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Abstract
Statistical inference for stochastic dynamical systems is a central problem in
many scientific domains, yet is complicated by intractable likelihood functions,
as well as partial and noisy observations. Simulation-based methods such as
Approximate Bayesian Computation (ABC) offer a general route to Bayesian
inference in this setting, but standard algorithms rely on myopic simulation
methods that are unconditional on the data, and consequently suffer from
low acceptance rates. In Paper I we introduce a data-conditional simulator
for discretely observed stochastic differential equations (SDEs). The method
leverages lookahead strategies and smoothing via backward simulation to
accelerate ABC-Sequential Monte Carlo. By guiding the simulated trajectories
toward the data, it substantially increases acceptance rates and accelerates
convergence to the posterior distribution. In Paper II we target chemical reaction
networks described by the chemical Langevin equation, a nonlinear SDE with
multiplicative, non-commutative noise that poses challenges for simulation
and inference. We extend the data-conditional simulator to partially observed
systems with measurement noise, allowing trajectories to be guided toward the
data in this more realistic setting. Moreover, we design a novel splitting scheme
for the numerical solution of SDEs that preserves state space, densities, and
oscillatory behavior, and enables robust inference even with large integration
steps where Euler–Maruyama fails. In Paper III, we improve chain mixing
and reduce the rejection rate in ABC-Markov Chain Monte Carlo. Because
chains are typically initialized without knowledge of the posterior’s shape, we
introduce a data-conditional extension of ABC-MCMC that eases initialization
and increases acceptance rates.

Keywords: approximate Bayesian computation; chemical reaction networks;
sequential Monte Carlo; splitting methods; stochastic differential equations.
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1 Introduction

Stochastic dynamical systems arise in diverse scientific disciplines to model
the evolution of systems subject to inherent randomness (Fuchs, 2013). From
molecular interactions in chemical reaction networks (Wilkinson, 2018; Schno-
err et al., 2017) and fluctuating asset prices in financial markets (Shreve et al.,
2004; Cont and Tankov, 2003) to the spread of infectious diseases (Andersson
and Britton, 2012; Allen, 2008) and the activity of neural systems under ran-
dom synaptic fluctuations (Dayan and Abbott, 2005; Greenwood and Ward,
2016), randomness is a fundamental feature that cannot be ignored. To study
such phenomena, scientists represent them as mathematical models, some
of which are the focus of this thesis. While such models provide a powerful
framework for representing complex phenomena, they are idealizations of
real-world processes: the underlying dynamics are modeled as continuous
in time, yet data are available only at a finite set of observational times. Of-
ten, these observations are separated by intervals that are large in relation
to the system’s characteristic timescales, meaning that much of the fine-scale
dynamical behavior is unobserved. Worse yet, observations may be corrupted
by measurement noise or restricted to a subset of the system’s components,
meaning that not all dimensions of a multidimensional system are observed
throughout an experiment (King et al., 2016; Roberts and Stramer, 2001). This
situation is commonly referred to as the regime of partial observations and is
pervasive across scientific applications (King et al., 2016; Roberts and Stramer,
2001). Examples include fluorescence assays in chemical reaction networks
(Schnoerr et al., 2017; Loskot et al., 2019), to the stochastic Morris–Lecar model
in neuroscience, where voltage and potassium activation are modeled but only
voltage is observed (Ditlevsen and Samson, 2014), to portfolio optimization
under stochastic volatility in finance, where the dynamics of a risky asset follow
a stochastic volatility model but only discrete stock prices are observed (Pham
and Quenez, 2001). Although the primary focus of this thesis is on continuous-
time models, particularly stochastic differential equations (SDEs), the methods
and ideas extend naturally to certain discrete-time stochastic systems, and such
examples are included in Paper III to illustrate their broader applicability.
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2 1. Introduction

In these systems, the state at any given time is a random variable whose
evolution is often assumed to be Markovian: the distribution of its future state
X(t), conditional on the current state X(s), is independent of the past. This
evolution is described by the transition density p(X(t) | X(s)), which specifies
the probability of transitioning to X(t) from X(s) over a time interval of length
t− s. In a parametric setting, these densities depend on unknown parameters
that govern the system’s behavior, such as reaction rate constants in biochemical
networks, volatility in financial models, or synaptic strengths in neural systems.
When the dynamics are fully observed without measurement noise, the Markov
property implies that the likelihood function is given by the product of the
successive transition densities. When the transition density is available in
closed form, the resulting likelihood function can be evaluated exactly, enabling
frequentist approaches such as maximum likelihood estimation or Bayesian
inference via exact likelihood computation (Fuchs, 2013; Iacus, 2008). Closed-
form transition densities are available only for a few special cases, such as
the Ornstein–Uhlenbeck process, geometric Brownian motion, and the Cox–
Ingersoll–Ross (CIR) process (Iacus, 2008; Øksendal, 2013). However, for the
vast majority of nonlinear SDEs, the transition densities are either unknown
or analytically intractable, rendering exact likelihood evaluation infeasible
(Kloeden and Platen, 1992). As previously mentioned, observations may also
be restricted to part of the system and may be corrupted by measurement noise.
In such cases, the observed data are not Markovian, even if the latent dynamics
are. The likelihood then involves integrating over the latent trajectory, which is
a high-dimensional and typically analytically intractable computation (Durbin
and Koopman, 2012). This motivates the use of filtering-based approaches (e.g.,
Kalman filters for linear-Gaussian models, particle filters for general nonlinear
models) to approximate the likelihood (Doucet et al., 2001; Andrieu et al., 2010;
Särkkä and Svensson, 2023).

Despite these challenges, estimating the underlying parameters is essential,
as they encode mechanistic properties and determine the system’s qualita-
tive and quantitative dynamics. In pharmacokinetics/pharmacodynamics,
patient-specific absorption and clearance rates govern optimal dosing regimens
(Lavielle, 2014); in stochastic epidemic models, transmission and recovery rates
shape the timing and size of epidemic peaks (Britton et al., 2019); in stochastic
volatility models, such as Heston (Heston, 1993), parameters determine pricing
and hedging strategies for complex derivatives. Across such fields, accurate
parameter estimates are therefore central to reliable predictions and sound
decision-making in applied contexts. Because of the central role of parameter
estimation in applications, the intractability of the likelihood has spurred a
rich line of methodological developments. Broadly, these include approximate
likelihood methods (Florens-Zmirou, 1989; Kessler, 1997; Ozaki, 1992; Shoji and
Ozaki, 1998; Aït-Sahalia, 2002; Aït-Sahalia, 2008; Pilipovic et al., 2024), methods
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based on bridges and data augmentation (Pedersen, 1995; Elerian et al., 2001;
Eraker, 2001; Durham and Gallant, 2002; Delyon and Hu, 2006; Beskos et al.,
2006; Golightly and Wilkinson, 2008, 2011, 2015; van der Meulen and Schauer,
2017), filtering-based approaches (Andrieu et al., 2010; Del Moral and Mur-
ray, 2015; Särkkä and Svensson, 2023), and, more recently, simulation-based
inference techniques such as approximate Bayesian computation (ABC) (Toni
et al., 2009; Liepe et al., 2014; Picchini, 2014), the latter forming the focus of
this thesis. Our contribution lies at the interface between simulation-based
inference (SBI) and numerical methods for stochastic models, targeting cases
where likelihoods are intractable but forward simulation is possible.

Among the various SBI techniques (Cranmer et al., 2020), ABC has emerged as
a particularly appealing choice for stochastic dynamical systems (Toni et al.,
2009). ABC replaces explicit likelihood evaluation with a comparison between
simulated and observed data, retaining the Bayesian paradigm, while circum-
venting the need for tractable likelihood functions. In practice, comparisons are
often made between summaries of the simulated and observed data, and the
performance of ABC algorithms depends critically on the choice of summary
statistics and discrepancy measures (Blum et al., 2013; Fearnhead and Prangle,
2012; Prangle, 2018, 2017). In the context of high-dimensional models such
as time-series, ABC has been applied in a range of settings (Picchini, 2014;
Drovandi et al., 2016; Picchini and Forman, 2016; Jasra, 2015; Tancredi, 2019;
Martin et al., 2019; Maybank et al., 2017; Kypraios et al., 2017; Buckwar et al.,
2020; Ditlevsen et al., 2023; Samson et al., 2025).

In its most general form, an ABC algorithm relies on four key elements (Sisson
et al., 2018): a forward simulator to generate synthetic data under candidate
parameters, a proposal distribution for those parameters, a summary statistic
function to reduce data to informative low-dimensional features, and a discrep-
ancy measure to compare simulated and observed summaries. Among these,
the forward simulator plays a central role in shaping the quality and efficiency
of inference. For example, default but overly simplistic simulators are some-
times employed, which can yield inference of very low quality, particularly
in challenging settings such as hypoelliptic diffusions (Buckwar et al., 2020).
In continuous-time models, it is typically necessary to integrate the system’s
dynamics numerically, often augmenting low-frequency observations with sim-
ulated intermediate states by time-discretizing the observation intervals. Finer
discretizations yield more accurate approximations to the underlying SDE, but
at the cost of increased computation. The choice of numerical scheme and
time-step size thus has a direct impact on both the precision of the trajectories
and the feasibility of ABC. Beyond numerical considerations, the simulator of
a stochastic system produces different trajectories even when run at identical
parameter values. While this variability is an inherent feature of the model, in
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Figure 1.1: Illustration of randomness in trajectories. Left: stochastic Ricker model
(ecology). With fixed parameter values, we draw one trajectory (black) to represent the
observation and then generate 50 additional trajectories under the same parameter (red,
translucent). Right: Schlögl model (systems biology), a bistable reaction network. Using
the same procedure, one observed trajectory (black) and 50 simulated replicates (red).

ABC it can lead to apparent mismatches between simulated and observed data
that arise from simulation noise rather than implausible parameters. Figure 1.1
illustrates the variability of trajectories under the same parameter.

To address the variability introduced by stochastic simulation in ABC, in this
thesis we develop a data-conditional simulation framework for stochastic dynami-
cal systems, with particular emphasis on SDEs. The framework builds on, and
extends, the standard ABC–Sequential Monte Carlo (ABC–SMC, Toni et al.,
2009) and ABC–Markov Chain Monte Carlo (ABC–MCMC, Marjoram et al.,
2003) algorithms. Data-conditional simulation is applied in three settings: (i)
exactly observed SDE models, (ii) partially observed SDEs with measurement
noise, both using a data-conditional ABC–SMC variant, and (iii) continuous-
and discrete-time stochastic models with measurement noise, using a data-
conditional ABC–MCMC variant. Rather than simulating trajectories solely
from the forward model given proposed parameters, the data-conditional sim-
ulator conditions the simulation on the observed data, steering paths toward
regions of the state space consistent with the observed data. This conditioning
has important implications: by altering the simulator, we also alter the distribu-
tion of the resulting summary statistics. In ABC–SMC, this changes the particle
weights; in ABC–MCMC, it changes the acceptance probability. Crucially, these
quantities now depend on new intractable densities: the original likelihood of
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the summary statistics, and the likelihood of the summary statistics conditional
on the observed data. A central aim of this thesis, beyond the construction
of the data-conditional simulators themselves, is to address this challenge by
designing efficient and accurate approximations for these terms, ensuring that
the improved similarity between simulated and observed trajectories from data
conditioning, and the resulting higher ABC acceptance rates, is not offset by
excessive post-hoc correction costs.

Complementing these developments, we also address the role of numerical
discretization in ABC for continuous-time stochastic systems. For chemical
reaction networks in particular, in Paper II we design a structure-preserving
splitting scheme, a type of numerical method that maintains key properties
of the model such as state space, invariant distribution, and oscillatory behav-
ior, allowing accurate inference even with relatively coarse time steps. This
reduces computational cost while preserving the underlying dynamics, further
enhancing the practical efficiency of simulation-based inference. Crucially, its
numerical stability extends across the entire admissible parameter space, ensur-
ing that synthetic data can be reliably generated for any admissible parameter
proposal. This stability is vital not only for inference but also for modern
approaches to constructing summary statistics automatically. Recent work has
focused on learning summaries from data using regression models and neural
networks (Fearnhead and Prangle, 2012; Jiang et al., 2017; Prangle, 2018; Chen
et al., 2021a), which require large volumes of accurately simulated trajectories
during training. If simulations become unstable or inaccurate in parts of the
parameter space, learned summaries risk encoding numerical artifacts rather
than genuine model features. By ensuring stable simulations everywhere,
the proposed discretization provides a solid foundation for such automated
methods, increasing their robustness and reliability within ABC for SDEs.
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2 Bayesian inference

Bayesian statistics traces its origins to the 18th century with Reverend Thomas
Bayes, who introduced a method to update the probability of a hypothesis in
light of new evidence. His seminal essay, "An Essay towards solving a Problem
in the Doctrine of Chances", was published posthumously in 1763 by his friend
Richard Price (Bayes, 1763). Shortly after, Pierre-Simon Laplace independently
developed and extended Bayes’ ideas into a general mathematical framework,
and applied them to solve various statistical problems. For much of the 20th
century, however, Bayesian methods were viewed with skepticism by the
statistical community, largely due to their reliance on subjective beliefs encoded
in the prior distribution, as well as the significant computational demands they
imposed. This perception began to shift in the late 20th and early 21st centuries
due to the advent of modern computing and Markov Chain Monte Carlo
(MCMC) algorithms, which made Bayesian inference feasible even for complex,
high-dimensional models (Metropolis et al., 1953; Gelfand and Smith, 1990).
Today, Bayesian methods are central to modern statistics and machine learning.

At the heart of Bayesian statistics is Bayes’ theorem, which describes how to
update beliefs in light of new data. We use yo ∈ Y to denote the observed data,
where Y ⊂ Rn denotes the observation space. Let θ ∈ Θ denote the parameter
vector of interest, where Θ ⊂ Rp is the parameter space. We assume that there
exists a value θo ∈ Θ (unknown) that corresponds to the generation of the
specific data yo. By treating θ as a random variable, the inference task is to
determine its distribution conditional on the information provided by yo, in
order to quantify the uncertainty around θo. The posterior distribution π(θ | yo)
is given by

π(θ | yo) = pθ(y
o)π(θ)

p(yo)
, (2.1)

where pθ(yo) is the likelihood of the data given θ, π(θ) is the prior distribution, and
p(yo) =

∫
Θ
pθ(y

o)π(θ),dθ is the marginal likelihood (also called the “evidence”),
which ensures proper normalization of the posterior. The marginal likelihood is
often intractable in practice, especially for high-dimensional or non-conjugate

7



8 2. Bayesian inference

models (i.e., models where the posterior distribution does not belong to the
same family as the prior). To circumvent this, MCMC methods offer a power-
ful class of algorithms for sampling from the posterior distribution without
requiring explicit computation of the marginal likelihood. This is achieved by
constructing a Markov chain whose stationary distribution coincides with the
posterior.

One of the most commonly used MCMC methods is the Metropolis–Hastings
algorithm (Hastings, 1970). Assume the current state of the chain is θ, then a
new candidate value θ∗ is proposed from a proposal distribution g(θ∗ | θ), and
accepted with probability

α(θ, θ∗) = min

(
1,
pθ∗(yo)π(θ∗) g(θ | θ∗)
pθ(yo)π(θ) g(θ∗ | θ)

)
. (2.2)

This acceptance rule ensures that the chain has the posterior π(θ | yo) as
stationary distribution. Notably, knowledge about the intractable marginal
likelihood p(yo) is not necessary, as this cancels out in the ratio. However, the
algorithm still requires a pointwise evaluation of the likelihood pθ(yo), which
may be unavailable or intractable in many practical models, such as CRNs
and other SDE models. To circumvent this limitation, researchers typically
resort to simulation-based inference (SBI) methods (Cranmer et al., 2020). These
methods approximate the likelihood, posterior, or both, using only simulations
from the underlying stochastic model. By requiring only the ability to simulate
data, SBI methods have opened new possibilities for statistical inference that
were previously inaccessible due to analytical or computational intractability,
as summarized in Section 2.1.

In the following sections, we describe several widely used SBI approaches,
with primary focus on approximate Bayesian computation (ABC) methods
including ABC rejection, ABC importance sampling, ABC-MCMC and ABC-
Sequential Monte Carlo (ABC-SMC), as well as a brief discussion of synthetic
likelihood (SL) methods. We also discuss specific considerations arising from
partial observability of diffusion processes, measurement noise, and sparsely
sampled data, which are common scenarios in biochemical applications.

2.1 Simulation-based inference

In Statistics, an often-mentioned problem is that of the likelihood being “in-
tractable”. This means that pθ(yo) cannot be evaluated pointwise in any θ
or yo, as its expression is unavailable in closed form. In fact, for models of
realistic complexity, pθ(yo) is a multidimensional integral, such as pθ(yo) =∫
pθ(x, y

o) dx for some high-dimensional variable x entering the probabilistic
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model generating observations yo. In the absence of a fast to evaluate and exact
expression for pθ(yo), both frequentist and Bayesian inference cannot be carried
out. A large number of solutions have been proposed to produce some form of
approximate inference, and if we restrict to the Bayesian framework a relatively
recent review is in Martin et al. (2024). To overcome such a daunting compu-
tational problem, the most intuitive approach would be that of simplifying
the hypothesized data-generating model (DGM) enough that exact inference
methods can be applied. However, this simplification may come at the expense
of realism, when accepting to use a suboptimal but tractable DGM, in place of
a more realistic but intractable one. If we still decide to stick to a realistic DGM,
one not excessively oversimplified for mathematical convenience, then we may
happen to agree with John Tukey when he says (Tukey, 1962):

Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always be
made precise.

SBI, also known as likelihood-free inference, emerged as an attempt at bypass-
ing the unavailability of a closed-form expression for pθ(y) (for a generic y ∈ Y)
with the ability to sample from pθ(y) which, as we will see, translates to the
ability to simulate synthetic datasets y ∼ pθ(y) (it is standard in the literature to
abuse notation and write y ∼ pθ(y) to denote a sample from the distribution of
Y , even though formally Y ∼ pθ and y denotes a realization.) The crucial step
is to regard the simulatorM(θ) as a deterministic or stochastic mechanism for
generating data, conditional on a given parameter value θ, along with optional
covariates and pseudorandom streams. Suppose we fix a parameter value θ∗.
Running the simulator at this value produces an output y∗ = M(θ∗). This
property defines the so-called implicit models (Diggle and Gratton, 1984), to
express the fact that pθ(y) is not available explicitly, but only implicitly via
simulation. In Diggle and Gratton (1984) an SBI scheme was introduced to ap-
proximate the likelihood function, however, the first use of SBI to approximate
the posterior was sketched in Rubin (1984) (although this was just a conceptual
thought experiment). Besides the thought experiment of Rubin (1984), the
first proper applications of such scheme emerged in the 1980s in population
genetics, with the works of Tavaré et al. (1997); Pritchard et al. (1999), and these
were later referred to as Approximate Bayesian Computation (ABC1) and pop-
ularised by Beaumont et al. (2002). In ABC an approximation of the posterior
distribution was obtained by accepting or rejecting proposed parameters based
on comparisons between simulated data from the model and observed data.
These developments established ABC as a method for likelihood-free inference,
particularly useful where simulating data is computationally inexpensive, but

1See Tavaré (2018) for an account on the origin of the acronym as well as the origins of the ABC
methodology.
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computing a likelihood is challenging or infeasible. We will now summarize
some important contributions in SBI, and we will return to ABC in detail in
Sections 2.1.3-2.1.5.

SBI has now grown into a considerable body of literature, mostly within the
Bayesian paradigm, aimed at approximating the posterior π(θ | yo). Here, the
observed data yo is viewed as a specific instance y = yo generated from pθo(y)
for some true parameter θo. This, however, only holds under the unrealistic
assumption thatM(θo) is the true data-generating model, which is a restrictive
assumption increasingly challenged in the literature on model misspecifica-
tion (see references below). Some key SBI methods, notably “rejection ABC,”
simulate N independent parameter–data pairs (θ1:N , y1:N ). These pairs are
then “refined” or subsampled to produce an approximation to the posterior
π(θ | yo) (rejection ABC is the simplest form of ABC, described in Section 2.1.3).
Depending on how θi has been simulated/proposed (e.g., MCMC, importance
sampling, sequential Monte Carlo, normalizing flows), many different methods
have been constructed, while typically yi is always resulting from running
the (forward) simulatorM(θi), a notion we challenge in this thesis where we
propose other ways to simulate data. For example, SBI methods are often
initialized with prior simulations θi ∼ π(θ) (i.i.d.), and as more information
is acquired from the simulations, the proposals are later modified so that
θi ∼ g(θ), still i.i.d. for i = 1, . . . , N . More recently, exciting developments
in machine learning have brought neural conditional estimation (NCDE) at the
forefront of SBI. NCDE uses neural networks to learn conditional densities,
see the review in Cranmer et al. (2020). More specifically, this strand of re-
search, named neural SBI in Wang et al. (2024), uses normalizing flows (Rezende
and Mohamed, 2015; Papamakarios et al., 2021) to approximate the likelihood
function in implicit models (Papamakarios et al., 2019; Chen et al., 2021b),
the posterior distribution (Papamakarios and Murray, 2016; Greenberg et al.,
2019; Durkan et al., 2020; Chen et al., 2021b; Miller et al., 2021; Delaunoy et al.,
2022), and simultaneously the likelihood and the posterior (Wiqvist et al., 2021;
Radev et al., 2023). Comparisons between some of these methods are available,
e.g., in Greenberg et al. (2019), Lueckmann et al. (2021) and Häggström et al.
(2024). Moreover, NCDE has been used both to sequentially refine inference
conditionally on a specific observed data set yo, but also in an “amortized”
way (i.e. without dependence on a specific yo), see the review in Zammit-
Mangion et al. (2024). Recently, thanks to the aid provided by neural network
constructions, the field is expanding to accommodate generalized Bayesian
approaches for model misspecification (Matsubara et al., 2022; Pacchiardi et al.,
2024; Weerasinghe et al., 2025).

SBI methods that do not use neural networks to approximate conditional den-
sities have been called statistical SBI in Wang et al. (2024), and obviously have a
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longer history, and have been more extensively studied, also in terms of theoret-
ical guarantees. On the other hand, neural SBI can require orders of magnitude
fewer simulations (Lueckmann et al., 2021). Since our work is placed within
statistical SBI, in the next sections we devote special attention to this class of SBI
methods, especially for ABC and synthetic likelihoods, since these both have a
prominent role in our work. Producing a detailed classification of SBI methods
is a difficult task, as the methodology is fertile and rapidly expanding. We refer
the reader to https://simulation-based-inference.org/ for a large,
continuously updated, resource collecting publication within SBI.

2.1.1 Statistical SBI
Since the seminal paper of Tavaré et al. (1997), ABC has evolved into a broad
class of methods for approximating the posterior π(θ | yo). Several ABC
variants proposed in the literature are linked not only to different sampling
schemes, but also to deeper inferential questions. For example, ABC can be
viewed as a way to robustify inference in the presence of model misspecification
(see the recent connection between ABC and generalized Bayesian inference
Järvenpää et al., 2025), or even as a method that yields exact inference for a
noisy (“perturbed”) version of the true unknown model (Wilkinson, 2013). In
this chapter, however, we focus on computational aspects: specifically, we
consider several ways of sampling from approximations to π(θ | yo), not only
through ABC but also via related SBI methodologies.

In ABC we consider the following approximation to the posterior

πϵ(θ | yo) ∝ π(θ)
∫
Y
Kϵ (∥y − yo∥) pθ(y) dy, (2.3)

for a non-negative kernel Kϵ (∥y − yo∥), with bandwidth ϵ > 0 and assigning
larger weights to values of y ∈ Y that are close to data yo ∈ Y (for some distance
metric || · ||). We discuss ABC more in detail in sections 2.1.3-2.1.5. Here we
only want to emphasize the fact that the quantity

∫
Y Kϵ (∥y − yo∥) pθ(y) dy

can be seen as a non-parametric approximation to the likelihood pθ(y
o), and

the approximation improves as ϵ → 0. A large body of research has been
devoted to mitigating the curse of dimensionality in ABC, stemming from its
nonparametric nature, where the observation spaceY may be high-dimensional.
The first and most important mitigation factor being the reduction of the
dimension of the observation space to one of smaller dimension, which can
be achieved with the introduction of data summarization, as discussed in
Section 2.1.6. With data summarization, instead of considering inference based
on observed data yo, the inference problem is based on its summaries so =
S(yo) ∈ S, for a suitable choice a summary function S : Y → S, mapping the

https://simulation-based-inference.org/
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data space Y into summary space S ⊂ Rk (with k ≪ dim(y)). This allows to
drastically reduce the value of ϵ towards obtaining accurate inference from
πϵ(θ | so) via Monte Carlo procedures, conditionally on S(·) being “informative”
for θ. However, dependence of the problem on a small enough ϵ implies that
Monte Carlo procedures are dependent on acceptance-rejection steps, typically
translating in high rejection rates. For these reasons, many advanced proposal
samplers have been suggested in ABC, and we describe some of those in this
section.

2.1.2 (Bayesian) synthetic likelihoods
Besides ABC, another important statistical SBI methodology is the synthetic
likelihood (SL) approach (Wood, 2010; Price et al., 2018), which (unlike ABC)
proposes a parametric approximation of the summaries density p(so | θ). SL
models the distribution of the k-dimensional summary statistics under the for-
ward simulator with a k-dimensional multivariate normal density ϕk(µθ,Σθ),
for a given parameter θ. In practice, conditional on a parameter value θ∗, one
forward-simulates M synthetic datasets y1:M , i.i.d. fromM(θ∗). For each yi,
the corresponding summary statistics si = S(yi) are computed. From the re-
sulting M vectors of summaries, we can then construct the usual sample-based
unbiased estimates of the mean, µ̂θ∗ , and the covariance matrix, Σ̂θ∗ (both
depending on the specific θ∗):

µ̂θ∗ =
1

M

M∑
i=1

si, Σ̂θ∗ =
1

M − 1

M∑
i=1

(si − µ̂θ∗)(si − µ̂θ∗)⊤,

with ⊤ denoting transposition. We can then evaluate the resulting density at
the summary statistics of the data so, this yielding the “synthetic likelihood”
p̂θ∗(so) = ϕ(so; µ̂θ∗ , Σ̂θ∗). This estimate can then be plugged into standard
MCMC algorithms for Bayesian inference (Price et al., 2018; Picchini et al., 2023),
approximate maximum likelihood estimation (Wood, 2010), or variational
Bayes approximations (Ong et al., 2018). In Price et al. (2018) it was studied
how MCMC sampling targeting π̂(θ | so) ∝ p̂θ(s

o)π(θ) can be accurate and
with a lower rejection rate than, e.g., ABC-MCMC algorithms (described in
Section 2.1.4), and also less sensitive to the curse of dimensionality for an
increasing dimension k of the summaries S(·). The most critical problems are
(i) the construction of summary statistics that are both informative for θ and
approximately Gaussian distributed, although recent works are able to relax
these aspects (Fasiolo et al., 2018; An et al., 2020), and (ii) the requirement
to simulate M datasets (often in the order of thousands) at each value of θ,
making the methodology computer-intensive (also here research is available to
mitigate the effort Priddle et al., 2022, Picchini et al., 2023).
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2.1.3 Rejection ABC and importance sampling ABC
We now consider ABC samplers. We start with the oldest, and simpler, ABC
sampler, the ABC rejection algorithm (Tavaré et al., 1997; Pritchard et al., 1999).
This algorithm proceeds as follows: first, a parameter θ∗ ∼ π(θ) is sampled
from the prior distribution. Given θ∗, synthetic data y∗ is forward simulated
fromM(θ∗). A low-dimensional summary statistic s∗ = S(y∗) is then com-
puted, and we can write that (implicitly) s∗ ∼ pθ∗(s), where S : Y → S is a
k-dimensional vector of summary statistics (with k ≪ dim(yo)), see Section
2.1.1. Let so = S(yo) denote the summary statistic of the observed data. Using
a distance metric ∥ · ∥, the distance ∥s∗ − so∥ is computed. If this distance is
less than a predefined threshold ϵ > 0, the proposed parameter θ∗ is accepted
as an approximate draw from the posterior πϵ(θ | so). This scheme can be
iterated N times to result in N independent draws from πϵ(θ | so). It is impor-
tant to emphasize that ABC involves multiple layers of approximation. First,
the observed and simulated data are replaced by low-dimensional summary
statistics. The summary function plays a critical role in the quality of infer-
ence, and its choice will be the subject of a dedicated section. Second, as an
illustration, consider the common indicator (uniform) ABC kernel given by
Kϵ(∥s∗ − so∥) ≡ I (∥s∗ − so∥ ≤ ϵ), which is non-zero only when ∥s∗ − so∥ ≤ ϵ,
then ABC accepts simulated summaries that lie within an ϵ-ball around so,
introducing a further approximation. By recalling (2.3), the ABC posterior can
be expressed as

πϵ(θ | so) ∝
∫
S
I (∥s− so∥ ≤ ϵ) pθ(s)π(θ) ds. (2.4)

If the summary statistic S(·) is highly informative for θ, then the ABC posterior
πϵ(θ | so) ≈ πϵ(θ | yo), with equality holding only when S(·) is a sufficient
statistic. Additionally, as ϵ→ 0, we recover the true posterior conditioned on
the summary statistic, that is, πϵ(θ | so)→ π(θ | so). Therefore, when using a
small threshold ϵ and an informative summary statistic S(·), ABC can yield a
reasonable approximation to the true posterior π(θ | yo). Choosing an appro-
priate value for ϵ involves a trade-off: reducing ϵ improves the accuracy of the
posterior approximation (assuming enough accepted samples are obtained),
but increases computational cost due to a higher rejection rate of proposed pa-
rameters. One could also sample from an alternative proposal distribution g(θ),
rather than from the prior π(θ). However, this requires knowing the bounding
constant C > 0 such that π(θ) ≤ Cg(θ), which is difficult to determine in
practice.

A more flexible alternative to ABC rejection is ABC importance sampling (ABC-IS,
Chapter 4 in Sisson et al., 2018), as it naturally accommodates sampling from
a proposal distribution other than the prior. Consider reparametrising the



14 2. Bayesian inference

problem in terms of proposing jointly (θ, s) ∼ g(θ, s) on the joint space Θ× S
of parameters and summary statistics, and take g(θ, s) = pθ(s) g(θ). Therefore
each θ∗ ∼ g(θ) is assigned a weight

πϵ(θ, s | so)
g(θ, s)

∝ I (∥s− so∥ ≤ ϵ) pθ(s)π(θ)
pθ(s) g(θ)

=
I (∥s− so∥ ≤ ϵ) π(θ)

g(θ)
, (2.5)

where
πϵ(θ, s | so) ∝ I (∥s− so∥ ≤ ϵ) pθ(s)π(θ).

Therefore, suppose we obtain (by repeated sampling) a population of N sam-
ples (θ1:N , s1:N ) such that I

(
∥si − so∥ ≤ ϵ

)
= 1 for i = 1, . . . , N . If we then

assign the corresponding (unnormalized) weights wi ∝ π(θi)/g(θi), we can
resample N times with replacement from the weighted set (θ1:N , w1:N ) (dis-
carding the summaries) to obtain a new set of N independent samples from
πϵ(θ | so). The chosen factorization g(θ, s) = pθ(s) g(θ) allows the summaries
likelihood term pθ(s) to cancel in the expression above, thus making the proce-
dure “likelihood-free”. The idea of weighting accepted parameter proposals
based on prior-to-proposal ratios, as in ABC-IS, naturally extends to more
advanced population-based methods. In particular, ABC Sequential Monte Carlo
(ABC-SMC) builds upon ABC-IS by operating on a population of weighted
parameters (called particles), iteratively updating the proposal distribution
and gradually reducing the threshold ϵ, allowing for more efficient exploration
of the posterior. This procedure is carried out over multiple rounds, each
round yielding independent samples from an ABC posterior that concentrates
more closely around the true posterior π(θ | so). ABC-SMC, regarded as the
state-of-art ABC sampler, is detailed in Section 2.1.5.

In parallel to this importance sampling-based line of development, another
widely used class of methods is ABC-MCMC, which relies on constructing a
Markov chain whose stationary distribution approximates the ABC posterior.
Unlike importance sampling or SMC, ABC-MCMC does not rely on weight-
ing, but instead uses an accept/reject mechanism embedded in an MCMC
framework. However, unlike ABC rejection, ABC-IS and ABC-SMC which
return independent posterior samples, ABC-MCMC instead returns correlated
samples. In the following, we begin with ABC-MCMC and then proceed to
ABC-SMC, both of which will serve as the foundation for the methodological
contributions of this thesis.

2.1.4 ABC-MCMC
We alluded to the Metropolis-Hastings (MH) algorithm at the beginning of this
chapter, and introduced its acceptance ratio in Equation (2.2). ABC variants of
the MCMC algorithm were originally developed in Marjoram et al. (2003) (see
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also Bortot et al., 2007; Wegmann et al., 2009; Ratmann et al., 2009; Sisson and
Fan, 2011; Sisson et al., 2018 for more extensive discussions on ABC-MCMC).
Below we follow the exposition as in Marjoram et al. (2003), where an indicator
kernel is used, however a generic Kϵ could equivalently be used. Similarly to
ABC rejection and ABC-IS, the target distribution is the joint ABC posterior
πϵ(θ, s | so) ∝ I(∥s− so∥ ≤ ϵ) pθ(s)π(θ), defined on Θ× S. On this space, the
proposal distribution factorizes as

g((θ, s), (θ∗, s∗)) = q(θ∗ | θ) pθ∗(s∗),

where q(θ∗ | θ) is the proposal distribution for the parameters, and pθ∗(s∗)
corresponds to the simulation of summary statistics from the model given the
proposed parameter. As a result, the acceptance probability of a proposed
move from (θ, s) to (θ∗, s∗) becomes min (1, α((θ, s), (θ∗, s∗))), with

α((θ, s), (θ∗, s∗)) =
πϵ(θ

∗, s∗ | so) g((θ∗, s∗), (θ, s))
πϵ(θ, s | so) g((θ, s), (θ∗, s∗))

=
I(∥s∗ − so∥ ≤ ϵ) pθ∗(s∗)π(θ∗) q(θ | θ∗) pθ(s)
I(∥s− so∥ ≤ ϵ) pθ(s)π(θ) q(θ∗ | θ) pθ∗(s∗)

=
I(∥s∗ − so∥ ≤ ϵ)π(θ∗) q(θ | θ∗)
I(∥s− so∥ ≤ ϵ)π(θ) q(θ∗ | θ) . (2.6)

Although the final expression resembles the standard MH ratio in terms of
prior and proposal densities, the intractable likelihood terms are not evaluated
directly. Instead, the acceptance probability includes the indicator functions
that enforce proximity between the simulated and observed summary statistics.
Notice, the indicator function at the denominator of (2.6) can be safely removed,
as this corresponds to “accepted summaries”, and as such this indicator equals
1. We embed this consideration into Algorithm 1, returning N correlated
parameter samples from πϵ(θ | so).

Algorithm 1 ABC-MCMC (so, ε > 0, N , initial θ(0))

1: for i = 1, . . . , N do
2: Sample θ∗ ∼ q(θ | θ(i−1)), and simulate s∗ ∼ pθ∗(s).

3: Calculate α = min
(
1, π(θ∗)q(θ(i−1)|θ∗)

π(θ(i−1))q(θ∗|θ(i−1))

)
I(∥s∗ − so∥ ≤ ϵ).

4: Set θi = θ∗ with probability α, and θi = θi−1 otherwise.
5: end for
6: Output: Samples θ1:N .

ABC-MCMC achieves higher acceptance rates than ABC rejection or impor-
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tance sampling when using the same threshold parameter ϵ, albeit at the cost of
increased autocorrelation in the resulting Markov chain (Marjoram et al., 2003).
More critically, the acceptance of a proposed move θ → θ∗ depends not only on
the prior and proposal densities, but also on the ability to generate a summary
statistic s∗ ∼ pθ∗(s) that lies within an ϵ-ball of the observed summary so.
Such proposals are likely to be accepted frequently if they come from regions
of high posterior density. However, in regions of low density the chain may
repeatedly fail to produce acceptable summaries, causing it to remain stuck at
the current state for many iterations. This results in poor mixing and can lead
to biased posterior approximations or convergence issues. These challenges
are particularly pronounced when using kernels such as the indicator function,
which sharply reject distant proposals rather than downweighting them as a
different ABC kernel Kϵ would (e.g. a Gaussian kernel). The determination of
ϵ, and strategies to let it vary, are considered in Bortot et al. (2007), Simola et al.
(2021) and Vihola and Franks (2020).

Several extensions and improvements to ABC-MCMC have been proposed in
the literature to address its well-known limitations (Bortot et al., 2007; Ratmann
et al., 2007; Baragatti et al., 2013; Ratmann et al., 2009; Meeds et al., 2015;
Kobayashi and Kozumi, 2015; Cabras et al., 2015; Kousathanas et al., 2016;
Picchini, 2014). Our own contribution follows this line of work by focusing
on improving the initial mixing and robustness of the sampler, particularly in
challenging regions of the parameter space.

An alternative approach to ABC-MCMC that has gained widespread popu-
larity is ABC-SMC. This class of methods builds directly on the ideas of ABC
importance sampling and addresses many of the limitations of ABC-MCMC,
by evolving a population of weighted particles through a sequence of inter-
mediate distributions, while gradually reducing the tolerance ϵ in ways that
are more intuitive that for ABC-MCMC. ABC-SMC combines the strengths of
population-based inference with adaptive proposals and threshold schedules.
In the next section, we introduce the standard ABC-SMC framework and lay
the foundation for the improved version developed later in this thesis.

2.1.5 ABC-SMC
As alluded to in the previous section, ABC-SMC extends ABC-IS by evolving
a population of weighted posterior samples, named “particles” in the SMC
literature, through a sequence of intermediate distributions with decreasing
thresholds. Let ϵ1 > ϵ2 > · · · > ϵR > 0 denote a sequence of tolerance values,
where R is the total number of “rounds”, where each round corresponds to a
corresponding posterior approximation. The target distribution at round r is
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the ABC posterior

πϵr (θ | so) ∝ I(∥s− so∥ ≤ ϵr) pθ(s)π(θ).

At each round, a set ofN particles are propagated and reweighted in a way that
approximates the posterior distribution more closely as ϵr decreases. The se-
quence of distributions πϵ1 , . . . , πϵR thus guides the population toward regions
of high posterior density, while maintaining diversity through perturbations
of the particles. In the first round of ABC-SMC, particles are sampled inde-
pendently from the prior distribution π(θ). For each sampled parameter θi1,
synthetic data is generated under the model, and a summary statistic si is
computed. The parameter θi1 is retained if the simulated summary satisfies
∥si − so∥ ≤ ϵ1, and is then assigned a weight of 1/N . The ABC posterior
at this stage is approximated using the retained set of N weighted particles
(θ1:N1 , w1:N

1 ). This yields the empirical approximation

πϵ1(θ | so) ≈
N∑
i=1

wi
1 δθi

1
(θ),

where δ is the Dirac delta function. In subsequent rounds r = 2, . . . , R, particles
are no longer sampled from the prior, but instead are generated by perturbing
the previous population. More precisely, a particle θ∗ is sampled from the
previous round’s population θ1:Nr−1 with probability proportional to its normal-
ized weight wi

r−1, and then perturbed using a transition kernel K(θ | θ∗). The
resulting perturbed parameter θir is accepted if the simulated summary statistic
si ∼ pθi

r
(s) satisfies the ABC condition ∥si − so∥ ≤ ϵr. Once accepted, the

importance weight of particle θir is computed as

wi
r ∝

π(θir)∑N
j=1 w

j
r−1K(θir | θjr−1)

, (2.7)

and the weights are normalized to sum to one. This correction accounts for the
fact that particles are sampled from a mixture distribution rather than directly
from the prior. A common and practical choice for the transition kernel is the
Gaussian one

K(θ | θ∗) = N (θ; θ∗,Σr),

where Σr is typically set to twice the weighted empirical covariance matrix of
the particles in the previous round Σr = 2×Cov((θ1:Nr−1, w

1:N
r−1)) (Beaumont et al.,

2009; Toni et al., 2009). This choice helps maintain diversity in the population
while preserving concentration around regions of high posterior density. Algo-
rithm 2 outlines ABC-SMC. Other kernel choices and adaptive strategies pro-
ducing more informed and efficient proposal kernels are in Filippi et al. (2013)
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and Picchini and Tamborrino (2024).

Algorithm 2 ABC-SMC (ϵ1 > . . . > ϵR)

1: for i = 1 to N do
2: while parameter not accepted do
3: Sample parameter θi1 ∼ g(θ) and summary si1 ∼ pθi

1
(s).

4: if ∥si1 − so∥ ≤ ϵ1 then
5: Accept θi1 and compute wi

1 = π(θi1)/g(θ
i
1).

6: end if
7: end while
8: end for
9: Normalize w1:N

1 .
10: for r = 2 to R do
11: Compute particle covariance Σr = 2× Cov((θ1:Nr−1, w

1:N
r−1)).

12: for i = 1 to N do
13: while parameter not accepted do
14: Sample θ∗ from θ1:Nr−1 with probabilities w1:N

r−1.
15: Sample θir ∼ N (θ∗,Σr) and simulate si ∼ pθi

r
(s).

16: if ∥si − so∥ < ϵr then
17: Accept θir and compute wi

r = π(θir)/
∑N

j=1 w
j
r−1ϕp(θ

i
r | θjr−1,Σr).

18: end if
19: end while
20: end for
21: Normalize w1:N

r .
22: end for
23: Output: Weighted sample (θ1:NR , w1:N

R ) of the ABC posterior density.

An alternative approach to improve upon the standard ABC-SMC algorithm is
to revisit the simulation step itself. In this thesis, we propose an improvement
to the standard ABC-SMC algorithm that is specifically tailored to SDE models.
Our approach is based on a data-conditional simulator, in which sample paths are
generated conditionally on the observed data yo, rather than unconditionally
from the model. This changes the nature of the simulation step: instead of
sampling summary statistics from the marginal distribution pθ(s), we sample
from the conditional distribution pθ(s | yo). The result is a set of simulated
trajectories that more closely follow the observed data, allowing for more
informative comparisons. As a consequence, the importance weights in ABC-
SMC must also be modified. Since particles are no longer drawn from pθ(s), the
standard ABC-SMC weight formula no longer applies directly. In Paper I we
derive the appropriate weight correction that accounts for the data-conditional
simulation, and show how this leads to improved efficiency and accuracy in
posterior inference for SDE models.
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2.1.6 Summary statistics
We have already stated that reducing the dimensionality of the data is crucial
in ABC: the approximation error grows as data dimension increases (Prangle,
2018). In practice, well-chosen summary statistics can preserve the informa-
tion relevant to the parameters while improving ABC’s efficiency. Initially,
practitioners relied on handcrafted summary statistics based on domain exper-
tise (e.g. mean, variance, autocorrelations), and while expert-chosen features
may work well, they provide no guarantee about their adequacy in retaining
enough information about θ. Moreover, different models and datasets require
different summaries, making manual selection labor-intensive. This motivates
a shift towards data-driven or automatic approaches to constructing summary
statistics that retain relevant information for the parameters (Blum et al., 2013;
Prangle, 2018).

A landmark idea was to construct summaries by regressing the parameter on
the data (Fearnhead and Prangle, 2012). The authors proved that the optimal
summary statistic (minimizing information loss) for ABC is the posterior mean
of the parameters, when considering a quadratic loss. Of course, the posterior
mean is not known, but one can estimate it via simulation and regression,
which is a key idea in Fearnhead and Prangle (2012). Before the inference task, a
simulated set of parameter-data samples is generated from the prior predictive
distribution as (θi, yi) ∼ π(θ) pθi(y), and then a regression model is fit to
predict the parameter value from the simulated data. More precisely, assuming
dim(θ) = p, then for the jth parameter (j = 1, . . . , p), a linear regression model
is fit of the form

θij = E(θj | yi) + ξij = b0j + b⊤j h(y
i) + ξij , j = 1, . . . , p,

where ξij is a mean-zero random variable with constant variance, and h(·)
is a function of the data, for example it may return powers of y or other
transformations. The p different regression models are estimated separately
by least squares, and the fitted values b̂0j + b̂⊤j h(y) provide an estimate for
E(θj | y), which can then be used as a summary statistic due to the optimality
of the posterior mean. The fitting is performed before the start of ABC and
hence the summary statistics function remains fixed throughout. This work
was further developed and fully automated by Jiang et al. (2017), who modeled
the regression function via a deep neural network:

θi = E(θ | yi) + ξi = fβ(y
i) + ξi,

for the complete multidimensional parameter θi, where fβ(·) is a neural net-
work parameterized by weights β. Due to the greater representational power of
neural networks, the deep learning approach outperforms the linear regression
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method, albeit at a higher computational cost. Jiang et al. (2017) found that
the neural network summaries led to posteriors as accurate as those using the
theoretically optimal or domain-specific summaries. Since then, the use of feed-
forward neural nets and other machine learning methods in ABC has become
increasingly popular, as discussed in Section 2.1. Partially exchangeable networks
(PENs; Wiqvist et al., 2019) are a class of invariant neural networks designed to
further enhance ABC by learning the posterior mean as a summary statistic.
PENs exploit the partially exchangeable structure inherent in Markov chains
and are particularly suited for SDE models. Compared to the approach of Jiang
et al. (2017), PENs require significantly less training data, as the architecture
itself encodes the Markovian structure and therefore does not need to learn it
from data. Wiqvist et al. (2019) demonstrate that for models invariant under
a subset of the symmetric group, specifically those respecting d-block-switch
transformations, the network should also be d-block-switch invariant. To that
end, they propose the following regression model for the posterior mean:

θi = E(θ | yi) + ξi = ρβρ

(
yi1:d,

n−d∑
l=1

ϕβϕ
(yil:l+d)

)
+ ξi, (23)

where ρβρ and ϕβϕ
are neural networks, and the sum runs over all overlapping

d-blocks of the input sequence. The summary statistics estimator can be trained
before running the inference algorithm. However, for this strategy to be effec-
tive, very many samples from the prior-predictive distribution are required,
and this number is affected by how “vague” the prior is. This is a significant
cost, but it is amortized: once the network is trained, producing a summary or
performing inference on new data is fast (just a forward pass).

Another approach is to dynamically learn the summary statistics, within a
sequential inference algorithm like ABC-SMC, see Chen et al. (2021a). The
main idea is to learn the summary statistics and to approximate the posterior
density at the same time, over multiple rounds. In ABC-SMC, this entails
progressively populating an initial dataset with accepted parameters and their
corresponding simulated data. Moreover, the approach of Chen et al. (2021a)
involves constructing nearly sufficient summary statistics by maximizing the
mutual information between the summary S(y) and the parameter θ. They
use deep neural networks to encode the data into S(y) and employ an In-
foMax principle (or the principle of maximum information preservation) to
ensure that the mutual information I(θ, S(y)) is as high as possible. In partic-
ular, Chen et al. (2021a) explore several approaches for learning informative
statistics; among them, they propose using distance correlation as a depen-
dency measure, offering a non-parametric alternative to KL-divergence-based
mutual information estimators. More concretely, Chen et al. (2021a) propose
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optimizing the following objective:

max
S
L(S) = Ep(x,θ)p(x′,θ′)[h(S(x), S(x

′))h(θ, θ′)]√
Eπ(θ)π(θ′)[h2(θ, θ′)] · Ep(x)p(x′)[h2(S(x), S(x′))]

, (2.8)

where h(a, b) = ∥a − b∥ − Ep(b′)∥a − b′∥ − Ep(a′)∥a′ − b∥ + Ep(a′)p(b′)∥a′ − b′∥.
Here, S(x) is parameterized as a neural network and trained to maximize
distance correlation between its outputs and the parameters θ, ensuring that
the extracted statistics retain information necessary for inference while reducing
dimensionality. Through experiments, Chen et al. (2021a) showed that using
these learned summaries can boost the performance of not only traditional
ABC but also the newer neural likelihood approaches.

2.2 Conclusions

This chapter reviewed simulation-based inference with an focus on ABC and its
variants: ABC rejection, ABC importance sampling, ABC–MCMC, ABC–SMC,
and synthetic likelihoods. We highlighted the central role of summary statistics
and recent approaches for learning them using neural networks. These methods
lay the groundwork for the new algorithms developed in the remainder of this
thesis, which aim to improve inference for stochastic nonlinear models.

Across the papers, we extend standard ABC samplers to data-conditional vari-
ants: in Papers I–II we develop data-conditional ABC–SMC, while in Paper
III we propose a data-conditional ABC–MCMC. To mitigate the curse of di-
mensionality, we employ learned summary statistics: Papers I–II use PENs
tailored to Markov/time-series structure, and Paper III again uses PENs and
additionally adopts InfoMax summary statistics.
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3 Stochastic differential equa-
tions

SDEs are a standard modelling tool for stochastic dynamical systems. They
are widely used across numerous scientific areas, including biology, finance,
and neuroscience (Fuchs, 2013). In this thesis we apply the parameter inference
methods developed across Papers I-III to the Chan–Karolyi–Longstaff–Sanders
(CKLS Chan et al., 1992) family of financial models and to SDEs arising from
chemical reaction networks, among other systems. In general, the likelihood
function for SDEs is intractable because the transition densities are character-
ized as solutions to the Kolmogorov forward/backward equations and they
admit no closed-form expression except in special cases (Iacus, 2008; Øksendal,
2013; Fuchs, 2013). ABC algorithms rely on simulating a large amount of
sample paths via numerical methods, so the choice of numerical scheme and
step size directly trades off accuracy against computational cost (Kloeden and
Platen, 1992). In this chapter we briefly recall essentials for SDEs: Brownian
motion and Itô calculus, transition densities via Kolmogorov equations, and
numerical methods.

3.1 Notation

Let (Ω,F ,P) be a probability space. An X -valued stochastic process is a family of
random variables (X(t))t∈T defined on T ×Ω taking values in X . The random
variables are functions of the form

X(t, ω) : T × Ω→ X .

For T = N, we have a discrete-time process, and for T ⊂ R we have a continuous-
time process. Although the primary focus of this thesis is on continuous-
time processes with T = [0,∞), Paper III specifically addresses the discrete-
time case. Each outcome ω ∈ Ω determines a trajectory or sample path of the

23
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stochastic process X , denoted by (X(t, ω))t∈T . In the remainder of this section,
we will take T = [0,∞) and write stochastic processes as (X(t))t≥0. The
progressive accumulation of information generated by a stochastic process is
described by a filtration, which is a family of sub-σ-algebras (F(t))t≥0 such that
F(s) ⊆ F(t) ⊆ F for all 0 ≤ s ≤ t. Intuitively, F(t) represents the information
available up to time t. A stochastic process (X(t))t≥0 is adapted to the filtration
(F(t))t≥0 if, for every t ≥ 0, the random variable X(t) is F(t)-measurable.
A particularly important example of a continuous-time stochastic process is
Brownian motion, which plays a central role in both the theory and simulation
of stochastic systems. We now turn to its definition and properties.

3.2 Brownian Motion

Brownian motion, also known as the Wiener process, is a cornerstone of stochas-
tic modeling. It serves as the building block for more complex stochastic pro-
cesses, including stochastic differential equations (SDEs), and underpins many
methods in mathematical finance, physics, and biology. Intuitively, Brownian
motion models the random and continuous movement of particles suspended
in a fluid, as first observed by Robert Brown in the 19th century. Mathemat-
ically, it is defined as a continuous-time stochastic process with stationary
and independent increments, almost surely continuous paths, and Gaussian
increments. We now introduce the standard Brownian motion and summarize
its defining properties. A standard Brownian motion (W (t))t≥0 is a real-valued,
F(t)-adapted process that satisfies the following properties:

• W (0) = 0 almost surely.
• The sample paths t 7→W (t, ω) are almost surely continuous.
• For all 0 ≤ s < t, the increment W (t)−W (s) is independent of F(s), and

its distribution depends only on the length of the interval t− s.
• For all 0 ≤ s < t, the increment W (t)−W (s) is normally distributed with

mean zero and variance t− s, i.e. W (t)−W (s) ∼ N (0, t− s).
From these properties, it follows that Brownian motion can be simulated in a
straightforward manner. Given a time increment h > 0, one can construct a
discrete-time approximation of the process on an interval [0, T ] by sampling
independent increments from the normal distribution N (0, h). Specifically, for
any t ≥ 0, W (t+h)−W (t) ∼ N (0, h), so that W (t+h) =W (t)+

√
h ·Z where

Z ∼ N (0, 1) independently across steps. Repeating this iteratively yields a
simulated trajectory of Brownian motion. A multi-dimensional standard Brow-
nian motion is a vector-valued process whose components are independent
one-dimensional standard Brownian motions. An example of a simulated
trajectory in both one and two dimensions is shown in Figure 3.1. Brownian
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Figure 3.1: Simulated trajectories of Brownian motion. Left: one-dimensional Brownian
motion. Right: two-dimensional Brownian motion.

motion is rarely sufficient to model the dynamics of real-world systems on its
own. In many applications, we are interested in systems that evolve under the
influence of both deterministic trends and stochastic fluctuations. This leads
naturally to the study of SDEs, where Brownian motion serves as the source of
randomness, alongside a deterministic component.

3.3 Itô Processes and SDEs

In the context of SDEs, a broad class of solutions can be described using Itô
processes. These are continuous, adapted processes that can be written as the
sum of a deterministic integral term and a stochastic integral with respect to
Brownian motion. The definition of an Itô process provides the foundation
for much of stochastic calculus and will serve as the basis for the models
considered throughout this thesis; a standard reference is Øksendal (2013). We
begin by considering scalar Itô processes.

Definition 3.3.1 (Scalar Itô Process). Let (Ω,F , (F(t))t≥0,P) be a filtered probabil-
ity space, and let W (t) denote a standard Brownian motion adapted to the filtration
(F(t))t≥0. A scalar Itô process is a continuous, F(t)-adapted process X(t) defined
on t ≥ 0 that satisfies the stochastic integral equation

X(t) = X(0) +

∫ t

0

µ(X(s)) ds+

∫ t

0

σ(X(s)) dW (s),
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where the drift µ : X → R and diffusion coefficient σ : X → R are measurable
functions satisfying the integrability conditions∫ T

0

|µ(X(s))|ds <∞,
∫ T

0

σ2(X(s)) ds <∞ almost surely, for all T <∞.

In differential form, the process is said to satisfy the SDE

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t).

The definition of a scalar Itô process extends naturally to multidimensional
systems. Given a continuous F(t)-adapted process X(t) ∈ X driven by an
m-dimensional Brownian motion, we assume the existence of a drift function
µ : X → Rd and a diffusion function σ : X → Rd×m. Each component µi and
σij is assumed to satisfy the conditions stated in Definition 3.3. Explicitly, each
Xi(t) satisfies

dXi(t) = µi(X(t)) dt+

m∑
j=1

σij(X(t)) dWj(t), for i = 1, . . . , d.

The Itô integral
∫ t

0
φ(r) dW (r) is defined as a stochastic integral with respect

to Brownian motion. While we do not detail its construction here, we recall
two important properties in the case where the integrand is deterministic. Let
φ : [s, t]→ R be deterministic with

∫ t

s
φ(r)2 dr <∞. Then∫ t

s

φ(r) dW (r) ∼ N
(
0,

∫ t

s

φ(r)2 dr

)
, 0 ≤ s < t ≤ T.

Additionally, for any constant c ∈ R,∫ t

s

cdW (r) = c
(
W (t)−W (s)

)
.

Many applications in stochastic modeling require transforming solutions of
SDEs via nonlinear functions. The tool that enables such transformations is
Itô’s formula, which generalizes the chain rule to stochastic processes. Let X(t)
be as defined in Definition 3.3 and let ψ : X → R be a measurable function,
twice continuously differentiable. Then the process Z(t) = ψ(X(t)) is again a
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continuous Itô process and satisfies

dZ(t) =

(
µ(X(t))

∂ψ

∂x
(X(t)) +

1

2
σ2(X(t))

∂2ψ

∂x2
(X(t))

)
dt

+ σ(X(t))
∂ψ

∂x
(X(t)) dW (t).

for all t ∈ [0, T ]. Itô’s formula admits an extension to d-dimensional systems;
however, in this thesis we will only apply it to scalar processes, typically in a
component-wise manner.

The transformation of SDEs into simpler or more analytically tractable forms
is a recurring theme in stochastic modeling. In particular, one often seeks
to simplify the diffusion coefficient of an SDE—ideally transforming it into
a constant. A classical tool for this purpose is the Lamperti transform, which
maps a one-dimensional diffusion process with non-constant diffusion into
one with unit diffusion (Iacus, 2008). The Lamperti transform often enables
analytical tractability and plays a crucial role in the construction of certain
exact simulation algorithms and variance reduction techniques. We now state
a general version of the one-dimensional Lamperti transform, see Møller and
Madsen (2010) for the multivariate Lamperti transform.

Theorem 3.3.2 (Lamperti Transform). Let X(t) be as defined in Definition 3.3 and
define

ψ(X(t)) =

∫
1

σ(x)
dx

∣∣∣∣
x=X(t)

.

If ψ(·) : X → R is one-to-one for each t ∈ [0,∞), then we define Z(t) = ψ(X(t)).
Otherwise, if σ(X(t)) > 0 for all t and all X(t), define

Z(t) = ψ(X(t)) =

∫ x

y

1

σ(u)
du

∣∣∣∣
x=X(t)

,

where y is an arbitrary point in X . Then Z(t) satisfies an SDE with unit diffusion:

dZ(t) =

(
µ(ψ−1(Z(t)))

σ(ψ−1(Z(t)))
− 1

2

∂σ

∂x
(ψ−1(Z(t)))

)
dt+ dW (t).

This transformation reduces the complexity of the diffusion term and can
greatly simplify the analysis of the process. The transformed process Z(t)
evolves with constant volatility, and if the inverse ψ−1 can be computed in
closed form, the original process X(t) can be explicitly reconstructed from
Z(t). The geometric Brownian motion is a classical example of a diffusion
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with multiplicative noise, and applying the Lamperti transform simplifies the
analysis by converting the model into one with constant diffusion.

Example 3.3.3 (Geometric Brownian Motion). Consider the SDE

dX(t) = aX(t) dt+ σX(t) dW (t), X(0) = 1,

where a, σ ∈ R are constants. The Lamperti transform Z(t) = log(X(t))/σ reduces
the SDE to one with constant diffusion:

dZ(t) =

(
a

σ
− 1

2
σ

)
dt+ dW (t).

The resulting linear SDE can be solved explicitly, yielding a process Z(t) with a
Gaussian distribution whose mean and variance are known in closed form, and since
X(t) = eσZ(t), it follows that X(t) is log-normally distributed.

3.4 Solutions to SDEs

Having introduced the class of Itô processes and their role in modeling stochas-
tic dynamics, we now turn to the question of what it means to solve an SDE.
Unlike deterministic differential equations, SDEs admit multiple notions of
solution depending on how randomness is handled. In particular, we distin-
guish between strong and weak solutions, which differ in whether the Brownian
motion driving the system is fixed in advance or constructed alongside the
solution. We also discuss the standard assumptions under which solutions
exist and are unique, such as Lipschitz continuity and linear growth conditions
on the drift and diffusion coefficients (see Kloeden and Platen, 1992). These
notions are essential for both the theoretical analysis of SDEs and the design of
numerical methods for their approximation.

A solution to a SDE may be understood in several senses, depending on how
the underlying probability space and driving Brownian motion are treated.
A strong solution is a process X(t) that is adapted to a given filtration and
constructed on a fixed probability space, with respect to a fixed Brownian
motion W (t). It satisfies the SDE, almost surely for all t ≥ 0. In contrast, a weak
solution consists of a new probability space, filtration, Brownian motion, and
adapted process (Y (t),W (t)) such that the SDE is satisfied in distribution, but
without requiring that the solution be constructed from a given Brownian mo-
tion. Existence and uniqueness of strong solutions typically rely on structural
assumptions on the drift and diffusion functions. If µ and σ satisfy a Lipschitz
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condition—that is, there exists a constant C > 0 such that for all x, y ∈ X ,

∥µ(x)− µ(y)∥+ ∥σ(x)− σ(y)∥ ≤ C∥x− y∥,

then there exists a unique strong solution. Moreover, if the initial condition
satisfies E∥X(0)∥2 <∞ and there exists a constant D > 0 such that

∥µ(x)∥2 + ∥σ(x)∥2 ≤ D(1 + ∥x∥2)

for all x ∈ X , then the solution is non-explosive and has finite second moments.

The concept of pathwise uniqueness plays a key role in the theory of strong
solutions. It states that if two processes X1(t) and X2(t) are both solutions to
the same SDE with the same Brownian motion and initial condition, then they
must coincide almost surely:

P
(
sup
t∈T
∥X1(t)−X2(t)∥ > 0

)
= 0.

That is, X1(t) = X2(t) for all t ≥ 0 with probability one. Pathwise uniqueness,
together with the existence of a weak solution, implies the existence of a strong
solution under general conditions. Finally, we distinguish between pathwise
uniqueness and uniqueness in law. The latter refers to the property that all
solutions to the SDE—regardless of the underlying probability space—have
the same distribution. While pathwise uniqueness implies uniqueness in law,
the converse does not hold in general.

3.4.1 Strong Approximations
Exact solutions to SDEs are available only in a limited number of special
cases. In practice, one often seeks to construct numerical approximations that
converge to the true solution of the SDE in a suitable sense. In this section, we
consider strong approximations, which aim to approximate individual sample
paths of the solution process. This is in contrast to weak approximations, which
target the convergence of distributions or expectations of functionals.

Let W (t) = (W1(t), . . . ,Wm(t))⊤ be an m-dimensional vector of independent
standard Brownian motions. Consider the d-dimensional Itô process satisfying
the SDE

dX(t) = µ(X(t)) dt+ σ(X(t)) dW (t), t ∈ [0, T ], (3.1)

with initial condition X(0) = X0, X(t) ∈ X ⊂ Rd, the drift function µ : X →
Rd, and the diffusion function σ : X → Rd×m satisfy suitable integrability
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conditions. The corresponding integral form of the equation is

X(t) = X0 +

∫ t

0

µ(X(s)) ds+

m∑
j=1

∫ t

0

σj(X(s)) dWj(s), t ∈ [0, T ], (3.2)

where σj denotes the jth column of the matrix-valued function σ.

Since explicit solutions to (3.1) are rarely available, we now turn to numerical
methods for approximating the sample paths of X(t). The idea is to discretize
the interval [0, T ] using a step size h > 0, and to approximate the stochastic
integrals over each subinterval using simple quadrature rules. In particular,
we now derive the Euler–Maruyama method by applying the left-point (rectan-
gular) rule to both the deterministic and stochastic integrals appearing in the
SDE. Let X(τk) be the value of the process at time τk = kh, and consider the
integral form of the SDE over a single time step on the interval [τk, τk+1], where
τk+1 = (k+1)h and k = 0, . . . , N − 1. To construct a numerical approximation,
we apply the Euler (rectangular) rule to the stochastic integral. Specifically,
each integral term ∫ τk+1

τk

σj(X(s)) dWj(s)

is approximated by evaluating the integrand at the left endpoint:∫ τk+1

τk

σj(X(s)) dWj(s) ≈ σj(X(τk))

∫ τk+1

τk

dWj(s)

= σj(X(τk))
(
Wj(τk+1)−Wj(τk)

)
.

We denote the Brownian increment over this step by ∆Wj,k+1 :=Wj(τk+1)−
Wj(τk). This approximation yields the Euler–Maruyama scheme, a method for
simulating sample paths of SDEs. We denote the numerical approximation
of the solution by XEuM, where XEuM

i,k represents the ith component of the
approximation at time τk = kh. The update rule is given by

XEuM
i,k+1 = XEuM

i,k + µi(X
EuM
1:d,k )h+

m∑
j=1

σij(X
EuM
1:d,k )∆Wj,k+1,

for i = 1, . . . , d, where XEuM
1:d,k = (XEuM

1,k , . . . , XEuM
d,k )⊤ denotes the full vector of

approximated components at time τk.



3.4. Solutions to SDEs 31

3.4.2 Limitations of higher-order methods for non-commutative
noise

While the Euler–Maruyama scheme provides a simple and widely used method
for numerically solving SDEs, it is only of strong order O(

√
h). To improve

accuracy, one can attempt to derive higher-order schemes using an Itô–Taylor
expansion. The Milstein scheme is a classical example of such a method, and in
the scalar case it offers a strong order of convergence O(h) without additional
complications. To make this improvement concrete, we now consider one
additional term in the Itô–Taylor expansion, which yields the Milstein scheme.
For k ∈ {0, ..., N − 1}, the Milstein approximation XM

1:d,k+1 given XM
1:d,k is

defined by

XM
1:d,k+1 := XM

1:d,k+µ(X
M
1:d,k)h+

m∑
i=1

σi(X
M
1:d,k)I

h
i +

m∑
i,j=1

σ′
i(X

M
1:d,k)σj(X

M
1:d,k)I

h
j,i,

where σi(x) again denotes the ith column of σ(x) ∈ Rd×m, and

σ′
i(x) :=


∂

∂x1
σi,1(x) · · · ∂

∂xd
σi,1(x)

...
. . .

...
∂

∂x1
σi,d(x) · · · ∂

∂xd
σi,d(x)


is the Jacobian of σi(x). The stochastic integrals appearing in the scheme are
defined as

Ihi :=

∫ τk+1

τk

dWi(r), Ihj,i :=

∫ τk+1

τk

(∫ r

τk

dWj(p)

)
dWi(r).

Using the identities Ihi,i =
(
(Ihi )

2 − h
)
/2, and Ihi,j+I

h
j,i = Ihi I

h
j , the last Milstein

correction term can be written as
m∑

i,j=1

σ′
i(X

M
1:d,k)σj(X

M
1:d,k)I

h
j,i =

1

2

m∑
i=1

σ′
i(X

M
1:d,k)σi(X

M
1:d,k)

(
(Ihi )

2 − h
)

+
1

2

m∑
i,j=1
i<j

(
σ′
i(X

M
1:d,k)σj(X

M
1:d,k) + σ′

j(X
M
1:d,k)σi(X

M
1:d,k)

)
Ihi I

h
j

+

m∑
i,j=1
i<j

(
σ′
i(X

M
1:d,k)σj(X

M
1:d,k)− σ′

j(X
M
1:d,k)σi(X

M
1:d,k)

)
Ah

ij ,
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where
Ah

ij :=
1

2

(
Ihi,j − Ihj,i

)
are the Lévy area terms, which are computationally expensive to simulate; see
Rydén and Wiktorsson (2001); Wiktorsson (2001); Malham and Wiese (2014) for
various approaches. However, if the commutativity condition

σ′
i(x)σj(x) = σ′

j(x)σi(x), for all i, j ∈ {1, . . . ,m},

is satisfied, then the Lévy area terms vanish. This condition always holds in
the scalar case with one driving noise, and more generally when the noise is
commutative.

In summary, while the Milstein scheme offers higher-order accuracy in the-
ory, its application to multidimensional SDEs with non-commutative noise
involves nontrivial terms that are difficult to simulate efficiently. As a result,
the Euler–Maruyama scheme remains the most commonly used method in
high-dimensional settings despite its lower order of convergence.

3.5 Transition densities and the Kolmogorov for-
ward equation

Given the Itô process X(t), the transition density is a function p(t, y | s, x) such
that for any Borel set A ⊆ X and times 0 ≤ s < t, the conditional probability of
the process moving from state x at time s to the set A at time t is given by

P
(
X(t) ∈ A | X(s) = x

)
=

∫
A

p(t, y | s, x) dy.

When it exists, the transition density characterizes the distribution of X(t)
conditioned on X(s) = x. The transition density plays a central role in both
the theoretical and applied study of SDEs. It provides a complete probabilistic
description of the evolution of the system and underlies quantities of interest
such as marginal distributions, first-passage times, and expectations of func-
tionals. In statistical inference, the transition density is often the key object
used to evaluate the likelihood of observed data.

To ensure the existence and regularity of the transition density, we impose
standard conditions on the drift and diffusion coefficients. Specifically, we
assume that (i) the drift µ is continuously differentiable and each σij is twice
continuously differentiable; (ii) the first and second derivatives of µ and σ are
locally bounded; and (iii) the diffusion matrix σ(x)σ(x)⊤ is uniformly elliptic,
i.e. ξ⊤σ(x)σ(x)⊤ξ ≥ λ∥ξ∥2, for all x ∈ X , ξ ∈ Rd, for some constant λ > 0.
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Under these conditions, the transition density p(t, y | s, x) exists, is smooth in y,
and satisfies the Kolmogorov forward equation (also known as the Fokker–Planck
equation):

∂

∂t
p(t, y | s, x) = −

d∑
i=1

∂

∂yi

(
µi(y) p(t, y | s, x)

)
+

1

2

d∑
i,j=1

∂2

∂yi ∂yj

(
(σ(y)σ(y)⊤)ij p(t, y | s, x)

)
,

with p(s, y | s, x) = δx(y).

In general, closed-form expressions for p(t, y | s, x) are only available in a
limited number of special cases, such as the Ornstein–Uhlenbeck process, geo-
metric Brownian motion or the Cox–Ingersoll–Ross model. For most nonlinear
or high-dimensional systems, solving the Kolmogorov PDE analytically is in-
feasible. Even numerical solutions are often impractical due to the curse of
dimensionality. As a result, simulation-based methods play a central role in
approximating the transition density, particularly in the context of parameter
inference.

3.6 The Cox–Ingersoll–Ross process

The Cox–Ingersoll–Ross (CIR) process, originally introduced by Cox et al.
(1985) for modeling short-term interest rates, is a one-dimensional SDE widely
used to model positive-valued quantities such as interest rates, volatility, and
population sizes. It is defined by

dX(t) = b(a−X(t)) dt+ σ
√
X(t) dW (t), (3.3)

where a, b, σ > 0 are constants and W (t) is a standard Brownian motion. The
CIR process has two important features: mean reversion towards a at a rate b,
and state-dependent volatility proportional to the square root of the current
value X(t). Due to the square-root diffusion, the process is non-negative for
all t. In particular, if the Feller condition 2ab ≥ σ2 holds, the boundary at zero
is unattainable and the process stays strictly positive almost surely. Even if
an explicit solution to the CIR (3.3) is not available in closed form, we can
simulate from it exactly, as its conditional transition density is known to follow
a non-central chi-square distribution. Specifically, the density of transitioning
from state x at time s to state y at time t > s is given by

p(t, y | s, x) = ce−u−v
(u
v

)q/2
Iq
(
2
√
uv
)
, x, y ∈ R+,
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where

c =
2b

σ2(1− e−b(t−s))
, q =

2ab

σ2
− 1, u = cxe−b(t−s), v = cy.

Here, Iq(·) denotes the modified Bessel function of the first kind of order q.

Nevertheless, several numerical schemes have been proposed in the literature
to approximate its strong solution, as it is often considered an important model
to evaluate new numerical methods, due to the numerical challenges it poses.
Standard schemes (such as EuM) fail to preserve the positivity of its trajecto-
ries, and the typical assumptions required for weak and strong convergence
results (Kloeden and Platen, 1992) do not hold as the diffusion coefficient is
not Lipschitz continuous. This explains why EuM does not converge, despite
being extensively used in practice, often with added modifications to ensure
non-negativity, such as truncating at zero or taking absolute values. Modified
versions of EuM or of the Milstein scheme have been proposed to tackle this,
e.g. tamed EuM, truncated EuM or truncated Milstein (Higham and Mao, 2005;
Lord et al., 2010; Cozma and Reisinger, 2020; Hefter and Herzwurm, 2018). In
Paper II we focus on a different approach consisting of: i) transforming the SDE
with multiplicative noise (3.3) into one with additive noise by applying the
Lamperti transformation Z(t) =

√
X(t) to (3.3), ii) discretizing the resulting

SDE, e.g. with an implicit or splitting scheme (Alfonsi, 2005, 2013; Dereich
et al., 2012; Chassagneux et al., 2016; Kelly and Lord, 2023; Kelly et al., 2022), iii)
invert the Lamperti transform, mapping the numerical solution of the Lamperti
transformed SDE to the original SDE, i.e. X(t) = Z(t)2. More precisely, the
Lamperti transformed SDE takes the form

dZ(t) =

(
−bZ(t)

2
+

4ab− σ2

8Z(t)

)
dt+

σ

2
dW (t).

The square root in the diffusion coefficient is now removed, mitigating the
issue of negative values for Taylor-based schemes (such as EuM). However,
care must still be taken to prevent solutions from reaching zero due to the
nonlinear term 1/Z(t) appearing in the drift of the Lamperti transformed SDE.
We refer to Kelly and Lord (2023) and to Section 8.5.2 of Kelly (2024) for a
comprehensive review on these simulation techniques.

3.7 Conclusions

This chapter has introduced the key tools from stochastic calculus that will be
used throughout the thesis, with particular emphasis on strong approximations
to SDEs, the Lamperti transform, the CIR process, and transition densities. All
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of which play a key role in the inference and simulation tasks that follow. The
CIR process, for instance, will form the basis for a class of processes we term
perturbed-conditionally-CIR-type, while the Lamperti transform will be used
to simplify their diffusion structure. The Kolmogorov forward equation will
serve as a valuable tool in the approximation of Markov jump processes by
a diffusion, aiming to replace the discrete dynamics with a continuous-state
process (commonly referred to as a diffusion approximation) for systems with
large molecular populations and frequent reaction events. This is especially in
the context of chemical reaction networks. We will also investigate numerical
schemes for the Chemical Langevin Equation (CLE), a diffusion approxima-
tion to such jump processes. As the CLE involves non-commutative noise, it
serves as a natural setting where standard higher-order schemes require special
attention.
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4 Chemical reaction networks

Chemical reaction networks (CRNs) provide a powerful framework for model-
ing the interactions among chemical species that drive the behavior of biochem-
ical systems. At the core of many cellular processes such as gene regulation
and signal transduction, lie sequences of molecular interactions that can be
described as reactions between chemical species (Wilkinson, 2018; Lei, 2021;
Schnoerr et al., 2017). While the underlying biology is complex, CRNs offer
a simplified representation of these processes by abstracting away molecular
details. Interactions are encoded through the stoichiometry of each reaction,
specifying how species are produced and consumed. These interactions are
influenced by both intrinsic noise, arising from the probabilistic nature of
molecular reactions, and extrinsic noise, stemming from environmental fluc-
tuations (Arkin et al., 1998; McAdams and Arkin, 1997; Feinberg, 2014; Gupta
et al., 2011; Paulsson et al., 2000; Tian and Burrage, 2006). In cellular envi-
ronments, especially when the copy numbers of certain molecules are low,
stochastic fluctuations can lead to significant variability in system behavior.
This motivates a probabilistic treatment of the dynamics, where the system
evolves as a stochastic process governed by propensity functions that quantify
the likelihood of each reaction occurring over time.

With this in mind, CRNs serve as the starting point for a host of mathematical
models. At the most fundamental level, they define a continuous-time Markov
jump process (MJP) whose probability distribution satisfies the so-called chemi-
cal master equation (CME). For large networks with many species and reactions,
or when the state space is high-dimensional (e.g., many possible molecule
counts), exact simulation or inference becomes computationally infeasible. In
such cases, tractable approximations are available, including deterministic rate
equations and SDEs such as the chemical Langevin equation (CLE). Regardless
of the chosen modeling scale, the reaction network remains the central object:
it defines the species, their interactions, and the rules that drive the system’s
evolution.

Time-course data, such as measurements of protein concentrations or gene
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expression levels, offer a window into these processes. Such data are typically
obtained through fluorescence microscopy or other high-resolution experimen-
tal techniques, often at discrete time points and subject to measurement error
(Young et al., 2012; Bar-Joseph et al., 2012; Locke and Elowitz, 2009). Addi-
tionally, not all components of a system are directly observed, and this partial
observability, combined with measurement noise, poses significant challenges
for inferring relevant biological information (Golightly and Wilkinson, 2008;
Komorowski et al., 2009; Bronstein et al., 2015; Stathopoulos and Girolami,
2013).

To make these concepts precise, we now introduce the mathematical formal-
ism of CRNs, which serve as the foundation for the stochastic models and
approximations discussed throughout this chapter.

4.1 Notation

A CRN consists of a set of d chemical species, X1, . . . , Xd, Xi ∈ N, that interact
via a network of r reactions

ν−1,1X1 + ν−2,1X2 + . . .+ ν−d,1Xd
k1−→ ν+1,1X1 + ν+2,1X2 + . . .+ ν+d,1Xd

ν−1,2X1 + ν−2,2X2 + . . .+ ν−d,2Xd
k2−→ ν+1,2X1 + ν+2,2X2 + . . .+ ν+d,2Xd

...
ν−1,rX1 + ν−2,rX2 + . . .+ ν−d,rXd

kr−→ ν+1,rX1 + ν+2,rX2 + . . .+ ν+d,rXd

where the stoichiometric coefficients ν−i,j and ν+i,j , i = 1, . . . , d, j = 1, . . . , r are
the non-negative integer numbers of reactant and product molecules, respec-
tively, and ki > 0 are the kinetic rate parameters. Commonly modeled by
deterministic rate equations under the law of mass action, which provide a
good approximation when molecule numbers are high, CRNs may instead
require stochastic models when low molecule counts make fluctuations signifi-
cant (Elowitz et al., 2002).

Under well-mixed conditions and assuming thermal equilibrium, the dynamics
of a chemical reaction system in a closed compartment of volume Ω depend
only on molecule counts (Schnoerr et al., 2017; Fuchs, 2013). With these assump-
tions, Gillespie (1992) derived the CME, whose solution gives the transition
probability governing the continuous-time, discrete-valued Markov process,
known as a MJP. For simplicity, we will use Xj to denote the count of species
j, avoiding the need for a separate variable. The dynamics of this system are
described by the process X(t) = (X1(t), . . . , Xd(t)), where each component
represents the count of a given species over time. Since chemical reactions occur



4.2. Order of reactions and non-mass-action functions 39

at random times, governed by the probabilistic rules encoded in the propensity
functions, X(t) is a continuous-time stochastic process. It can be shown that
the probability of the j-th reaction occurring in an infinitesimal time step dt
is aj(x) dt, where aj(x) is the reaction’s propensity function, proportional to
the combinations of reactant molecules in X(t) = x. The general form of the
propensity functions take the form

aj(x) = kj

d∏
i=1

(
xi
ν−i,j

)
. (4.1)

Propensity functions of this form are called mass-action kinetics type (Van Kam-
pen, 1992). The specific shape of the propensity function depends on the num-
ber of reactant molecules involved in the reaction – a concept referred to as the
reaction order. This notion arises naturally from combinatorial considerations
and determines the functional form of each propensity, as seen in Equation
(4.1). Below, we distinguish between reactions of zeroth, first, second, and
higher orders, and explain how each case yields a specific functional form.

4.2 Order of reactions and non-mass-action func-
tions

Zeroth-order reactions represent events that occur independently of the current
state of the system, for example a constant influx or spontaneous appearance
of molecules due to an external source. A reaction of the form

Rj : ∅
kj−→ Xi,

has a constant propensity aj(x) = kj , which reflects the fact that the reaction
rate is independent of the population of any species. While mass cannot be
created from nothing, such reactions serve as useful idealizations. First-order
reactions involve a single reactant molecule and occur with a rate proportional
to the number of available molecules of that species. If xi molecules of species
Xi are present, and each can undergo a reaction independently with rate kj ,
then the total propensity is aj(x) = kjxi. These reactions have the form

Rj : Xi
kj−→ . . .

Such reactions model processes like the change of a molecule into other molecules
(such as radioactive decay), or the spontaneous dissociation of a complex
molecule into simpler molecules. Second-order reactions describe interactions
between two molecules. When two distinct species Xj and Xk react, and there
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are xj and xk molecules of each, the number of possible interacting pairs is
xjxk, leading to the propensity aj(x) = kjxixk. These reactions have the form

Rj : Xi +Xk
kj−→ . . .

In the case where both reactants are of the same species (e.g., 2Xi → . . . ), the
number of unique unordered pairs is

(
xi

2

)
= xi(xi − 1)/2, so the corresponding

propensity becomes aj(x) = kjxi(xi − 1)/2. While the derivation of zeroth-
, first-, and second-order reaction propensities follows directly from simple
counting arguments, higher-order reactions (involving three or more reactant
molecules) are rarely modeled explicitly. The probability that three molecules
simultaneously collide is generally negligible in dilute systems. Nonetheless,
higher-order reactions can be formally described by generalizing the same
combinatorial reasoning. For example, in a trimerization reaction

Rj : 3Xi
kj−→ . . . ,

the number of combinations of three molecules from a population of x is(
xi

3

)
= xi(xi−1)(xi−2)

6 , yielding the propensity

aj(x) = kj
xi(xi − 1)(xi − 2)

6
.

In practice, however, such high-order interactions are more realistically mod-
eled by decomposing the reaction into a sequence of lower-order reactions.
For instance, the trimerization above could be represented by two consecutive
second-order reactions:

2X → X2, X2 +X → X3.

Such factorizations better reflect the underlying biophysical reality and allow
for simpler analytical treatment and more stable numerical simulation.

Overall, the order of a reaction encapsulates the number of simultaneously
interacting molecules and directly informs the shape of the associated propen-
sity function. These forms, when inserted into the CME or its approximations
such as the CLE, drive the time evolution of the system and are central to both
theoretical analysis and practical simulation. Other types of propensity func-
tions are also useful for various processes, such as Michaelis-Menten or Hill
functions. These non-mass-action functions typically act as effective reactions,
replacing several underlying microscopic reactions. The Michaelis-Menten
model is one of the best known models of enzyme kinetics (Michaelis and
Menten, 1913). It arises in enzyme-catalyzed reactions where a substrate, S,
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binds reversibly to an enzyme, E, to form a complex, ES, which then converts
into a product P . Schematically, this process can be represented as

S + E
k+
1−−⇀↽−−
k−
1

ES
k2−→ EP

k3−→ P + E.

The dynamics of the molecular concentrations can be described by a system of
ordinary differential equations. Under the quasi-steady-state assumption, the
production rate of P from the substrate S is approximately given by

v = k3[EP] =
C[S]

K + [S]
Etotal, where C =

k2k3
k2 + k3

, K =
k−1 + k2

k+1

(
1 + k2

k3

) ,
and Etotal is the total enzyme concentration. In systems where an enzyme can
bind to multiple substrate molecules simultaneously, the Hill function provides
a useful model for the production rate. This leads to the generalized reaction

nS + E
k+
1−−⇀↽−−
k−
1

ESn
k2−→ EPn

k3−→ nP + E.

Assuming quasi-steady-state conditions and rapid equilibration, the produc-
tion rate of P is given by the Hill equation:

v =
vmax[S]

n

Kn + [S]n
,

where vmax is the maximum reaction rate, K is the substrate concentration
at which the rate is half-maximal, and n is the Hill coefficient, indicating the
degree of cooperativity in substrate binding. When n > 1, the system exhibits
a sigmoidal response, which is typical in cooperative enzyme binding. This
function appears in the Repressilator model (Elowitz and Leibler, 2000), which
is considered in this thesis. The Repressilator provides an interesting test case
for illustrating our numerical method and performing parameter inference,
including the estimation of the Hill coefficient.

4.3 Stochastic dynamics and diffusion approxima-
tion

CRNs are commonly described as continuous-time MJPs, where the system
evolves through a sequence of discrete jumps corresponding to individual re-
actions. The probability distribution over discrete molecular states satisfies the
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CME (Van Kampen, 1992), which provides a complete probabilistic description
of the system. However, this description becomes computationally infeasible
for larger systems, as the state space grows combinatorially with the number
of species. Let p(t, y | s, x) denote the transition probability mass function
representing the probability of the system being in a particular state at time t,
given its state at an earlier time s. The transition probability is given by the
solution to the CME

∂

∂t
p(t, y | s, x) =

r∑
j=1

(
aj(y − νj) p(t, y − νj | s, x)− aj(y) p(t, y | s, x)

)
, (4.2)

where νj = (ν1,j , . . . , νd,j)
T is the jth column of the stoichiometry matrix

ν, with elements νi,j = ν+i,j − ν−i,j (Wilkinson, 2018). Analytical solutions to
the CME are only known for a limited class of systems and a few special
cases; see, for example Jahnke and Huisinga (2007); Shahrezaei and Swain
(2008); Zhou et al. (2012). Although exact sample paths can be simulated using
Gillespie’s stochastic simulation algorithm (Gillespie, 1977), this approach be-
comes prohibitively expensive for larger systems due to the need to simulate
every individual reaction event (Gillespie et al., 2013). The computational
demands of inference methods that rely on this description pose a significant
challenge for large-scale reaction networks. Consequently, extensive research
has focused on approximation methods (Schnoerr et al., 2017). To address
this, a diffusion approximation, aiming to replace the discrete dynamics with
continuous-state approximation for systems with large molecular populations
and frequent reaction events, has been proposed (Wilkinson, 2018; Golightly
and Wilkinson, 2011). The resulting SDE, known as the CLE, captures the
intrinsic stochasticity of the biochemical system while significantly reducing
its computational complexity. However, the absence of closed-form solutions
for the SDE transition densities presents challenges for parameter inference,
necessitating simulation-based methods for statistical estimation (Wilkinson,
2018; Fuchs, 2013), or further approximations to give a tractable process (Fearn-
head et al., 2014; Stathopoulos and Girolami, 2013; Finkenstädt et al., 2013;
Komorowski et al., 2009). In what follows, we briefly outline the derivation of
the chemical Fokker–Planck equation via the Kramers–Moyal expansion, and
establish its connection to the CLE.

4.3.1 Diffusion approximation
The CLE and the associated Fokker–Planck equation provide a diffusion ap-
proximation to the CME, in the sense that the CLE approximates the underlying
Markov jump process with a continuous-state stochastic process governed by
an SDE. The CLE can be derived in a number of more or less formal ways.
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For instance, truncating terms in a Taylor expansion of the CME yields the
Fokker–Planck equation, the PDE describing the evolution of the probability
density of a diffusion process (and thus a continuous-time, continuous-valued
Markov process rather than a discrete-valued one, see Kramers, 1940; Moyal,
1949), governed by an underlying SDE. More precisely, using Taylor’s expan-
sion one can write

aj(y−νj) p(t, y − νj | s, x) = aj(y) p(t, y | s, x)

+
∑
|v|≥1

(−1)|v|
v1! · · · vd!

(
d∏

i=1

ν vi
ij

)
∂|v|

∂yv11 · · · ∂yvdd

(
aj(y) p(t, y | s, x)

)
,

(4.3)

where v = (v1, ..., vd) is the multi-index ranging over non-negative integers
with total degree |v| = ∑

i vi. By substituting (4.3) into the CME (4.2) one
obtains the chemical Kramers-Moyal equation

∂

∂t
p(t, y | s, x) =

∑
|v|≥1

(−1)|v|
v1! · · · vd!

∂|v|

∂yv11 · · · ∂yvdd

(
Av(y) p(t, y | s, x)

)
,

where

Av(y) =

r∑
j=1

(
d∏

i=1

ν vi
ij

)
aj(y).

Truncating this series at second order leads to the chemical Fokker–Planck equa-
tion:

∂

∂t
p(t, y | s, x) = −

d∑
i=1

∂

∂yi

(
Ai(y) p(t, y | s, x)

)
+

1

2

d∑
i,j=1

∂2

∂yi ∂yj

(
Bij(y) p(t, y | s, x)

)
,

where

Ai(y) =

r∑
ℓ=1

νiℓ aℓ(y), Bij(y) =

r∑
ℓ=1

νiℓ νjℓ aℓ(y),

and the initial condition is p(s, y | s, x) = δx(y). This PDE describes the evo-
lution of the probability density under a diffusion approximation. However,
rather than working with the probability density directly, it is often more con-
venient to describe the dynamics in terms of individual stochastic trajectories.
The corresponding SDE is the CLE. The stochastic dynamics of the ith chemical
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species Xi under the CLE are given by the scalar SDE:

dXi(t) =

r∑
j=1

νi,jaj(X(t)) dt+

r∑
j=1

νi,j

√
aj(X(t)) dWj(t), Xi(0) = xi(0),

(4.4)
for i = 1, . . . , d, where Wj(t), j = 1, . . . , r, are independent Brownian motions,
and xi(0) ∈ R+ is the initial count of species i. For an intuitive derivation
of this SDE, we refer the reader to Golightly and Wilkinson (2011). For a
bounded diffusion coefficient and an initial state x0 = (x1(0), . . . , xd(0)), there
is a unique solution to (7.1), remaining in Rd

+ with probability one (Mao, 2006).
Like the CME, the CLE generally lacks explicit analytical solutions for most
systems. However, CLE simulations are computationally more efficient than
CME simulations, as their cost scales with the number of species d rather than
the frequency of reaction events, as it happens for the MJPs (Gillespie, 1977).

All species entering into the CME and the CLE (7.1) have a non-negative
count, i.e., Xi(t) ≥ 0, t ≥ 0, i = 1, . . . , d, so zero is not an exit boundary, as
it may be attained but not crossed. This may not be the case when solving
the CLE numerically, as the time discretization of the CLE may yield square
roots of negative values, resulting in an ill-defined process (Anderson et al.,
2019; Wilkie and Wong, 2008; Szpruch and Higham, 2010; Dana and Raha, 2011;
Schnoerr et al., 2014). This is what happens, for example, when considering
the commonly used EuM method, which motivates us to derive an alternative
boundary-preserving numerical scheme, see Section 6. Negative values in the
EuM simulations are handled by either truncating at zero or by taking their
absolute values. However, this introduces a bias in the model dynamics, whose
quantification and impact on the inference is not easily quantified.

4.4 Conclusions

In this chapter, we introduced CRNs as a modeling framework for stochastic
biochemical systems. We discussed how the dynamics of such systems can be
described at multiple levels of approximation, beginning with the CME and
moving toward the CLE via the Kramers–Moyal expansion and the chemical
Fokker–Planck equation. Along the way, we formalized key concepts such as
mass-action kinetics, reaction order, and non-mass-action propensity functions,
including Michaelis-Menten and Hill kinetics. These tools provide the founda-
tion for both the numerical methods and inference strategies developed in the
remainder of the thesis. In Chapter 6 we exploit the CLE as our forward model
and develop a numerical method tailored to it. Across the included papers we
perform parameter inference for (partially observed, noisy) CLE models using
ABC-MCMC and ABC-SMC.



5 Sequential Monte Carlo and
backward simulation

In Chapter 2, we discussed several simulation-based approaches for Bayesian
inference in models with intractable likelihoods. Particularly, ABC-SMC relies
on a population of parameter particles that are evolved across a sequence of
distributions to approximate the posterior. In this chapter, we shift focus to a
different use of SMC: as a method for state inference in dynamical models, such
as state-space models. Unlike ABC-SMC, the particles here represent latent
state trajectories rather than parameters. These SMC methods are particularly
well suited for models with temporal structure (Gordon et al., 1993; Kong et al.,
1994; Kitagawa, 1996; Kim et al., 1998; Pitt and Shephard, 1999; Doucet et al.,
2001; Godsill et al., 2004) .

A defining feature of SMC is the recursive update of a population of weighted
particles through propagation, weighting, and resampling steps Doucet et al.
(2001). A central advantage of this approach is its ability to process data in a
forward fashion, making it ideal for filtering problems. However, tasks such
as trajectory smoothing require processing information backwards in time as
well. This motivates the use of backward simulation, which reconstructs latent
trajectories by sampling from approximate smoothing distributions. In what
follows, we introduce the formal setup for state-space models, review particle
filtering and lookahead strategies, and then we discuss how backward simula-
tion methods can be built on top of forward filtering to efficiently reconstruct
latent trajectories from smoothing distributions.

5.1 State-space models

We consider a class of state-space models in which the latent process (X(t))t≥0

evolves in continuous time, typically governed by an SDE, and noisy observa-
tions are available at discrete time points 0 ≤ t1 < · · · < tn. The latent state
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X(t) ∈ X satisfies the Markov property, with transition dynamics given by the
transition density pθ

(
x(tl+1) | x(tl)

)
, derived either exactly or approximately

from the SDE. We keep density arguments and sampling statements in lower-
case to match the notation in Chapter 2: x(tl+1) | x(tl) ∼ pθ

(
x(tl+1) | x(tl)

)
and

y(tl) | x(tl) ∼ pθ
(
y(tl) | x(tl)

)
. The initial state x(t1) may be fixed or drawn

from an initial distribution p1(x).

At each observation time tl, a noisy measurement Y (tl) ∈ Y is observed, de-
pending only on the current latent state X(tl). The observations Y (t1:n) =
(Y (t1), Y (t1), . . . , Y (tn)) are assumed conditionally independent given the la-
tent statesX(t1:n) = (X(t1), X(t1), . . . , X(tn)), with observation model pθ

(
y(tl) |

x(tl)
)
. We denote the realized (observed) values of the measurement process

by yo(tl); that is, Y (tl) is a random variable, while yo(tl) is its realization. The
generative process is defined as follows: draw x(t1) ∼ p1(x), and then for each
l = 1, . . . , n− 1, simulate the latent dynamics and the observation via

x(tl+1) | x(tl) ∼ pθ
(
x(tl+1) | x(tl)

)
, y(tl) | x(tl) ∼ pθ

(
y(tl) | x(tl)

)
.

The conditional independence structure for the random variables is

Y (tl) ⊥⊥
(
X(tj), Y (tj)

)
j ̸=l

∣∣X(tl).

the joint distribution over the latent states and observations is given by

pθ(x(t1:n), y(t1:n)) = p1(x(t1))

n−1∏
l=1

pθ
(
x(tl+1) | x(tl)

) n∏
l=1

pθ
(
Y (tl) | x(tl)

)
.

The goal of inference is to approximate the filtering distributions pθ
(
x(tl) |

yo(t1:l)
)

and the smoothing distribution pθ
(
x(t1:n) | yo(t1:n)

)
. In nonlinear and

non-Gaussian models, these distributions are intractable, and SMC methods
provide a principled framework for their approximation using weighted par-
ticles. We now turn to SMC methods for approximating the filtering and
smoothing distributions. We begin with particle filtering, which targets the
sequence of filtering distributions through a recursive sampling and weighting
procedure, and later extend the discussion to particle smoothing methods for
reconstructing latent trajectories.

5.1.1 Particle filtering

Let gθ
(
x(t1:l) | yo(t1:l)

)
denote a sequence of proposal densities, and let

pθ
(
x(t1:l) | yo(t1:l)

)
denote the corresponding sequence of target densities.

In a standard IS scenario, we can generate P independent samples xj(t1:l), for
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j = 1, ..., P , from the proposal density and assign importance weights to these
samples via

ωj
l ∝

pθ
(
xj(t1:l) | yo(t1:l)

)
gθ
(
xj(t1:l) | yo(t1:l)

) .
These weights are computed only up to proportionality, as the normalizing
constant of the target is typically intractable. For simplicity, we reuse the
notation ωj

l to denote the normalized weights. In high-dimensional state
spaces, such as those arising in time-series models, naive importance sampling
becomes increasingly inefficient due to the curse of dimensionality (Doucet
et al., 2001; Del Moral et al., 2006). To address this, a sequential implementation
is sought, and the proposal density is assumed to be factorizable as

gθ
(
x(t1:l) | yo(t1:l)

)
= gθ

(
x(tl) | x(tl−1), y

o(tl)
)
gθ
(
x(t1:l−1) | yo(t1:l−1)

)
,

or recursively as

gθ
(
x(t1:l) | yo(t1:l)

)
= gθ

(
x(t1) | yo(t1)

) l∏
s=2

gθ
(
x(ts) | x(ts−1), y

o(ts)
)
.

Thus, to sample xj(t1:l) ∼ gθ
(
x(t1:l) | yo(t1:l)

)
, one can start with xj(t1) ∼

gθ
(
x(t1) | yo(t1)

)
, and then xj(t2) ∼ gθ

(
x(t2) | xj(t1), yo(t2)

)
, iteratively until

xj(tn) ∼ gθ
(
x(tn) | xj(tn−1), y

o(tn)
)
. This factorization enables a recursive

formulation of the importance weights, avoiding the need to evaluate high-
dimensional joint densities directly. The corresponding target densities can be
decomposed as

pθ
(
x(t1:l) | yo(t1:l)

)
∝

pθ
(
yo(tl) | x(tl)

)
pθ
(
x(tl) | x(tl−1)

)
pθ
(
x(t1:l−1) | yo(t1:l−1)

)
.

With these factorizations in mind, the importance weights take the form

ωj
l ∝

pθ
(
yo(tl) | xj(tl)

)
pθ
(
xj(tl) | xj(tl−1)

)
gθ
(
xj(tl) | xj(tl−1), yo(tl)

) pθ
(
xj(t1:l−1) | yo(t1:l−1)

)
gθ
(
xj(t1:l−1) | yo(t1:l−1)

) .
Hence, if we define the weight function for l = 2, ..., n,

Wl

(
x(tl−1:l), y

o(tl)
)
=
pθ
(
yo(tl) | x(tl)

)
pθ
(
x(tl) | x(tl−1)

)
gθ
(
x(tl) | x(tl−1), yo(tl)

) ,

the importance weights can be recursively computed by

ωj
l ∝Wl

(
xj(tl−1:l), y

o(tl)
)
ωj
l−1.
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This recursive formulation defines the sequential importance sampling (SIS) pro-
cedure. However, SIS suffers from a well-known issue: weight degeneracy. Over
time, the variance of the particle weights increases, and most particles con-
tribute negligibly to the approximation. To address this, when the effective
sample size (ESS) ESSl := 1/

∑P
j=1(w

j
l )

2 of the weights w1:P
l falls below a

threshold, a resampling step is triggered, typically using a multinomial scheme,
to refresh the particles (Gordon et al., 1993; Kitagawa, 1996; Del Moral et al.,
2006; Chopin, 2004). This procedure is called sequential-importance-resampling
(SIR). An algorithmic description is shown in Algorithm 3.

Algorithm 3 Particle filter (θ, yo(t1:n), τ)

1: for j = 1 to P do
2: Sample initial state xj(t1) ∼ p1(x(t1))
3: Compute weight ωj

1 ∝W1

(
xj(t1), y

o(t1)
)

4: end for
5: Normalize weights ω1:P

1

6: for l = 2 to n do
7: Compute ESSl−1 ← 1

/∑P
j=1(ω

j
l−1)

2

8: if ESSl−1 < τ then
9: Resample ancestor indices a1:Pl ∼ Categorical(ω1:P

l−1)

10: Reset weights ω1:P
l−1 ← 1/P

11: else
12: Set ajl ← j for j = 1, . . . , P (no resampling)
13: end if
14: for j = 1 to P do
15: Set xj(tl−1)← xa

j
l (tl−1)

16: Sample xj(tl) ∼ gθ
(
x(tl) | xj(tl−1), y

o(tl)
)

17: Compute weight ωj
l ∝Wl

(
xj(tl−1:l), y

o(tl)
)
ωj
l−1

18: end for
19: Normalize weights ω1:P

l

20: end for
21: Output: Weighted particles

(
x1:P (t1:n), ω

1:P
n

)
A common and simple choice of proposal density is the model transition
density itself:

gθ
(
x(tl) | x(tl−1), y

o(tl)
)
= pθ

(
x(tl) | x(tl−1)

)
.

Under this choice, the weight function reduces to the likelihood term:

Wl

(
x(tl), y

o(tl)
)
= pθ

(
yo(tl) | x(tl)

)
,
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and the resulting algorithm is known as the bootstrap particle filter (Gordon
et al., 1993). One can use more informed proposal distributions that take
the upcoming observation into account, for example, the so-called optimal
proposal, given by:

gθ
(
x(tl) | x(tl−1), y

o(tl)
)
= pθ

(
x(tl) | x(tl−1), y

o(tl)
)
, (5.1)

which conditions not only on the previous state but also on the current obser-
vation. This proposal minimizes the variance of the importance weights at
time tl, however, it is often intractable to sample from or evaluate in general
SDE models. More broadly, in settings where the observations are highly infor-
mative (for example if there is no measurement error, as considered in Paper
I) or where the prior and posterior are poorly aligned, naive sampling and
weighting strategies can lead to weight degeneracy. To mitigate this, lookahead
strategies have been proposed, where the proposal distribution or weighting
function is adapted using information from future observations. The optimal
proposal is one such instance, but more flexible schemes include approximate
lookahead, guided proposals, and bridging constructs. One important scheme
that we build upon is the bridge particle filter (Del Moral and Murray, 2015).

5.2 Lookahead principles

As alluded to previously, the basic approach can suffer from particle degener-
acy when observations are highly informative, since many particles may be
drawn from regions of low-probability (Lin et al., 2013). Lookahead strategies
aim to mitigate this by incorporating future observations into the sampling
or weighting process. In essence, lookahead methods blur the line between
filtering (using data up to the current time) and smoothing (using future data).
By “looking” ahead, these methods produce particle approximations that are
more informed about the true state. Many dynamical systems exhibit strong
memory. For instance, in target tracking applications, measurements obtained
after time t can improve inference of the target’s position at time t. Similarly, the
construction of polymer conformations can be formulated as a stochastic dy-
namical system with long memory (Rosenbluth and Rosenbluth, 1955), where
lookahead techniques have proven effective (Zhang and Liu, 2002). Over the
years, various lookahead strategies have been developed. We provide a brief
overview of these methods and focus in more detail on the bridge particle filter
(Del Moral and Murray, 2015).

In theory, the optimal lookahead strategy would utilize all future observations
when sampling or weighting the particles (essentially it would target the den-
sities pθ (x(tl) | yo(t1:n)), for l = 1, ..., n.) Even access to exact samples from a
partially informed distribution pθ (x(tl) | yo(t1:l+L)) for some lookahead hori-
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zon L ≥ 1, would already yield more accurate inference of the current state, as
compared to myopic propagation or weighting. However, this is intractable
because it requires computing multistep predictive distributions or integrating
out future latent states. For L = 1, a principled approximation leads to the
auxiliary particle filter (APF, Pitt and Shephard, 1999), which modifies the stan-
dard particle filter by incorporating a one-step lookahead into the resampling
mechanism. Instead of resampling purely based on current weights, the APF
evaluates the expected utility of each particle with respect to the next obser-
vation, allowing for more informed resampling. A broad range of lookahead
strategies have been proposed that incorporate future observations into the
particle propagation or resampling steps. These include lookahead weight-
ing (Clapp and Godsill, 1999), exact lookahead sampling (Chen et al., 2000;
Doucet et al., 2006), pilot lookahead sampling (Wang et al., 2002; Zhang and
Liu, 2002), multilevel pilot lookahead sampling (Guo et al., 2004), and combina-
tions thereof (Wang et al., 2002). Lin et al. (2010) introduced a backward pilot
method that estimates optimal resampling weights by simulating backwards,
on a finer discretization of the observational interval [tl, tl+1], from time tl+1,
in order to guide forward particle trajectories. This method cannot handle mea-
surement noise or partially observed data, and these limitations are addressed
by more recent methods. The bridge particle filter (BPF) accommodates both of
these cases by choosing a suitable intermediate particle weighting scheme in
such a way that, by looking ahead to the next observation point, those particle
trajectories that are not consistent with that observation will be given small
weights and pruned by resampling at selected intermediate times (e.g., via
an ESS trigger.) More detail will be given in the next subsection. A similar
method is the guided intermediate resampling filter (Park and Ionides, 2020)
which combines the lookahead approach with intermediate propagation in
high-dimensional settings. The iterated APF (Guarniero et al., 2017) is an alter-
native procedure that recursively approximates the optimal guiding function in
the backward direction via mixtures of normals, assuming tractable transition
densities. Further approximations to the optimal proposal kernel have been
proposed, notably the implicit particle filter (Chorin and Tu, 2009; Morzfeld
et al., 2012; Chorin et al., 2013), which generates particles near the mode of
the optimal proposal distribution (5.1). The equivalent-weights particle filter
guides particles toward the next observation over intermediate time steps by
leveraging a local Gaussian approximation (Van Leeuwen, 2010; Ades and
Van Leeuwen, 2015). Other approaches include ensemble-Kalman-inspired
propagation (Papadakis et al., 2010), and Gaussian flow filters (Bunch and
Godsill, 2016).
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5.2.1 Bridge particle filter
The BPF (Del Moral and Murray, 2015) modifies the standard particle filter to
incorporate future observations into intermediate resampling and weighting
steps, reducing degeneracy when final states are highly informative or without
measurement error. For illustration purposes, we will consider a generic
interval [0, t], with an initial state x(0) and an observation x(t). It is assumed
that this observation is without measurement error. Let 0 = τ0 < τ1 < ... <
τA = t be a discretization of the interval [0, t] into A subintervals. The bridge
particle filter aims to approximate the conditional distribution

pθ(x(τ1:A−1) | x(0), x(t)) ∝
pθ(x(t) | x(τA−1)) · · · pθ(x(τ2) | x(τ1))pθ(x(τ1) | x(0)),

by sampling forward from x(0) using a standard proposal and applying im-
portance weights that adjust for the likelihood of reaching x(t). Observe that

pθ(x(t) | x(τA−1))

pθ(x(t) | x(0))
=

A−1∏
k=1

pθ(x(t) | x(τk))
pθ(x(t) | x(τk−1))

.

If one defines the weighting functions

Wk(x(τk−1:k), x(t)) =
pθ(x(t) | x(τk))
pθ(x(t) | x(τk−1))

, (5.2)

one can incrementally simulate x(τk) ∼ pθ(x(τk) | x(τk−1)) and weight with
Wk(x(τk−1:k), x(t)) for k = 1, ..., A− 1. When the weighting functions (5.2) are
not available in closed form due to intractable transition densities, suitable
approximations can be employed (Del Moral and Murray, 2015). An algorith-
mic description is shown in Algorithm (4). Figure 5.1 illustrates the BPF for
an Ornstein–Uhlenbeck (OU) latent process with Gaussian weights, repeated
between multiple consecutive observation points. Measurement noise can also
be accommodated in the BPF by incorporating the measurement density into
the weights. Specifically, if the observation model is y(t) ∼ pθ(y(t) | x(t)), the
weight update of the particles in the intermediate stages can be modified as

Wk(x(τk−1:k), y(t)) =
pθ(y(t) | x(τk))
pθ(y(t) | x(τk−1))

.

This weighting scheme encourages particles that better align with the noisy
observation at time t.
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Algorithm 4 Bridge particle filter (θ, x(0), x(t), τ)

1: Initialize particles: xj(0) = x(0), and weights ωj
0 = 1/P for j = 1, . . . , P .

2: for k = 1 to A− 1 do
3: Compute ESSk−1 ← 1/

∑P
j=1(ω

j
k−1)

2.
4: if ESSk−1 < τ then
5: Sample ancestor indices a1:Pk ∼ Categorical(ω1:P

k−1)

6: Set xj(τk−1)← xa
j
k(τk−1) and ωj

k−1 ← 1/P for j = 1, . . . , P
7: end if
8: for j = 1 to P do
9: Sample xj(τk) ∼ pθ

(
x(τk) | xj(τk−1)

)
10: Update weight: ωj

k ∝ ω
j
k−1 ·

pθ
(
x(t) | xj(τk)

)
pθ(x(t) | xj(τk−1))

11: end for
12: Normalize ω1:P

k

13: end for
14: Output: Weighted particles (x1:P (τ1:A), ω1:P

1:A).
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Bridge particle filter

Figure 5.1: Illustration of the BPF with an OU process: how weighting and resampling
steers particles through the observations. Black circles depict the observations. The
particles are propagated by simulating the OU process exactly, and the exact transition
densities are used as weights.

5.3 Backward simulation for sequential Monte Carlo

In many applications involving state-space models, we are interested not only
in filtering, but also in smoothing, where the goal is to recover the distribution
of latent trajectories conditional on all observations. More formally, given
a sequence of observations yo(t1:n), the smoothing distribution is the poste-
rior pθ

(
x(t1:n) | yo(t1:n)

)
. In this section, we describe the forward filtering

backward simulation (FFBS) algorithm.
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Assume that filtering has already been performed, yielding approximations
of the filtering densities pθ (x(tl) | yo(t1:l)), for each time step l = 1, . . . , n,
represented by the particle systems

(
x1:P (tl), ω

1:P
l

)
. More precisely, for l =

1, ..., n, the particle systems yield the approximated filtering densities

p̂θ (x(tl) | yo(t1:l)) =
P∑

j=1

ωj
l δxj(tl)(x(tl)). (5.3)

The primary goal of backward simulation in the context of particle smoothing
is to generate samples from the smoothing density to gain insight about the
latent stochastic process. The smoothing distribution can be factorized as

pθ
(
x(t1:n) | yo(t1:n)

)
= pθ

(
x(tn) | yo(t1:n)

) n−1∏
l=1

pθ
(
x(tl) | x(tl+1:n), y

o(t1:n)
)
,

(5.4)
where, under the Markov property of the latent process and the conditional
independence of the observations, we have

pθ
(
x(tl) | x(tl+1:n), y

o(t1:n)
)
= pθ

(
x(tl) | x(tl+1), y

o(t1:l)
)

∝ pθ
(
x(tl) | yo(t1:l)

)
pθ
(
x(tl+1) | x(tl)

)
.

Interestingly, this shows that, conditionally on yo(t1:n), the latent process
X(t1:n) forms an inhomogeneous Markov process. This property is impor-
tant when feeding the trajectory into PEN, as described in Section 2.1.6.

The key ingredient in backward simulation is the backward kernel

Bl(dx | x(tl+1)) = P
(
x(tl) ∈ dx | x(tl+1), y

o(t1:l)
)
, (5.5)

which admits the density

pθ
(
x(tl) | x(tl+1), y

o(t1:l)
)
∝ pθ

(
x(tl+1) | x(tl)

)
pθ
(
x(tl) | yo(t1:l)

)
. (5.6)

Using this backward kernel, we obtain the following expression for the back-
ward recursion:

pθ
(
x(tl:n) | yo(t1:n)

)
= pθ

(
x(tl) | x(tl+1), y

o(t1:l)
)
pθ
(
x(tl+1:n) | yo(t1:n)

)
,
(5.7)

starting from pθ (x(tn) | yo(t1:n)) at the final time point. The recursion in Equa-
tion (5.7) implies the following sampling scheme. First, sample the terminal
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state from the marginal smoothing distribution:

x̃(tn) ∼ pθ (x(tn) | yo(t1:n)) . (5.8)

Then, going backward in time for l = n− 1, . . . , 1, recursively sample

x̃(tl) ∼ pθ (x(tl) | x(tl+1), y
o(t1:l)) . (5.9)

After a full backward sweep, the trajectory (x̃(t1), . . . , x̃(tn)) constitutes a sam-
ple from the smoothing distribution pθ (x(t1:n) | yo(t1:n)).
The backward kernel density at time tl depends on the transition density
pθ (x(tl+1) | x(tl)), which can be approximated using the methods described in
Chapter 3.5, and on the filtering density pθ (x(tl) | yo(t1:l)), which is approxi-
mated by the particle system obtained during the forward pass. Substituting
the particle approximation of the filtering densities (5.3) into the backward
kernel (5.6) yields the approximate backward kernel:

B̂l(dx | x(tl+1)) =

P∑
j=1

ωj
l pθ

(
x(tl+1) | xj(tl)

)∑P
m=1 ω

m
l pθ (x(tl+1) | xm(tl))

δxj(tl)(dx). (5.10)

We can now make use of these approximations to sample an approximate
backward trajectory by sampling x̃(tn) ∼ p̂θ(x(tn) | yo(t1:n)), and then x̃(tl) ∼
B̂l(x̃(tl) | x̃(tl+1)), for l = n− 1, . . . , 1. Figure 5.2 depicts a run of the forward

Algorithm 5 Backward-simulation particle smoother ((x1:P (t1:n), ω1:P
1:n ), θ)

1: Sample particle index j ∼ Categorical(ω1:P
n ) and set x̃(tn) = xj(tn).

2: for l = n− 1 to 1 do
3: for j = 1 to P do
4: Compute ω̃j

l ∝ ω
j
l pθ

(
x̃(tl+1) | xj(tl)

)
.

5: end for
6: Normalize the smoothing weights ω̃1:P

l .
7: Sample particle index j ∼ Categorical(ω̃1:P

l ) and set x̃(tl) = xj(tl).
8: end for
9: Output: Backward trajectory x̃(t1:n).

filtering backward smoothing algorithm (Algorithm 3 followed by Algorithm 5)
for the Ornstein–Uhlenbeck model with Gaussian noise.

With this, the smoothing density pθ (x(t1:n) | yo(t1:n)) can be approximated by
sampling multiple backward trajectories x̃1:P (t1:n) by repeating Algorithm 5 P
times. Conditionally on the forward filter particles, the trajectories x̃1:P (t1:n)
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Figure 5.2: Forward bootstrap particle filter and backward simulation smoother for
the Ornstein–Uhlenbeck model with Gaussian noise. Black circles are observations. (a)
Forward particle cloud at each time point; marker size is proportional to the weight. (b)
Same cloud with a single trajectory sampled from the smoothing distribution (FFBS).

are i.i.d., and define a point-mass approximation

p̂θ (x̃(t1:n) | yo(t1:n)) =
P∑

j=1

δx̃j(t1:n)(x̃(t1:n)). (5.11)

In Paper I, we make use of the output from the backward simulator and feed it
into the ABC algorithm. Naturally, the summary statistics computed from this
trajectory S(x̃(t1:n)), do not follow the same distribution as s ∼ pθ(s) under
the forward model, because x̃(t1:n) is not a sample from the forward model.
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This raises the important question:

What is the distribution of S(x̃(t1:n)), and are we able to approximate it
efficiently in a form suitable for ABC-SMC or ABC-MCMC?

To answer this question we first need to look into the point-mass approximation
of the distribution of x̃(t1:n). By plugging the approximations of the filtering
densities (5.3) and the backward kernels (5.5) into the joint smoothing density
(5.4), we obtain the following approximation:

p̂θ(x̃(t1:n) | yo(t1:n)) =
P∑

j1=1

· · ·
P∑

jn=1

(
n−1∏
l=1

ωjl
l pθ(x

jl+1(tl+1) | xjl(tl))∑P
k=1 ω

k
l pθ(x

jl+1(tl+1) | xk(tl))

)
ωjn
n ×

δ(xj1 (t1),...,xjn (tn))(x̃(t1:n)). (5.12)

This defines a discrete distribution on Xn, and can be interpreted as follows:
at each observation time tl, l = 1, . . . , n, the particles x1:P (tl) generated in
the forward pass form a set of P elements in X . By selecting one particle at
each time point, we construct a trajectory (xj1(t1), x

j2(t2), . . . , x
jn(tn)) ∈ Xn.

There are Pn such trajectories corresponding to all combinations of indices
j1, . . . , jn ∈ {1, . . . , P}. Although the explicit evaluation of (5.12) is computa-
tionally expensive, it establishes a direct connection to the backward simulation
procedure in Algorithm 5. The approximation p̂θ(x(t1:n) | yo(t1:n)) implicitly
depends on the forward particle system

(
x1:P (t1:n), ω

1:P (t1:n)
)
, and is thus

more precisely written as

p̂θ(x(t1:n) | yo(t1:n), (x1:P (t1:n), ω1:P
1:n )).

Hence, conditionally on the particle system from the forward pass, the back-
ward simulator generates i.i.d. Markovian trajectories from the distribution
(5.12). To this end, the summary statistics likelihood pθ(S(x̃(t1:n)) | yo(t1:n))
can be approximated using the synthetic likelihood method, using a Gaussian
approximation. The forward pass is run once per parameter θ, after which the
particle system

(
x1:P (t1:n), ω

1:P (t1:n)
)

can be held fixed while the additional P
backward trajectories are sampled.

Several methods have been developed to reduce the computational burden
of FFBS. One approach uses rejection sampling to avoid computing all back-
ward weights (Douc et al., 2011), while early stopping rules can truncate the
backward pass adaptively (Taghavi et al., 2013). Metropolis–Hastings steps
have also been introduced to approximately sample from the backward kernel
(Bunch and Godsill, 2012; Dubarry and Douc, 2011). Rao-Blackwellization
has also been explored (Kok et al., 2024). While more advanced backward-
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simulation algorithms exist, we adopt Algorithm 5 for its simplicity. Given our
relatively small number of particles, the added complexity of more sophisti-
cated methods is unnecessary.

5.4 Conclusions

We presented SMC methods for state-space models with a particular emphasis
on approximating filtering and smoothing distributions. We began with a gen-
eral review of particle filtering, showing how different choices for the proposal
distribution lead to well-known variants such as the bootstrap filter and the
auxiliary particle filter. We then briefly reviewed lookahead strategies, culmi-
nating in the bridge particle filter, which performs intermediate resampling
across a discretized time interval to better align particle trajectories with future
observations. Finally, we described how backward simulation can be built on
top of forward filtering to reconstruct entire latent trajectories.

These ideas underpin the data-conditional simulation framework developed in
this thesis: in Paper I, we use a weighting scheme inspired by the BPF for exact
observations to weight trajectories at every observational time, and extract
a single trajectory by backward simulation; in Paper II, we handle noisy and
partial observations by using the observational density to weight the particles,
and extract a single trajectory by directly sampling from the filtering densities.
In both papers, the data-conditional simulators do not use resampling in the
forward direction. In Paper III, we utilize the bootstrap particle filter in the
forward direction with resampling, and extract trajectories by sampling directly
from the filtering densities.
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6 Splitting schemes

Splitting methods are a class of geometric numerical integrators that exploit the
structure of a dynamical system by decomposing it into simpler sub-problems
whose flows can be solved more easily or even in closed form. Originally
developed in the context of Hamiltonian systems and geometric integration
(Hairer et al., 2006; McLachlan and Quispel, 2002), they have since become
widely used across physics, chemistry, and applied probability. An important
advantage of these methods is their ability to preserve qualitative properties
of the underlying dynamics, such as symplecticity in Hamiltonian systems,
invariants of motion, or recurrent behaviors such as oscillations and limit cycles.
For instance, structure-preserving splitting schemes have been successfully
applied to Hodgkin–Huxley type neuronal models, where they retain the
oscillatory behavior and limit cycles inherent in the system (Chen et al., 2020).

6.1 Lie–Trotter and Strang compositions

Consider an initial value problem given by the dynamical system:

dx(t) = f(x(t)) dt; x(0) = x0; t ∈ [0, T ] (6.1)

where f : Rd → Rd is a (generally nonlinear) vector field, x : [0, T ] → Rd is
the trajectory, and T > 0 denotes the final integration time. In general, for a
nonlinear vector field f , the flow (solution) of (6.1) cannot be written in closed
form. Hence we approximate the solution at discrete time points τk = kh,
k ∈ N, where h > 0 is a fixed step size. We denote these approximations by
x1:d,k ≈ x(τk). We illustrate splitting methods by decomposing the system
into two additive components, upon which we introduce the the Lie–Trotter
and Strang compositions. While we restrict to two components here for clarity,
in practice the vector field can be split into an arbitrary number of subfields
f (1), . . . , f (m), and the corresponding flows φ(1)

h , . . . , φ
(m)
h can be composed

in analogous ways to construct higher-order integrators. Indeed, this is the

59
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approach in (Chen et al., 2020); details are given in subsection 6.3.

We split the vector field into two additive components,

dx(t) = f (1)(x(t)) dt+ f (2)(x(t)) dt; x(0) = x0; t ∈ [0, T ], (6.2)

where f (j) : Rd → Rd, j = 1, 2. Let φ(j)
h denote the exact flow of subsystem j

over one step of size h. Then, given an approximation x1:d,k ≈ x(τk) at time
τk = kh, the next step is obtained by composing subflows. The Lie–Trotter
splitting reads

x1:d,k+1 = φ
(2)
h ◦ φ

(1)
h (x1:d,k), (6.3)

which is first-order accurate, while the symmetric Strang splitting achieves
second order,

x1:d,k+1 = φ
(1)
h/2 ◦ φ

(2)
h ◦ φ

(1)
h/2(x1:d,k). (6.4)

For illustration, and as a prototype for the stochastic setting, it is common to
split the system into a linear and a nonlinear part, since both subsystems may
admit closed-form flows.

6.2 Linear-nonlinear splitting

Consider the splitting

f(x(t)) = Ax(t) +N(x(t)), A ∈ Rd×d, N : Rd → Rd, (6.5)

and define the sub-vector fields f (1)(x(t)) = Ax(t) and f (2)(x(t)) = N(x(t)).
This induces the sub-systems

dx(1)(t) = Ax(1)(t) dt; x(1)(0) = x
(1)
0 ; t ∈ [0, T ],

dx(2)(t) = N(x(2)(t)) dt; x(2)(0) = x
(2)
0 ; t ∈ [0, T ].

The first system can be solved exactly as x(1)(t) = eAtx
(1)
0 , yielding the h-time

flow x(1)(τk+1) = φ
(1)
h (x(1)(τk)). If we assume that the nonlinear system can

also be solved exactly, we obtain x(2)(t) = g(x
(2)
0 , t), which defines the h-time

flow x(2)(τk+1) = φ
(2)
h (x(2)(τk)). The Lie–Trotter and Strang splittings then

read

xLT1:d,k+1 = (φ
(1)
h ◦ φ

(2)
h )(xLT1:d,k),

xS1:d,k+1 = (φ
(2)
h/2 ◦ φ

(1)
h ◦ φ

(2)
h/2)(x

S
1:d,k) = g

(
eAhg(xS1:d,k, h/2), h/2

)
.
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This splitting has been considered in the case of nonlinear SDEs with additive
noise (Buckwar et al., 2022)

dX(t) = µ(X(t)) dt+ σ dW (t). (6.6)

where µ : Rd → Rd, µ(X(t)) = AX(t) +N(X(t)), σ : Rd×d → Rd×d, and W (t)
d-dimensional Brownian motion. The vector field µ can be split as for the ODE,
but the noise term is included in the linear sub-equation. This gives us two
sub-systems,

dX(1)(t) = AX(1)(t) dt+ σ dW (t), X(1)(0) = x
(1)
0 , t ∈ [0, T ], (6.7)

dX(2)(t) = N(X(2)(t)) dt, X(2)(0) = x
(2)
0 , t ∈ [0, T ]. (6.8)

The second sub-equation and its flow remain unchanged. The first sub-equation
has exact solution

X(1)(t) = eAtx
(1)
0 +

∫ t

0

eA(t−s)σ dW (s), (6.9)

where the stochastic integral is Gaussian with mean 0 and covariance

C(t) =

∫ t

0

eA(t−s)σσT (eA
(t−s)

)T ds. (6.10)

In many cases the covariance admits a closed-form expression, readily obtained
with symbolic computation software such as Mathematica or Maple. The h-
time flow is given by X(1)(τk+1) = φ

(1)
h (X(1)(τk)) = eAhX(1)(τk) + ξk, with

ξk ∼ N (0, C(h)) i.i.d. The resulting schemes are

XLT
1:d,k+1 = eAhg(XLT

1:d,k, h) + ξk, (6.11)

XS
1:d,k+1 = g

(
eAhg(XS

1:d,k, h/2) + ξk, h/2
)
. (6.12)

However, complications arise when the diffusion term involves square roots
of the state, as in multidimensional systems such as the CLE (7.1). In such
cases the direct splitting into linear and nonlinear parts is no longer tractable.
To address this, we instead adopt a different strategy based on conditionally
linear splitting for ODEs, which extend to the stochastic setting in Paper II. In
the following subsection we review the conditionally linear splitting of ODEs
and show that they can be readily applied to a deterministic description of a
CRN.
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6.3 Splitting schemes for conditionally linear ODEs

Consider a system of ODEs (6.1) where f : Rd → Rd is the vector field with
components fi(x(t)) = ai(x)xi(t) + bi(x(t)), for i = 1, . . . , d, i.e.

dxi(t) = (ai(x(t))xi(t) + bi(x(t))) dt, i = 1, . . . , d, (6.13)

where ai, bi are functions depending on xj for j ̸= i. These systems have the
property that, if all xj , j ̸= i are fixed (i.e., they are considered to be constant),
then xi satisfies a first-order linear ODE, which can be solved exactly. Hence,
Chen et al. (2020) proposed to split (6.1) as

dx(j)(t) = f (j)(x(t)) dt, j = 1, . . . , d, (6.14)

where the sub-vector fields f (j) : Rd → Rd are given by

f
(j)
i (x(t)) =

{
fi(x(t))= ai(x(t))xi(t) + bi(x(t)) if i = j,

0 if i ̸= j,
(6.15)

such that f = f (1) + . . .+ f (d). Hence, when solving (6.14), all components of
x
(j)
i , i ̸= j are constant, while that for i = j is obtained by solving the linear

ODE in (6.15). Subsequently, the solution of (6.1) in τk starting at time τk−1

can be obtained by composing the flows (solutions) of the d subequations
(6.14) via the Lie-Trotter or Strang compositions. The obtained splitting scheme
effectively preserves limit cycles, see Chen et al. (2020).

6.3.1 Illustration for (deterministic) CRNs
CRNs can also be described using ODEs, which provide a macroscopic, deter-
ministic view of the dynamics. Interestingly, many ODE descriptions of CRNs
exhibit a conditionally linear structure. For example, the Repressilator model,
a popular CRN model, is a 6-dimensional system given by

dPi = β(Mi − Pi) dt (6.16)
dMi = (α0 +H(Pj)−Mi) dt, j = (i+ 1 mod 3) + 1 (6.17)

for i = 1, 2, 3, where H(Pj) = αKn/(Kn + Pn
j ) is the Hill function (Gesztelyi

et al., 2012). By looking at these equations, it is clear that the Repressilator
exhibits conditional linearity, as the ODEs (6.16) are linear, while those in (6.17)
are conditionally linear in Mi for fixed Pj . Moreover, it has also oscillatory
behavior, so it is a compelling example for applying the splitting integrator of
Chen et al. (2020). The preservation of the limit cycle by the splitting scheme
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is demonstrated in Figure 6.1, bottom row, while the commonly used Runge-
Kutta method fails in doing so for larger time steps.

h = 0.2 h = 0.3 h = 0.4 h = 0.45 h = 0.5 h = 0.6

RK45

S

Figure 6.1: Deterministic Repressilator model: numerical solution of the ODEs (6.16)-
(6.17) with different time steps h using the Runge-Kutta method (top row) and condi-
tionally linear splitting with Strang composition (bottom row). The 3D trajectories of
mRNAs (M1(t),M2(t),M3(t)) are shown in blue, and the 3D trajectories of proteins
(P1(t), P2(t), P3(t)) are shown in red. It can be observed that the limit cycle is preserved
by the splitting scheme even at large time steps.

6.4 Conclusions

We reviewed classical Lie–Trotter and Strang splittings for ODEs and their
stochastic analogues under a linear–nonlinear decomposition, then introduced
conditionally linear splitting (componentwise exact subflows) and illustrated
its structure-preserving behavior on deterministic CRNs (e.g., the Repressi-
lator). In Paper II, we extend this idea to the CLE. Although the CLE is not
conditionally linear, conditioning on the remaining coordinates yields subprob-
lems that are perturbed Cox–Ingersoll–Ross-type SDEs (square-root diffusions
with linear drift and additional Brownian motions). This enables us to solve
each subsystem numerically with advanced CIR integrators (e.g., positivity-
preserving schemes or exact/closed-form transition samplers where available)
and then compose the subflows via Lie–Trotter or Strang composition, selected
according to the application.
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7 Summary of included papers

The remainder of this thesis consists of the included papers. Before presenting
them, we briefly summarize their contributions.

Paper I

We seek to infer parameters θ from discrete (fully observed, no measurement
noise) observations xo = (xo(t0), . . . , x

o(tn)) of the Itô diffusion (X(t))t≥0

satisfying the SDE

dX(t) = µ (X(t), θ) dt+ σ (X(t), θ) dW (t), X(0) = x(0),

where W (t) is a standard Brownian motion. Observations occur at ti = i∆
with fixed ∆ > 0. We perform Bayesian inference for θ via ABC-SMC.

For the simulator, we refine each interval [ti, ti+1] into A substeps of size
h = ∆/A and set τiA+k = ti + kh for k = 0, . . . , A. Throughout, we use EuM
as the forward simulator on the fine grid with step h = ∆/A. The simulated
value at time τiA+k is denoted by xiA+k. Taking every A-th value recovers
simulated states at the observation times t0, . . . , tn for use in ABC-SMC. We
refer to the baseline ABC–SMC scheme that uses only this forward simulator
as ABC–SMC–F.

In this paper we introduce a data-conditional (DC) simulator for SDEs that
generates trajectories consistent with the observation, and embed it in an
ABC–SMC algorithm with sequentially learned summary statistics. We refer to
this algorithm as ABC-SMC-DC. In Figure 7.1 we show a diagram outlining the
structure and flow of our proposed inference pipeline.

65
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Proposal Simulator Summary Compare Posterior

Data xo

θ x̃
s̃

so
ABC-SMC

Retrain

Figure 7.1: Diagram of dynamic ABC-SMC with data-conditional simulation. Note the
dependence of the simulator on the observed trajectory xo.

The DC simulator is based on the forward/backward idea. In the forward
direction it utilizes a lookahead sequential importance sampling (LSIS) step
to weight a set of particles according to the observation. The particles are
propagated on the fine grid using the forward simulator, and assigned a looka-
head weight q(xo(ti+1) | xiA+k) which depends on the next observation. See
Figure 7.2 for an illustration.
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Figure 7.2: Evolution of a particle system obtained from the Lookahead SIS algorithm.
Observations (red stars) and particles (blue). The size of each particle is proportional to
its weight.

In the backward direction the standard FFBS algorithm is used to extract a
trajectory. See Figure 7.3 for an illustration.

Because x̃ is sampled from the conditional distribution pθ(x | xo) rather than
the forward distribution pθ(x), the induced summaries s̃ = S(x̃) follow pθ(s |
xo) instead of pθ(s). In the ABC–SMC algorithm we correct for this with an
importance factor involving pθ(s)/pθ(s | xo), which we approximate efficiently
via synthetic likelihoods fitted from forward and backward trajectories.

Within both ABC–SMC-F and ABC-SMC-DC, summaries are learned sequen-
tially via a partially exchangeable network trained on forward trajectories (the
closest, by Euclidean distance, among the forward paths simulated per param-
eter), not on data-conditional paths.
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Figure 7.3: Evolution of a trajectory (apricot color) that is obtained via the backward
simulation particle smoother on the particle system in Figure 7.2.
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Figure 7.4: Schlögl model. Left to right: rounds 1, 6, 9, 16, and the final round; marginal
posterior distributions for ABC-SMC-DC displayed in red, and ABC-SMC-F in blue.
The reference marginal posteriors (via particle MCMC) are depicted in black, and the
true parameter values as black vertical lines. Each panel reports, in the upper right
corner, the number of seconds since the algorithm started.

In experiments the DC simulator markedly increases acceptance rates and
concentrates the posterior in the early rounds. Perhaps the most striking
result is for the Schlögl model, a stochastic bistable system that we men-
tioned in the Introduction in Figure 1.1, which is notoriously difficult for
ABC. While ABC–SMC-DC accelerates inference, the key gain is the recovery of
a well–concentrated posterior for θ3, whereas ABC–SMC-F fails due to highly
variable simulated trajectories.

Paper II

We seek to infer parameters θ from partial and noisy yo = (yo(t0), . . . , y
o(tn))

of a CRN modeled by the CLE. Let d be the number of chemical species and r
the number of reactions. The stochastic dynamics of the ith chemical species
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Xi under the CLE are given by the scalar SDE

dXi(t) =

r∑
j=1

νi,jaj(X(t)) dt+

r∑
j=1

νi,j

√
aj(X(t)) dWj(t), Xi(0) = xi(0),

(7.1)
where i = 1, . . . , d for d chemical species, aj(·) is the propensity function
for reaction j, Wj(t), j = 1, . . . , r, are independent Brownian motions, and
xi(0) ∈ R+. The parameter vector θ = (k1, k2, . . . , kr, λ), includes kinetic rate
constants kj for each reaction j, as well as additional elements λ ∈ Λ ⊆ Rp, that
may represent, for example, Hill constants and the variance of the measurement
noise.

Observations occur at ti = i∆ and may be partial and noisy:

yo(ti) = LX(ti) + ξi, ξi ∼ Ndo(0,Σ
o),

where L is a do × d matrix that maps the state vectors to the observed com-
ponents, and Σo is the covariance matrix of the measurement noise. The
corresponding likelihood pθ(yo) is intractable: it includes the intractable transi-
tion densities of the process X(t), and an integral over all the possible latent
trajectories. We therefore perform Bayesian inference for θ via ABC–SMC.

In this paper we extend the data-conditional simulator to handle partial and
noisy observations. We also derive a structure-preserving splitting scheme
tailored to the CLE, that preserves nonnegativity and oscillatory behavior, and
permits inference with larger time steps. Embedded in ABC–SMC, these ad-
ditions increase acceptance rates and deliver faster and more stable inference.
To asses the impact of the numerical schemes, Figure 7.5 compares marginal
posteriors obtained at the final ABC-SMC-F round for the stochastic Repressi-
lator under Euler–Maruyama (blue) versus our splitting scheme (red) as the
integration step h = ∆/A varies (A ∈ {4, 8, 32, 64}). The splitting scheme yields
stable posterior inference even at coarse integration steps (e.g., A = 4, h = 0.5),
whereas EuM results in biased and unstable posteriors. Figure 7.6 compares
phase portraits of the stochastic Lotka–Volterra model for increasing step sizes
h: the splitting scheme preserves the oscillatory dynamics across h, whereas
Euler–Maruyama distorts the cycles from h ≈ 0.05 and breaks down at h = 0.1.

Paper III

We propose an extension of ABC-MCMC with DC simulation (ABC–MCMC–DC)
that improves early chain mixing and reduces rejection rates, especially when
small tolerances are used and initial values are far from the posterior mode.
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Figure 7.5: Stochastic Repressilator model: marginal posterior distributions using EuM
(blue) vs Splitting (red). Rows represent the number of inter-observational intervals
and columns represent parameters.
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Figure 7.6: Stochastic Lotka–Volterra: phase portraits for increasing time step h. Split-
ting (top) preserves oscillations across h; Euler–Maruyama (bottom) distorts cycles from
h ≈ 0.05 and fails at h = 0.1. Leftmost column shows a near-exact reference (h = 10−7).
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The method offers a practical way to ease initialization difficulties and increase
acceptance probabilities without relaxing the ABC threshold.

Let yo = (yo(t0), . . . , y
o(tn)) be the observed time series for a state–space model

with parameter θ ∈ Θ. Standard ABC–MCMC targets the joint ABC posterior

πε(θ, s | so) ∝ π(θ) pθ(s) I{d(s, so) < ε},

and at each MH step proposes θ∗ ∼ q(θ∗ | θ) and s∗ ∼ pθ∗(s). In ABC–MCMC–DC
we replace the forward draw s∗ ∼ pθ∗(s) by a DC draw s∗ ∼ pθ∗(s | yo), con-
structed with a bootstrap particle filter: we propagate and resample particles
against yo, simulate corresponding pseudo-observations along each particle
path, and select one trajectory ỹ. We then set s∗ = S(ỹ∗). This concentrates
proposals near the observation. With proposal

Q(θ∗, s∗ | θ, s) = q(θ∗ | θ) pθ∗(s∗ | yo),

the MH acceptance probability for the joint target is

α(θ∗, s∗ | θ, s) = min

{
1,

π(θ∗) pθ∗(s∗) q(θ | θ∗) pθ(s | yo)
π(θ) pθ(s) q(θ∗ | θ) pθ∗(s∗ | yo)

}
I{d(s∗, so) < ε}.

Same as for Papers I-II, the intractable summary densities are approximated
using synthetic likelihoods; see the paper for details.

The DC proposal increases the chance that d(s∗, so) < ε even when θ∗ is
proposed from a diffuse q(· | ·) and the chain is far from the posterior mode.
In some cases this mitigates long initial rejection runs, improves early mixing,
and reduces the need to start from large a ε. Empirically, keeping the number
of particles for the DC proposal low avoids over-conditioning, which would
otherwise yield spurious acceptances.

Figure 7.7 compares 20 independent chains with a small ε and an initial point
far from the mode. Standard ABC–MCMC frequently fails to move and pro-
duces degenerate marginals. In contrast, ABC-MCMC-DC achieves higher
acceptances and mixing, with posterior mass concentrating near the true pa-
rameters.
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Figure 7.7: Posterior samples from 20 independent ABC-MCMC and ABC-MCMC-DC
runs for the stochastic Lotka–Volterra model. Top row: MCMC trace plots for the three
model parameters (θ1, θ2, θ3). Bottom row: Kernel density estimates of the posterior
marginal distributions. While standard ABC-MCMC chains (blue) frequently remain
stuck at their initial values (19 out of 20 runs), resulting in degenerate posteriors, ABC-
MCMC-DC method (red) consistently explores the parameter space and concentrates
around the true parameter values (black dashed lines).
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