending the resolution of the Yau—
Tian—Donaldson conjecture [CDS15] to this singular context. Despite recent important progress
[HS17, Drul8, HP19, BGL22|, the geometry of these singular metrics remains mysterious and
one needs to better understand the asymptotic behavior of wkg near the singularities.

We restrict the metric wgg to a neighborhood of p and wish to analyze the behavior of its
local potentials wkg = dd“¢kr near p. The latter solve a Monge-Ampere equation (M A), 4o, as
can be seen by locally trivializing a representative of the first Chern class (after an appropriate
rescaling). The boundary data are thus given by the solution ¢k = ¢ itself.

Studying the family of equations (M A), 4 o we will give evidence that:

— the possibility of solving (M A), 4« should be independent of 2 and ¢;

715

Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Hgskola, on 27 Aug 2025 at 09:21:08, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms
. https://doi.org/10.1112/50010437X24007619


https://doi.org/10.1112/S0010437X24007619
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

V. GUEDJ, A. TRUSIANI AND S. BOUCKSOM

— the largest exponent et (X, p) for which we can solve (M A), 4o should only depend on
the algebraic nature of the log terminal singularity.

Following earlier works dealing with the case of compact Kéahler varieties or the local smooth
setting [BBGZ13, GKY13, BB22, BBEGZ19], we develop a variational approach to solve these
equations. A crucial role is played by

1
n+1

n
Bylp) = [ (o= ooad ey A ldaony
=07
the Monge—Ampere energy of ¢ relative to a plurisubharmonic extension ¢ of ¢. This energy
is a primitive of the Monge-Ampere operator and a building block of the functional F, whose
Euler-Lagrange equation is (M A), 4 q,

PETo(R) = Py () = Eolip) +~ Tog | % dy <R,
Q
Here T,(€2) denotes the set of all plurisubharmonic functions ¢ in € which are continuous on
and such that ¢|pn = ¢.
In order to solve (MA), 4o one can try and extremize F, by showing that it is a proper
functional. Our first main result in this direction (Theorem 5.1) is the following Moser—Trudinger-
type inequality.

THEOREM A. For any 0 <~ < ((n+1)/n)a(X, up), there exists C, >0 such that

(/Qe—w dup>1/W <O, exp(—Ey(9)), (MT,)

for all p € T4(Q2).

The alpha invariant of the singularity (X, p) is defined by

a(X, pp) :=sup {a >0, sup / e du, < -l—oo},
PpEF1() JQ
where F7(€2) denotes the set of plurisubharmonic functions ¢ with ¢-boundary values, whose
Monge-Ampére mass is bounded by [, (dd¢)™ <1.

When (X, p) is smooth, Theorem A has been obtained independently in [BB22, GKY13] with
a(X, up) =n (the normalizations and methods are quite different in these two works, but they
eventually produce the same critical exponent).

We introduce

Yerit (X, p) :=sup{y > 0 such that (MT,) holds}.

While Theorem A provides a lower bound for ~eit(X,p), we provide an upper bound in
Theorem 4.5, which yields

n+1 n+1

a(X, pp) < Yarit (X, p) < vol(X, p)/™,

where \781(X ,p) denotes the normalized volume of the singularity (X, p). This is an algebraic
invariant of the singularity at p introduced by Chi Li in [Lil8], which has recently played a
key role in the algebraic understanding of the moduli space of K-stable Fano varieties (see
[Blul8, Liul8, LWX21, LXZ22] and the references therein); we refer to Definition 2.15 for a
precise definition.
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When p is smooth then a(X, p,) :@(X, p)/" =n by [ACKPZ09, Dem09]. It is tempting
to conjecture that the equality a(X, u,) = vol(X, p)l/ ™ always holds. We establish in §5 the
following partial bounds on a(X, pp).

THEOREM B. The following inequalities hold:

n let(X, p) _ )
’ <a(X < vol(X. /™.
mult(X, p)l—l/n 14 ICt(X,p) > Oé( aﬂp) = VO ( ,p)

Moreover, o X, pip) = \70\1(X, p)V/™ if (X, p) is an admissible singularity.

Here mult(X, p) denotes the algebraic multiplicity of (X, p), while lct(X, p) is its log canon-
ical threshold (see Definition 2.12). Having «(X, ) bounded from below is quite involved; we
show that o(X, pp) :\781()(, p)l/” when n =2, but our lower-bound is not sharp when n >3
unless (X, p) is an admissible singularity, a notion introduced in [LTW21]. The vertex of the
affine cone over a smooth Fano manifold is an example of admissible singularity (see §5).

Using analytic Green functions and Demailly’s comparison theorem, we provide in
Propositions 5.6 and 5.8 evidence for the equality a(X, pu,) = vol(X, p)'/". Appendix A uses
an algebraic approach based on [BAFF12], to establish a stronger result than Proposition 5.8.

We note in Lemma 3.13 that if (MT,) holds, then F, is coercive (a strong quantitative version
of properness). When v < vqit (X, p), we then further show the existence of smooth solutions to
(MA)y6.0-

THEOREM C. If v < verit(X, p), then there exists a plurisubharmonic function ¢ € C*(Q\ {p})
which is continuous in Q with $lo0 = ¢, and such that
67790 d'up

ddcp)t = =—Fr Q.
(de"e) fQ e dpy "

We expect the solution to be unique, at least when 2 is a generic Stein neighborhood of p.
We refer the reader to [GKY13, BB22] for partial results in this direction when p is a smooth
point.

2. Preliminaries

2.1 Analysis on singular spaces

Let X be a reduced complex analytic space of pure dimension n>1. We let X, denote the
complex manifold of regular points of X and Xgne := X \ Xieg be the set of singular points; this
is an analytic subset of X of complex codimension >1. We always assume in this article that:

— Xsing = {p} consists of a single isolated point;

— Xreg is locally irreducible at p;

— U is a fixed neighborhood of p and j : U < C¥ is a local embedding onto an analytic subset
of CV for some N >1.

As we are interested in the asymptotic behavior of K&hler—Einstein potentials near the
singular point p, we shall identify X with j(U) in the following.

2.1.1 Plurisubharmonic functions. Using the local embedding j, it is possible to define the
spaces of smooth forms on X as restriction of smooth forms of CV. The notion of currents on X
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is defined by duality; the operators 0 and 0, d, d° and dd® are also well defined by duality (see
[Dem85] for more details).

Here d=0+ 0 and d¢= (1/4in)(0 — ) are real operators and dd®= (i/2w)00. With this
normalization the function z € C" — prs(2) =log[1 + |z|?] €R is smooth and plurisubharmonic
(psh for short) in C", with

/ (ddprs)" = 1.

DEFINITION 2.1. We say that a function u: X — RU {—o00} is psh on X if it is the restriction
of a psh function of CV.
We let PSH(X) denote the set of all psh functions on X that are not identically —oco.

Recall that u is called weakly psh on X if it is locally bounded from above on X and its
restriction to Xyeg is psh. One can extend it to X by u*(p) :=lim SUPX, ., 5y—p u(y). Since X is
locally irreducible, it follows from the work of Forneess and Narasimhan [FN80] that u is weakly
psh if and only if u* is psh (see [Dem85, Corollary 1.11]).

If ue PSH(X), then u is upper semi-continuous on X and locally integrable with respect to
the volume form

dVy :=wl g AN [X].

Here [X] denotes the current of integration along X and weycl := Z;VZI i dzj A\ dzj is the euclidean
Kahler form. In particular, dd“u is a well-defined current of bidegree (1, 1) which is positive.

2.1.2 Pseudoconvex domains and boundary data. Following [FN80] we say that X is Stein
if it admits a C?-smooth strongly psh exhaustion.

DEFINITION 2.2. A domain ©Q € X is strongly pseudoconvex if it admits a negative C2-smooth
strongly psh exhaustion, i.e. a function p strongly psh in a neighborhood Q' of Q such that
Q:={ze;p(x) <0}, dp+#0 on 99, and for any ¢ < 0,

Qei={xeQ;plx)<cten
is relatively compact.

We are interested in solving a Dirichlet problem for some complex Monge—Ampére equations
in a bounded strongly pseudoconvex domain 2 = {p < 0}, with given boundary data ¢ € C*°(0%2).

DEFINITION 2.3. Given ¢ € C*(99), we fix ¢g a psh function in Q which is C*°-smooth near Q
and such that ¢o|0Q = ¢.

Such an extension can be obtained as follows: we pick ¢ an arbitrary C2-smooth extension
to Q, and then consider ¢ ::g5+Ap, for A so large that ¢ is C?-smooth and psh in Q. All
quantities introduced in the remainder of the paper are essentially independent of the particular
choice of the extension.

2.1.3 Monge—Ampére operators. The complex Monge-Ampere operator (dd°-)™ acts on a
smooth psh functions ¢. When X =C", it boils down to

2
(dd°p)" = ¢y, det (8(,0) Wenels
20z,

where ¢, > 0 is a normalizing constant.
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2.1.4 Bounded functions. Following [BT82] this operator can be extended to the class
PSH(X)N LS, by using approximation by smooth psh functions: given ¢ € PSH(X)N LS,
there exists a unique positive Radon measure p, on X such that for any sequence (¢;) of

smooth psh functions decreasing to ¢, one has
o = lim(ddp;)",
where the limit holds in the weak sense. One then sets (dd¢)™ := p,.

DEFINITION 2.4. We set

T5° () :=={p e SPSH(Q)NC>() : p90 = ¢},

where SPSH(2) is the set of strictly psh functions, and
To(82) := {cp € PSH(Q2)N Co(ﬁ) L P00 = 0, / (dd°p)" < +oo},
Q

This latter class has been introduced by Cegrell in [Ceg98]; it can be used as a psh version of
test functions (in the sense of distributions), as well as a building block for finite-energy classes
of mildly unbounded functions.

LEMMA 2.5. Any ¢ € T4(Q) is a quasi-decreasing limit of functions in T°($2).

Proof. Fix a local embedding X < CV. A function ¢ € T5(£2) is the restriction of an ambient
continuous psh function . We use standard convolution in CV to find a sequence of smooth
strictly psh functions ¢; decreasing to 1. Consider ; :¢j| x — &5, where 0 <eg; goes to zero
so that ¢; < ¢o near 9Q (the functions @Z)ﬂ + uniformly converge to ¢ by continuity). Set ¢; :=
max(g;, Ajp + ¢o), where max is a regularized maximum, then ¢; € 7°(€2) converges to ¢ as
Aj — 400. O

2.1.5 Mildly unbounded functions. The complex Monge-Ampere operator can be defined
for mildly unbounded psh functions. We refer the reader to [Ceg04, Blo06] for the case of smooth
domains in C"; their analysis easily extends to our context.

DEFINITION 2.6. We let F(2) denote the set of all functions ¢ € PSH () which are decreasing
limit of a sequence of functions ¢; € T4(€2) such that

sup/(ddccpj)” < +o00.
Jj JQ

The operator (dd®-)™ is well defined on F(£2), continuous along monotonic sequences, and
yields Radon measures (dd°¢)" which have finite mass in . We endow F(Q) with the L!-
topology. Let us stress that the operator ¢+ (dd°p)™ is not continuous for the L!-topology, but
the class F(2) enjoys the following useful compactness property.

PROPOSITION 2.7. The set F1(Q2) = {¢ € F(Q2); [,(dd°p)" <1} is compact.

This is shown in [Zer(09, Observation A.3| for smooth domains, and the same proof applies in
our mildly singular context. Let us stress that the Monge-Ampere operator cannot be defined
for all psh functions: there is, for example, no reasonable way to make sense of (ddlog|z1])™.
A consequence of Proposition 2.7 is that one cannot approximate such a function by a decreasing
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sequence of psh functions with prescribed boundary values and uniformly bounded Monge—
Ampere masses.

2.2 Adapted volume form

2.2.1 Log terminal singularities. Let Y be a connected normal complex variety such that
Ky is Q-Cartier near p€ Y. One can consider the dd®-cohomology class of —Ky, denoted by
C1 (Y) ~

Given a log-resolution 7:Y —Y of (Y,p), there exists a unique Q-divisor ), a;F; whose
push-forward to Y is 0 and with

Ky =7"(Ky)+ Y a:FB;.
A

DEFINITION 2.8. The coefficient a; € Q is the discrepancy of Y along F;. One says that p is a
log terminal singularity if a; > —1 for all j.

It is classical that this condition is independent of the choice of resolution. In the remainder

of this article we assume that:

— the singularity (X, 0) is log terminal;
— Y =Q is a strongly pseudoconvex neighborhood of 0 =p € X
— the canonical bundle Kq is Q-Cartier and rKq =0 for some r € N.

DEFINITION 2.9 [EGZ09, Definition 6.5]. Fix o a nowhere-vanishing holomorphic section of
rKq, and h a smooth hermitian metric of Kq, then

B (cno NG)YT
Pp = A5
|l

is an adapted measure, where A > 0 is a positive normalizing constant.
Observe that u, is independent of the choice of o, and
dd° log 11, = —Op(Kq)

is the curvature of h, as follows from the Poincaré-Lelong formula.
The measure p, has finite mass by [EGZ09, Lemma 6.4]: let 7:Q — Q be a resolution of

(€2,0), then
M
=X [[Isg, P% dVg,
j=1
where dVg is a smooth volume form on Q, E,...,Ep are exceptional divisors, sg, are

holomorphic sections such that E; = (sg, =0), and
M M
T’KQ = F*(TKQ) +r Z ajEj =T Z ajEj.
i=1 j=1
Thus f = Hj]\il\SEj % belongs to L*(dVg,) for some s> 1, as p is log terminal.
DEFINITION 2.10. We choose A = A\q so that p, is a probability measure in €.

The results to follow are independent of this (convenient) normalization.
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2.2.2 Ricci curvature.  Let w be a positive closed current of bidegree (1, 1) in £ with bounded
local potentials. Its top power w™ is well defined as explained in §2.1.3. If w™ is absolutely
continuous with respect to dVx, then we set

Ric(w) := —dd® log w™.
DEFINITION 2.11. We say that w is a Kahler—Einstein metric if it satisfies
Ric(w) =yw
for some v € R.

In this article, we are mainly interested in the case when v > 0. We choose the hermitian
metric h =1 for Kq, so that ©;, =0. Since

Ric(w) = Ric(j1y) — dd® log(w" /1),
the above Kéahler—Einstein equation is equivalent, writing w = ddyp, to
(dd°g)" = ¥ ey,
where w is a pluriharmonic function in . Changing ¢ in ¢ —w/~v and then ¢ in ty (observe
that Ric(tw) = Ric(w) for any t > 0), we can normalize w by [, w" =1 and reduce to
-
(dde)" = -——"—.
Jo e
Seeking for a Kéhler-Einstein metric thus leads one to solve (M A), 4 0.

Conversely solving (M A), 40 will produce a Kéhler-Einstein metric w = dd°yp, if we can
establish enough regularity of the solution .

2.2.3 Log canonical threshold. ~We consider the density f = up /dVx. It is related to the
density f in a resolution by

Ty = fom -t dVx = f dVg.

An analytic expression for f is obtained as follows. Recall that dVyx =w[, ;A [X], where weyql
denotes the euclidean Kéhler form on CV. Set dz; = dzi, N--- Ndz;,, where 1 <47 <.+ <ip <
N. There exists germs of holomorphic functions fr € Oq ¢ such that (dz;)" = fro since o is
a local generator of rKx. In particular, the volume form dVx :=w( ;A [Q] is comparable to

(P, e
~1
pp=fdVx, with f~ <Z|f}|2/r> :
i

The germs of holomorphic functions f; generate an ideal Zj, where Z" is an ideal sheaf
associated to the singularities of (X, p). In particular,

M
S A OQ: Q<—’r‘2b]’Ej>
=1

for coefficients b; € N such that fom~ H]J‘/il sk, B2

DEFINITION 2.12. The log canonical threshold of (X, p) is given by

a; +1
let(X,p):= inf J .
¢ ( 7p) jE%,I.l..,M bj
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We let the reader check that the definition is independent of the choice of resolution, and
that lct(X, Z) € (0, n]. One can equivalently use the following point of view: if Z is a general ideal

sheaf,
let(X,Z) := inf Ax(E)

E/X ordg(Z) (2.1)

where Ax(E):=1+ ordg(Ky/x) is the log-discrepancy of E, and the infimum is over all prime
divisors E on resolutions Y of X. When 7 is supported at p we can restrict in (2.1) to consider
prime divisors centered at p.

Example 2.13. The ordinary double point (ODP) X = {z € C"**!, Z;L:o zj2 =0} is the simplest
isolated log terminal singularity which is not a quotient singularity when n >3 (when n =2, log
terminal singularities are precisely the singularities of the form X = C?/G, G C GL(2, C) a finite
subgroup).

In this case 72 = (23, ..., 22). Indeed the n-forms

(dzo A~ Adzj A= Ndz)®  (dzo A Adzg Ao Adzy)?

g,; .= =
J- 2 2 )
% 2kt %k

defined on Uj:={z; #0}, glue together to give a local generator o of 2Kx (note that
Z;L:o zj dzj =0). In particular, | fr|?m = |2j|* where j =[0,n]\ I, =2 and
1
Hp ™~ =2 9
P Z?=0|Zj‘2
If 7:BlpC**! — C**! denotes the blow-up at 0, E the exceptional divisor, and F the
restriction of E to Y, the strict transform of X, we obtain
7% Oy = Oy(=2F) and ©*p,=|sp|2™2 dVy
for a smooth volume form dVy. Thus, lct(X, p) =lct(X,Z)=n — 1.

dVx.

We will need the following result which connects lct(X, p) and the integrability properties of
the density f = p,/dVx.

LEMMA 2.14. The density f = p,/dVx belongs to L"(dVx) for r <1+ 1ct(X, p).
Proof. Let m:Q — Q be a resolution of the singularity. Recall that

M M M
fOWNH\sEj]*Qb-f and sz]sEj|2“J’, hence ﬁ*dVXNH]sEj|2(“j+bj)dVQ.

j=1 j=1 j=1
It follows that [, f" dVx ~ [o [T}, [sm, [2@ )72t Vg < +oo if and only if r < (1 + a; + b;) /b,
for all j, which yields the statement since lct(X, p) =inf;((1+ a;)/b;). O

2.3 Normalized volume
The (Hilbert-Samuel) multiplicity of an ideal Z supported at p is defined as
(Ox.,/T™
e(X,Z):= lim 7< xp/1")
m—+oo  m™/n!
where [ denotes the length of an Artinian module.
Given a divisor E over X centered at p, the volume of E over p € X is
o (Oxp/an(B))
VOlXﬁD(E) = ml_l}riloo mn—/n'

where a,,(E) :={f € Oxp:ordg(f)>m} (see [ELS03]).
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DEFINITION 2.15 [Lil8]. The normalized volume of p € X is

vol(X. p) 1= inf volx,p(E),

where the infimum runs over all prime divisors E over X centered at p, and
volx p(E) := Ax (E)" - volx ,(E)
is the normalized volume of E over (z € X).
We shall need the following important result.

THEOREM 2.16 [Liul8, Theorem 27|. Let (X,p) be a log terminal singularity of complex
dimension dim¢ X =n. Then
vol(X,p)=_  inf  let(X,T)"-e(X,T).
7 supported at p

Observe that the quantity lct(X,Z)™ - e(X, Z) is invariant under rescaling Z —Z", r € N. One
can actually only consider coherent ideal sheaves supported at p. Indeed any ideal Z supported at
p is associated to a closed subscheme Z such that Supp Z = {p} (see [Har77, Corollary 11.5.10]),
while any ideal associated to a closed subscheme is coherent [Har77, Proposition I1.5.9].

Ezample 2.17. Consider again X = {z € C""} > =0 25 =0}. Recall that 7% = (27,..., 2) is
the ideal sheaf associated to the adapted measure, and that the ideal Z? corresponds to 2F
where F' is the exceptional divisor in the blow-up at p. In particular, Ax(F)=n — 1.

We observe here that e(X,Z?) =2""! and ;(;lx’p(F) =2(n —1)" since
O/ TP™) = (O /a0 (F)) = 271 1 O ).

In [Li18, Example 5.3] it is further shown that F' is a minimizer for the normalized volume of
p€ X, ie. that vol(X, p) =2(n—1)".

3. A variational approach

A variational approach for solving degenerate complex Monge-Ampére equations has been
developed in [BBGZ13] in the context of compact Kéahler manifolds. It notably applies to the con-
struction of singular Kahler—Einstein metrics of non-positive curvature. This has been partially
adapted to smooth pseudoconvex domains of C™ in [ACC12].

The case of positive curvature is notoriously more difficult, as illustrated by the resolution of
the Yau-Tian-Donaldson conjecture by Chen, Donaldson and Sun [CDS15]. It has been treated
extensively in [BBEGZ19], and eventually lead to an alternative solution of the Yau-Tian—
Donaldson conjecture for Fano varieties [BBJ21, LTW21, Li22]. Adapting [BBEGZ19] to our
local singular context, we develop in this section a variational approach for solving the equation

7P d
(ddep)yr = =
(MA)y60 Joe % duy (3.1)
Pl = ¢-

3.1 Monge—Ampeére energy
3.1.1 Smooth tests. Fix Q={p< 0} and ¢ as described previously, and

T2 () ={p e SPSH(Q)NCT(Q) : pjan = ¢}
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Recall that ¢g € C®(Q) N PSH() denotes a smooth psh extension of ¢ to Q. We set w:=
dd¢¢g. This is a semi-positive form, which can be assumed to be Kéhler. However, if ¢ =0, we
can equally well take ¢g =0 and get w =0.

DEFINITION 3.1. We call Eg(p):=(1/(n+1)) X1 (v — do)(ddp)? A (dd°¢p)" 7 the ¢-
relative Monge-Ampere energy of ¢ € 7°(€2).

While the formula depends on the choice of ¢y, it follows from Lemma 3.2 that the difference
of two such relative energies is constant:

E¢1 ((10) - E¢0 ((10) = E¢1 (¢0)

For ¢ =0, the formula reduces to E(p):= Eo(p) = (1/(n+1)) [, @(dd°p)™.
This definition is motivated by the fact the Ey is a primitive of the Monge-Ampere operator
for smooth psh functions with ¢-boundary values.

LEMMA 3.2. Fix ¢ € 72°(Q), v€D(Q). Then ¢ +tv € T2°(Q) for t small, and

Ey(o+tv)= / v(ddp)".

£|t:0 Q

In particular, ¢ — Ey4(yp) is increasing.

Here D(2) denotes the space of smooth functions with compact support in (2.
Proof. Fix ¢ € 77°(€2) and v € D(Q). Since v is smooth with compact support, the function
+v 4+ Cp is psh for C >0 large enough, while ¢ — ep is psh for € > 0 small enough. It follows

that ¢ + tv is psh for ¢ small enough.
Set w =dd ¢pg. The function 1, = ¢ — ¢g + tv has zero boundary values, and

1 < : »
E¢(@+tv):m2/§;¢t(w+ddcwt)j /\O.)n j.
7=0

It follows from Stokes theorem, as all functions involved in the integration by parts are identically
zero on Jf2, that

d
(n+ 1)$E¢(s0 + tv)

=> / Yo(w + ddP) AW Y / Jibe dduy A (w + ddoy) ™ Ao
=079 j=17%¢

=3 / e(w + ddP) A" 4+ / Gt ddeyy A (w + ddapr )~ AW
j=0"9 j=17%

=> / (G + Dtr(w + ddgpy) A" =" / JUe(w + ddey) T~ ATt
j=0"% j=17¢

—(n+1) /Q Wn(w + ddeapn)",

writing dd“i; = (w 4+ dd“y;) — w in the third line, and then distributing and relabelling so as to
obtain a telescopic series. The formula follows for t = 0.

In short, the derivative of Ey4 is the complex Monge-Ampere operator (dd®p)"™ which is a
positive measure. It follows that ¢ +— Ey4(¢p) is increasing. O

n
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3.1.2 Continuous setting. The previous result extends to the case of continuous psh
functions that are not necessarily strictly psh. Recall that

%(Q)::{QDEPSH(Q)HC( )s Ploa = ¢ and /Q(ddcgp)”<+oo}.

We would like to extend Lemma 3.2 to this less-regular setting. As ¢ + tv is not necessarily
psh, we need to project it onto the cone of all psh functions. The following result will thus be
useful.

LEMMA 3.3. Fix ¢ € T5(2) and f € D(S2). Then P(p + f) € T4(S2) where
P(e+f):=sup{y € PSH(Q), ¥ <+ f}.
Moreover, (dd°P(yp + f))" is supported on the contact set {P(¢ + f)=¢+ f}.

Proof. Since ¢ + f is bounded and continuous, it is classical to check that the envelope P(p + f)
is a well-defined psh function. As f has compact support, one moreover checks that P(p + f) is
continuous on 92 with P(p + f)a0 = ¥jaq = ¢-

Solving Dirichlet problems in small ‘balls’ not containing the singular point, it follows from a
balayage argument that the Monge—Ampere measure of the envelope (dd“P (¢ + f))™ is supported
on the contact set {P(¢o+ f)=¢ + f}. O

We extend Eg(-) to 74(2) by monotonicity, setting
Ey(p) == inf{Ey (1), ¥ € Tg"(Q) and p <9}

It has been observed by Berman and Boucksom (in the setting of compact Kahler manifolds
[BB10]) that Ejo P is still differentiable, with (Ey o P)' = Ej o P. This result extends to our
local singular setting.

PROPOSITION 3.4. Fix ¢ € T4(Q) and f € D(?). Then t — E4(P (¢ +1tf)) is differentiable and

ool Porth) = [ faagy

Proof. The proof is very similar to that in the compact case, we provide it as a courtesy to the
reader. Set ¢ := P(p +tf). By Lemma 3.5 we have

/Q (61 — ) (ddp0)" < Eylpr) — Fol) < / (o1 — )(dde )" (3.2)

Since ¢ — @ <tf, the second inequality yields

lim sup Eo () t_ Es(e) < / flddp)™
X

t—0+

and liminf o ((Ey(¢0) — Fol(@))/1) = [y f(dd)".
It follows from Lemma 3.3 that (ddp;)™ is supported on {p; =@ +tf}, hence the first

inequality in (3.2) yields
/ PP (ddep, / F(ddepy)"
o ¢t

Now (dd®p;)™ — (ddp)™ weakly since ¢y — ¢ uniformly, therefore

Ey(p1) — Eg(p ¢ ¢
>
htg é?f " htril> é?f / f(dd )" / fldde
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and

E E4(
lim sup o) = Bolp <hmsup / fddp)" / fddp)™. O
=0~ t t—0-

LEMMA 3.5. For any ¢1, 2 € Ty(Q),

/wrwmmwmz@wn—mw»;/wemmw@ﬂ (3.3)
[9] Q

while if 1 < @9, then

Eolr) = Eolon) < — [ (o1 - ga)lddo1)" (34)
n X

The energy is continuous along decreasing sequence in Ty(§2).

Proof. Tt follows from Stokes theorem that
1 - c 7 c n—j
Eg(p1) — Ep(p2) = ] > Q(sm — p2)(dd®p1)? A (ddp2)
§=0
and
/ (1 = p2)(dd o)1 A (ddepa)" 771 < / (01— p2)(dd°p1)? A (dd°p2)" 7,
Q Q

for any j=0,...,n — 1. The desired inequalities follow.
Let ¢; € T4(2) be a decreasing sequence converging to ¢ € 74(2). We obtain

0< Ey(pj) — Epl(p) < /Q(tpj — ) (dd“p)" =0

as j — +oo by the monotone convergence theorem. O

3.1.3 Finite energy class. Let PSHy(S2) denote the set of decreasing limits of functions in
T5(£2). We extend Ey4 to PSHy(€2) by monotonicity, setting

Ey(p) :=inf{Ey(v), ¥ € T3(Q?) and ¢ <9}
DEFINITION 3.6. We set £1(Q) := {p € PSH4(Q); Es(p) > —oc}.
This ‘finite energy class’ has been introduced and studied intensively by Cegrell for smooth

domains of C™. His analysis extends to our mildly singular context. We summarize here the key
facts that we shall need.

THEOREM 3.7 (Cegrell). The complex Monge-Ampére operator (dd®-)" and the energy E, are
well defined on the class £1(2). Moreover:

— functions in E1(Q) have zero Lelong numbers;

— the sets Gp(Q) = {p € EL(Q), —b< E4(¢p)} are compact for all b € R;

— Lemma 3.5 holds if p1, p3 € EX(Q);

— if p is a non-pluripolar probability measure such that £'(Q) C L*(u), then there exists a
unique function v € EY(Q) N F1(Q) such that p = (ddv)™.

We refer the reader to [Ceg98, Theorems 3.8, 7.2 and 8.2] for the proof of these results when
Q) is smooth.
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3.2 Ding functional
3.2.1 Fuler-Lagrange equation. The Ding functional is

1 _
Py ()= Eol) + - log [ ¢ dy
Y Q
PROPOSITION 3.8. If ¢ maximizes F., over T4(2), then ¢ solves the complex Monge-Ampére
equation (3.1).
Proof. Assume that ¢ maximizes F, over T4(€2), fix f € D(Q), and set ¢, := P(p +tf). Then

1 _
E¢>(‘Pt) + ; log/ﬂ eV tt) dpyp < Fv(‘Pt) < FW(SO),

ie. the function ¢— Ey(p¢)+ (1/7)log [q e #F) du, reaches its maximum at ¢=0.
Combining Proposition 3.4 and Lemma 3.9, we obtain

d 1 _ 6_790 dlu
=—| E | Y(pttf) :/ C o\ P
0 dt( olo) + 2 og/ﬂe dup | = | J{ (dd°¢) evdey)’

i.e. p solves (3.1). O
LEMMA 3.9. Fix ¢ € T4(2), f € D(Q), and set 1y := @ +tf. Then

-0 d
i <10g / eV dﬂp) = —v—fQ fe_ =3
dt Q |t=0 Jae % dpy

Proof. By the chain rule, it is enough to observe that
e duy — [ e~ 7% d 1 _et0f
Jo = Jo Hp _ _/ e—w( e ) dys,
Q

t t

and to apply the Lebesgue dominated convergence theorem to conclude. O

3.2.2 Coercivity. In order to solve (3.1), one is lead to try and maximize F,. We show
in §6 that when F is coercive, the complex Monge-Ampere equation (3.1) admits a solution
@ € Ty(€2) which is smooth away from p.

DEFINITION 3.10. The functional F, is coercive if there exists A, B >0 such that
Fy(p) S AE4(p) + B
for all ¢ € T5(£2).

We observe in Lemma 3.13 that E4(p) < C(¢o) is bounded from above, uniformly in ¢ €
T5(£2). In particular, if F, is coercive with slope A >0, then it is coercive for any A’ € (0, A].
We can thus assume, without loss of generality, that A € (0, 1). The coercivity property is then
equivalent to

1
,ylog/ e 7 dup < (1= A)(=Es(p)) + B,
Q

or, equivalently, to the following Moser—Trudinger inequality

1/~
< / — dﬂp> < Cl-A(Eule)
X

We summarize these observations in the following.
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ProposITION 3.11. Fix « > 0. The following properties are equivalent:
(i) F, is coercive;
(ii) there exists C, >0 and a € (0, 1) such that for all ¢ € T4(2),

1/y
</ eP dup> < CpeaBe(9),
Q

It follows from Hoélder inequality (and the normalization p,(€2) =1) that if

1/v
</6_W dup> < Ce Fsl¥) (3.5)
Q

holds for v > 0, then it also holds for 7/ <. We thus introduce the following critical exponent.
DEFINITION 3.12. We set

Yerit (X, p) :=sup{y >0, (3.5) holds for all p € T4(2)}.
LEMMA 3.13. The functional E4 is bounded from above on T4(S2). Moreover:

— if F, is coercive, then v < Yerit (X, p);
— conversely, if 7 < Yerit (X, p), then F, is coercive.

Proof. Consider ¢g = P(¢) :=sup{y, ¥ € T,(2)}. This is the largest psh function in 2 such that
¢o = ¢ on O€2. The reader can check that it is continuous on Q and satisfies (dd°¢o)™ =0 in €.
If € T4(€2), then ¢ < o, hence Ej () <0. Thus,

E4, () = E;, () + Eg,(60) < Eg, (o),

hence Eg4, () is uniformly bounded from above independently of the choice of ¢y.
Similarly, the coercivity of F, or the inequality (3.5) do not depend on the choice of ¢y.
In the remainder of this proof we thus assume that ¢g= P(¢). Since E4(¢) <0 in this case, it
follows from Proposition 3.11 that if F is coercive, then (3.5) holds, hence v < it (X, p).
Conversely, assume v < Yerit(X,p). Fix v <9 <7ait(X,p) and A=~/9"<1. We can
assume that A\ is close to 1. We assume first that ¢ =0. For ¢ € 75(€2) we observe that
A € To(Q), with Eg(Ap) = A" Ey(p). The Moser-Trudinger (3.5) applied to (7, ) thus

yields
1/v ;
</ e dup) < Cye V),
Q
so that F., is coercive.

We now treat the general case, replacing the condition ¢ =0 by (dd“¢g)" = 0. For ¢ € T5(£2)
we observe that ¢y =Ap + (1 — X)go € T5(R2), with ¢y — o = A — ¢o) <0 and

n—1
(0 + DEs(02) =AY [ (0= o0)(dd*ea) A (dd*60)"
j=0 "9

A Y (D= [ o et a o

k=1 j=k

Now >7% (i)/\k(l — A% <a<1 for all 1<k<n, since A<1 can be chosen arbitrarily
close to 1. Thus, Ey,(¢x) > aAEy, () and the result follows as previously by applying the Moser—
Trudinger inequality (3.5) to ¢j. O
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3.3 Invariance

We give here some evidence that the critical exponent 7t (X, p) should be independent of the
domain {2 and the boundary values ¢.

3.3.1 Enlarging the domain. We first reduce to the case of zero boundary values.

PROPOSITION 3.14. Let €y be a smooth strongly pseudoconvex domain containing Q. If the
Moser—Trudinger inequality holds for (v, 2, 0), then it holds for (v, 2, ¢).

Proof. Consider indeed ¢ € T5(£2) and set
w9 :=sup{u € To(Q2), such that u < in Q}.

The family F of such functions is non-empty, as it contains Apo for some large A > 1, where
p2 is a psh defining function for 3. Moreover, F is uniformly bounded from above by 0, so the
upper envelope 9 is well defined and psh, as F is compact. Finally, ws > Apo, hence o has zero
boundary values, and ¢ is lower semi-continuous, as an envelope of continuous functions, thus
p2 € To(Q2).

Since @2 < in 2, we observe that

/e—w d,up</ e dpy.
Q Qs

Our claim will follow if we can show that, on the other hand, Ey(p2) > Eg(p).
If ¢ is smooth one can show, by adapting standard techniques, that:

— g is ChI-smooth in Oy \ {p};
- (ddCQOQ)n =0in QQ \ Q) and (ddcgog)n = 1{902:%0} (ddcgo)n in ﬁ

Assuming ¢ > 0 and ¢g =sup{v, ¥ € T4(Q2)}, we infer

Eo(ps) = g | erladion) = o | 1 pyetadre)”
1
> C 7’L> - _ C n >E .
> [ elarer = — [ (o= o) > Be)

To get rid of the assumption ¢ > 0, we observe that the Moser—Trudinger inequality holds for
given boundary data ¢ if and only if does so for ¢ + ¢, for any ¢ € R (by changing ¢ in ¢ + ¢).

Using Lemma 2.5, one can uniformly approximate ¢ by a sequence of smooth ¢; € 75(2).
The corresponding sequence 3 ; uniformly converges to (2, and we obtain the desired inequality
by passing to the limit in Ey(p2;) > Eg(p;). O

3.3.2 Rescaling. We now assume that ¢ =0 and reformulate the coercivity property after
an appropriate rescaling. Observe that for any A > 0, the map

© € To() = Ap € Tp(R)
is a homeomorphism. This allows us to reformulate the Moser—Trudinger inequality.
ProposiTioN 3.15. The following statements are equivalent:

(a) Fy is coercive;
(b) there exists C >0, B e (0,1) such that for all € To(2), [q e ¥ du, < Ce~(B/7")Eo(#),

In particular, we can define the following critical exponent.
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DEFINITION 3.16. We set

551«1*5 ;= inf {B > 07 sup </ e ¥ d'up/e_ﬁEo(LP)) < —|—OO}
) Q

PeTo (2

Note that 7. =1/Beit, hence it follows from the previous analysis that F, is coercive if

and only if v < B;ilt/ ". When p € X is smooth, it has been shown in [GKY13, Theorem 9] and

independently [BB22, Theorem 1.5] that

1
L (Q) =
BCI‘lt( ) (n + 1)n’
or, equivalently, that .t (2) =n + 1. In particular, it does not depend on .
We extend this independence to the case when p is the vertex of a cone over a Fano manifold.

PROPOSITION 3.17. Assume that (X, p) is the affine cone over a Fano manifold Z embedded
in a projective space by the linear system | —rKyz| for r € N such that L =rK}, is very ample,
and fix \ € C*. The Moser—Trudinger inequality holds for (v, $2,0) if and only if it does so for
(7, A0, 0).

Proof. Let L =7rK7, let Dy denote the dilatation z — Az and set Q) = D (€2). We blow up p to
obtain a resolution f:Y — X, where Y is the total space of L* and the exceptional divisor F is
the zero section of L*.

Recall that Ky = f*Kx 4+ aF, where a is the discrepancy of Y along E. The adjunction
formula yields (Ky + E)|g = Kg, hence K7, = (a+1)L. In particular, a=—1+1/r and (X, p)
is log terminal. The fibration 7:Y = L* — Z yields Ky =7*(Kz + L), hence f*Kx =n*(Kz +
L)—aFE.

Since 7*(Kz + L) is C*-invariant, we can cook up an adapted volume form p, = p11 - pg with
D3 py = py while Dipgp = IN?%pp. For o € To(52y) we set oy = o Dy € To(Q) and observe that

’A|2a/Q€'Y‘PA dup_/Q e*’Y‘PdMI”

while Eq o(px) = Eq, o(¢). The conclusion follows. O

We conjecture in § 5 that yerit (X, p) < ((n+ 1)/n)\7(;1(X, p)'/™ and give partial results towards
this equality, which again suggest that 7uit(X,p) should be independent of (£2,¢). In the
whole article, we therefore use the notation et (X, p) instead of the more precise, and heavy,

Yerit (X, , 2, 9).
4. Upper bound for the coercivity
The purpose of this section is to establish the following upper bound:
et (X, p) < L 0(X, ),

Adapting the proof of [BB17, Theorem 1.6], we will construct approximate Green’s functions to
test the thresholds in the Moser—Trudinger inequality.

4.1 Functions with algebraic singularities

Let 7 be a coherent ideal sheaf, and f1, ..., fxv € Ox , be local generators of Z,,. The psh function
N
o1 :=log <Z|fi|2>
i=1
is well defined near p, with algebraic singularities encoded in Z.
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PROPOSITION 4.1. Let Z be a coherent ideal sheaf supported at p. Then
e(X,I) :/ (ddp7)"
{r}
and
let(X,Z) =sup {a >0: / e T du, < —l—oo},
Q
where ) is any (small) neighborhood of p € X.
These algebraic quantities are thus independent of the choice of generators.

Proof. The equality e(X,Z) :f{p}(ddcgoz)” is classical when 2 is smooth (see, e.g., [Dem12,
Lemma 2.1]), and the proof can be adapted to the singular context (see [Dem85, Chapter 4]).

Let : Q2 — Q be a local log resolution of the ideal (X, Z), i.e. a composition of blow-ups such
that 7 p, = H;-V:l\sEj 2% dVe and

M
717 0g = OQ<— > bjEj>,
j=1

where b; €N, a; € Q- _1, and E7, ..., E) have simple normal crossings. Observe that
M 2a.; M
ITj=1lsm, 1"
e Pz d,u N/ J= J dV- :/ |5E |2(aj—ozbj) AV~
|~ | T g e o= Jy Il B

is finite if and only if a; — ab; > —1 for any j=1,..., M, i.e. if and only if

1
a< inf YT _yex, 1),
j=1,..M  bj

as recalled in Definition 2.12. O

4.2 Approximate Green functions

The functions A\pz play the role of Green functions adapted to the singularity (X, p). We show
here how to approximate them from above by smooth functions with prescribed boundary

values.

LEMMA 4.2. Let Z be a coherent ideal sheaf supported at p, and let fi,..., f; denote loc_a]
generators of Z. Fix an open set Q' € Q. There exists a family {1 x ¢ fas0,e50 € PSH(Q) NC™(€2)
such that:

(1) @zaej00=¢ for any A >0, €€ [0,1];
(ii) PINe = A log ( ZT:1|fj|2 + 62) + ¢0 in Q/;
(iil) @z.xne \@TA0=:pT) as € \,0 for any A >0 fixed.
Proof. Without loss of generality we can assume that > 7", | fil*<1/e—1in Q. Let p be a

smooth psh exhaustion for 2 and fix 0 <r <1, 0 <§ <1 small enough. There exists A >0 big
enough and relatively compact open sets B,.(0) € Q' € Q € Q such that

log <Z\fj\2+1> + 0 < Ap over Q\ Q,
j=1
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while 1og(Z;”:1|fj\2) — 0> Ap over '\ B,(0). We infer that
Ap on Q\ Q,
max <log (jf;]f]P +62>,Ap> on Q\ ¢,
os (Y157 +) on ¢,
j=1

is a decreasing family (in € € [0, 1]) of psh functions which are smooth in Q\ {p} (smooth in
for e > 0) and which are identically 0 on 0. Here maxs(-, ) denotes the regularized maximum.
The lemma follows by setting oz x ¢ := Auz e + ¢o. O

UT ¢ =

We now compute the asymptotic behavior, as & decreases to 0, of the quantities involved in
the expected Moser—Trudinger inequality.

LEMMA 4.3. Let T and {¢7 2 c}ec(01] C T4(2) be as in Lemma 4.2. Then, for any v >0, A >0
fixed there exists a constant Cy 5 € R (independent of €) such that
Crmy + (YA —1ct(X, 7)) loge 2 < log/ e 1PN dpy, (4.1)
Q
for all 0 < € < €.

Proof. Taking a log resolution 7:Y — X we obtain

1
e TEEN dpy > / 0 dp
/Q P ’ (Zj:1|fj‘2 e T

M 2a;
—1ISE; 7
2Cl/ MHJ ! 2b.| 2)7A AV (@),
T () (Hj:l’sEj‘ i+ €)Y
where C is a uniform constant (independent on ¢). We set
[1%, s, 1%
M : :
(Hj:l‘SEj |26 + €2)7A

We can assume without loss of generality that Ict(X,Z) = (a1 +1)/b1. Pickx € Ey,x ¢ Ej, j =
2,...,M. We can find 0 <7 <1 so small that B,(z) N E; =0 for any j=2,..., M. We choose
holomorphic coordinates (z1, ..., z,) centered at = such that E; = {z; =0}. Thus, setting a :=
a1,b:=b; and c:=~vy\ we get

/ fdVyi(ry > Co / % d\(z) = Cs / % du,
Q) B.(0) (|21[* +€?)° o (u+e?)e

where Cq, C3 are uniform constants. If ¢ < (a+1)/b (i.e. YA <lct(X,Z)), then

r u2a+1 1 u2a+1
s du > — =:C
/0 (u2 + e2)e = /0 (W 1 1)° 4

and (4.1) trivially follows. If ¢ > (a + 1)/b, then the substitution v:=u/e'/® yields

r 2a-+1 r/et/b 2a+1
/ U e ((a+1)/) / [ vt
0 (U2b+€2)c 0 (’U2b+1)c
r 2a+1
> ¢~ 2-1et(X.1)) / Ldv,
o (v +1)°

fi=
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The lemma follows. O

LEMMA 4.4. Let 7 and @z € T4(Q2) be as in Lemma 4.2. There exist positive constants
{Cir}teen >0 and a family of functions Fy : (0, 1] — R such that

)\n+1

—Ey(pz ) SCon+ Fy(e)loge 2,

n+1
for any e € (0, 1], where:

— {Cyr}een,a>0 is independent of € € (0, 1];

— Fy(e) = Fp(0) =: e, >0 as € \,0;

—ep\ve(X,Z) as £ — +o0.

Proof. We take a sequence {;}sen of open sets such that Qp11 € Qy for any £ €N and such
that (,en Q¢ = {p}. Since Q; C Q' (same notation as Lemma 4.2) for /€N big enough, we
obtain

1 « ; s
—Ey(pz06) = 1 > /Q(ﬁbo — o) (ddpz ) A (dd )"
=0

1
n+1

Z /Q\Q (60 — ez 2e)(ddpT 20 ) A (ddho)™ ™
j=0 T\

_ )\]4—1 1 2 2 dd€1 2 2 dd°¢ n—j.
n+1j§/m og(kz_lw #)(aron (1))

(4.2)

The first term on the right-hand side of (4.2) is uniformly bounded in € € [0, 1], for A >0,/ €N
fixed, since {¢7 1 ¢ }ec(o,1] 18 @ continuous family of smooth functions on 2\ €2,. We let Cy \ denote
a uniform upper bound for this quantity.

The second term on the right-hand side of (4.2) is bounded from above by

m

n " ;
- n—ll- 1 Z/Q N og (Z‘fﬂQ +62> <ddc log <Z|fk|2 +e2>> A (dd° )"~
=0 /%

k=1 k=1

An+1

n m Vi
< 1 -2 <] 2 2 c nfj.
< gy lose j;o/m (dd Og(;\fk’ +6)>A(dd¢o)

We set
F=3 [ (daton (NI +e) ) n o
j=0 7Sk k=1

Observe that, for j=0,...,n—1,

lim lim (dd"’ log (Z fel® + 62>) A (ddC¢o)" 7 =0,
k=1

£/400 N0 Jq,
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since the ideal sheaf 7 generated by fi, ..., fi is supported at one point, while

/ <ddc log <Z|fk|2 + €2> >” — ey
e k=1

as € \, 0, where ey > e(X,Z) and ey \ f{p}(ddcgozyl)” as { / +oo.
Proposition 4.1 yields f{p}(ddcgle)” =e(X,Z), ending the proof. O

4.3 The upper bound

We are now ready for the proof of the following result.

THEOREM 4.5. Let (X, p) be a an isolated log terminal singularity. Then

n—+1

Yerit S \70\1(X7 p)l/n‘

Proof. Fix v < Yt and C7 > 0 such that
1
S 10g/ e "% dpy < Cy — Ey(p) (4.3)

Q

for any ¢ € T4(£2).
Fix 7 coherent ideal sheaf supported at p, and let {¢7xc}r>0.ee(0,1] € T5(£2) as defined in
Lemma 4.2. Evaluating (4.3) at {47\ c}ee(0,1] Yields

let(X,Z 1
Coa+ </\ _ C(’)> log e2< = log/ eV dy,
v Y Q

< Cl - E¢(QOI,)\,6)
n+1

<Ci+Cyy+ FN(6)10g672

n+1
for any N € N, e € (0, 1] thanks to Lemmas 4.3 and 4.4. We infer

< Lot 1) At

FN(€)> loge 2 < C1+ Cny— Cya,

Y n+1
hence
At let(X, T
_ en < ct(X,T) (4.4)
n+1 v

for any N € N, A >0 since Fiy(¢) — ey as € \(0 (Lemma 4.4).

The function gy : A € (0, +00) = A — (A" /(n 4 1))en € R reaches its maximum at Ay p :=

1/ e%n. It follows therefore from (4.4) that
let(X,Z) n+1

“ov(ww)  n

Now en \,e(X,Z) as N = 400 by Lemma 4.4, hence
n+
n
Since this holds for any coherent ideal sheaf 7 supported at p , we obtain
1

let(X, T)eX™.

1
v < let(X, T)e(X, )™,

1~
v < nt iIIIf let(X, T)e(X, T)V/" = ivol(X, p)Vm,
n

where the equality follows from Theorem 2.16. O
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5. Moser—Trudinger inequality

5.1 Uniform integrability versus Moser—Trudinger inequality
Recall that
a(X, pp) ==sup {a >0, sup / e du, < +oo}.
peF1 (Q)

This uniform integrability index is a local counterpart to Tian’s celebrated a-invariant, intro-
duced in [Tia87] in the quest for Kdhler—Einstein metrics on Fano manifolds. We refer to
[DKO01, Dem09, Zer09, ACKPZ09, DP14, GZ15, Phal8] for some contributions to the local
study of analogous invariants.

In this section we prove Theorem A, which can be seen as a local analogue of [BBEGZ19,
Proposition 4.13].

THEOREM 5.1. One has Yeit (X, p) > ((n+1)/n)a(X, pp).

When (X,p) is smooth then o(X,p,)=n and this statement is equivalent (after an
appropriate rescaling) to [BB22, Theorem 1.5] and [GKY13, Theorem 9.
Together with Theorem 4.5, we would obtain the precise value

e n+1
Vcrit(va) =

if we knew that a(X, pp) = @(X,p)l/". We establish in § 5.2 the bound a(X, pp) < \7(;1(X, )t/
and analyze the reverse inequality in §5.3.

vol(X, p) /"

5.1.1 Entropy. We let P(Q2) denote the set of probability measures on Q. Given two
measures ju, v € P (), the relative entropy of v with respect to u is

/logd,u /10gdyd1/
o dp

if v is absolutely continuous with respect to u, and as H,(v) := +o0o otherwise.
Given p € P(X), the relative entropy H,,(-) is the Legendre transform of the convex functional
geCl(Q)NL>(Q) —log [ el dueR, ie.

H,(v)= sup (/gdu—log/ egd,u>.
geco@)nL=() \ Jo Q

We shall need the following duality result.
LEMMA 5.2 [BBEGZ19, Lemma 2.11]. Fix p€ P (). Then

log/egdu: sup (/gdu—HAu))
Q veP(9) \ JQ

for each lower semi-continuous function g: € — R U {+o0}.
Recall that we have normalized the adapted volume form so that p, € P(€2).
COROLLARY 5.3. Fix 0 < a < «(X, pp). Then there exists C, > 0 such that

H, (v)> —a/ pdv—Cy
Q

for all ¢ € F1(2) and for all v € P(Q) such that H,, (v) < +oc.
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Proof. This follows from Lemma 5.2 applied to g=—ay and p=p,. By the definition of
(X, pp), we obtain —log [, e duy, > —Cl. O

This corollary shows, in particular, that F;(2) C L!(v) for any probability measure v € P(X)
with finite p,-entropy. Since the measure v is moreover non-pluripolar, the following result is a
consequence of Theorem 3.7.

PROPOSITION 5.4. Fixv € P(Q) such that H, (v) < +o0c. Then there exists a unique v € F1(£2) N

EY(Q) such that
v = (ddv)".

5.1.2 Proof of Theorem 5.1. The proof is similar to the derivation of the Moser—Trudinger
inequality from Brezis—-Merle inequality by Berman and Berndtsson, see [BB22, §4.2]. Fix
0 €Ty(Q) and 0 < a < (X, p1p). By Lemma 5.2 for any € > 0 there exists v. € P(2) such that
H, (ve) <+oo and

log/ 6—((n+1)/n)a4pdup§€_n+1
Q

a/ pdve — Hy, (ve). (5.1)
Q

Proposition 5.4 ensures the existence of v. € F1(Q) NEL(Q) such that v, = (dd°v.)". It follows,
moreover, from Corollary 5.3 thatd

H, (ve) > —a/ Ve dve — Cy. (5.2)
Q

Combining (5.1) and (5.2) we obtain

1
log/ e~ ((nt1)/n)ap dp, <e+Cqy — n—i_a/ o dve + a/ Ve de. (5.3)
Q n Q Q
We observe that

1 1
_nt a/ <pdue+oz/ Ve du€:n+ a/(ve—go)(ddcve)"—a/ ve(ddve)"
Q Q n Q n.Ja

n

<" lam ) + Z{(n +1)Eg(ve) — /Q Ue(ddcve)n}

n

by using Lemma 3.5 (the latter has been stated for functions in 74(€2), it easily extends to the
class F1(Q) N EL(Q) by approximation). Since v, < ¢g and E4(¢p) =0, the same lemma ensures

(n+1)Ey(ve) — /Q Ve(ddve)" < — /Q ¢o(ddve)" < — igf b0,

using that ve = (ddv)"™ is a probability measure. Altogether this yields
n+1

log/ e~ ((+1)/n)ag dpp <e+Cy — L ing b0 — aEy(p).
9] n Q

Letting € \,0 we conclude that

n/((n+1)a)
( / o—((n+1)/m)ag dup> <Ol e Eol®)
Q

for any function ¢ € 75(2). Thus, veic (X, p) > ((n + 1) /n)a(X, pp).

5.2 Upper bound on the a-invariant
DEFINITION 5.5. We set

a(X, pp) = inf{c(p), g€ F1(N)},
where ¢(p) :=sup{c>0; [, e " du, < +oco}.
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5.2.1 Bounding the a-invariant by the normalized volume.
PROPOSITION 5.6. One has a(X, 1) < a(X, pp) < \70\1(X, p)/m.

Proof. 1t follows from the definition that a(X, p1p) < @(X, pp).
For any € > 0 and Z coherent ideal sheaf supported at 0, the function

' 1—e 1/n
YT =P ae, With A= <w>
given by Lemma 5.7, belongs to F(2) and yields
G(X, 1p) < clpr.c) = (1_16)1/nlct<x T)e(X, )",
The latter equality is a consequence of Proposition 4.1. We conclude the proof by taking the
infimum over all Z and letting € N\, 0. g

LEMMA 5.7. Let Z be a coherent ideal sheaf supported at p. Then, for any X\, e > 0 there exists
a function ¢z ) € F(Q) such that:

(i) Yz re=A 10g(2§”21|fj|2) near 0 for local generators fi,..., fm of Z;

(ii) N"e(X,Z) < [o(ddPr )™ < N'e(X,T) +e.
Proof. Assume that ¢¢ is the maximal psh extension of ¢ to €2, i.e. the largest psh function in
2 which lies below ¢ on 0. It satisfies (dd°¢pp)™ =0 in .

Fix f1,..., fm local generators of the ideal Z and set v := A log(zg.n:l | f;]?). We can assume
without loss of generality that the f; are well defined in 2 and normalized so that 1y <¢p —1
in Q. For r > 0, we consider

or :=sup{u € PSH(Q), u<, in B(r) and u < ¢¢ in Q}.

The corresponding family of psh functions is non-empty as it contains 5. For A > 1 large enough,
the function

_ 7/1)\ in B(T)a
Wr = max(yy, Ap+ ¢g) in Q\ B(r),

is psh and coincides with Ap + ¢ near 0€2. It follows that:

— ¢ € PSH(Q) with ¢, = ¢ on 0;
— ¢p =1py in B(r), hence \"e(X,T) < [, (ddp,)";
— (ddp,)" =0 in Q\ B(r) (balayage argument).

The family r + ¢, increases, as r >0 decreases to 0, to some psh limit ¢ whose Monge—
Ampere measure (ddp)™ is concentrated at the origin. It follows from Bedford—Taylor continuity
theorem that (ddp)™ is the weak limit of (dd®p, )™ > N"e(X, Z)do, hence (ddp)"™ > A"e(X, Z)dy.
Conversely, 1) < ¢ near 0, hence Demailly’s comparison theorem ensures that

(dd®p)™(0) < (ddyPy)"(0) < N"e(X,T),

whence equality. Thus, ¢z . := ¢, satisfies the required properties. ]

5.2.2 Normalized volume versus uniform integrability.
PROPOSITION 5.8. One has &(X, pp) = \7(;1(X, p)l/m.

We refer the reader to Appendix A for a more algebraic approach based on [BAFF12], which
moreover provides a slightly stronger result.
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When (X, p) is smooth, it follows from [DKO01] that &(X, up) = a(X, pp). The situation is,
however, more subtle in the singular context (see §5.3.2).
Proof. By Proposition 5.6 it suffices to show that & (X, u,) > \751(X, P e Jo e dpy < +00
for all p € F1(Q) and a < \751()(, )Y/ =infrlet(X, T)%e,(T).

In a log resolution 7 : € — €, this boils down to Jo e e Y, ]sl]ia dV < 400, where s; are
holomorphic sections defining simple normal crossing exceptional divisors Ey, ..., Ey, Kg /0=

Zj]vil a;E; and where dV is a smooth volume form. The log terminal condition ensures that
a;>—1foralli=1,..., M.

As a < vol(X, p)l/ "™ <n, the integrability condition is equivalent to show that for any point
x € Uf\il E; there exists a small ball B(x,r) such that

M
/ e avem H]sl],%a dV < +o0. (5.4)
B(z,r) =1

Set U:=3 ., >pailoglsi;, V:i=apor and W:=—3. _ja;loglsi; . By [BBJ21,
Theorem B.5] the condition (5.4) holds if and only if there exists € >0 such that

v(Uog, F)+Aq(F)>(1+€ev(Vog, F)+(1+€ev(Wog,F) (5.5)

for any F' prime divisor over Q with center in a small ball B(z,r') C B(x,r), i.e. FCQ for
g: Q' — Q modification. Observe that

v(Uog,F)+Ag(F)—v(Wog,F) = ordF(g*KQ/Q) + 1+ ordF(KQ,/Q)
Thus, (5.5) becomes

AQ(F)—EI/(WOQ,F).

1 <
I Py

(5.6)

As a; > —1 for all i, [BBJ21, Theorem B.5] ensures the existence of a >0 such that Ag(F)>
(14 a)v(W og, F) for any prime divisor F' over €2 as above. Thus,

Aq(F) < Aa(F) + (W o g, F) < ——Ag(F) + Aa(F),

and v(Wog, F) <(1/(1+a))Ag(F) < (1/a)Aq(F). Therefore, (5.6) holds if

a— € AQ(F)
@ vipomog,F)

a(l+e) < (5.7)

Since ¢ € F1(Q), it follows from the comparison theorem of Demailly [Dem85, Theorem 4.2]
that for a coherent ideal sheaf 7 supported at p € €2,

1> [ (@ao) > vrep) [ (@0 0" ALX) = vr(o)e, (D) (58)
where fr =1log(>",|fi|*) for generators {f;}; of T and
. ,G
vrlip.p) = b > 0510 < sfr + O(1)} = min 22T 2.C)

where mo g: Q' — Q is a log resolution for Z and the minimum is over all exceptional divisors of
Q' — Q. Lemma 5.9 ensures that for any prime divisor F' and ¢ > 0 there exists an ideal Z such
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that
Aq(F) Aqo(F) ~1 Ao(F) 1/n
I LA SV S & T > (1 —
V(QOOTI'Op, F) = (1 6) ordpZ (VI(QOap)) = (1 5) ordpZ ep(I)
> (1 - 6)let(X, I)ep(Z)/™ > (1 — §)vol(X, p) /™.
Thus, (5.7) holds if a(1+¢) < (((a—¢€)(1— (5))/@);(;1()(, p)/™, concluding the proof. O

LEMMA 5.9. Fix ¢ € F1(Q) and F C £ prime divisor such that 7 o g(F') = p. For any € > 0, there
exists a coherent ideal sheaf T supported at p such that

v(pomog, F)
>(l—¢)—————=
VI(SO')p) s ( 6) OI'dF(I)
Proof. Let c:=v(pomog, F) and for ¢ € Q, <c, set
Ape (F):={f € Oxp:ordp(fomog)>mc}
for m € N divisible enough. Then A, (F) is an ideal sheaf and
lim sup —OrdF(AmC/ (7)) =c.

m—+o00 m

(5.9)

In particular, if ¢, € PSH(B(p,)) has algebraic singularities along A, (F'), then for any
€ >0, Qe is less singular than (mc’/(c — €))p around p if m > mq(e) > 1. For any G exceptional
divisor on " and m > mq (e) we infer

V(<pO7T097G) _ I/((‘DOﬂ'Og7G) >C_6 (510)
ordg(Ame (F)/m  v(pme omog,G)/m — ¢ .
On the other hand, (5.9) implies that there exists mg(e) > my(e) > 1 with
V((Poﬂ_og’F) c (5‘11)

ordp (Amee (F))/mo — ¢ —€
Combining (5.10) and (5.11) we obtain
, vipomog, Q) c—e c+d\ ¢
> >(1-—
e ordg(Amyer (F))/mo — ¢ — ( e ) —e

c+d v(pomog, F)
> — .
- (1 el ) ordr (Amyer (F))/mo

Since ¢’ and € are arbitrary, and x +— f(z) = (¢ + x)/cz is decreasing, we deduce that for any
€ > 0 there exists ¢ € Q and my =mg(c, ¢, €) such that

v(pomog, F)
ordp (A (F))
Setting A := A, (F') concludes the proof. O

VA, . (F) (P, p) = (1 —¢)

5.3 Lower bounds on the a-invariant

We provide in this section two effective (but not sharp) lower bounds on a(X, pp).

5.3.1 Using projections on n-planes. A result of Skoda ensures that e~% is integrable if the
Lelong numbers of ¢ are small enough (see [GZ17, Theorem 2.50]). This has been largely extended
by Demailly and Zeriahi who provided uniform integrability results for functions ¢ € F1(£2) (see
[Dem09, ACKPZ09]). In this section, we extend these results to our singular setting.

739

Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Hgskola, on 27 Aug 2025 at 09:21:08, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms
. https://doi.org/10.1112/50010437X24007619


https://doi.org/10.1112/S0010437X24007619
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

V. GUEDJ, A. TRUSIANI AND S. BOUCKSOM

THEOREM 5.10. One has
n let (X, p)
mult(X, p)1=t/7 1+ 1ct(X, p)’
Proof. Recall that p,= fdVx with fe€ L"(dVx). The exponent r >1 has been estimated in
Lemma 2.14. Using Holder inequality, we thus obtain
let (X, p)
- 1 + let(X, )

The remainder of the proof consists of establishing the lower bound

a(X, Np) >

n

Q,dVx) > .
a(, X)_mult(X,p)l—l/”

Recall that dVx =w? | A [X], where weye denotes the euclidean Kéhler form. Thus, dVx =
S (mr)*(dVy), where I = (iy, . .., i) is a n-tuple, w7 : CV — C? denotes the linear projection on
C%, and dV7 is the euclidean volume form on C%}. We choose coordinates in CY so that each
projection map 77 : Q2 — Qy C C™ is proper. For ¢ € F1(£2), we obtain

/ Y qVy = Z/ 1) (%) dVy < mult(X, p Z/ —alm)-¢ gy
Q

We assume here, without loss of generality, that ¢ <0, and use the (sub-optimal) inequal-
ity (77)x(e=??) <mult(X, p)e~*™)=¢. The function ¢;:= (7). is psh in Q; =7;(Q), with
boundary values (77)«(¢). We claim that

/ (dd°pr)™ < mult(X, p)" L. (5.12)
Q

Once this is established, it follows from the main result of [ACKPZ09] that for all 0 <& small
enough, there exists C, > 0 independent of ¢ such that

/ e~ (n=e)/mult(X.p)' " ""or gy <
Q

which yields the desired lower bound a(Q, dVy) > (n/(mult(X, p)'=1/")).

It remains to check (5.12). We decompose ¢r(z) => """, ¢(x;), where m =mult(X, p) and
x1, .- ., T, denote the preimages of z counted with multiplicities. The assumption on the Monge—
Ampere mass of ¢ reads

(dd®p)™(z) < 1.
2 Jues

We set a? := [(dd®p)"(z;) and use [Ceg04, Corollary 5.6] to estimate

/ddcwn— Z /ddc p(zi) A= Nddop(a;,) < i aa:(i@)"

1, 7Zn*1 il»---vinzl i
The latter sum is maximized when a; = - - - = a,, = m~/", yielding (5.12). O

Ezample 5.11. Let X = {2 € C"*!| F(2) =0} be the Ag-singularity, where F(2) =251+ 232 +
- 22, Arguing as we have done for the ODP (k=1), one can check that p, ~dVx/|F’||*> so
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that mult(X,p) =2 and let(X,p) =n—2+2/(k+1). Now

1-1/n
21/n<n—2> . ifk+12n_1,
Un n—1 2 n—2

vol(Ag, p)

inf((n=2)(k+1)+2\ k+1 n-—1
(k+1) ( ) 1f72 <

as computed by Li in [Lil8, Example 5.3]. For n > 1, the lower bound provided by Theorem 5.10
is thus short of a factor 2=mult(X,p) by comparison with the expected lower bound
vol(Ay, p)t/™.

5.3.2 Using resolutions.

PROPOSITION 5.12. Let 7:Q — Q be a resolution of singularities with simple normal crossing,
and let {a;}i=1,. a be the discrepancies. Then

L _vol(X,p)t/"

X [ S
a( 7Np) 14 (maxi ai)+

In particular, if the singularity is ‘admissible’, then a(X, p1p) = \7(;1(X ,p)/m.

Following [LTW21, Definition 1.1] we say here that (X,p) is an admissible singularity if
there exists a resolution m: X — X (with snc exceptional divisor E'= ), E; and 7-ample divi-
sor — > bjEj, b; €Q") such that the discrepancies a; € (—1,0] are all non-positive. Recall
that:

— any two-dimensional log terminal singularity is admissible;

— the vertex of the affine cone over a Fano manifold embedded in a projective space by the
linear system associated to a multiple of the anticanonical bundle is admissible (cf. the proof
of Proposition 3.17);

— (X, p) is admissible if it is Q-factorial and admits a crepant resolution.

Theorem B from the introduction follows from the combination of Proposition 5.6,

Theorem 5.10 and Proposition 5.12.

Proof. We seek o > 0 such that
M
sup / e~ aom H|SZ|}ZZ? dV < +o0. (5.13)
PEF1() JQ i—1

If all the a; are non-positive we can use [DK01, Main Theorem]| to show that a(X, p,) =

a(X, pp), hence o X, pp) :;(;I(X, p)'/™ by Proposition 5.8. Indeed, assume that there exists
v>0 such that (X, pp) <y <a(X,pp). By definition, we can find v; € F1(2) such that
fQ e Wi dpy, — +o00. Extracting and relabelling, we can assume that 1; — ¢ in L with c(3)) > .

The psh functions ¢, = ¢; + 7! Ei]\il(—ai) log]silii converge to ¢ =1 +y~ ! 2?11(—%) log\si\%i
in L'(Q) and ¢(p) > ~. It follows therefore from [DKO1, Theorem 0.2.2] that

/ e Wi dpy :/ e 1% dV —>/ e 77 dV < 400,
Q Q Q

contradicting the assumption fQ e i dy, — +oo.
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In general, we set U :=)
Theorem]|, we obtain

tia,50 @i loglsili and W= =37, a;log|s|; . Using [DKO1, Main

o(X.pp)> inf cw(por) (5.14)

where
cw(pom):=sup {a >0: /~ e W gy < +oo}
Q

is the twisted complex singularity exponent. It then remains to estimate cy (¢ o) for a fixed
¢ € F1(Q). As m*du, = V=W dV, Holder inequality yields

, 1/p ) 1/q
/e—awOW—W dv < (/ P oo ok dup) (/ eI=aIU=-W dV) : (5.15)
Q Q Q

Set A:=(max; a;)+ >0. The second factor on the right-hand side of (5.15) is finite for any
¢ <((A+1)/A), while the first factor on the right-hand side gives the condition p'a<da=
vol(X, p)1/™. We infer ey (@ o) > (vol(X, p)'/™)/(1 4 A), which concludes the proof. O

As the proof shows, the main obstruction to proving the equality (X, pp)=a(X, pp) =

xjal(X ,p)Y/™ is the lack of a Demailly-Kollar result on complex spaces. Resolving the singularities,
one ends up with a twisted version of Demailly and Kollar’s problem on a smooth manifold. It
is known that the general form of such a problem has a negative answer [Phal4, Remark 1.3].

6. Ricci inverse iteration

In this section, we prove Theorem C from the introduction. The strategy is similar to that of
[GKY13, Theorem 1], with a singular twist.

We fix v < Yerit (X, p) and consider, for j € N, the sequence of functions p; € PSH () defined
by induction as follows: pick g € 7°(€2) a smooth initial data, and let ;1 € PSH(€2) N c’(Q)n

C>®(Q\ {p}) be the unique solution to
_ 6_7‘:01' ,LLp
Jo e Pipp

with boundary values Pitl)on = ¢. The existence and regularity of ¢; off the singular locus

(dd°pj1)"

follows from [Fu23, Theorem 1.4], while the continuity of ¢; near p is a consequence of [GGZ23,
Theorem A].

We are going to establish uniform a priori estimates on arbitrary derivatives of the ¢; in
Q\ {p}, thus (¢;) admits ‘smooth’ cluster values. We show that the functional F is constant on
the set K of these cluster points, so that any such % is a solution of the Monge—Ampere equation

ddcw n__ /4
( ) Jae

with boundary values 950 = ¢.

6.1 Uniform estimates
PROPOSITION 6.1. There exists Co > 0 such that [|p;|1~(q) < Co for all j € N.

This uniform estimate relies crucially on a technique introduced by Kolodziej in [Kol98§],
which has been extended to this singular setting in [GGZ23].
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Proof. We assume without loss of generality that ¢y is the maximal psh extension of ¢ in €.
In particular, ¢; < ¢g for all j € N, and Ey(p;) < Eg(¢po) =0. Our task is to establish a uniform
lower bound ¢; > —Cj.

The assumption v < 7t (X, p) ensures, by Lemma 3.13, that the functional F, is coercive,
and in particular there exist 0 < a <1 and 0 < b such that

F,(¢j) <aEg(p;) +b

for all j € N. It follows from [GKY13, Proposition 12] (exactly the same proof applies here) that
j+ F,(p;) is increasing, hence

F,(po) < () <aEy(ps) +b<b,

showing that the energies (E4(p;)) are uniformly bounded, —b' < Ey4(p;) <0.

The corresponding family Gy of psh functions with ¢-boundary values and energy bounded
by V' is compact, and all its members have zero Lelong number at all points in Q (see
Theorem 3.7). Passing through a resolution, one can thus invoke Skoda’s uniform integrability
theorem [GZ17, Theorem 2.50] to conclude that the densities e 7% are uniformly in L"(dVx) for
any r > 1.

Now p, = fdVx with f € L*¢ for some € > 0 since (X, p) is log terminal. Holder inequality
thus ensures that the densities g; :=e %7 f/ fQ e~ 7% dpu, are uniformly in L'+ (dVy) for some
0<e <e.

It therefore follows from [GGZ23, Proposition 1.8] (an extension of the main result of [Kol98]
to the setting of pseudoconvex subsets of a singular complex space) that the ¢; are uniformly
bounded. O

6.2 C2?-estimates
In this section we establish the following a prior: estimates.

PROPOSITION 6.2. For any compact subset K of Q\ {p}, there exists a constant Cy(K) > 0 such
that for all j € N,

0 <sup Ay, p; < Cr(K).
K

Here A, h:=n((dd°h Aw's ') /w) denotes the Laplace operator with respect to the Kihler
form wy. Such an estimate goes back to the regularity theory developed in [CKNS85]. The
strategy of the proof is similar to that of [GKY13, Theorem 15], with a twist due to the presence
of the singular point p.

Proof. To obtain these estimates, one considers a resolution of the singularity 7 : Q — Q. We let
E =J,~, E; denote the exceptional divisor and let:

— sy denote a holomorphic section of O(FEy) such that Ey = (s, =0);
— by be positive rational numbers such that — )", b, Ey is m-ample;
— hy denote a smooth hermitian metric of O(Ey) and K > 1 such that

B:=Kddpom— Z be©y, is a Kihler form on Q.
=1

Observe that the function p':= Kpom+ >, belog |Sg|%u is strictly psh in Q, with dd°p’ > 8
and p/(z) = —o0 as z — E.
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Recall that m*, =7 |s¢|**dV; with a; > —1, and set |s|> =II7% |s¢|**. We are going to
show that there exist uniform constants Cy > 0, m € N such that

0<|s]*™|Agp;l(2) < Cs (6.1)

for all j €N, z € Q, from which Proposition 6.2 follows. Slightly abusing notation, we still denote
here by ¢; the function ¢; o .
We approximate ¢; by the smooth solutions ;. of the Dirichlet problem

_ e I sl €)%
cj & (6.2)

(56 + ddC(Pj—l—l,E)n

Pit1elon =P

with o =0 and c; = fQ e 7% du,. We are going to establish a priori estimates on these
smooth approximants, whose existence is guaranteed by [GL10, Theorem 1.1]. We then show
that ¢, . converges to ¢; as € decreases to zero.

Step 1. We first claim that for all j, e

SUP ’v@j—‘rl,s‘ < Al,j,s, (63)
o

where A4 ;. >0 only depends on an upper-bound on ngj,EHLN(Q).

Let @~ be a smooth psh extension of —¢ to a neighborhood of Q. Observe that ;1. +® o7
is B-psh in €, with zero boundary values. Thus, ©jt+1,e + P om <wu, where u is the smooth
solution in € to the Laplace equation Agu = —n with zero boundary values. We infer ¢, 1. <
YPr:=u—P omin Q.

We now construct a psh function 12 < ¢;11 . with ¢-boundary values and such that supg 2]
is controlled from above by ||¢; || L~ (6))- Lhe upper bound on sup;q |V@jt1,| thus follows from
the inequalities ¥ < ;. < 1.

Recall that 7* g, =II7" | |s¢|?**dVg. We let P C [1,m] denote the subset of indices such that

—1 <a;<0. For § >0 small enough, we observe that v:=p +6 > ,cp |s¢|* is strictly psh in Q
and satisfies, in Q \ E,

idsp \dsyg
”>C{5+Z Tse20-0) }
tep 17t
for some ¢ > 0, hence (dd®v)"™ > ¢/7*p,. Replacing v by A; v, we obtain

_ e I (s, +23)"
> -

(68 + ddjev)" > N2 (ddv)" AV,

for some A;. >0 which only depends on an upper bound on |[|¢; E||LQQ (@) In other words, Ajcv

is a subsolution to the Monge-Ampere equation in \ E.

We modify Aj.v near 09 to produce a subsolution with the right boundary values. Let
x be a cut-off function which is 1 near E and has compact support in . The function
o = xAjev+ (1 = X)po + Apom satisfies all our requirements for A >0 large enough. Note,
however, that it is only locally bounded in Q\ E.

Finally, consider max (v, ;). This is a subsolution of the Dirichlet problem which is globally
bounded in €. It follows from the maximum principle that max(va, ¢;c) < @je, hence 1y <

max(¢z, Pje) < Pje-
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Step 2. We next claim that there exist constants Ag, A3 ;11 > 0 such that
A
Sl}pHS’i 2’V80j+1,a|%] < Azjtie, (6.4)
Q
where A3 1. only depends on an upper bound on ||90k,a||Loc(Q) for k<j+1.

Proof. The proof is a variant of [DFS23, Proposition 2.2], which itself relies on previous estimates
due to Blocki and Phong-Sturm.
As we work in Q\ Supp(E), we identify 8 with dd‘(Kpom+ log|s|2). Replacing ¢j41, by
Bisiei= @511 — (Kpor+loglsf2), (6.2) becomes
m
(L4 €)B+ddjp1.)" =c; e 720 T (Isilh, + €)™ dVg, ©5)
=1 :

1100 = —log|s;.

) |V | H
[IV@jels = IV@jelgl < h6+0

to get the estimate (6.4) for ¢; . it is enough to prove by induction that there exists positive
constants By, B3 j11,. such that

supl|s[;” [V@;1,¢3] < max { supl|s[;”* [V @;e[3], Bg,jﬂ,s}, (6.6)

Q Q
where B is uniform in j,e while B3y, only depends on upper bounds on
H‘Pj+1,eHLoo(§z)7 e HLOO(Q), and where @ . := —(Kpom + log|s|3). To lighten notation we rewrite

the equation
m
(Be +dduw)" = e~ [ [(|siff, + €)Y,
i =1 ' (6.7)
Uppa = ¢,

where (. := (1 + €)[ is a non-degenerate smooth family of Kahler forms. Note that (6.6) becomes
Sup[l 272 V3] < max { supl|s[;72(V (v /5 —logls[; — fo)[3]; Bs,j+1,s}7 (6.8)

where { f€}€>0 is a non-degenerate smooth family. In the estimates that follow we indicate with C;
all the constants under control, i.e. that depend on a upper bound on ||¢j41, 6||Lx s Nlegell e )

Observe that |[|u+ log|s |hHL°° ||vHLoo( @) and supyp|Vu| are under control. The constant

Bs i1, in (6.8) will clearly depend on the C;. We indicate with D; all the constants uniform in
J, €, which will be used to determine the uniform constant B in (6.8).

We denote by A, and Al the Laplacian operators with respect to 3. and to 7. := 3. + dd‘u,
respectively. Consider

H:= log|Vu|%e + log|s|?* — G(u),

where G(x) = Ax — B/(z+ C + 1) for C chosen so that u > —C', while A >0, B> 0 to be deter-
mined later. The constants A, k are chosen to be uniform in j, e while B is under control. If H
reaches its maximum at x,s, then

A A
IVl |s[2 5 < o (1Vuf s ) (@ar) (6.9)

for a constant C; under control.
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As u+log|s|? is smooth on €, we ensure that H(x) ~(k+A-1) log|s|? — —oco as x —
Supp(E;) by imposing k > 1. If H reaches its maximum on 952, then we are done since sup,g|Vul

is under control. From now on we thus suppose that H reaches its maximum in Q\ {s=0}.
A direct computation [PSS12, (5.11) and (5.20)] yields

2Re(Vo + 310, a;V1og(|si]7, + €%), Vu) g

!/ 2 €
A log|Vulg > \Vu% — Atry,, B
+2Re<v|vu’%€ vu > —2Re<v’vu‘%ﬁ Vu > (6.10)
[Vulg, " IVuls /, [Vulg, " IVuls. /s,

where A denotes a (uniform in £) lower bound on the holomorphic bisectional curvature of j..
At the point where H reaches its maximum we obtain

2
V|Vulg

_kVis;
2
|Vu|ﬁs

=V log|Vulf, =~V (log|sli — G(w)) = =15
h

+ G (u)Vu,

hence

V| Vul? V|Vul3
2Re< | 2|B‘ ) Vu2 > — 2Re< | 2|B‘ , Vu2 >
IVulg " [Vulg, /,, [Vuls " [Vulg, /g,

V|s|? V|s|? Vul?
:2kRe< i, V“2> —2kRe< i, V“2> 96 () e 5
|sli;  [Vul3_ /5, |sli  [Vulg_ /. ’VU‘@E

2 2
22kRe<V|52|h, v“2> —2kRe<V|s2|h, v“2> —2G (u),
sl [Vulg /s, Islp ~ [Vulg /,

3

using the monotonicity of G(z) in the last inequality. By (6.9) and asking k > 2, we can assume
that |s|2|Vulg, > 1 at zps. Thus,

2
‘2R6<V]s\h Vu >'§2

Re<V|s|i, vu >‘§D1

’5’% ’|VU‘%€ 8 [Vulg, B
and
V|sZ v v s} [ Vul?
‘2Re< | 2|h, u2 > SZ‘Re<Vs\i,u> §|V|S|%|%€+M
|sli  [Vulg, /. (Vulg, /,, s[5 Vulg,

< |V Is[7 13, trg, Be + Islh Vul;, -

We infer that at x =z,

V|Vul? V|Vul?
2Re< | 2|B‘ ) Vu2 > — 2Re< | 2’56, Vu2 >
IVulg " [Vulg, /,, [Vulg "~ [Vulg, /g,

kD1 — E|V|s[3|2 try. B — Kl sl | Vuly, — 26 (u)
kD1 — kDatry, Be — k|s[3|Vul? —2G'(u),
which is the first estimate of the right-hand side in (6.10).

Next, as we want to prove (6.8), as a consequence of (6.9) and of \Vu]% < D3\VU|%E in the
estimate that follows we can assume that

2_
Zi

DsC1|Vul§, >max{|V(v/y —log|s|; - f2)|3, 1}

746

Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Hgskola, on 27 Aug 2025 at 09:21:08, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms
. https://doi.org/10.1112/50010437X24007619


https://doi.org/10.1112/S0010437X24007619
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

KAHLER-EINSTEIN METRICS NEAR A LOG TERMINAL SINGULARITY

at the point z ;. We deduce
2Re(Vo + Y% Vaglog(|si[; + €), Vu) s,

\Vu%
V(v —log|s[} —vf)[3 Ds Dg &
< D4+ < |s|*2+—§ :|sl|*2g02+03|s|*2M
Vulg, Vulg, " [Vulf & "

for M :=1/min; b; so that Mb; > 1 for any [. The previous inequalities yield
Allog|Vul3, > —kDy — Co — Csls|;*™ — (kDg + A)try, Be — kls|h|Vul?, —2G'(u).  (6.11)
Moreover,
—ALG(u) = -G (u)ALu — G"(u)|Vu\3k =G’ (u)try, B — nG' (u) — G”(u)|Vu]3]e
and Al log|s|?* > —kDtr,, Sc. Together with (6.11) we obtain
ALH > (G' = kDy — A — kD7)try, B — (n+2)G' — (G” + kls|},)|Vulz, — kD1 — Co — Cs|s|; ™.
Taking k= M (n+ 1)+ 1, this can be rewritten

ALH > (G' — Dg)try Be — (n+2)G' — (G" + D9|s|i)\Vu|,27€ — Cy|s|; M. (6.12)
We now define G(x) := (Dsg+ 1)x — B/(x 4+ C + 1), where B >0 is so large that
2B
I s WRT B G
(’UJ+C+ 1)3 9’8’h—’8’h

at xps. Note that B can be chosen such that it only depends on C, Dy and on ||u + 10g|s|,2LHLm(Q),
i.e. it is under control. From (6.12) we deduce at xps

0> ALH >tr, B + \s|,2L\Vuy$75 — Css|; M.

This yields tr,, 8 < Cs|s|,; > and [Vulz, < Cs|s|;; 272, hence

n
]Vu\% < ]Vu\?ktrgfne < \Vu|727 (trneﬂe)"_l <Zi> < Cﬁ\s\;QM]Vu\%E (trnsﬁe)”_l < C7|s];2k,
g

where we also used [GZ17, Lemma 14.4], the Monge—-Ampére equation (6.7) and the fact that
[T (silf, +e%)™ < Digls|,; * as a; > —1. From (6.9) we deduce |Vu\%Js]Z<k+DSH) <Cg. As
{Be}e>0 is a non-degenerate continuous family of K&hler forms converging to 8 as e — 0, we get

|8|Z(k+D8+1)|VU‘% < max { Sl~lp[|8|i(k+D8+1)|V(U/’Y _ 10g|8|2 o fE)’%]? Cg},
Q

i.e. (6.8), which concludes the proof by setting By :=k + Dg+ 1, B3 j11.:=Cy. O

Step 3. Fix V a small neighborhood of 9 (intersected with 5) We claim that
sup [Agpje| <Cv[l+ Slép IV, el (6.13)
[2/9]

for some uniform constant Cy, independent of j,e. This follows from a long series of esti-
mates established in [GKY13, Lemma 18] (which itself was adapting the technique developed
by [CKNS85]) when g, and Q are smooth. The statement of [GKY13, Lemma 18] mentions
supg |V;|?; however, the arguments only involve:

— local reasonings in a small fixed neighborhood of the boundary;
— smoothness of 11, in this neighborhood and pseudoconvexity of 9f2.

747

Downloaded from https://www.cambridge.org/core. Chalmers Tekniska Hgskola, on 27 Aug 2025 at 09:21:08, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms
. https://doi.org/10.1112/50010437X24007619


https://doi.org/10.1112/S0010437X24007619
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

V. GUEDJ, A. TRUSIANI AND S. BOUCKSOM

Step 4. We now show that there exist constants m, B3 ;. > 0 such that

sup [s*"|Appje| < Bsje [1 + sup \Aﬁcpj,a] 7 (6.14)
Q 0N
where Bs ;. only depends on an upper bound on Hgok,SHLOQ(Q), for k <j. This is a variant of
[GKY13, Lemma 17], for which we provide a detailed proof.

We set wj :=¢f 4 dd°p; . and observe that

w;‘ = Ve Pi1e TG gn
where . is a difference of quasi-psh functions in Q such that e¥ <cyls|7%¢ and ddy. >

—c1|s|72B in Q, for some uniform constants a, ¢; > 0. We consider
H; :=log Trg(w;) + ¢j—1,. — Apje + Ap,
where A > 0 is chosen below. We use here the classical notation

A n—1 dd¢h A n—1
WAL Ay e a8

n Ui

Either Hj reaches its maximum on 99 and we are done, or it reaches its maximum at some
point z; € 2\ E since p — —oo along E. We are going to estimate A, H; from below and use
the fact that 0 > A, Hj(x;).

It follows from [Siu87] that

Tr,(w) :=n

T (Ric(w;))
Trg(wj)
where —B is a lower bound on the holomorphic bisectional curvature of 3. Now

Ay
-3

A, log Trg(w;) > — BTr,, (),

—Ric(wj) = —Ric(8) + dd*(ve — %’—1,5) > —Wwj-1 5|

in 0\ E. Moreover, Trg(wj_1) < Trg(w;)Try, (wj—1), hence

7’LA1

Bu; log Trg(wy) 2 —Tre, (wi-1) = [aq ooy
J

— BTr,, (B).

Using that dd®p’ > 3, we obtain
nA1
Ay Hj>—An+ (A—-B)Tr,,(8) — —5m——-
’ |2 Trs (w;)
Using the classical inequality n[Tr,, (8)]"~" > (8" /w})Trg(w;), we infer
_ nA1
[s[*Tra(w;)

Let us stress that the constant ¢ depends here on an upper bound on |[¢;j_1 .

Ay, H; > —An+ (A — B)e /"D [Trg (w;)] /(" (6.15)

L>=()
We fix A so large that A > B and . + Ap’ < ¢} —alog|s|? + Ap’ is bounded from above. At
the point z; we obtain 0 > A, Hj, therefore:

— either |s|?Trg(w;) <1, hence H;(z) < (pj—1. — Apje + Ap')(x;) < C;
— or |s]>Trg(w;) > 1 and (6.15) yields Trg(w;) < C"e¥=(*3) | hence

Hj(z;) <te(zj) + Ap'(z;) + C" < C".

Thus, H; is uniformly bounded from above in both cases, and (6.14) follows (we use here an
upper bound on [ -1/l gy and [[0jell o @))-
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Step 5. We finally show by induction on j that ¢; . uniformly converges towards ¢; as € decreases
to 0. There is nothing to prove for j =0 since ¢g . = ¢o.

For j=1, it follows from (a slight generalization of) [GGZ23, Proposition 1.8] that
lo1.ell oo @ < (1 is bounded uniformly in € > 0. Proceeding by induction, we similarly obtain
that for all j € N,

15l ey < Cj

is bounded uniformly in ¢ > 0. By previous steps, the family (¢; ). is relatively compact in che
for all 0 < o < 1. Any cluster point 1;, as € =0, is a solution of

e*'ﬂ/’] I
(ddjq)" = ——=
G5
with boundary values ijI a0 = @, hence ¥; = ¢; by uniqueness. Thus, ¢; . converges to ¢; as €
decreases to zero, and the convergence is moreover uniform on 2 by [GGZ23, Proposition 1.8].
We can thus let € tend to zero in previous inequalities. Now H‘Pj,EHLoo(Q) = |l L= (), and

the latter is uniformly bounded in j by Proposition 6.1. For e =0, (6.3), (6.4), (6.13) and (6.14)
thus provide uniform bounds in j, and conclude the proof of (6.1). The proof of Proposition 6.2
is thus complete. O

6.3 Higher-order estimates and convergence

Once the uniform C?-estimate is established (Proposition 6.2), one can then linearize the com-
plex Monge-Ampere equation and apply standard elliptic theory (Evans—Krylov method and
Schauder bootstrapping) to derive higher-order estimates.

PROPOSITION 6.3. Given K a compact subset of Q\{p} and a>0,{ €N, there exists
C(K,{,a)>0 such that for all j €N, [|p;llceex) < C(K, L, a).

It follows that the sequence (¢;) is relatively compact in C*°(2\ {p}). We let K denote the
set of cluster values of the sequence (¢;). Any function ¢ € K is:

— psh in Q and smooth in Q\ {p}, with ¥50 = ¢;
— uniformly bounded in © (Proposition 6.1);
— continuous on §, as the uniform limit of (p;,) (see [GGZ23, Proposition 1.8]);

The set K is invariant under the action of T, : p € T(£2) — v € T5(£2), which associates, to a
given ¢ € T4(£2), the unique solution 1 € 74(2) to the complex Monge-Ampeére equation

ddey)r = <t
() Joe 7% duy

It follows from [GKY13, Proposition 12] that the functional F, is constant on K and that
K is pointwise invariant under the action of 7. Thus, a cluster value of (¢;) provides a desired
solution to Theorem C.

Appendix A.

Sebastien Boucksom

The purpose of this appendix is to provide an alternative approach to Proposition 5.8,
emphasizing the role of b-divisors. We use [BAFF12] as a main reference for what follows.
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A.1 Nef b-divisors over a point

Consider for the moment any normal singularity (X, p), and set n:=dim X.

In what follows, a birational model means a projective birational morphism 7: X,; — X with
X normal. A b-divisor over p is defined as a collection B = (By), of R-divisors B; on X for
all birational models 7, compatible under push-forward, and such that each B, has support in
771 (p). The R-vector space of b-divisors over p can thus be written as the projective limit

Divy,(X, p) :=lim Div, (X7),

where Div,,(X) denotes the (finite-dimensional) R-vector space of divisors on X, with support
in 771(p), and we endow Divy,(X, p) with the projective limit topology.

A b-divisor B € Divy,(X, p) is said to be Cartier if it is determined by some birational model
7, in the sense that B, is the pullback of B, for any higher birational model 7’. There is a
symmetric, multilinear intersection pairing

(Bl, Cee Bn) — (Bl ----- Bn) eR (Al)

for Cartier b-divisors B;, defined as the intersection number (B - ---- By, ») computed on X,
for any choice of common determination 7 of the B; (the result being independent of the choice
of 7, by the projection formula).

A wvaluation centered at p is a valuation v: Ox , — R>q such that v(m,) >0 on the maximal
ideal m, C Ox . It is further divisorial if it can be written as v = cordg for a prime divisor
E Cn!(p) on some birational model X, and ¢ € Qsg. Given a b-divisor B over p€ X, we
then set v(B):=cordg(By). The function v+ v(B) so defined on the space DivVal(X, p) of
divisorial valuations centered at p is homogeneous with respect to the scaling of Q~(, and this
yields a topological vector space isomorphism between Divy, (X, p) and the space of homogeneous
functions on DivVal(X, p), endowed with the topology of pointwise convergence.

Pick a b-divisor B over p. If B is Cartier, we say that B is (relatively) nef if B, is m-nef for
some (hence, any) determination 7. In the general case, we say that B is nef if it can be written
as a limit of nef Cartier b-divisors. By the negativity lemma, any nef b-divisor B € Divy (X, p) is
automatically antieffective, i.e. v(B) <0 for all v € DivVal(X, p). By [BdFF12, Lemma 2.10], we
further have the following result.

LEMMA A.1. A b-divisor B over p is nef if and only if, for each birational model 7, the numerical
class of B in N'(X,/X) is nef in codimension 1 (also known as movable).

Ezample A.2. Consider an ideal a C Ox )y, and assume that a is primary, i.e. containing some
power of the maximal ideal. Then a determines a nef Cartier b-divisor Z(a), defined by v(Z(a)) =
—v(a) for each v € DivVal(X, p), and determined on the normalized blow-up of a. For any tuple
of primary ideals ay, ..., a,,

e(a17"'7an):_(z(a1) """ Z(an))
further coincides with the mixed multiplicity of the a;.

Example A.3. For any valuation v centered at p, the valuation ideals
() :={f € Oxp|v(f) = m}
define a graded sequence of primary ideals ae(v), and hence a nef b-divisor over p

Z(v):=Z(as(v)) = Iigln mZ(am(v)),

(see [BAFF12, Lemma 2.11]), which is not Cartier in general.
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LEMMA A.4. If B € Divy(X, p) is nef, then B < —v(B)Z(v) for all v € DivVal(X, p),

Proof. Write v=cordg for a prime divisor £ on X, and c¢€ Qs¢. Then Z(v) coincides
with Env,(—c1E) (see [BAFF12, Definition 2.3]), and the result thus follows from [BAFF12,
Proposition 2.12]. O

A.2 Normalized volume and b-divisors

From now on, we assume that the normal singularity p € X is further isolated.

By [BAFF12, Theorem 4.14], the intersection pairing (A.1) then extends to arbitrary tuples
of nef b-divisors over p. This extended pairing takes values in RU{—o0}, and is symmetric,
additive and non-decreasing in each variable, and continuous along decreasing nets.

DEFINITION A.5. For any nef b-divisor B over p, we define the Hilbert—Samuel multiplicity of
B as

e(B):=—-B" €0, +0].
When (X, p) is further klt, we define the log canonical threshold of B as

1m AX (U)
veDivVal(X,p) —v(B)

let(B) := € [0, +00),

where Ax(v) >0 denotes the log discrepancy of v.

Example A.6. For any primary ideal a C Ox ,, the associated nef Cartier b-divisor B := Z(a)
(see Example A.2) satisfies e(B) =e(a), and lct(B) =lct(a) when (X, p) is klt.

Ezample A.7. Pick any valuation v centered at p, with associated nef b-divisor Z(v) (see
Example A.3). Then it follows from [BdFF12, Remark 4.17] that the volume Vol(v):=
limy,, 00 (n!/m™) dim Ox p/a,, (v) satisfies

Vol(v) =e(Z(v)). (A.2)
LEMMA A.8. For each nef b-divisor B over p, we have e(B) = sup¢sp ¢(C), where C ranges over

all nef Cartier b-divisors of the form C =m~'Z(a) for a primary ideal a C Ox, and m € Z~,
and such that C' > B.

Proof. Since B is the limit of the decreasing net (Env,(B;)) (see [BAFF12, Remark 2.17]), it
is enough to prove the result when B =Env,(B;), by continuity of the intersection pairing
along decreasing nets. By [BAFF12, Theorem 4.11], we can then write B as the limit of a

decreasing sequence (C;) of nef Cartier b-divisors of the desired form, and we are done since
e(C;) — e(B). O

Consider now a psh function ¢ on X. The collection of its Lelong numbers on all birational
models defines a homogeneous function v+ v(¢) on DivVal(X, p), and hence an antieffective
b-divisor Z(p) over p, such that v(Z(p)) = —v(p).

PROPOSITION A.9. The b-divisor Z(p) is nef. Furthermore:

(1) if ¢ is locally bounded outside p, then

e(Z(p)) <e(p) = (dd°p)" ({p});
(i) if (X, p) is klt, then lct(Z(p)) = lct(p).

Proof. Consider the closed positive (1, 1)-current T':= dd°p, and pick a log resolution 7: X — X
of (X, p). The Siu decomposition of 7*T" = dd°m* ¢ shows that 7T + [Z(¢) ] is a positive current
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with zero generic Lelong numbers along each component of 7=1(p). By Demailly regularization,
it follows that the class of Z (), in N'(X,;/X) is nef in codimension 1, and hence that Z(y) is
nef (see Lemma A.1).

Assume next that ¢ is locally bounded outside p, and pick a primary ideal a C Ox, and
m € Zo such that C:=m~'Z(a) > Z(¢). Choose a finite set of local generators (f;) of a, and
consider the psh function v :=m~1log >, | fi|. Then Z(p) < C = Z(¢)) and, hence, p <) + O(1)
(to see this, pull back ¢ and ¥ to a log resolution of a, and use the Siu decomposition). By
Demailly’s comparison theorem, it follows that e(C) =e(1)) <e(y), and taking the supremum
over C' yields part (i), by Lemma A.8.

Finally, part (ii) is a rather simple consequence of [BBJ21, Theorem B.5| applied to the
pullback of ¢ to a log resolution of (X, p). O

We can now state the following variant of Proposition 5.8.
THEOREM A.10. Let (X, p) be an isolated klt singularity. Then
vol(X, p) = inf e(B) let(B)" = inf () let()",
where B runs over all nef b-divisors over p, and ¢ runs over all psh functions on X that are
locally bounded outside p.

Proof. By Theorem 2.16 we have @(X,p):infa e(a)lct(a)”, where a C Oy, runs over all
primary divisors, and hence \7(;1(X ,p) >infpe(B)lct(B)", by Example A.6. Conversely, pick
a nef b-divisor B over p. For any v € DivVal(X, p), Lemma A.4 yields B < —v(B)Z(v). By
monotonicity and homogeneity of the intersection pairing, this yields B" < (—wv(B))"Z(v)",
ie. e(B) > (—v(B))"Vol(v), by (A.2). Thus,

e(B) <Af(%’))> > Ax (v)"Vol(v) > vol(X, p).

Taking the infimum over v yields e(B) lct(B)"Z\TO\I(X, p) for any nef b-divisor B over p,
and hence also e(p) lct(p)™ > vol(X, p) for any psh function ¢ locally bounded outside p, by

Proposition A.9. O
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