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Bionic navigation

From emergent retinal optic flow to locomotor ballistic corrections in humans, for
robotics

BJORNBORG NGUYEN

Department of Mechanics and Maritime Sciences

Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology

ABSTRACT

This thesis explores the development of bio-inspired methods for addressing complex
navigation tasks in cyber-physical robotic systems. In human locomotion, a
sensation of a visual flow cue is created by continuously registering moving visual
features on the human retina. An interpretation of visual flow cues forms a low-
level motion perception more commonly known as retinal optic flow. It is often
mentioned and credited in recent human locomotor research, but is limited as a
theory or concept. A computational method of reconstructing retinal optic flow
fields in humans is introduced and studied along with its effect on intermittent
control to initiate informed ballistic corrections. Unifying the theories of human
visual perception, intermittent control, muscular control, and coordination, the
analysis from experiments reveals that human response time is approximately
0.14s.

To achieve retinal optic flow reconstruction for robotics, a set of optic flow
estimators is fairly and systematically evaluated on the run-time performance,
reliability, and accuracy criteria. This work developed a formalized methodology
utilizing a microservice paradigm and containerization technology to perform
benchmarking and generate results. Doing so enables continuous integration,
continuous deployment, and continuous experimentation, which are beneficial for
research and development. Furthermore, this thesis found that the readiness of
vehicles for adopting modern robotic software, with special emphasis on real-time
computing, has matured and essentially turned vehicles into mobile data centers
and capable robots. To show this partially, two optic flow-based local localization
methods are demonstrated for marine vehicles in a littoral environment.

Keywords:  Bionics, retinal optic flow, active gazing, active fixation, smooth
pursuit, visual perception, optic flow, locomotor control, neuromuscular behavior,
human locomotor behavior, robotic navigation



SAMMANFATTNING

Maénniskans formaga att kunna navigera i sin dynamiska omvarld ar ett komplext
amne med manga involverade processer fran synintryck till rérelse. Med inspiration
fran méanniskan kan man 16sa liknande utmaningar inom robotiken, for navigering.
Nar en méanniska befinner sig i rorelse skapas ett optiskt flodes-intryck pa ogats
retina, vilket kallas for retinalt optiskt flode. Det har sedan ldnge funnits en hypotes
om att manniskan nyttjar retinalt optiskt flode for att lokalt navigera sig sjalv med
kort tidshorisont och i hog hastighet, t.ex. vid vardaglig bilkérning. Detta tros ha
gett upphov till varfér man i korskolor intuitivt lar ut “titta dit man vill”-strategin.

Genom att internt uppskatta behovet av att agera via externa stimuli, sdsom
retinalt optiskt flode, avfyras ballistiska styrkorrektioner for att tillfalligt minska
behovet. Hastiga koordinerade rorelsekorrektioner i extremiteter, aven kallat re-
aching-rorelser, karakteriseras rorelseavstandet som en logistik funktion (S-kurva)
och dess hastighet som en klockformad kurva (Gauss-kurva). I detta arbete har
det visat sig att dessa korrektioner inte kan avbrytas abrupt, men istéllet kan
overlagras for att forstarka eller ddmpa den befintliga rérelsen. P& grund av sin
grundléggande karaktir, uppvisas dven dessa rorelser vid styrning av exempelvis
ett fordon (via ratten) da ménniskor utfér koordinerade rorelsekorrektioner. I detta
arbete, unifierades av flera teorier inom ménsklig perception, rorelsemonster och
beteende, framkommer genom experiment att ménsklig responstid ar ca 0,14 s métt
fran synintryck till initiering av rorelse.

Arbetet undersoker dven hur dessa forskningsresultat kan 6verforas till roboti-
ken, nagon som visar sig mojligt. For att kunna effektivt aterskapa retinalt optiskt
flode utvirderades ett urval av lampliga berdkningsalgoritmer pa ett systematiskt
och rattvist sitt. Utvarderingskriterier inkluderade exekveringstid, palitlighet och
noggrannhet. En formaliserad metod, baseras pa mikrotjanstarkitektur, arbetades
fram for att kunna uppna jamforbara prestandaresultat. En positiv biprodukt
ar kontinuerlig integration, kontinuerlig utrullning och kontinuerligt experimen-
terande vilket dr onskvért vid mjukvaruutveckling for forskning. Slutligen, fann
detta arbete att mognadsgraden hos farkost for realtidsberdkning for moderna
mjukvaruutveckling ar tillracklig vilket evolverat dem till mobila datacenter och
kraftfulla robotar. For att delvis pavisa detta, koncepttestades och demonstrerades
tva optiskt flodes-baserade lokaliseringsalgoritmer for fartyg i kustnira vatten.

11



“My time has come. You must continue your journey — without me.
You must believe.”

— Oogway
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Chapter

Introduction

Robotic systems are already an integral part of human society and are expected to
become even more integrated, interactive, and interconnected in the near future.
This imposes implicit requirements on them to have navigation capabilities in their
respective contexts and robotic applications. Furthermore, this development will
be progressive and gradually rolled out, creating a heterogeneous mix of coexisting
robots and humans in society. Thus, designing a robotic navigation system is
highly relevant in research and development in academia and industry alike to
make it simultaneously performant, safe, and human-acceptable [112]. Already
today, many modern robotic systems are capable of solving and navigating in a
static environment using perfect knowledge or assumptions of their surroundings.
However, general navigation with uncertainties is difficult for robotics to solve;
therefore, new theories, methodologies, and further innovation are still relevant
and needed.

Looking to biologically inspired engineering, or bionics, may provide an alterna-
tive way of solving the navigation task. Biology and evolution have been finding
solutions to non-trivial tasks or problems since the inception of life. For example,
it is not by coincidence that the shape of a modern-engineered aircraft has a strik-
ing resemblance to that of birds or echolocation technology to echolocating bats.
Therefore, finding inspiration and studying biological solutions to navigation can be
exploited and transferred to robotics and engineering to improve the performance
whilst increasing the acceptability and adoption of technology.

Perhaps unsurprisingly, biological creatures can consciously navigate in order
to search for food, find potential partners, or avoid dangerous situations. Among
simpler microscopic lifeforms such as plankton, navigation without a set target
or higher planning and simple surroundings awareness is sufficient for sustaining
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life [119]. However, for larger animals, skillful target-based navigation capabilities
are required or even essential e.g. for energy conservation or accomplishing predation
(or escaping predation for that matter). Despite the seemingly simple task of
moving towards a target, known as pursuit, it is not fully understood in detail from
perception to action response due to the neurological complexity and the resulting
emergent behavior.

1.1 Understanding human locomotor behavior

In the past decades, there has been an ongoing debate in the scientific community
on how humans navigate and how the demonstrated behavior can be described
and further modeled. This can range from what and how visual cues are used to
what control strategies humans may employ for locomotor control. Furthermore,
this includes all modes of transportation such as walking, driving, or flying, as
humans seem to deploy slightly different control and perception behavior [83, 129,
75, 50]. In high-speed smooth curvilinear motion in a textured plane, e.g. driving,
an established and identified heuristic strategy has emerged “you should look where
you are going,” which loosely describes how humans may exploit the emerging
patterns of retinal optic flow fields [138, 64].

Retinal optic flow has been identified and acknowledged as an integral part
of perceiving relative motion and, in turn, used for ego-localization and motion
control [143, 138, 137, 64]. Much of the previous work related to retinal optic flow
has been done in an interdisciplinary fashion between experimental psychology,
behavioral science, neuroscience, neurocognition, applied computer vision, and
mathematics. It has been carried out on a qualitative level and within theoretical
frameworks. Recent advances in eye-tracking technology have enabled further
research in human locomotor control, complementing theoretical frameworks with
high-quality experimental data. This has resulted in discoveries that simultaneously
challenge previous hypotheses and archaic understanding of human behavior.

When humans intently gaze, or look, at objects, the formation of retinal images
in the fovea of the eyes must be stable to increase the clarity and acuity of the
visual details. This is achieved through retinal image stabilization through various
developed biomechanical reflexes and processes. One such mechanism is the smooth
pursuit, where humans actively fixate their gaze on a visual feature using fine,
controlled, and accurate eye movements to track the visual target. Another is
vestibulo-ocular reflex, which compensates for chaotic head movements through
vestibular sensing organs, resulting in counteracting expressed eye movements.
However, beyond solely retinal image stabilization, it is believed that skillful active
fixation further aids human locomotor control in curvilinear motion [138, 64| and
also on foot [83]. The hypothesis is that stabilized retinal optic flow is used for
locomotor control [82, 84] and partly anticipatory trajectory planning [37, 83, 74].
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Kim and Turvey [64]; Wann, Land, Swapp, and Wilkie [137, 138, 146]; and
Lee and Cheng [78] and others advocate that retinal optical flow cues are the
primary sources of locomotion. The latter even further questions the need to
retrieve extra-retinal information such as heading [77, 137], implying retinal optical
flow cues are sufficient for local navigation. Regardless, it is argued that the human
steering control strategy mainly revolves around using the retinal optical flow field
patterns by continuously nulling flow curvature (or controlling locomotor flow lines)
through proper active fixation, combined with applying steering maneuvers [138,
73, 64]. By intelligently or skillfully placing the gazing point by simply “looking
where you want to go,” the retinal optic flow of the intended path will be vertical at
the correct instantaneous motion. This simple proposed heuristic online control is
shown to be mathematically plausible using the retinal optic flow field to correctly
make the judgment for curvilinear motion control [138, 73, 64].

Intermittent control has been found to better explain human muscular and
limb control than optimal control or classical engineering control approaches. The
control phenomenon is characterized by applying discrete ballistic corrections of
given strength and duration, and may even be superposed (overlapping corrections).
Both Craik and Tustin first independently introduced this in 1947 when they
studied humans as an engineered control system and noticed the similarities to
servo control applying intermittent corrections [29, 130]. Extending this work,
Beggs and Howard, Georgopoulos et al. realized that these ballistic corrections had
a sigmoid curve (logistic shaped) and by extension a bell-shaped velocity profile
when studying the rapid limb movements in humans [8] and monkeys [48]. This
phenomenon is known as reaching in the fields of neuroscience [30, 53, 31, 51, 15,
14, 104]. Plamondon derived a mathematical description of the bell-shaped velocity
profiles using a stochastic model, further accounting for the lagging heavy tail often
observed in experimental data, and provided a plausible explanation of the origin
of the bell-shaped velocity profile for this [104]. Although the early introduction
in human intermittent control research, it has only been properly considered and
gained traction in recent years [81]. Furthermore, Benderius and Markkula, and
Smith et al. found that human-operated controls, such as steering wheels, exhibit
the same fundamental properties of intermittency and movement characteristics as
reaching in human limbs [120, 11].

To summarize, there is a scientific consensus that when humans maintain
locomotor control, the retinal optic flow is vital as a perception cue. However, to
what extent it is used or how exactly it relates to humans intermittently applying
locomotor ballistic corrections to maintain locomotion is still unknown. Previous
work has proposed a simplified heuristic, “look where you are going” and “going
where you look” to describe human locomotor behavior to correctly maintain their
trajectory on a textured plane using proper active gaze control and emerging retinal
optic flow.
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1.2 Implementing bionic navigation

The topic of optic flow is a well-established domain in computer vision and image
motion analysis. Optic flow estimation has proved useful in various applications
such as video compression, motion analysis, image stabilization, motion detection,
simultaneous localization and mapping (SLAM), and odometry. Retinal optic flow
may be regarded as an extension of, but not confused with, optic flow. The main
difference between the two is that the retinal optic flow captures the biomechanical
dynamics of the complex movements of the head and the eyes into the perception
of motion. This facilitates retinal image stabilization by computationally displacing
the vector field to the biomechanical movements. Thus, retinal optic flow fields
may be computationally reconstructed using gaze data via eye-tracking systems
and optic flow fields in head-fixed video data.

Incorporating human perception and cognitive features in human locomotor
control research is often heavily simplified or deliberately left out, e.g. human
driver modeling [113, 124]. Understandably, many researchers make conscious
simplifications to keep the model complexity low, or due to a lack of relevant high-
quality data. However, doing so may result in inaccurate representation and loss of
explainability and interpretability of the results, further losing its transferability
and generalization. Retinal optic flow is understood and acknowledged as essential
for human locomotor control and is thus often mentioned in modeling contexts.
However, from a computational and engineering standpoint, the use of visual
motion flow is frequently not fully described with sufficient detail or incorporated
due to the lack of research and data, and further, because most prior research
is carried out in experimental psychology. For example, Matthis and colleagues
have investigated how to reconstruct retinal optic flow fields computationally, the
emerging sparse visual flow lines, and further their potential use for human bipedal
locomotor control [82, 84].

Further, the control behavior manifested by humans differs from the traditional
or classical engineering control paradigms such as the PID controller (proportional-
integral-derivative). Despite that, human locomotor control is commonly modeled
with a PID control-loop scheme in research and engineering [113, 128]. The
main reason is often simple; it is possible to do so in order to achieve satisfying
results. Researchers then deduce how it could be useful and attempt to further
explain the behavior and its implications. Contrary to this, this work incorporates
the mathematical framework developed by Plamondon [104], and considers the
sensorimotor models developed by Gawthrop et al. [43] and Markkula et al. [81],
to produce the intermittency property in the control system. Thus, it is possible
to emulate the human-like correction control to trigger a ballistic correction using
an error accumulation, or evidence accumulation, avoiding the PID approach
altogether.



1.3. RESEARCH QUESTIONS 7

Regarding implementing perception and control in a sensorimotor fashion,
robotics software applications are typically monolithic in design. It is a single
executable binary handling all functionality. This design has significant drawbacks,
including code complexity, run-time robustness, reusability, software deployment,
scalability, and flexibility. Monolithic software designs in robotics research and
engineering pose a significant challenge since robotic platforms may have varying
configurations of sensors, motors, data processing, and applications, especially in
mission-critical tasks. Modern software practices often deploy a microservice design,
mitigating these challenges, where each single executable application binary handles
one specific designated task, such as querying information from a central database
or visualizing video data. The appended papers explicitly explore the utility and
feasibility of adopting and deploying a microservice design paradigm for research
and robotics. These methodologies are widely adopted and used throughout this
thesis.

To summarize, various numerical methods of estimating optic flow already
exist for motion perception, which may be used to reconstruct retinal optic flow
by incorporating human gazing components. This motion perception cue may be
used in a computational framework, a sensorimotor control model with evidence
accumulation, to trigger a ballistic correction mimicking human intermittent control
behavior. Bionic implementation could be enabled and supported by adopting modern
software development methods, for example, containerization and microservice
design paradigms.

1.3 Research questions

This thesis aims to investigate and understand how humans visually perceive the
environment to locomote and further apply this newly gained knowledge to solve
navigation tasks in robotics. The retinal optic flow has been identified as an
essential source of information when studying human locomotor behavior. Previous
research has proposed that retinal optic flow is used during locomotion, and much
of the current academic debate is on the details of how humans exploit it. Various
methods have been developed for estimating optic flow within computer vision,
especially with the introduction of deep learning. It slightly differs from the retinal
counterpart as it lacks human gazing behavior and how motion perception may be
exploited for locomotor control.

Furthermore, vehicles on roads, in air, on water, and under the water surface
are continuously tasked with more complex navigation challenges. This has pushed
traditional vehicles to be equipped with various sensors and advanced computational
capabilities, effectively evolving them into highly mobile data centers and robots.
Multiple aspects of bionic navigation are investigated in this thesis with the following
posed research questions (RQs):
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RQ1 How do humans locally navigate by looking where they are going?

As discussed in the previous section, the retinal optic flow field is credited as a
quintessential part of human navigation in terms of localization and locomotor
control tasks. Previous research has proposed a simple heuristic for human lo-
comotor control using immediately available visual cues. However, the proposal
does not consider human intermittent control and provides insufficient details on
implementing perception and control that mimic human behavior. Furthermore,
experienced and skilled drivers traveling on textured surfaces often demonstrate
similar behavior of actively fixating their gaze in the direction they intend to go,
implying there is a value in doing so.

RQ2 How can retinal optic flow be used as a perceptual input to maintain locomotor
control?

Related to RQ1, early research has investigated and characterized human sen-
sorimotor behavior. However, there is a lack of understanding of how humans
intermittently, not continuously, maintain their locomotion using retinal optic
flow fields. In particular, how can the locomotor control relate to the perceived
retinal optic flow field using modern computer vision? Thus, understanding and
systematically describing human sensorimotor behavior enables robotics to mimic
human locomotor behavior.

RQ3 How can optic flow be used for odometry in various settings?

A common robotics approach is using a global navigation satellite system (GNSS) or
similar technology for self-localization. GNSS technology is even more accurate and
precise when complemented with real-time kinematic positioning (RTK). However,
alternative or complementary self-localization methods are needed when GNSS
is neither suitable nor applicable. Using visual or topographic data may provide
sufficient information to estimate self-localization as a dead-reckoning or stand-in
replacement when GNSS technology becomes unavailable.

RQ4 How can bio-inspired methods of perception and control be accommodated
and implemented in robotics for mission-critical navigation?

This research question partly concerns how one can develop software that is agnostic
to underlying hardware architecture and application context, and partly how to
do so with regard to hard deadlines. With vehicles ever-evolving and becoming
more computationally capable, it is interesting to investigate if they are suitable
for adopting modern software development paradigms such as containerization
or microservice design. Modern software development practices enable software
modularity to develop, compare, and evaluate bio-inspired methodologies more
easily.
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1.4 Limitations

In this thesis, only local and short-term time horizon navigation has been considered,
leaving out strategic long-term route planning and execution thereof. Local and
short-term time horizon navigation here refers to the traversing ability of the agent
in the immediate environment, for example, lane keeping during driving. Strategic
long-term planning encompasses the mission goal of knowing the ends of the journey
and how to accomplish and adapt the trajectory involving higher cognitive function.
Long-term time horizon navigation falls outside the scope and resources of this
work.

Artificial neural networks, particularly deep learning, have significantly impacted
many research fields, including human behavioral research, thanks to their adaptive
capabilities and performance on complex tasks. Due to the very nature of deep
neural networks, it is by design a complex end-to-end system, i.e. a black box
model. As a result, it lacks any meaningful interpretation of its inner workings. In
substantial cases where it is applied, the resulting utility is often prioritized over
the fact how it managed to solve the problem. As a reaction to this, a movement
emerged urging to stop blindly using black box models for high-stakes decisions and
use interpretable artificial intelligence instead, to increase transparency and account-
ability [111, 136]. Hence, for this thesis, deep learning will not be fully considered.
However, its contributions to research and engineering are acknowledged.

1.5 Author contributions

The division of work for the included papers of this thesis is detailed below.

Paper A

Benderius and Nguyen conceived the experiment. Nguyen prepared, constructed,
and implemented the experimental hardware and software setup. Nguyen conducted
the experiment, which included recruiting and informing the research subjects.
Nguyen procured, curated, and maintained the data sets [93, 91]. Nguyen conducted
the formal analysis. Nguyen produced and visualized the results. Nguyen and
Benderius analyzed and interpreted the results. Nguyen drafted the manuscript,
and Benderius reviewed the manuscript and supervised the research project.

Paper B

Petersson implemented the initial work as their master’s thesis under the super-
vision of Blanch. Blanch procured the data sets. Nguyen finalized the software
implementation. Nguyen post-processed the data and generated the results. Blanch,
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Nguyen, and Petersson created a draft of the manuscript. Blanch and Nguyen
finalized the manuscript under the supervision of Benderius and Berger.

Paper C

Nguyen conceived the research idea, prepared the experimental setup, formalized
and conducted the data collection, and procured the research results. Nguyen
drafted the initial manuscript. Nguyen finalized it under the supervision of Ben-
derius and Berger.

Paper D

Berger initiated the idea to formalize and publish the findings from recent research
activities. Nguyen drafted the manuscript under the supervision of Berger and
Benderius, and Berger and Benderius finalized it.

Paper E

Blanch conceived the research idea, prepared the experimental setup, and procured
the data sets. Nguyen formalized the theory, implementation, and computational
framework. Nguyen contributed to the analysis and interpretation of results and
discussions. Blanch drafted and finalized the manuscript under the supervision of
Benderius.

1.6 Thesis outline

Chapters 2 and 3 provide the biological background and insight into how humans
locally navigate and their locomotor behavior, from visual motion perception to
muscular response. Chapter 4 concerns robotics, visual sensors suited or adapted
for optic flow, computational implementation and evaluation of optic flow, software
architecture, software design patterns, and real-time computing constraints. Then,
Chapter 5 discusses research findings in the thesis and their implications in the
scientific community. Lastly, final concluding remarks and future works from this
thesis are given in Chapter 6 followed by the summaries of the appended papers in
Chapter 7.



Chapter

Visual motion perception

There is a famous thought experiment from the 17th century in philosophy called
Molyneux’s problem which poses an interesting question on the topics of sensation
and perception. Suppose a congenitally blind person can feel the differences between
geometric shapes via tactile touch. Could that very same person also distinguish
and identify between the very same objects by only visually looking, if they were
given the ability to see? This particular line of thinking emphasizes the fundamental
differences between basic sensation and the higher cognitive perception of the same
object. Held et al. later investigated this question via experimental trials by
letting newly sighted patients attempt to pair haptically touched objects with
seen ones [56]. The answer to the thought experiment was found to be simply
no since the newly sighted could not establish the perception of the same object
via different sensation modalities. However, the researchers quickly noted that
they were learning and developing the cross-modal mapping after the trial. This
confirms that perception has a significantly complex learning aspect compared to
straightforward sensation.

Visual perception is thus a complex field to study, as prior experience has
a non-trivial impact on perception capabilities. There is evidently a difference
between visual sensing and visually perceiving something, where the latter requires
a higher cognitive function to interpret the information. Moreover, various types of
visual perception, such as the recognition of patterns, edges, objects, and motion,
form an intricate and complex cognitive system that constructs the mental or
internal representation of the environment. This creates an awareness which
some researchers argue is an important, if not the most significant step, towards
consciousness as we understand it [39].

On the other hand, the sensation does not arguably require higher cognitive

11
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function but instead operates on a lower cognitive level with minimal interpretation.
One example is when a photon hits the photoreceptors on the retina, converting
the light into an electric action potential — a process called signal transduction.
The signal transduction process, happening in the retina of animals, continuously
conveys information and provides minimal interpretation as input to the neural
perception system. The signal will propagate throughout clusters of neural networks
for various purposes like knowledge and memory formation, recognition of patterns
and objects, and awareness. These biological processes occur without voluntary
introspection, and the formations are automated to a certain degree. This thesis
proposes that low-level vision includes similar automatic properties to the high-
level perception for the purpose of navigation. This could specifically relate to the
phenomenon where one produces an initial response before the cognitive action
planning is fully complete.

The visual motion flow emerges from the relative movement of the observer and
its visual surroundings. Subconsciously registering visual features such as light,
shape, color, or patterns in the surrounding scenery creates the projected optic flow
on the retina, retinal optic flow. It is apparent that such a stimulus provides crucial
information for the observer about the ever-dynamic and changing environment,
and further their locomotion. One indication of its importance can be seen in
the documented condition where the ability to process visual motion is impaired,
called akinetopsia. It has been reported [28, 2, 59] that the affected have significant
challenges in perceiving the moving environment and anecdotally describe it as
viewing the world in a series of still images. To compensate for the inability to
perceive motion visually, some have reportedly relied on other sensations to judge
motion, for example, relying on hearing to judge approaching vehicles. Interestingly,
those affected by the impairment can still perceive the surrounding scene in a way
many would consider perfect scene awareness. Despite that, the absence of properly
functioning vision motion perception negatively affects their daily lives.

Thus, it may be argued that visual motion perception may at least have a
distinct pathway in our cognitive system, a vital function in our daily lives. When
studying visual motion perception, it is intuitive and natural to consider the relative
visual movement input cue, generally referred to as an optic flow field. The optic
flow field may be regarded as a three-dimensional visual motion vector field at
every visual point, projected to a two-dimensional space. This does not consider
the higher cognitive or psychological functions of the observer, such as gazing,
stabilization of the retinal image through biomechanical reflexes, or the tendency
to focus the gaze on visual details. Each of the phenomena mentioned above is
important to visual motion perception. Humans can quickly change the direction
of their eyes, turn their heads, and intelligently guide their gaze through the scene
using knowledge-driven gaze control, as described by Henderson [58].

To summarize, human visual motion perception is crucial for cognitively rec-
ognizing and understanding the surrounding dynamic world and moving objects.
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Cognitive motion perception involves both low-level and high-level information
processing and s aided by retinal image stabilization, which is achieved by var-
tous biomechanical reflexive processes. Retinal image stabilization is believed to
play a quintessential role in locomotor control and is highly interconnected with
knowledge-driven gaze control and intermittent control in humans.

2.1 Optic flow

In the 1950s, Gibson published their influential work [50] where the optic flow
concept was formally conceived in the academic world. The author gave the example
of avian pilots guiding their aircraft to the runways during level flight using optic
flow as a primary source of information for locomotor control. In addition to the
theories of optic flow, the resulting phenomenon focus of expansion (FOE), also
known as wvanishing point and point of aim, was introduced and developed, and its
hypothetical use was discussed. The focus of expansion is the point of divergence in
the optic flow field, analogous to the divergent source point in vector field analysis.
Early interpretation and purpose of FOE were that the direction of locomotion, or
heading, could be detected and used for locomotor control. A large part of the early
research focused on the optic flow field in general and the perception of heading.
Optic flow and retinal optic flow have unfortunately been used interchangeably
since inception. In contrast, the latter considers biomechanical gazing as mentioned
previously, resulting in the ambiguity of the term optic flow in psychology and
computer vision.

In the development and explanation of the retinal optic flow phenomenon,
Prazdny and Longuet-Higgins made significant contributions in modeling and
interpreting moving retinal images in a theoretical mathematical framework [79].
Their work describes a projected image plane of the world scene texture, similar
to the pinhole camera model and the anatomy of the human eye, see Fig. 2.2.
The emergent retinal optic flow can be mathematically described by considering a
relative motion between the observer and the texture. The optic flow may then be
modeled as
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where y, z represent the projection pixel coordinates in the image space, (9, 2) the
pixel velocity i.e. the optic flow, f the focal length, ¢ the relative velocity, & the
relative angular velocity, and X the depth to the arbitrary visual point in world
space. The optic flow described in Eq. (2.1) emerges from any relative motion of
any linear combination of translation and rotation to the observer. Examples of
the emergent optic flow from the different motions using Eq. (2.1) are illustrated in
Fig. 2.1. Note that the scene information is required for computing optic flow in the
translational component, as it depends on the X scene depth to the visual point.
In contrast, the rotational component is independent of the scene geometry. This
model is only suitable when perfect knowledge of the scene and the observer is fully
accessible, for example, in a simulation or a fully controlled environment. However,
the theoretical optic flow model would most likely not suffice with inaccurate or
insufficient information in real-world settings. To cope with this, various developed
numeric methods use a temporal image sequence to estimate optic flow, which will
be further discussed in Section 4.3.

In contrast to the straightforward and naive manner of modeling optic flow, as
shown Eq. (2.1), Prazdny made further attempts to reverse the process and extract
information such as egomotion and depth from the visual optic flow alone [106]. It
was concluded that the information is not conserved in the structure of optic flow
and is lost in the process of projective transformation. Neither the relative depth
nor the local surface orientation can be fully retrieved since they are unambiguously
stored in the optic flow. Thus, if such information is to be extracted, separating
optic flow into translation and rotational parts requires further assumptions, prior
knowledge, cognitive experience, or complementary information.

Much of the previous research has been focused on the relative motion between
the observer and the surrounding scene. However, optic flow may also emerge
from independently moving objects, which Layton et al. investigated from a
neurophysiological point of view [72]. By studying the optic flow, the closely related
focus of expansion, and the local optic expansion of objects, so-called looming,
they developed artificial neuro-models inspired by those found in natural biological
processes. It was mainly designed to mimic the human perception of heading
in the presence of independently moving objects in a parallel pathway fashion.
They concluded that their models could reproduce the heading biases in the same
direction and magnitude as in human experimental data.

Throughout the early research on optic flow, it has been chiefly regarded in
two-dimensional image space or retinal space. However, with the advancements
of complementary sensor frameworks such as lidars and depth vision systems,
or even using sensor fusion, this could be extended to three-dimensional flow
in three-dimensional space. The three-dimensional flow is referred to as scene
flow [133], describing every visual point in the scene with an associated velocity
vector. Although scene flow might appear slightly different from optic flow at first
glance, its implications pose significant challenges for numerical estimation methods.
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(c) Side-translation. (d) Combined.

Figure 2.1: Optic flow visualizations. Four examples of emergent optic flow fields
of a perpendicular plane using two different visualization techniques: quiver and
hue-saturation-value (HSV) color encoding. Quiver visualization is commonly used
for sparse optic flow fields where the direction and the magnitude are represented
with the length and direction of the arrows. It provides an intuitive interpretation
utilizing a small set of discrete flow field vectors. However, the color encoding offers
a continuous visualization of the dense optic flow field by encoding the direction to
hue and the magnitude to saturation. Here, four different flow fields are illustrated:
divergence caused by pure v,, curl caused by pure w,., side-translation solely caused
by vy, and a full combination of the former. The location of the focus of expansion
(FOE) is denoted with a star.
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Much of the previous work for estimating optic flow is not directly applicable to
corresponding scene flow, thus creating a substantial chasm between optic flow and
scene flow research.

In summary, the early works of optic flow quickly identified its importance to
local navigation as it provided additional tangible means of perceiving egomotion in
theory. However, extracting translation and rotational movements using solely optic
flow is non-trivial, as depth is lost due to visual projection. Due to the history and
broad adoption of optic flow, the term has become ambiguous as optic flow more
widely refers to visual motion flow fized to the locomotor axis (or head). While
retinal optic flow specifically refers to visual motion flow as perceived in the retina
of the agent, it accounts for retinal stabilization of the visual image.

2.2 Retinal optic flow

As emphasized previously, retinal optic flow incorporates the gazing dynamics and
head movements of the agent into the visual flow fields. A simplified illustration
of the emergent retinal optic flow is shown in Fig. 2.2, demonstrating the visual
dynamics between visual features and the projected motion to the human retina.

Much of the work related to optic low may be transferred and extended to the
field of retinal optic low. However, some challenges are apparent when considering
retinal optic flow. For example, how does one consider and estimate gazing and
fixation dynamics to incorporate them into the existing optic flow framework?
Early research has successfully demonstrated the reconstruction of sparse retinal
optic flow fields by Calow and Lappe [22]. In their work, they used extensive
data sets of egomotion, eye movement, and depth structure to generate what they
call true retinal motion fields. Although this thesis does not go deep into the
detailed research on a neuron-level analysis, Calow and Lappe provide and consider
a hypothetical framework on how humans, on a neural level, may process retinal
optic flow using an encoder for the flow. In their modeling of retinal optic flow,
where polar transformation is applied, they could reproduce similar properties of
real motion-sensitive neurons found in the middle temporal area of the human
brain. While their method of reconstructing the flow produces accurate retinal
optic flow fields, it significantly demands the sensor framework and sensor fusion
techniques.

2.2.1 Retinal image stabilization and gazing behaviors

Gazing is described as the bio-mechanical coordination effort of directing the visual
sensation system of the observer. Retinal image stabilization may be achieved
by continuously directing and maintaining gaze fixation on a targeted visual
feature. Various processes contribute to the retinal image stabilization, but active
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Visual features

Retinotopic flow

Retinal optic flow

Figure 2.2: Retinal optic flow. An illustration of visual flow from motion is
projected to the retina of an eye, producing the sensation of the emergent retinal
optic flow and retinotopic flow. The main difference between retinal optic flow
and retinotopic flow is the last stage of stereographic projection, i.e. projection to
the sphere skewing coordinate system. By actively fixating the gaze, a stabilized
retinal image at the fovea can be achieved via so-called smooth pursuit. The visual
motion projected during such fixation differentiates the general head-fixed optic
flow and retinal optic flow.
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fixation, vestibulo-ocular reflexes, and cervico-ocular reflexes are mainly credited.
Without retinal image stabilization, the vision would easily become blurry and
misinterpreted by cognitive functions, and may result in dizziness or nausea due to
cognitive dissonance, as previously discussed.

Vestibulo-ocular reflezes (VOR) correct and adjust the vision for mainly the
head movements, both translational and rotational, via the vestibular sensation
system located in the inner ears of humans. Anecdotally, many have probably
experienced blurred vision caused by erratic eye movements known as nystagmus
when sitting in a spinning office chair and abruptly halting the spinning; as the
vestibulo-ocular reflexes are actively incorrectly correcting and compensating for
the previously exposed angular velocity. The same sensation system is responsible
for equilibrioception and spatial orientation to orient to gravity, identifying which
direction is upwards. By sensing the fine and jerky head movements, the VOR
can inhibit or exhibit signals to the eye muscles to readjust and realign the eyes
for stabilization. Cervico-ocular reflexes (COR) work similarly but mainly use the
sensation in the neck to compensate for head-body movements.

In terms of directed eye movements, there are typically five distinct types or
classifications: saccades, passive fixations, active fixations, smooth pursuits, and
post-saccadic oscillations. Some researchers discern active fixations from smooth
pursuits as the former is characterized as low-velocity and the latter as high-velocity
from some threshold. For the purpose of this thesis, these two will be considered the
same and used interchangeably as it has proven challenging to distinguish between
the two fully [100]. Albeit separated by a velocity threshold, they functionally
achieve the same purpose of maintaining visual tracking.

A saccade is the rapid and jerky eye movement where the observer temporarily
and cognitively becomes blind during the movement by cognitively blocking, or
canceling, the visual sensation known as saccadic suppression to avoid further
processing the retinal image [127]. This suppression may already occur at the
retina as some research has found in animals [60]. Surprisingly, in a recent study, a
complete suppression is not found during a saccade as humans are still capable of
on-the-fly correcting or jump-starting their saccade amid the movement, implying
there might exist continuous degrees of cognitive suppression [116].

A passive fixation is when the eyes are locked relative to the eye socket; therefore,
rotating the head will also rotate the line of gaze. In contrast, active fixation and
smooth pursuit are achieved when the gaze is stable and fixed on a visual target,
for example, when tracking a moving object. Active fixation has been reported
to reach angular velocities up to 0.5rads™!, while any greater velocities tend to
induce saccadic behavior with velocities of 17rads™! [100]. Lastly, post-saccadic
oscillation is the brief, temporary transient state characterized by small oscillations
in the eye movement occurring after a saccade.

These gazing behaviors can be related in Eq. (2.1) when modeling the formation
of retinal optic flow. The biomechanical reflexes and smooth pursuit attempt to
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null the projected motion flow in the fovea (origin) in the eye, i.e. Q(0,0) ~ 0,
by accurately and precisely counter-rotating the eyes by controlling the attached
fast-twitching muscles. This process must be highly performant and simultaneously
rapid to stabilize the retinal image properly, thus demanding a tight control loop of
the reflexes and eye muscles. The resulting retinal optic flow field in the proximity
of the fovea, where the visual acuity is the greatest, is nearly nulled, achieving a
retinal image stabilization.

Significant advancements in eye-tracking technology have been made in recent
years, which in turn have stimulated and reinvigorated retinal optic flow research,
experimental psychology, and cognitive sciences. One such innovation is the compact
and wearable design, allowing the research participant to move unhindered while
wearing the sensors effortlessly. Active or passive vision sensors may be used
depending on the chosen numerical methodology for detecting and estimating
human gazing. Salvucci and Goldberg [114] made a taxonomy study of five general
algorithms for identifying and estimating saccades and fixations: (1) velocity-based,
(2) hidden Markov model-based, (3) dispersion-based, (4) minimum spanning
tree-based, and (5) area-based algorithm. In their work, they investigated the
main advantages and disadvantages of the five, highlighting their suitability for
various contexts. The work mainstreamed the development of eye-tracking research,
enabling new types of eye-tracking technologies and improving existing systems.

The new high-quality eye data, provided by modern eye-tracking sensors, enables
significantly improved data processing. This has allowed researchers to study in
detail what, how, and why humans look at things in various contexts, something
that previously has been challenging or even impossible. For example, Matthis,
Yates, and Hayhoe investigated how humans use gazing to plan and control their foot
placement when walking in natural terrain [83]; and Nishizono et al. characterized
and studied how professional formula drivers shift their blinking behavior patterns
depending on specific driving contexts [98]. Pekkanen and Lappi developed a hidden
Markov model-based method using naive segmented linear regression (NSLR) to
simultaneously denoise and classify eye movements by assuming constant gazing
velocity into the four categories mentioned previously [100]. NSLR has been further
improved by Johari et al. [62] by using a clustering algorithm to find the linear
segments instead.

As previously mentioned, humans tend to intelligently and skillfully guide their
gaze through the scene using knowledge-driven gaze control [58, 138]. Simultane-
ously, a debate was initiated on whether human sensorimotor behavior could be
understood as a model-free strong online control, an inherent internal model-based
control creating the anticipation used for control, or a composite hybrid of the
two [150]. Tuhkanen et al. investigated this issue and found that human predictive
gazing behaviors emerged during curvilinear locomotion in a simulated environ-
ment [129]. They argue that research participants must have an internalized model
to facilitate these predictive gazing behaviors. This contrasts with a model-free
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online control, where the control is immediately triggered based on currently avail-
able information. The latter case implies that the person can solely guide their
locomotion without involving additional complex or higher cognitive functions,
such as prediction using readily available visual information. Their findings suggest
that humans must have internal models to support predictive behavior. This
notion may be partially supported by the study in Paper A, looking at the curve
negotiation and maintenance. The research participants may have internalized
models to skillfully sample relevant visual information through proper gaze control
for aiding their mission-critical control, see Section 5.1.2, which highlights and
discusses the gazing distributions.

To summarize, humans express eye movements as biomechanical reflexes such
as smooth pursuit and vestibulo-ocular reflexes, which achieve image stabilization
at the retina in the eyes. Stabilization is necessary to mazximize the acute clarity of
visual sensation and further process visual information. While it is widely accepted
that gazing mainly achieves retinal image stabilization, it is unclear how exactly
proper gaze control aids locomotor control beyond solely stabilization, as humans
tend to look where they want to go.

2.2.2 Perception for curvilinear locomotor control

In the context of human local navigation, the scientific community agrees that the
retinal optic flow field is used for human locomotor control. However, it is still
unclear how the visual motion information is perceived, interpreted, and utilized. A
notorious point of disagreement is whether the direction of egomotion, i.e. heading
of the locomotor axis, is used, or even necessary in human locomotor control.

As previously mentioned in Section 2.1, the complete retrieval of information
such as egomotion and depth perception can not be exactly determined from solely
optic or retinal optic flow. Despite this, Warren and Fajen still argued that there
is sufficient estimation of extra-retinal information that could be exploited for
navigational tasks [139, 140]. Hence, they proposed a simple control law for on-foot
using a linear combination of egocentric heading error and optic flow error

éego = _k(¢ego - wg) - ka(¢0f - @ng) (2'2)

where ¢ego is the current heading from egomotion (egocentric), 1), the current target
goal, k the constant coefficient turning rate, w the optic flow measure dependent
on the visual structure of the environment, and v the egomotion speed. If optic
flow is to be exploited in a texture-rich environment, the proposed control law is
divided into two contributing parts. The optic flow control part governs during
high speed, and the extra-retinal control governs during low speed. This control
was also extended to accommodate obstacle avoidance and path routing by slightly
modifying the model.
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Contrary to locomotor strategies exploiting extra-retinal information, Kim
and Turvey were the first to show that exploiting the formation of retinal optic
flow patterns may be sufficient for locomotor control in curvilinear paths on a
textured plane [64]. In their work, they discussed how the projected retinal flow
patterns may be used to perceive under-steering and over-steering by integrating
the optokinetic gazing of the agent, i.e. smooth pursuit. However, due to the
technological limitations of their time, all of their work related to retinal optic flow
is entirely conducted in simulation.

Simultaneously, in parallel to the work of Kim and Turvey, Lappe et al. published
a literature review on the visual heading perception during egomotion, concluding
that heading can be estimated rapidly and accurately from retinal optic flow [69].
However, Lappe et al. further argue that extra-retinal information is needed to
resolve the perception problem in ambiguous heading situations. This is supported
by Wilkie and Wann when they investigated how humans navigate in situations
with degraded visual information, such as nightfall [144]. It is suggested that the
human brain has learned to solve and discern the retinal optic flow into motion
flow relative to the locomoting body, using optokinetic information as an example,
thus perceiving the locomotor heading.

Wann and their colleagues further developed and expanded the idea of Kim and
Turvey on retinal optic flow. They argued that extra-retinal information, such as
heading and eye movement, is unnecessary for sufficient human locomotor control in
curvilinear motion. Furthermore, the model presented by Fajen and Warren could
only explain the special case of walking and could not be extended or generalized
to curvilinear locomotor control, maintaining steering for road vehicles as explored
in Paper A. Wann et al. argued that humans could pivot their locomotor axis and
take a straight line trajectory to the target [137], thus indirectly questioning the
generalization of the locomotor controls using extra-retinal cues, such as in Eq. 2.2
by Warren and Fajen.

Instead, the works of Kim et al. and Wann et al. suggested retinal optic
flow as the primary information source guiding general locomotor control. They
presented a mathematical framework using the perceived retinal optic flow of
the intended path [64, 138]. A theoretical steering control could be realized by
continuously minimizing the horizontal flow field component of the intended path,
which Wann et al. call nulling flow curvature with active fixation. Here, it is
to be noted that the intended path of the agent implies volition with short-term
planning or anticipation of their local navigation. This strategy is based on the
simple heuristic principle of you should look where you are going as inspired by the
instruction commonly taught in professional driving schools and as a response to
where we look when we steer by the work of Land and Lee [68]. Assuming that the
agent locomotes in a curvilinear trajectory and fixates their gaze onto a point above
the current curvilinear path and parallel to the ground surface plane, i.e. towards
the horizon. Then, the retinal optic flow field of the intended path can be described
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as a ratio of horizontal and vertical components

v v —a?— 22) )
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as further explained in detail in their work [138]. In this mathematical derivation
using their reference coordinate system, one may conclude that all points on the
intended path, i.e. xr% + zg = r2, result in the numerator being zero, implying no
visual horizontal flow. Eq. (2.3), as presented in this work, is in the correct form
and differs slightly from the erroneous original presented in the Supplementary
Material by Wann and Swapp [138]. Despite this error, it does not affect the
qualitative analysis made by the authors.

Further research shows that both retinal flow and extra-retinal information
could support locomotor control through a flexible combination similar to the
works of Warren and Fajen. Using the damped harmonic oscillator in physics as
an inspiration, Wilkie et al. [145, 144] proposed

0 = k1(B1Prr + B2Perp + B3Py p) + k2(B4Perp + BsPyp) — bb (2.4)

where 6 is the heading, k; control gain coefficients, b some damping factor, ;
weights balancing the perception variables, and P{RF,VD,ERD} perception quantity
variables for retinal optic flow (RF), visual direction (VD) and extra-retinal target
direction (ERD). This model attempts to incorporate all available perception signals
into a single process to generate a corrective control signal.

In parallel with developing the nulling flow curvature strategy as presented
above, Wann, Land, Wilkie, and their colleagues [137, 138, 146] propose a simplified
heuristic of using the emergent retinal optic flow patterns to maintain proper
locomotor control in curvilinear motion as follows:

R1: Fixate the gaze close to the intended path.

R2: The retinal optic flow directions of the intended path will then indicate under-
steering or over-steering through the horizontal component of the motion

field.

R3: If the retinal optic flow directions of the intended path are downward, then the
future path and intended path coincide, and no further locomotor correction
is needed.

However, if detailed and explicit enough, these proposals implicitly suggest the
classical engineering approach, proportional-integral-derivative (PID) control, to
continuously regulate a process variable to a set point. This type of controller
does not reflect how humans typically exert movements via what we understand as
reaching, let alone accounting for response times and the intermittency of human
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behavior. Aspects of human intermittent control and its inherent delayed response
will be further discussed in Section 3.3.

Zhao and Warren attempt to characterize different approaches to modeling
human sensorimotor behavior either as strong online-based, strong model-based, or
a hybrid of both [150]. However, with the current understanding from Paper A, and
in line with recent research in human sensorimotor modeling, a whole distinction
between strong online and strong model characterization can not easily be made.
For example, anticipation and prediction use internalized models originating from
past learned experiences to form a personal perceptual understanding (model-based
control) [129, 57, 55, 148]. While in neurocognitive research and supported in
Paper A, humans initiate and complete the muscle motor responses before any other
higher auxiliary cognitive processes, such as body motor planning, are fully finished
(online control) [103, 142, 52, 148, 42]. As the evidence points both ways, it may be
concluded that it is most likely a hybrid of both approaches when understanding
human sensorimotor behavior, as it can not solely be explained by a strong online
or a strong model-based hypothesis.

Matthis et al. [83, 82, 84] revisited human locomotor control on foot and
visual motion perception in naturalistic environments with modern eye-tracking
technology. Their initial findings concluded that humans are highly adaptive in
their locomotor and gazing behavior to cope with varying demanding environments
while traversing. This observed on-the-fly adaptability in human locomotion is also
supported by the works of Hanna, Fung, and Lamontagne [54], suggesting that
humans cognitively adapt and re-weight relevant sources of information to enhance
locomotor capabilities, in this case, extra-retinal and visual motion information.
Further, visual motion fixed to the head is significantly chaotic due to the bipedal
gait of humans [84]. Thus, the role of optic flow for human locomotion should
be reconsidered in favor of retinal optic flow instead, further emphasizing the
importance of retinal image stabilization and its interpretation as perceptual cues.

The work presented in Paper A attempts to incorporate the main theories
presented by Matthis et al., Kim et al., and Wann et al. regarding the interpretation
of retinal optic flow for locomotor control of curvilinear motion. However, there
is an inherent challenge in quantifying what is referred to as the intended path
and the future path if such quantities exist, given that only the visual information
and egomotion are known. Given that the agent is supposed to maintain their
current future path so that this path lies within their designated road lane, then
the designated road lane should contain their internalized projected intended path.
Thus, it is arguably that the designated road lane visually contains the intended
path, as one of the main objectives of the control is to stay within some boundaries,
such as lane markings. This is assumed and used in the naive numerical approach
of estimating and interpreting the retinal optic flow presented in Section 4.5.
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2.2.3 Smooth pursuit during curvilinear locomotion

To geometrically relate the case of an agent fixating their gaze on their circular
path ahead, let us consider the following in the plane parallel to the ground. Using
the inscribed angle theorem, as shown in Fig. 2.3a, it can be stated that

o = 20 (2.5)

for any point A in the set of points M on the circular arc which the angle /DAFE = 0
can be constructed. The complement set M€, which is the complement arc to
complete the circle, and the supplementary angle ZDCFE = 6 can be constructed
as illustrated in Fig. 2.3a at point C.

Let the points A and C converge to the point D from each side such that it
establishes the special case of a tangent AF where /FAE = /FDE = /FCFE =0,
as shown in Fig. 2.3b. This is the approximate case (disregarding the height
dimension) when the agent fixates their gaze at point E on the circular path from
their point A, which establishes the horizontal gaze angle # while the heading of
the vehicle is the tangent GF'. The time derivative of Eq. (2.5) is thus simply

(1) = 26(t) (2.6)

where ¢(t) is the vehicular yaw angular velocity and 6(t) is the horizontal gaze
velocity. This proves that the vehicular yaw angular velocity is always twice as
large as the horizontal gaze velocity during an ezact smooth pursuit i.e. the agent
perfectly fixates their gaze on the curvilinear path.

To summarize, previous work studying visual perception for human locomotor
control on foot and in vehicles looked at how the retinal optic flow (and optic flow)
and the heading from egomotion can be exploited for local navigation. Unfortu-
nately, the suggested control mechanisms do not consider human realistic movement
featuring characteristics of reaching, latency, and intermittency stemming from
a satisficing behavior. Furthermore, the human sensorimotor system can not be
explained as solely simple online control (immediately triggering a response) or
model-based (intermediate interpretation and modeling), but rather as a hybrid
of both. Humans internalize past experiences to form anticipation and prediction
to consistently and rapidly initiate informed movement responses. At the same
time, they can quickly adapt their locomotor behavior to cope with changing and
dynamic environmental circumstances. Many of the proposed control schemes are
rooted in using active gaze fixation to form the retinal optic flow pattern, and a
geometrical proof is presented relating vehicular yaw angular velocity and horizontal
gaze velocity.
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(b) Special case of tangent.

Figure 2.3: Geometrical proof relating vehicular yaw angular velocity ¢ to horizontal
gaze velocity 6. (a) shows the inscribed angle theorem, where (b) is the special
case of tangent, which can be used to relate an agent at point A fixating their gaze
on point F on their curvilinear path around O.
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Chapter

Neuromuscular behavior

The thesis considers human movements, specifically reaching, and how these
reaching movements are expressed as corrective responses associated with stimulus
cues. Human movement control fundamentally differs from those typically found in
classical control, such as the PID controller, as mentioned in Section 2.2.2. Despite
this, human control is often modeled using classical control approaches, which may
oversimplify human characteristics and yield an inaccurate representation of human
behavior. Furthermore, much research regarding human behavior in perception
and control and its applications has been carried out in isolation, further widening
the gaps between the fields.

This chapter will discuss human behavior related to muscular control and
movements, mental chronometry, and corrective responses to perception cues,

harmonizing the current understanding of the human sensorimotor system across
fields.

3.1 Motor control and muscle coordination

The human central nervous system compiles and interprets sensory information
and propagates signals to lower motor neurons connected to muscle fibers, to
accomplish a muscle contraction response. The signals are conveyed via axons
in neural networks, where neurons fire and propagate an electric action potential
through biochemical reactions in their cell membranes. When humans initiate
a voluntary muscle contraction, the signals originate and are transmitted to the
muscles, often via the spinal cord, from the so-called motor cortex of the brain. The
motor cortex has three specialized areas: the primary motor cortex, the premotor
cortex, and the supplementary motor area. The former two are mainly credited for
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preparing, planning, guiding, and coordinating across body sides, while the latter
is considered the primary contributor to generating neural signals to the muscles.

There are multiple competing theories on how the central nervous system
copes with the grand scheme and the complexity of muscle coordination involving
various muscles and joints when executing and accomplishing a movement task.
Muscle synergy is one of the competing theories. It hypothesizes that learned
patterns govern time-varying modulation, rate of recruitment, and strength of
specific muscles to achieve the intended movement patterns [31, 16, 26, 32], for
example when walking, hand waving, and finger pointing. The suggested muscle
coordination is done by mapping initial states and task-specific goals to time-
varying activation of muscle synergies on a higher level, contrary to individually
micro-controlling each muscle primitive in a heavily centralized manner [31, 16].
The achieved limb movement is functionally illustrated in Fig. 3.1, where the
primary motor cortex, after selecting a motor program, fires neural signals to
activate selected muscle synergies, which in turn directly recruit individual muscles.

d’Avella et al. developed a mathematical framework describing muscle activation
using the theoretical framework of muscle synergies. Consider K number of muscles
activated by J time-invariant muscle synergies, then the muscle activation can be
expressed as

it) = 3 ¢ty (3.1)

where m(t) is the K-dimensional vector describing muscle activations, c;(t) is the
coefficient modulating strength and time activation of the synergy, and ; is the
K-dimensional muscle synergy vector involving the K muscles. If the synergy is
time-variant, then the equation can be modified by transferring the time modulation
of the coefficient ¢; to the synergy wj;, resulting in

J—1
() =) ejdi;(t —ty) (3:2)
5=0

where ¢; is the time shift for activating the muscle synergy, and now c; is time-
invariant and strictly modulates the activation strength. It is further depicted
as a cognitive actuation subsystem, a model proposed by Markkula et al. [81]
shown in Fig. 3.3b, which will be further discussed in Section 3.3 in the context of
intermittent control and human sensorimotor model.

Intriguingly delving deeper into the development of muscle synergies and their
possible origin, Dominici et al. investigated how basic or rudimentary movements
develop into sophisticated ones from being neonates (newborn human infants) to
becoming adults [32]. The basic patterns of the motor neuron (motoneuron) signals
responsible for activating the stepping movements were retained throughout life.
They suggest that these basic stepping movements are augmented and evolved into
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Figure 3.1: Execution and coordination of muscles via muscle synergies. The
diagram illustrates an abstraction of how the human central nervous system
executes movement, from the primary motor cortex in the brain to a particular
muscle. Accomplishing a movement is seemingly effortless but a complex endeavor,
often involving multiple muscles contracting asynchronously and coordinated at
different joints. It is thought that our brain does not individually control each
muscle through micromanagement but executes previously learned and known
motor programs, such as walking or hand waving. This approach would alleviate
the cognitive load from the brain, delegating muscle synergies to other parts of the
central nervous system.



30 CHAPTER 3. NEUROMUSCULAR BEHAVIOR

the sophisticated human bipedal locomotion. Furthermore, similar motoneuron
signal patterns for basic stepping are found in other mammals in early infancy,
suggesting that the first building blocks for movement share a common ancestral
origin for mammals, and one might inherit these shared rudimentary movements
through genetic material. But then, how do humans enhance or augment muscle
synergies when learning or adapting to new movements? Cheung et al. further
investigated how these muscle synergies may be developed when adapting new
movement patterns in human runners [26]. They suggest the processes of fractiona-
tion (splitting) and merging (combining) of existing synergies to create new muscle
synergies, which result in an altered limb movement. These suggestions imply that
muscle synergies are highly adaptive and tailored to each body of the individual in
question, and further their application.

To summarize, muscle synerqy is proposed to simplify how the human central
nervous system coordinates muscle contractions, producing effortless yet highly
compler movement patterns such as walking, finger-pointing, or hand waving.
Instead of micro-managing the individual muscle primitives, the central nervous
system governs on a high cognitive level by internally mapping initial states and task-
specific goals to muscle activation and recruitment via so-called muscle synergies.

3.2 Modeling human reaching movements

When humans intentionally actuate rapid limb movement from an initial point to a
target point, the movement often has a logistic shape in position and, by extension,
a bell-shaped velocity profile. This is the neurological biomechanical phenomenon
known as reaching [53, 104]. Reaching was initially observed and studied in two
dimensions due to experimental restrictions [88], but has later been observed in
three dimensions as well [4, 53]. Assuming the velocity profile is symmetric around
a mode (optima) for a single ballistic reaching correction, it may be expressed
and approximated through a Gaussian function. Thus, each correction movement
velocity may be described as

—(t — p)?

T (33)

op(t, ar, pr, o1) 2 arexp
where aj is the correction strength, ur is the mode of correction determining its
timeliness by time shifting, and oy is the correction rate parameter. To determine
the positional sigmoid function, it is derived as the primitive function of Eq. (3.3)

—(t — 2 +—
o (t, ar, p1,01) = /al exp (—gm)dt = ajo1\/7/2 erf( MI) +C  (34)
207 V20,

where erf(...) is the Gauss error function and cannot be expressed through ele-
mentary functions, and C' is some constant determined by a known condition in
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position (usually a boundary condition). Then, to get the full travel length of the
ballistic movement, the correction is

oo

Aéb(CLI,O'I) = / Sb(t,al,,ul,al)dt = alal\/%. (3.5)
— 00
The travel length is entirely determined by the correction strength and the speed
parameter, which is to be expected. Furthermore, this is the corrected form using
the definite integral of the Gaussian function compared to the one presented in the
works of Benderius and Markkula [11].
A numerical approximation of the Gauss error function can be used for compu-
tation using Taylor series expansion

_m B nt2n+1
erf(t \/_/ dz = \/_ Z nen 1) (3.6)

Naturally, in a similar fashion to deriving the position profile, the acceleration
profile is the time derivative of Eq. (3.3) as follows
d —(t—m)* _ar(u—t)  —(t— )

on(t, ar, pr, o1) = X — 5 = 2 eXp — 55— (3.7)
I I I

Using the properties of the Gaussian functions and inspiration from statistics,
one can define onset and offset timings for each reaching correction using the
standard deviation parameter which is equivalent to o;. The onset and offset
timings are defined as

tI,{on,off} = 1+ 201 (38)
which then encompasses approximately 95.47 % of the correction movement of a
duration of t1 o — t1on = 401. In the reaching movement trajectory, the onset is
equivalently defined at approximately 2.28 % and offset at approximately 97.72 %.

To construct a complex reaching movement, each ballistic reaching movement
correction is superposed as follows

o(t) = Z dv(t, ar, pir, o1), (3.9)

(ar,p1,01)EQ;

where ; is the set containing all correction parameters for each ballistic correction.
Theoretical examples of human reaching using the Gaussian function are shown in
Fig. 3.2 with a simple single movement and two superposed ballistic corrections
creating the resulting complex movement.

Plamondon further extended the model by considering the asymmetry as ob-
served in the experimental data of human reaching [104], modifying Eq. (3.3) to
support a right-sided heavy tail

R ar —(In(P(t) — )

on(P(t), ar, i, o1) = P() exp 902 ’ (3.10)
I
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Figure 3.2: Human reaching movement patterns. Theoretical reaching movements
described using the Gaussian function to approximate the velocity profile of reaching
are demonstrated in a simple and a complex case. The complex movements are
constructed through the superposition of two simple ballistic movements. The
vertical lines indicate the onset and offset timings at approximately 2.2 % and
97.8 % respectively of each correction movement trajectory.
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where
t— ton

Loff — ton 7
t{on,offy are the onset and offset timings for the reaching correction. Despite better
approximation, this modification convolutes the interpretation of the model, as
both the strength and the mode of the correction are no longer easily interpretable
directly in Eq. (3.10) compared to Eq. (3.3). Thus, for this thesis, the bell-shaped
velocity will be considered symmetric, i.e. absence of a heavy tail, and approximated
with Gaussian functions of each ballistic correction.

To summarize, humans commonly exert limb movements as reaching movements.
A ballistic reaching movement is characterized by having a sigmoid curve of the
distance and, by extension, a bell-shaped wvelocity profile. The wvelocity profile
may be approximated and expressed by a Gaussian function with three parameters
determining its strength, rate of movement, and timeliness. The general reaching
movement may be overlapped by the superimposing simpler ballistic corrections,
creating a train of superposed ballistic corrections resulting in a complex movement
pattern.

P(t) = for ton <t < tos, (3.11)

3.3 Sufficient response through intermittent con-
trol

The biomechanical actuation and control of limbs with intermittency, or intermittent
control phenomenon, emerges from the fact that muscles can only generate pulling
forces through contraction, often around a joint. Thus, biological systems are
evolutionarily optimized for energy efficiency, co-contraction, muscle synergy, etc.
Since energy is a valuable resource, things ought to change only when there is a
sufficient need for it, which may partially explain the existence of the intermittent
control phenomenon. Despite intermittent control being a well-established topic in
experimental psychology [134, 29], it is only recently gaining attention outside of
its field of inception when studying human control behavior [11, 81].

Perfiliev extensively investigated the organization of reaching movements, in
particular how the programming and updating are performed in humans (and
cats) [102, 103]. It was found that the sensory signals relevant to the initiation of
reaching are transformed into neural motor programs (commands). Additional on-
the-fly corrections may be applied if the sensory feedback of the response does not
align with the internal prediction of reaching or if the target changed from the time
of the initiation of the response, e.g. when pursuing a moving target. Furthermore,
the research conducted by Yeom, Kim, and Cheung further indicates that all
neural cog nitive processes related to motor control are completed during motor
planning [148]. This implies that motor planning processes are more informative as
an internal predictor to evaluate and assess the initiated response. These findings
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provide a possible explanation for the quick and overlapping reaching corrections,
or trains of ballistic corrections, observed in human reaching movements.

Interestingly and perhaps yet unsurprisingly, it has been found that human-
operated control interfaces with constraint movement, such as the steering wheel,
share the same fundamental properties as human reaching and intermittency [11,
120]. Extending the works of Benderius and Markkula[11, 81], Paper A presents and
demonstrates a novel computational method using a meta-heuristic optimization
method, particle swarm optimization, to identify trains of ballistic corrections in
experimental data, which is further detailed in Section 4.6.

Markkula and colleagues [81] have proposed a computational framework model
reflecting human cognitive sensing and control behavior properties, a sustained
sensorimotor control as illustrated in Fig. 3.3. It considers and models the distinct
cognitive subsystems: perception, control, and muscular pathways, using the
driving steering behavior as an applied study case of intermittent control. This
proposed sensorimotor model features interesting concepts such as activation
motor primitives and muscle synergies (previously discussed in Section 3.1 and
in Fig. 3.1), internalization of prediction and anticipation of its actuation, and
evidence accumulation to trigger an output response in one common computational
framework achieving intermittent control, see Fig. 3.3b.

These cognitive functions collectively contribute to the resulting trains of
ballistic corrections creating complex limb reaching movements to achieve the task
at hand [29, 103, 102, 81]. This mimics the biological behavior of actively initiating
a ballistic response only when there is a sufficient need for it, i.e. satisficing
behavior [9, 122, 117]. This fundamentally differs from a continuously optimized
control behavior like the commonly used PID controller [128]. Furthermore, as
implied by this sensorimotor model (neural black box and prediction), by Paper A,
and in Section 2.2.2, the human control behavior can not be solely explained as
strong online or pure model-based control but as a hybridization of both approaches.

Using the generic sensorimotor model by Markkula et al. [81], see Fig. 3.3a, to
describe the total delayed response time

T4 2 Tp + Te + Tm = t1,0n — ts,on; (3.12)

where 7¢, ¢ m) are the constituent delays for perception, control, and muscular
activation pathways, respectively, achieving a timely response. This should ap-
proximately match the time difference from a stimulus onset s o, to respective
movement onset t.,. This was extensively investigated in Paper A for retinal
optic flow, optic flow, heading, and lateral position as an information source to
trigger a ballistic reaching movement in the form of a steering correction. Suggested
by using an online control model, effectively and directly relating the stimulus
signal S to reaching corrections C' and C, as shown in Fig. 3.3b. Out of the four
examined information sources, retinal optic flow had the strongest correlation
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Figure 3.3: Sustained sensorimotor model by Markkula et al. [81]. (a) illustrates a
generic linear control system, imagining the human perception and motor control
pathways in state-space Laplacian frequency domain representation. The different
response delays 7¢, . m) are also presented for perception, control, and muscular
activation pathways. C' and C' are velocity and positional control variables, respec-
tively, for the resulting responses, e.g. limb movements. The motor control model
proposed by Markkula et al. is shown in (b), featuring evidence accumulation that
transforms the generic control in (a) into an intermittent control. The actuation of
the muscle synergies subsystem is functionally depicted in Fig. 3.1.
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(using Spearman’s correlation) to the strength of correction strength a; as defined
in Eq. (3.4) at response time 74 &~ 0.14s.

To summarize, humans divert their attention to sufficiently solve tasks at
hand, producing intermittent control behavior as we understand it. Intermittent
control fundamentally differs from classical control approaches such as PID control,
as corrections are applied intermittently in contrast to continuous evaluation and
correction. It has been observed that the human sensorimotor system is better
explained as an intermittent controller, which then explains why humans apply
corrections on the fly. This results in trains of ballistic correction as sufficient
responses to stimuls.



Chapter

Robotics for bionic
navigation

This chapter will discuss robotic systems in terms of hardware and software, and
further implementations and applications for local navigation using vision sensing
and visual motion flow perception. In particular, it concerns how to fairly evaluate
the performance of optic flow estimation methods for real-time scheduling and
application in embedded systems (Paper C). This work presents and demonstrates
a software architecture to support and facilitate robotics research and development
agnostic to hardware platforms (Paper D). Finally, localization applications of
exploiting optic flow are investigated and evaluated for robotics in maritime settings
(Paper B) in addition to using optic flow methods on unconventional topographic
data to determine egomotion (Paper E). The software implementations and appli-
cations presented here permeate the underlying work supporting this thesis and
the research findings presented in the appended papers.

4.1 Vision sensors

At the fundamental level, human color vision at the retina can distinguish the
three primary base colors of red, green, and blue. To reconstruct the full range
of the visual colors, the human vision perception cognitively recreates the other
colors by blending the three. The additive superposition of the primary colors
can, therefore, create the perceived color in humans despite their inability to sense
that particular color directly. The underlying technique exploits how human color
perception functions and encodes vision information in these three base colors to
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recreate the representation of the scenery functionally. Implementing the same
idea in cameras is to use a well-established Bayer filter on top of an image sensor
when capturing the three primary colors, or three color channels, often referred to
as RGB. If the camera sensor only captures the imagery as a single-channel image,
it is referred to as a monochrome camera.

In traditional vision sensors, the fundamental measurement procedure is to
measure the light illumination over the image sensor for a fixed time duration
referred to as the exposure time. This can be done either for the entirety of the frame
using a global shutter, or on a row-by-row basis using a rolling shutter. The former
ensures that the whole sampled image originates from the same time instant, while
the latter allows for more efficient use of the hardware and related computational
resources. However, the rolling shutter may introduce motion artifacts due to
non-synchronous row-by-row basis sampling, resulting in distorted depicted objects.

RGB vision is fairly well-used in robotics applications, as additional information
may be embedded or extracted from colors. Computer vision algorithms and
robotics control implementation often favor shorter latency, simplification of color
blending, and smaller data footprints, making the monochrome approach as common
as RGB vision. Optic flow estimation methods using monochrome vision are far
more common for these purposes. More recent optic flow estimators often fully
exploit the three color channels, further enhancing their accuracy and precision
performance at the cost of additional data throughput and computational resources.

In contrast to the conventional way of interpreting vision using three or single-
channel images generated from fixed-length exposure time, there is an alternative
way to do it using so-called event-based camera vision or dynamic vision sensor.
These bio-inspired event cameras fundamentally differ from traditional vision
sensors. Instead of measuring collected illumination in a fixed time, they measure
the per-pixel time to fill an illumination buffer, after which they send an event,
i.e. in effect measuring the illumination dynamics in the time domain. Thus,
the challenges of rolling shutter, motion blur, and light exposure are absent in
event-based vision technology.

This event-based vision sensor technology is likely to be more suited to visual
motion processing, which has successfully been demonstrated in the related works
of Scarramuzza and Gehrig et al. [44, 23, 87]. An example of this is the works of
Gehrig et al. where an event-based vision was used with a deep learning approach
estimating the optic flow [45]. Their result showed an improvement of 12 % in the
error metrics compared to other state-of-the-art methods. Continuing their work,
they presented and demonstrated dense optic flow estimation continuous in time
using data from event camera sensors, mitigating the problems of discrete time
sampling of traditional camera sensors [46]. Another example is where intensity
estimation (image reconstruction) and optic flow estimation were simultaneously
computed during challenges of rapid motion and high dynamic range scenes [6].

Furthermore, this novel technology enables an asynchronous data pipeline
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compared to the problematic synchronous sampling data flow. In asynchronous data
pipelines, less data has to be transferred and filtered through the data processing.
In essence, only important or relevant data are sampled and detected as events.
In contrast to the event-based sensor, a traditional camera sensor, for example,
Full-HD 1080p (1920 x 1080 x 3) at 144 Hz video stream produces a data bandwidth
of approximately 0.89 GBs~! assuming an 8-bit pixel channel representation. In
reality and practically, the bandwidth is much less, thanks to various video and
image compression techniques at the cost of additional computational resources
and potentially loss of data integrity. Further, a higher resolution of Ultra-HD
2160p (3840 x 2160 x 3) at the same frame rate would be roughly 3.58 GBs™1, a
fourfold increase compared to Full-HD. These magnitudes of data bandwidth pose
significant challenges for data processing, both on software and hardware levels,
which often negatively affect overall run-time performance in robotics applications.

To summarize, past traditional vision sensors are heavily inspired by and adapted
for human vision using red, green, and blue data representation, commonly referred
to as RGB vision cameras. Historically, this has been sufficient for capturing and
storing images to recreate static imagery for the human eye. However, the increasing
precision, accuracy, and robotic applications of RGB image sensors present new
challenges in managing and processing the sensor information. Fvent-based camera
technology is a novel competing vision technology that has successfully demonstrated
its suitability for robotics applications compared to the RGB counterpart, particularly
optic flow estimation.

4.2 Robotic software

There are many challenges in designing software architecture when considering
robotics and its applications. Some of these challenges are highlighted and addressed
in this thesis. In many developed research robotic platforms, e.g. road vehicles
and marine vehicles, pipes-and-filters-based data processing approaches are often
utilized. This effectively makes them cyber-physical systems, defined as “integrations
of computation and physical processes,” meaning their interaction with the physical
world is driven by software algorithms and vice versa. While the pipes-and-filters-
based approach is a straightforward and simpler method to implement, there is
an argument to be made about the code base becoming complicated, vulnerable,
monolithic, and challenging to maintain. One way to mitigate these shortfalls,
as investigated and demonstrated in Paper D, is to adopt containerization and
microservice design paradigm, which was done with special consideration towards
road vehicles. This was demonstrated in various vehicles of different scales operating
in settings emphasizing the high demand for reliability, traceability, and deployment.
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4.2.1 Microservice design, real-time computing, and embed-
ded system deadlines

According to Lewis and Fowler [76], a microservice design paradigm may be
described as a suite of small services, each running in its own process and commu-
nicating with lightweight mechanisms. To support such a paradigm, middleware
software handling communication and established message specifications protocol
has been used as demonstrated in the Paper D in the example of a fleet of various
vehicles. Thanks to the very design of the communication protocol, a microservice
can be regarded as a highly specialized program block with well-defined input and
output signals. The methodology in the Paper C fully implements this, where the
sequential images and optic flow estimation are clearly defined as input and output,
respectively. Understanding this process created a structured and easy-to-use
methodology where run-time executable binaries were easily swapped in place when
producing the results.

Furthermore, since the microservice binaries can be packed as self-sufficient
containers, they can be deployed on various host machines agnostic to CPU
architecture. This creates run-time measurements normalized to a single host
machine, thus producing valuable, comparable, and fair results. See Table 4.1
and Paper C for further detailed results and discussions. It is noted that the
methodology used in Paper C does not favor initialization and clean-up of runtime
execution. This places GPU-accelerated algorithms at a significant disadvantage.
For example, for FlowNet2, the pre-trained weights of its neural network need to
be parsed and uploaded to the internal GPU memory.

Relating to the execution and run-time, when machines are programmed to
perform a task, they are expected to provide a response before a time constraint,
or a deadline. Depending on the importance of the task or the severity of the task
outcome, deadlines are often classified as hard, firm, or soft, where the severity
here ranges from the harshest to the least. This is easily imagined in a critical
situation where a subsystem is expected to perform a task, such as anti-lock braking
systems in road vehicles, where fatality is a possible outcome. For such reason,
embedded real-time systems are designed and constructed to execute programs or
instructions that comply with predetermined deadlines. Moreover, it is challenging
to guarantee predictability or real-time computing as software systems grow larger
and ever more advanced. In general, robotic locomotion should be considered a
safety-critical task, so if robotic locomotion depends on optic flow estimation, hard
deadlines ought to be defined with required accuracy. However, from a pedantic
view, the results in Paper C showed that the majority of the optic flow estimators
at their current implemented state do not fully satisfy the requirement for real-time
execution and, by extension, are not suitable for a live real-time robotic system in
the narrow sense.
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Notably, commonly available personal computers with general-purpose operating
systems are not real-time computing machines. These machines are primarily
designed to adopt broader hardware support, shared computing resources, and a
better user experience. For example, GPUs are specifically designed to parallel-
process data for graphics pipelines, which is often time-sensitive and is of significant
importance for the user experience. For this reason, to maximize the utilization,
the operating system kernel allows for variable and tighter computational timing for
smoother graphics rendering, in contrast to well-defined fixed deadlines. However,
it is possible to make personal computers comply with deadline computing through
software techniques such as a customized and specialized deadline or task scheduler,
or efficient locking protocols.

Like many other computer vision algorithms, optic flow estimators typically
require high-end features found in general-purpose computation nodes, such as
general-purpose computing on graphics processing units (GPGPU). The maturity
and suitability of using graphics processing units in real-time computing settings are
improving and may be considered for soft deadline applications [34, 35]. However,
specialized features like GPGPU often require closed-source user-space drivers
to operate. Therefore, new and more specialized estimator implementations are
needed for future applications where optic flow should be further exploited for
locomotion in robotics, especially for real-time embedded systems with hard and
firm deadlines.

To summarize, modern robots are increasingly deployed in challenging and
varying environments and are increasingly tasked with critical applications. This
has resulted in wide and complex configurations of cyber-physical systems used
for robotics. With complex cyber-physical systems, the accompanying software is
often very sophisticated, complex, and tailored for a specific system and particular
application. Adopting adequate software design and deployment techniques, such as
microservice architecture, hardware abstraction, and containerization, may address
and ease software complexity management in robotics compared to the monolithic
development approach. Simultaneously, adopting such designs and techniques also
allows for more fair benchmarking and evaluation comparisons in robotics research.

4.3 Optic low estimation methods

The neurocognition and behavioral aspects of optic flow have been considered in
the previous Section 2. However, methods to numerically estimate the optic flow
in a temporal sequence of images have not yet been discussed. In this section, a
brief overview of optic flow estimation will be presented.

Raudies, Andreev, Wildes et al. created a descriptive taxonomy overview of
various optic flow constraints used in numerical estimation in the literature [108, 3,
143]. Many of the optic flow estimation computation routines can be generalized
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and described with the help of the well-known continuity equation in physics. The
continuity equation for optic flow can be described as

Oip+Vay (T p) =0 (4.1)

where p is the density of some quantity, V, the divergence operator with respect
to x and y, ¥ the optic flow, and o the generation or destruction of the quantity p.
The equation is kept to a generalized quantity p since different algorithms use a
different quantity in their applications to estimate the optic flow ¢. It should be
noted that most optical flow estimations assume that the quantity p is conserved,
thus simplifying the expression to

Oup+ Vay - (T p) = 0. (4.2)

This form serves as a common starting point for many traditional naive optic
flow estimation methods. Imposing additional constraints further transforms the
equation to a more approachable and computationally feasible form.

Optic flow constraint equation

Several additional assumptions are made before detailing the form of the optic
flow constraint equation. Let the quantity be a scalar-valued intensity quantity
p = g(x,y,t) and assume that V,, 0 = 0 where ,y are spatial dimension variables,
for example, in image space. The assumption is motivated by the argument that in
a contained local pixel domain in an image, the brightness can not be accumulated
or lost due to the brightness flux. If a brightness constancy assumption is made,
then the following approximation can be constructed

g(x + Az, y + Ay, t + At) = g(x, y, 1). (4.3)

Further, if an approximation of the first order is performed on g(x,y,t) in the local
proximity, it may also be written as

9@+ Az, y + Ay, t + At) = g(,y,t) + (Vayeg(x, y, 1) - (Az, Ay, At).  (4.4)
Combining these two equations establishes that the first-order correction must be
(Vayeg(z,y,1)) - (&,9,1) =0, (4.5)

which is a simpler form of the continuity equation, see Eq. (4.2). This is, for
example, the backbone of the famous Lucas—Kanade optic flow algorithm [80, 20].
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Hessian constraint

Similarly to the previous optic flow constraint equation, but using a different
quantity ¢ = V,, - f under the same assumption that V., 0 = 0 directly yields the
Hessian constraint equation

Vog(z,y,t) + Hgt = 0 (4.6)

where Hg is the Hessian matrix of the scalar-valued function g. The Hessian
constraint equation was developed in the work of Uras et al. [131].

Phase constancy constraint

Instead of using the brightness attribute in an image, Fleet and Jepson suggested
using the image phase attribute [41]. This changes the quantity ¢ = ¢ and using
the previous constraint V., 7 = 0 results in

("'t7 y) 1) ’ vxyt¢($, Y, t) =0. (47)

This approach is practical and feasible because Gabor filters may be used to
compute the image phase ¢, thus creating an alternative estimation of optic flow.

While more than 200 listed approaches advance the estimation of optic flow
and improve existing methods, most traditional estimators can be traced back
to the continuity equation, except for end-to-end estimators such as deep neural
network approaches. This creates challenges when attempting to gain an overview
of the landscape of proposed optic flow estimators. However, optic flow estima-
tion benchmarks and leaderboards exist and may provide a general overview of
state-of-the-art methods (see Section 4.3.2 for dataset providers and leaderboard
maintainers).

4.3.1 Machine learning approach

Since the introduction of convolutional neural network (CNN) in the 1980s, vari-
ous fields have accelerated in computer vision research, and not least in optical
flow estimation research. CNN has been proven to be very suitable for image
interpretation, such as shape detection, object recognition, and motion perception.
Before the inception of CNN in computer vision, using multilayer perceptrons
with hidden layers was computationally ineffective and underperforming due to
the complexity in tuning weights between the layers and neurons. With CNNs,
clustered pixel neighborhoods can be processed and considered a simultaneous
input to the network layer. Furthermore, CNN is shift-invariant, meaning that
apparent translational or rotational displacement of the kernel can help the filter
to generalize learned patterns.
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In recent years, the machine learning approach has dominated optic flow es-
timation research and outperformed in accuracy, precision, and run-time. There
are several factors contributing to this, especially synergistic development and
research in deep neural networks. Like most deep neural network technologies,
CNN greatly benefits from specialized hardware such as GPUs, which excel in
parallel data processing and computation. The rapid development of modern GPUs
specializing in neural network computing and tensor computing has accelerated
the performance of CNNs and further widened the performance gap. This can,
for example, be observed in the benchmark leaderboards of popular datasets as
discussed in Paper C, where the top performing algorithms are mainly machine
learning approaches [47, 85, 86, 5, 21].

4.3.2 Benchmarking performance and evaluation

It is common in the computer vision community to compare their proposed algo-
rithms and estimators. In the case of optic flow, the common performance metrics
are average end-point error (AEE) and average angular error (AAE). These error
metrics were first introduced and used by Fleet, Jepson, and Barron et al. [41, 7]
and have become the de facto standard when evaluating optic flow estimators, see
Fig. 4.1. The AEE is computed using Euclidean distance between the estimated
flow field Qest (P) and the ground truth ngt (p) as follows

1 - 1 - -
Eape = > Ess @)l = N D 1Qest(P) — Qe (D)2 (4.8)
P i

where N is the number of sample points p, typically the image area for dense optic
flow. Similarly, for the AEE under the assumption that neither the estimated nor
the ground truth vectors are null, the mean of the cosine angles is computed as

1 1 Cjest (ﬁ) ) Qgt (15)
E - — E - - — — .
AAE N ; AE(@ N ;arccos HQeSt(m’bHQgt(m‘b

These optic flow metrics are widely used to benchmark available published data
sets of various types (synthetic and experimental) for computer vision research
groups and developer communities. Some of these established and maintained data
sets with public leaderboards are KITTI [47, 85, 86], Middlebury [5], Sintel [21],
and Reeds [10, 118, 18]. These data sets are used in Paper C to investigate and
address the problem of fair performance evaluation of algorithms and real-time
computing, see Section 4.2.1 and Table 4.1.

As investigated in Paper C, performing a fair run-time evaluation is challenging
in computer vision research. This is due to the complexities of executing binaries
and their interaction with the hardware during run-time. Thus, it is an acknowl-
edged problem in the scientific community without an established or standardized

(4.9)
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(a) End-point error. (b) Angular error.

Figure 4.1: Opic flow error metrics. The panels illustrate two standard methods
of evaluating optic flow performance: end-point error Egg(p) shown in (a) and
angular error F4p(p) shown in (b) evaluated at the point p.

methodology to perform a fair and comparable run-time evaluation. Researchers
and software developers developing novel software often accumulate technical debt,
which frequently results in degradation in software quality and neglect of software
deployment [1]. Traditionally, computational complexity analysis has been used to
classify and evaluate different software methods. However, doing so for software
for run-time execution or real-time computing, in general, would be challenging
and arguably meaningless.

Nevertheless, observing the general trends in the optic flow estimation leader-
boards reveals that methods continuously improve accuracy and runtime, sometimes
without compromising the two. Simultaneously, machine learning approaches dom-
inate the top-performing methods in the optic flow category on the leaderboards.
This phenomenon is not only limited to optic flow but is the general case for most
categories, if not all.

To summarize, most of the traditional naive optic flow estimation methods
can be traced back to the ‘continuity equation’ for optic flow, similar to that in
physics. The different estimation methods make some assumptions that transform
the continuity equation into a straightforward computational form. In contrast,
end-to-end black box approaches like convolutional neural networks outperform their
traditional counterpart. This can be seen in well-established benchmarking data sets
with public leaderboards such as KITTI and Sintel. End-point and angular error
averages are well-adopted performance benchmarking metrics used in optic flow
estimation research.
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4.4 Optic low-based odometry

Inspired by humans using visual motion flow perception to estimate their egomotion,
a similar approach may be exploited to solve the localization problems in robotics.
By tracking the features of the environment, it is possible to deduce the relative
motion of the sensor and its environment. This can be done in various ways, but the
most common approach is to use epipolar geometry to determine egomotion. This
can be done using either temporal (mono) or spatial (stereo) pairs of images and a
camera model to determine the intersection of features. Optic flow in this context is
primarily used to track the features and, by extension, determines the time-varying
epipolar lines of these features. The approximate intersections of the epipolar
lines determine the trajectory of the camera. In the case of mono-vision systems,
the scaling in estimating the egomotion is lost due to the process of projective
transformation. The scaling can be preserved if additional depth information is
available, e.g. stereo vision or complementary information from lidars, radars, or
GNSS. The epipolar geometry odometry using optic flow and mono-vision camera
system is investigated in Paper B, particularly how well the method performs for
marine vehicles in littoral settings.

In contrast to using epipolar geometry to determine egomotion, Paper E demon-
strates a novel method, topographic flow, which applies optic flow on unconventional
topographic data instead of visual data. The method strictly depends on the topo-
graphic data, thus making it agnostic to specific sensor systems. The topographic
data in Paper E is constructed from a fully rotating active sensing radar system.
The emitted radar beams from the sensor are partially reflected off the objects and
registered. The non-reflected part penetrates the object and reflects upon the next
occluded object, allowing for multiple object detections from a single emitted ray
beam, see Fig. 4.2. However, the topographic data may be derived from any sensor
data capable of reliably capturing the surrounding environment.

The topographic flow is based on the motion analysis of the emergent optic
flow or simply analyzing the translational and rotational transformations of the
topographic map. The emergent optic flow described in Eq. 2.1 for a perpendicular
plane (to the viewpoint) may be reduced to three degrees of freedom: longitudinal
velocity v, lateral velocity v,, and angular yaw rate w, of the vehicle. This results
in the following equation

A = (§) = (%) —w: () (4.10)

where C' is some scaling constant relating the real world to the image space, (z,y)
are coordinates in the image space aligned with the coordinate system of the vehicle,
(,9) is the optic flow field at (x,y). Eq. (4.10) is applied for a set of landmarks
on the topographic map, computing their flow field for each temporal update of
the map, yielding an egomotion estimate of the vehicle.
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(¢) Cylindrical topography data.

Figure 4.2: Topography data constructed from radar. The figure shows the topog-
raphy data used for optic flow-based odometry. The topographic map constructed
from radar data is depicted in (a) a Cartesian coordinate system and (c) a cylindri-
cal coordinate system. A satellite image of the corresponding island region outside
of Géteborg is shown in (b). The satellite image is used under the OpenStreetMap
ODbl license, found at www.openstreetmap.org/copyright.


www.openstreetmap.org/copyright
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To summarize, optic flow techniques can be leveraged to address the localization
problem commonly encountered in robotic navigation. Odometry estimation can
be carried out in various ways, with optic flow primarily used for feature tracking.
This is then used to determine egomotion through epipolar geometry or topographic
transformation, for example. Due to the nature of projective transformation in
visual cameras, the depth information is often lost, resulting in arbitrary scaling
of unit lengths. Howewver, lengthless unit estimates such as angular velocities and
orientations do not suffer from this problem.

4.5 Retinal optic flow estimation

Further extending optic flow to retinal optic flow may be carried out by accounting
for the human gazing kinematics, see Section 2.2. This has been made possible
thanks to the rapid development and maturity of modern wearable eye-tracking
systems. One naive numerical estimate of the retinal optic flow is to combine the
head-fixed optic flow estimation with the gazing measurement of the agent. Then,
the retinal optic flow using head-fixed optic flow can be formulated as

Qrot(Qots B, F) = Qot(P) — Qot(P) (4.11)

where Qrof7of are the vector fields for retinal optic flow and optic flow respectively,
P is some point in the vector field, and p, is the gaze point. An example illustration
and visualization of the resulting retinal optic flow field is shown in Fig. 4.3. This
formulation assumes that the agent achieves exact smooth pursuit during active
fixations, as it significantly simplifies computations. As a result of the assumption
and the formulation of retinal optic flow, the flow field around the gaze point is

Qrof(@ofaﬁgaﬁg) - 6 (412)

This stems from the fact that the retinal optic flow at the point of gaze during
perfect smooth pursuit is null. Given the vector field and a point of interest, the
flow angle can be computed as

09(Q, p) = arctan @; (4.13)

where C} is the vector field, e.g. retinal optic flow, p'is the point of measurement,
and €, and €, are the orthonormal basis vectors in the image space. This quantity
can be used to form a judgment or estimation of the locomotor performance of the
agent, as demonstrated in Paper A, inspired by the retinal flow patterns suggested
by Kim et al. [64] and Wann et al. [138]. A naive approach to this is to compute
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the ‘spatial circular mean angle of the retinal optic flow over the intended path’ as

Orot = arg( Y exp(ifiof)), (4.14)

6rof S Qlane

where 0,0¢ is the directional angle of the dense retinal optic flow field (exemplified
in Fig. 4.3c), Qane is the set containing the dense visual flow of the visual lane
(corresponds to the green area in Fig. 4.3b), and 4 is the imaginary unit. For
simplicity, ‘spatial circular mean angle of the retinal optic flow over the intended
path’ will now be referred to as retinal optic flow angle for the remainder of this
work.

(a) Point of view. (b) Lane and gaze point. (c) Retinal optic flow.

Figure 4.3: Visual view, computer vision and image processing, data visualization
and representation. An example of retinal optic flow computed using experimental
data in virtual reality. (a) shows the point of view in virtual reality. (b) visualizes the
post-processed data rendered on top of the raw image. The gaze point is illustrated
as a blue crosshair, and the lane segment as the green area. (c) demonstrates
the reconstructed retinal optic flow by combining motion analysis of consecutive
temporal images and sampled gaze data. The reference color coding of pure
divergence is shown in the top right corner as a reference (the visualization makes
left and right directions symmetric). The green color is equivalent to the retinal
optic flow pointing in the downward direction.

To summarize, a naive numerical computational viable approach to quantify and
reconstruct the retinal optic flow field is presented using measured gazes, head-fired
vision, and optic flow estimation. This approach assumes that the agent achieves
exact pursuit during active gazing, significantly simplifying the computation. In
addition, the derived quantity retinal optic flow angle is introduced, which may be
used to perceive the locomotor performance of the agent suggested in the literature.
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4.6 Identifying ballistic reaching corrections

The natural movements of the limbs exerted by humans are often characterized
by reaching, as discussed in Section 3.2, where the velocity profile of the limb is
bell-shaped and the positioning is sigmoidal. In reality, the reaching movements
are seldom very clean, i.e. consisting of one single ballistic reaching correction,
as humans intermittently assess and correct performance on-the-fly according to
their task at hand, see Section 2.2.2 and 3.3. This results in the naturalistic limb
movements often being convoluted and complex, consisting of multiple superposed
ballistic reaching corrections.

To identify the constituent ballistic correction using Eq. (3.3) and (3.9) in
Paper A, the following objective function to be minimized may be used

Ns—1

Is(Q ) ti+At .
f(z(t),QQ:%/t = Y Goltanponldt,  (4.15)

(ai,pio)EQ

where
ap aj ... QANg-—1
Q(; = Mo M1 oo UNs—1 (416)
op 01 .. ONs—1

is the matrix of Ny triplet parameters describing each constituent ballistic correction
in a reaching movement, z(t) is the measured movement signal to be decomposed
for a defined time interval ¢ € [t;,t; + At], and « is a balancing parameter for
the number of corrections to avoid overfitting. Note that cols(€2;5) = Ns, but here
the left-hand side is the preferred form as the dimensionality of the matrix is also
under consideration for optimization. The resulting object score is intentionally
normalized for the time duration in order to make a comparable goodness fit for
different movement patterns of various durations.

In the context of human driving behavior and under assumptions of normal steer-
ing handling with sufficiently small steering wheel angles, the speed parameter o;
as defined in Eq. (3.3) was empirically found to be bounded o7 € [0.0707s,0.1732 5]
which was used in Paper A. This was initially implicitly suggested and used in the
works of Benderius and Markkula when studying human driving behavior [11, 81].
By these empirical constraints, one single ballistic steering correction movement
duration is then within 0.28 s to 0.69s.

The corrections applied to the steering wheel are preliminarily selected on the
criteria introduced in the works of Benderius and Markkula [11]. Here, the example
of the steering wheel movement is used, but the generality of the application
still holds in one dimension. A simple moving average with a constant window
determines the time intervals ¢ € [¢;,¢; + At] where the significant movement is
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detected. It is described as follows

_ 1 [tre,
) =50 [ 5Ok (4.17)
€ t—e
and for the discrete case
_ 1 e .
i) = D b, (1.18)
kzlfN

where §(t) is the steering wheel rate and 2¢ is the kernel width (or N in the discrete
case, chosen odd). By checking the contiguous fulfillment of the condition in time

() > dgein (4.19)

where d4i1 is some defined constant threshold for tuning detection sensitivity, yields
the starting time ¢; and the duration At of the movement. The deflection angle,
which is defined as

Ad = enax At](5 (t)) — e At](5 (1)), (4.20)

is used to determine if the overall steering movement is significant, removing
negligible and small movements, i.e.

AS > Sinin (4.21)

where d,in is a parameter. Furthermore, an additional condition is imposed in the
case of the steering wheel to remove complex hand-to-hand coordination by using

max  (|5()]) < Suma (4.22)
tE[ti,ti—i-At]

where 0.« is a parameter. Numerical parameters used in this work and Paper A
to detect steering movements of interest are presented in Table 4.2.

Table 4.2: Parameters used for detecting and selecting steering movements in raw
steering angle data.

Parameter | Value Note

Ostill 0.0349rad | Detect movement

N 3 Discrete kernel width

Omin 0.0349rad | Remove smaller movements
Omax 1.7453rad | Remove larger movements



4.6. IDENTIFYING BALLISTIC REACHING CORRECTIONS 53

4.6.1 Particle swarm optimization

Finding the optimal solutions, if they exist, among all feasible solutions is known as
an optimization problem. The optimization problem can be written in the following
form

arg min f(@) (4.23)
subject to 9i(¥) <0, i=0,....m—1 (4.24)
h](f):07 ]:()7 7}7_1 4.25

where 7* is the solution, f(Z) is the objective function to be minimized, and
9i(Z) and h;(Z) are some known constraints. For trivial reasons, such as easier
implementation, it might be more suitable to invert the problem to maximize
the objective function instead of minimizing it. Then the optimization problem
becomes

arg max 1_, = argmin f(¥), f(&)#0. (4.26)
z f(@) z
This thesis will consider the optimization problem by maximizing the objective
function.

Approaching and solving the optimization problem of decomposing the sum of
Gaussian functions is a complex and challenging task as defined in Eq. (4.15), i.e.

1
arg max (4.27)

Q; f(Z(t),QS).

One contributing factor is that Ns is not known, which determines the dimension
of the search space and is itself part of the optimization problem. In addition,
local optima may exist in different search spaces, and the objective function is
not guaranteed to be continuous or differentiable. These challenges make common
classical optimization approaches unfeasible or even impossible.

Particle swarm optimization (PSO) is a meta-heuristic bio-inspired optimization
method inspired by and exploiting the emergent self-organized phenomenon of
social collective flocking behavior observed in the real world when groups of living
animals emerge e.g. murder of crows or school of fish. This flocking behavior
is illustrated in Fig. 4.4 using flocking particles or artificial life programs called
Boids (bird-oid object) first introduced by Craig Reynolds in 1986 [110, 63]. This
stochastic optimization approach emulates Boids interacting locally with each other
and further encodes their positions in the multidimensional search space. This
approach has shortfalls as the yielded proposed solution Z* is not guaranteed to be
a global optimum and is computationally inefficient compared to the other classical
optimization methods. In return, the PSO does not impose many strict formal
requirements on the objective function or the search space.
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Figure 4.4: Emergent flocking behavior. The Boid model demonstrates the emergent
flocking behavior using three simple rules: separation, alignment, and cohesion.
This model further features a predator that drives the flock around.
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Essentially, the swarms of particles exhaustively explore the multidimensional
search space with emulated mass inertia. The emergent swarming behavior can
be created by imposing three simple rules on each particle: i. Separation: avoid
crowding, ii. Alignment: aligning the ego velocity to the local group, iii. Cohesion:
creating a local swarm attraction. Additional tweaks to the implementation
encourage the swarms to explore and to then exploit the search space in finding the
optimum for the objective function. To favor exploration in the initial phase, the
particles are made individualistic and asocial to other particles (ignoring) and then
gradually made more social. This creates the emerging social swarming behavior to
hone in on the convergence of a candidate solution by flocking around the optima.

To promote faster convergence in PSO, symmetry in the defined search space is
exploited when solving the problem of decomposing the sum of Gaussian functions.
This is due to the principle of superposition having commutative property, thus
multiple different solutions are trivially effectively the same. For example, consider
the following

ap a1 ap Qg
Qso= (o m and $s1 = | p1  Ho (4.28)
o) 01 01 (X))
which both solves
f(2(t), Qs50) = f(2(1), Q1) (4.29)

Using this fact, sorting the columns in Q by p;, see Eq. (4.16), in ascending
(alternatively descending) such that

Ho < 1 < v SN (4.30)

reduces the search space complexity. This effectively decreases the total number of
local optima by merging trivially duplicated symmetric solutions.

Paper A successfully demonstrates and implements! [94] the standard PSO
implementation [135] with additional tweaks to identify ballistic corrections by
solving Eq. (4.15), see Fig. 4.5 on synthetic data and Fig. 4.6 on experimental
human-operated steering wheel data. The PSO algorithm is further detailed as
pseudo-code in Algorithm 1, and the parameter values shown in Table 4.3.

To summarize, complex and superimposed reaching movements can be decom-
posed into constituent ballistic corrections using the assumption of the superposition
principle. The velocity profile of each ballistic correction can be approximated using
the Gaussian membership function of three parameters. The approximation makes
it possible to identify each correction in the experimental data of complex reach-
ing movements. The particle swarm optimization, a bio-inspired meta-heuristic
stochastic optimization method, was used to solve the decomposition of overlapping
reaching movements. This novel approach yields numerical values for the three
parameters for each constituent ballistic correction.

LOpen source C++ implementation: https://github.com/bjornborg/tinyso


https://github.com/bjornborg/tinyso
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Particle swarm optimization
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Figure 4.5: Identifying ballistic reaching correction on synthetic data. The figure
demonstrates particle swarm optimization successfully identifying ballistic reaching
correction in synthetic measurement data padded with normally distributed noise

n(t) ~ N(0,0.1).
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Figure 4.6: Identifying ballistic reaching correction on experimental data from
humans. Particle swarm optimization is used to identify ballistic reaching correction
in experimental data on a human-operated steering wheel.
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Algorithm 1 Particle swarm optimization algorithm with.

Require: Spin > 0, N max > 0, Zinin < Tmax € R?, g(7) : R3Ns — R
Ensure: R3¢ : repeat(Zmin, Ns) < T* < repeat(Zmax, Ns), g(T*) > 0

1: procedure PARTICLESWARMOPTIMIZATION(z(E), Tmin, Tmax)

2:  Converged < False

3: Ns<+1

4:  while not Converged do

5: S < InitializeSwarm(N, Zmin, Tmax) > Implementation in Alg. 2
6: forn<+0,..., K—-1do

7 S « EvaluateSwarm(S, z()) > Implementation in Alg. 3
8 S + UpdateVelocityPosition(S) > Implementation in Alg. 4
9: w 4 Clamp(Sw, Wmin, Wmax) > Decay particle inertia
10: end for

11: Criteria < (pcandidate-sscore > S~pbest-8best) > Swarm best
12:  Criteria < Criteria and pcandidate-Sscore > Smin > Threshold score
13:  Criteria < Criteria or N > N5 max > Maximum iterations
14:  if Criteria is met then

15: Converged < True

16: else

17: Peandidate — S-Phest > Store the candidate solution
18: Ns + Ns+1 > Increase the dimensionality of search space
19:  end if

20: end while
21: return T* < pcandidate-L
22: end procedure

Algorithm 2 Particle swarm optimization: Initialization.

Require: N5 > 0, Ziin < Tmax
1: function INITIALIZESWARM(Ns, Zmin, Tmax)
2: Tmin < repeat(Zmin, Ns) > Repeat the array, length 3Ns
3:  Zmax < repeat(Tmax, Ns)
4: for p; € Sdo > 7= (rg,...,"sn5—-1),7i € [0,1]
5. Xi 4 Tmin + 7O (Fmax — Tmin) > Hadamard product ®
6: T« ydtH(EminTImax 4 7 ® (Frpax — Frmin))
7 pi < (T, 05)
8: end for
9: return S

10: end function
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Table 4.3: Parameters for the particle swarm optimization and the objective
function. The table presents the numerical parameter values used in the particle
swarm optimization and the objective function for identifying the ballistic steering
wheel corrections.

Parameter | Value Note

Np 10000 Swarm population size

K 400 PSO max steps

o 1.0 Curve fitting parameter

~ 1.0 Time precision factor

dt 1.0 Discrete time step size

Umax 1.1 Particle speed limit

Winax 1.4 Max particle inertia for exploration
Winin 0.3 Min particle inertia for exploitation

16 0.991 Inertia decay factor

c1 3.0 Cognitive factor

Co 4.0 —c; = 1.0 | Social factor

K 400 Maximum number of steps in each PSO iteration
Ns max 6 Maximum Gaussian components for Ny
Stnin 200 Minimum fitness

Algorithm 3 Particle swarm optimization: Evaluation

Require: S, f(¥)
: function EVALUATESWARM(S, 2(t))
for p; € S do
T+ pi.f
s < g(2(1),T)
if s > p;.spest then
Pi-Sbest < S
pz’~fbest — T
end if
if s > S.ppest-Shest then
Si -Pbest < Pi
end if
end for
return (S.ppest-Sbest)
: end function

> Swarm, objective function

> Objective score see Eq. (4.15)
> Store the personal best score

> Store the swarm best score

I T T
el e
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Algorithm 4 Particle swarm optimization: Update step.

Require: S, c1, co, Upax, W
1: function UPDATEVELOCITYPOSITION(S)

e T
wN P2

14:
15:

© P NPTk

Tsb = S.Phest-T > Swarm best
for p; € S do
T+ pi.f
Tpb < Di-Thest > Personal best
U< pi.z_)' - .
U4 wiv + ¢11q wpst_x + Coro fsg;f > Uniform random r; € [0, 1]
if ||7]|2 > Vmax then > Restrict velocity below a threshold
U 4— vmax||ﬁ|\§16
end if
T+ T+ vudt > Euler forward method
P T T > Update particle
end for
return S

16: end function




Chapter

Discussion

This chapter presents and discusses the main results of this thesis. The first section
presents and discusses the reconstruction and estimation of retinal optical flow
using experimental data collected from human research participants (RQ1). In
the second section, the retinal optic flow may be related to steering maintenance
when locomoting in curvilinear paths (RQ1 and RQ2). The third section presents
further results of characterizing heavy-tailed velocity profiles. In the last section,
estimations of egomotion and self-localization in marine settings using optic flow
are investigated and presented in the context of robotics and embedded systems
(RQ3 and RQ4).

5.1 Retinal optic flow for locomotor control

Since the retinal optic flow is the main topic of this thesis, there is an emphasis on
reconstructing and interpreting the retinal optic flow. Much of the previous work
on retinal optic flow for locomotion has primarily been discussed in theory [64,
146, 138, 140, 106, 139]. Most of these studies, although not limited to them, have
heavily simplified the retinal optic flow. Matthis et al. [82, 84] are the first to
reconstruct the retinal optic flow using naturalistic video data numerically and to
study how the retinal optic low may influence human locomotor abilities on foot.
However, their study is carried out on sparse retinal optic flow fields, which limits
their interpretation and analysis.

This work further extends the fields to be represented as dense vector fields,
allowing for complete and more accurate interpretation and post-processing at
a substantial increase in computational resource cost (see Paper C). This dense
reconstruction of retinal optic flow is implemented and demonstrated in Paper A,
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where research participants operated a road vehicle to reach a destination. Demon-
stration videos are available in open data [93] with the author acting as a research
participant.

The retinal optic flow angle, as a naive interpretation of the retinal optic
flow pattern (see Eq. (4.14)), can be used as a quantity for maintaining steering
(RQ1). As shown in Paper A, the retinal optic flow angle seems to be more
strongly associated with the steering correction in the low-latency response at 0.14s
compared to the heading case of 0.44s. The findings raise interesting questions:

1. Are the triggering events fully independent of each other? If so, are the two
cues fully operating in their own regimes, retinal optic flow-based cues in the
low-latency and the heading-based cues in the high-latency?

2. Alternatively, are the retinal optic flow cues an outcome from corrections
based on the heading cue or vice versa?

Further investigation using better variable control in experiments is needed to
settle these discussions, to isolate heading-based cues and retinal optic flow-based
cues from each other, and observe and determine the effects. The alternative is to
show the existence of statistical significance through ANOVA on large data sets.
One of the direct artifacts and outcomes of visual flow is the FOE. Lappe et al.
pointed out that many researchers often erroneously synonymously use FOE for
egomotion heading by making the example of retinal optic flow [69]. The confusion
is directly apparent when retinal image stabilization is achieved, as the FOE is
located as the gaze point of the scene (at the fovea on the retina). Matthis et al.
further investigated the role of the FOE in head-centered optic flow and retinal
optic flow fields [84]. Their work studies the sparse patterns of integrated paths in
the visual flow field, providing further insight into how humans perceive heading.
They conclude and emphasize that the role of FOE and head-fixed optic flow
should be re-evaluated in the context of human locomotion, which is in line with
and supported by the findings in Paper A, research of Lappe et al. [69], and
Land and Lee [68]. Continuing the work of Matthis et al., further assessment of
the details in dense retinal optic flow field around the FOE may reveal how the
visual patterns may be used for high-speed curvilinear locomotor control.
Although retinal optic flow was studied explicitly and mainly for steering behav-
ior in Paper A, some interesting observations were made about the maintenance
and evaluation of longitudinal control in humans. It is assumed, and arguably so,
that retinal optic flow could be used to estimate the egomotion speed. However,
in the absence of a speedometer and inability to experience forces in the virtual
simulation, almost all the research participants kept their vehicle speed high at
an average of v] ~ 13ms~! in curve bends, which is equivalent to 0.57g lateral
force. The high speed significantly contributed to the loss of vehicle control when
research participants applied too large steering corrections, resulting in failed trials.
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The initial observation challenges the notion that retinal optic flow in the visual
periphery during high-speed context could accurately and properly be used for
speed assessment or maintenance.

5.1.1 On the assumption of exact smooth pursuits

In estimating the retinal optic flow in this work, it is assumed that the research
participants achieve exact smooth pursuit when they fixate their gaze on the scene.
The assumption can be motivated by looking at the spatial gaze distribution of
human experimental data from Paper A as illustrated in Fig. 5.1. It may be
observed that the research participants tend to consistently and skillfully place
their gaze point on their lane. This assumption of smooth pursuit significantly
simplifies the computation described with Eq. (4.11) by using the fact that smooth
pursuits achieve exact retinal image stabilization in the fovea, since this feature is
captured and exploited in Eq. (4.12). As such, this idealization may heavily impact
the validity of the result downstream in the analysis. Thus, it is required to further
discuss the idealization of the smooth pursuit for retinal optic flow estimation.

The NSLR algorithm developed by Tuhkanen et al. [100] has been implemented®
and applied to quantify and identify periods of fixed gazing velocities in raw gazing
time series data, an example is shown in Fig. 5.2 for a small select time series for
one research participant. The direct results yielded from NSLR may be used to
extract and characterize the low-velocity smooth pursuit from saccades.

It was theoretically shown in Section 2.2.3 that during curvilinear motion, when
the agent achieves an exact smooth pursuit, the yaw angular velocity of the vehicle
is twice the horizontal gaze velocity. Using the smooth pursuit characteristics
from NSLR and comparing them to the vehicular kinematics yields the optokinetic
results presented in Fig. 5.3. All the data sampled are collected specifically during
the curve bends, hence the dead band [—0.2,0.2] in vehicle yaw velocity. Due to
the sensitivity of linear regression to outliers, random sample consensus (RANSAC)
has been applied to reject outliers in the data [40]. The linear regression should
be compared to the theoretically expected value of +2.0 (the sign depends on
the definitions of coordinate systems). The slope of the linear regression of the
experimental data is found to be lower, possibly caused by retinal slippage. The
discrepancy implies that the gaze is slightly slipping or not entirely in sync with
the yaw rotation velocity of the vehicle. However, the discrepancy is not large
enough to invalidate the assumption of exact smooth pursuit for computing retinal
optic flow.

!The C++ implementation is available at https://gitlab.com/bjornborg/nslr.


https://gitlab.com/bjornborg/nslr
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g

Gagze distributions

Figure 5.1: Human gaze distributions on road curve bends. The heat map of the
gaze placement of human drivers maintaining mission-critical locomotion during
left (bottom rows) and right curves (top rows). Each panel is the accumulated
and aggregated data for each research participant and curve bend. Many research
participants skillfully deploy the gazing strategy “looking where you are going”.
This may be observed in the placement of the gaze points, which are often around
the apex of the curve bends. Other research participants tend to fixate their gaze
straight toward the horizon or where the vehicle is heading, creating straight lines

in the heatmap or no registrations on the ground.
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Figure 5.2: Gazing, smooth pursuits, and naive segmented linear regression (NSLR).
The experimental data on human gazing are shown. The NSLR algorithm has been
applied [100], yielding the defined periods of constant gazing speed, where periods
of saccades have been highlighted. The algorithm is used to identify low-velocity
smooth pursuits.
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Figure 5.3: Optokinetic samples during curvilinear motion. The figure shows
the optokinetic smooth pursuit data when humans maintain their motion on a
curvilinear path. When humans produce exact smooth pursuit, i.e., perfectly
tracking their gaze on a visual target on a curvilinear path, the vehicular yaw
angular velocity is twice the horizontal gaze velocity. The experimental data show
that the smooth pursuits here tend to be slightly lower than the predicted value of
—2.0 by theory (negative due to the definition of the screen coordinate system).
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5.1.2 Gaze placement on ground

Kim et al. [64] and Wann et al. [138] suggested humans skillfully deploy the strategy
“looking where you are going” when maintaining proper steering in curve bends,
inferred in Fig. 5.1. Most gaze points are distributed at the apex of the curve,
for both left and right bends. This may imply the importance of correct gaze
placement if the retinal optic flow-cue is to be used for correction. Furthermore,
initial analysis of the data [91] suggests that this behavior is learned and deployed
by skilled or experienced drivers, as argued by Wann et al. [138]. In contrast,
inexperienced drivers tend to fix their gaze toward the horizon or straight ahead
along the vehicle heading, as shown in Fig. 5.1 for some research participants.

When the gazing point gets too close, it is shifted towards a point farther away
in the scene. From Paper A, it was observed that the gaze often shifted along the
apex line in the curve bend in curvilinear motion. Using the experimental data [91],

the placement characteristic is shown in Fig. 5.4. Here, the gaze time headway is
defined as

Th, = s|v] 71, (5.1)

where s is the distance from the head to the gaze point fixation on the ground,
and ¥ is the vehicular velocity. Note that there is no strict and agreed-upon
definition of time headway in three-dimensional space, as it is usually considered
one-dimensional.

The launch of the saccade occurs close to T}, = 0.4s (2.5th percentile), similar
to findings in the works of Tuhkanen et al. [129] where it was estimated to be
T, =~ 1.0s (lower estimate). The discrepancy may be explained by how the time
headway is computed and the head position of the research participant above the
ground. Another explanation may be that the research participants are conditioned
to fixate their gaze on the visually placed waypoints, unlike our work, where there
are no discrete waypoints to follow but only continuous lane markings.

To summarize, studying human research participants revealed a response time
of 0.14s defined from retinal optic flow angle onset to ballistic steering correction
onset using cross-correlation time delay analysis (and 0.44 s for heading-based).
During the curve bend, it is shown that the vehicular yaw velocity is —2.36 times
faster than the horizontal gaze velocity (c.f. —2.0 by theory). Despite the small
discrepancy likely caused by retinal slippage, the assumption of exact smooth pursuit
arguably still holds when reconstructing retinal optic flow. In addition, experimental
data confirms that skilled drivers tend to intelligently fix their gaze in specific places
on the ground, simply “looking where you are going”. This gazing strateqy arguably
enables and suggests the use of retinal optic flow angle for vehicular locomotor
control.
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Figure 5.4: Human gazing time headway distributions. The figure shows the gazing
time headway for left and right curve bends during curvilinear locomotion. It
provides insight into how far and for how long humans tend to fixate on the curve
bends. When the gazing point gets too close around T, = 0.4, the gaze is shifted
a point further away.
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5.2 Maintaining steering in curvilinear paths

The early steering models presented in Section 2.2.2 fail to capture the satisficing
behavior observed in humans; moreover, in particular, the reaching movement
characteristics and the intermittency property. These are some of the fundamental
properties of realistic human movement and control. It is previously known that
human control behaviors could be more accurately described and interpreted using
intermittent control, in contrast to the more widely used and classical PID control.
However, the latter has been selected and preferred over the former due to being
easier to implement and well-established in engineering.

In Paper A and mentioned above, a connection was established (RQ2) using a
time delay analysis of the steering adjustment travel angle |[Ad| to the visual cues
of the retinal optic flow angle 0,0¢ and the locomotor heading 6},. This connection
would have been impossible to establish without using the theories of intermittent
control and reaching [11]. The paper explicitly investigates how these stimuli
may immediately trigger (online control) and demand a response implied by the
sustained sensorimotor control model suggested by Markkula et al. [81], see the
illustrated example timeline in Fig. 5.5.

Response time 7q = t1 on — ts,on
A

- I Stimulus

L | | | | | | | |
ts,on tI,Ol’l tI)Off Time
Correction

Ballistic correction movement duration

Figure 5.5: Timeline of human satisficing intermittent control. The figure illustrates
a simplified human satisficing behavior with intermittent corrections using evidence
accumulation. Once this perceived need for action becomes large enough at s on, it
triggers a corrective response at ty oy, alleviating the need for action given that the
expressed response is correct and proper. The difference between the two forms
the human response time 74.

An investigation was carried out on how the degradation of visual information
availability affects the steering control behavior. No significant differences were
found in the characteristics of the correction travel angle |Ady|. The characteristic
generally seems to follow the log-normal distribution log V(¢ = 0.08, 02 = 0.75) as
shown in Fig. 5.6 regardless. From the study, the visual information degradation
mainly impacted the timeliness of initiating the correction, adding a latency of
approximately 0.17s for both retinal optic low angle and locomotor heading.

It remains unclear what exact mechanisms are at play that contribute to the
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Figure 5.6: Absolute steering ballistic correction angle distributions. The figure
shows the distribution of absolute steering ballistic correction travel angles. The
distributions generally follow a theoretical log-normal distribution with parameters

log NV (11 = 0.08,02 = 0.75).
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added latency to the correction. One possible explanation is that the degradation of
visual information availability is compensated for by greater reliance on internalized
models to produce prediction and anticipation. It could partially explain why the
research participants anecdotally reported an increased difficulty in maintaining
their steering when the steering wheel was invisible in virtual reality in Paper A.

While Paper A suggests an online corrective behavior in the curve bends, it
does not provide convincing evidence for the same mechanism when humans enter
and exit the curve bend using retinal optic flow or locomotor heading. The lack of
convincing evidence implies that anticipatory and predictive behavior may play
a role in human steering control in these contexts. Lehtonen et al. showed that
gaze does not always directly result in steering correction [75]. Furthermore, they
investigated the role of guiding fixations (located in the 1s to 2s in gazing time
headway, see Fig. 5.4) and look-ahead fixations in the context of human driving in
curve bends. They suggested that look-ahead fixations may play a role in planning
egomotion for future correction [74, 37]. This internalized model could thus be in
play when humans negotiate curve bends.

It should thus be concluded that a clear distinction of human sensorimotor
models can not easily be made as either solely strong online or using internal
models, using the definition of Zhao et al. [150]. The evidence points both ways,
arguing that it could be modeled as online [102, 148] and internal-model [103,
55, 57, 129]. Hence, it may not be that useful to confine our understanding of
the human locomotor control as such, but rather a complex hybrid sensorimotor
system. The latter has been suggested and detailed by Markkula et al. [81], which
simultaneously functions as online, producing highly reactive and rapid responses,
with internal models creating the anticipation and prediction capabilities.

5.2.1 Heavy tail property in reaching velocity profiles

Early research has observed a heavy-tailed property in experimental data, cre-
ating the asymmetry in the human reaching velocity profile. In the works of
Plamondon [104], it is argued that the heavy-tail property originates from the
unsynchronicity of the many muscular contractions in the human neuromuscular
system. The pre-study results in simulation from Paper A may provide a convincing
alternative explanation to the heavy-tail property. It could be the emergence of
multiple out-of-sync superposed ballistic corrections, illustrated in Fig. 5.7. The
two different muscle synergies are coordinated to achieve the intended movement,
but are slightly applied out of sync (see the onset timings in Fig. 5.7b). This
explanation fits our current understanding of human movement coordination and
the framework of muscle synergies better.
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Figure 5.7: Approximating reaching movement velocity profile with a heavy tail.
The figure demonstrates how multiple Gaussian membership functions may capture
and approximate the heavy tail. (a) demonstrates how well the heavy tail is
captured with a single Gaussian membership function and further in (b) with
two Gaussian membership functions of different parameters. The synthetic data
containing the heavy tail is padded with a normal distribution measurement noise

n(t) ~ N(0,0.1).
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To summarize, applying our current understanding of intermittent control,
motivated by the satisficing behavior observed in humans, to the experimental data
arques that human sensorimotor control is a hybrid of reactive and predictive.
Specifically, the locomotor control uses both online stimuli (reactive) and internal
models (predictive) to trigger ballistic corrections in forms of reaching movements
through evidence accumulation. This approach is aligned with the most recent
research in limb movement coordination and muscle synergies. Further, our work
finds an alternative explanation for the heavy-tail property seen in the experimental
data of rapid limb movements. That is, multiple unsynchronized overlapping ballistic
corrections with symmetric bell-shaped velocity profiles could also produce the heavy-
tail property.

5.3 Bionic navigation in robotics

The combined findings of Paper C and Paper D suggest favorable outcomes to
facilitate and enable modern software development in robotic vehicles when adopting
the containerization and microservice design paradigm (RQ4). This has allowed for
state-of-the-art research, development, and technology to be rolled out on the road
as continuous testing and integration, compared to experimental methods made in
simulations with limited transferable results for real applications. In Paper C, it
was concluded that modern software development using containerized development
in road vehicles is possible despite having various types and platforms of hardware
architecture. This was demonstrated in robotics platforms ranging from miniature
vehicles, racing cars, heavy-duty vehicles, passenger vehicles, and marine surface
vehicles. The various computational resources were abstracted and generalized,
with an attempt to increase the separation between software and hardware.

During the analysis in Paper A, it became apparent that the accuracy of
reconstructing retinal optic flow would heavily depend on the performance of the
optic flow estimator. Depending on the application, the optic flow estimator has
to be carefully selected and properly evaluated. The complex environment of
independently moving objects, challenging high dynamic range in the scene, and
rapid head motion significantly impact the accuracy performance. As discussed in
Paper C and intuitively, there is a clear relation between computational resources
and performance accuracy, a trade-off of computational resources and accuracy;
spending more computational resources may yield better accuracy results. However,
this poses a challenge when perception is part of a time-sensitive critical system
such as motion control. One possible solution to mitigate this is to use dynamic
vision sensors to directly estimate the optic flow fields and eliminate the challenges
of motion blur or scenes with high dynamic range lighting.

In Paper C, it was demonstrated that near real-time computing with optic
flow estimators can be achieved using a software scheduler emphasizing run-time
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consistency and fast computation, with some tolerance to a few isolated run-time
computation outliers. Using the mental chronometry results from Paper A and
neuro-cognitive science, it is implied that a computation deadline could be set
0.15s as a whole from information sensation onset to control response onset, as
inspired by human locomotor control. More specifically, the individual deadline
could be divided as approximately 0.1s for (visual) perception [81, 27, 107], and
approximately 0.04 s for initiating the control adjustment [67, 89, 81].

It was also demonstrated that the optic flow estimators could be implemented
using a containerized approach, which showcases the modularity and flexibility
of such a deployment strategy. Such development is preferable for continuous
experimentation during a development phase and, more importantly, retrospective
analysis for a fair comparison and traceability in deployed systems. So far, no
dense optic flow estimator has been formally proven and demonstrated to exhibit
real-time capabilities with sufficient accuracy.

Self-localization and odometry results and limitations

Inspired by the navigation of biological creatures, optical flow has been investigated
and demonstrated for the applications of self-localization and odometry for a marine
vehicle in coastal and littoral settings (RQ3). It is shown that local navigation
based on optic flow is possible with emphasis on dimensionless estimates, as it
does not suffer from the scaling problems. This is due to using a mono-camera (a
perspective projection), which ambiguously truncates depth perception into image
representation.

The topographic flow method, described in Paper E and introduced in Sec-
tion 4.4, yielded the results shown in Fig. 5.8. The method deviates from the
traditional epipolar geometry computation, showing potential applied to alterna-
tive information representations like abstracted topographic maps. However, in
this particular instance, the work in Paper E suffers significantly from slow and
asynchronous sampling, i.e. rolling shutter effect, which affects how the optic flow
is computed since it estimates the pixel translation between two images. This
problem originates from how radar technology functions, which can be avoided
entirely if the topographic map is derived from an alternative sensor method based
on synchronous sampling (global shutter), for example, a steady-state radar with
360° field of view.

The performance and feasibility of a traditional optic flow-based odometry
method, direct sparse odometry (DSO) developed by Engel et al. [36], was investi-
gated in littoral settings, see the odometry results in Fig. 5.9. The DSO method
suffers challenges similar to many other mono-camera-based odometry approaches,
i.e. scaling and relative reference alignment, which can only be mitigated through
additional sensors, additional computing methods, or exact and elaborate calibra-
tions. It is found that directly usable results are the dimensionless estimates, such
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Figure 5.8: Topographic flow results. The angular velocity results of topographic
flow are shown in (a) and (b), longitudinal velocity in (c) and (d), and lateral
velocity in (e) and (f). Topographic flow is applied to two data sequences, SQ1 and
SQ2, varying the sensor radar range configuration and vessel maneuvers. The error
distributions are shown on the right of the time series panels.
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as the angular velocity. It can thus serve as a complement or alternative to a
gyroscope.

The applications discussed above mainly concern how to navigate locally in
the environment, and thus do not provide a fixed solution for global positioning.
However, making feasible attempts to estimate global positioning with additional
information, such as a topographic map reference database, is possible. One
such approach would be to implement, for example, a Monte Carlo localization
i.e. particle filter localization, which uses a topographic map to establish localization
of the agent. This is done by distributing filter particles representing a possible
state in the map and updating the particles accordingly to the model kinematics.
Impossible or unlikely states are discarded, resulting in the particle population
converging to an optimal state (true state).

Thus, it has been shown that optic flow can be used for perception in navigation
with caveats. Like flying insects such as hymenopterans, exact path integration
is not necessary for successful navigation [33]. Similarly to the findings in this
work, they argue that navigational cues such as optic flow are mainly relied upon
for flight and that there are too many ambiguities to determine exact positioning.
Instead, navigational capabilities are iteratively refined as hymenopterans famil-
iarize themselves with the scene. Furthermore, to solve navigational ambiguities,
honeybees help each other navigate by communicating a directional goal vector
through waggle dancing where they perform a figure-eight dance. For robotics,
perhaps researchers and developers should reconsider their navigation approach.
In biology, the navigation task is only sufficiently solved, as opposed to exactly
solved, such as optimal control.

In summary, this thesis argues and demonstrates that real-world applications
using bionic components for robotics can be carried out using containerization
technology and a microservice design paradigm, particularly in research and devel-
opment with rapid prototyping. A self-localization and an odometry based on optic
flow are demonstrated using real-world and naturalistic data in marine settings
with some success. However, the strict hard deadline requirements may need to be
relaxzed as complex computational bionic tmplementation may not consistently meet
them. Inspired by human locomotor control behavior, it is observed that sufficient
control could be an alternative to optimal control. It remains to be seen if the
computational and locomotor performance of a bionic system can yield acceptable
control behavior compared to its classical control counterpart for robotics.
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Figure 5.9: Direct sparse odometry results in littoral settings. The results from
direct sparse odometry based on optic flow are shown. The complete GNSS
positioning trace as the reference is shown in (a). Particular sections are highlighted,
(a) showing vehicular position and (b) showing vehicular heading during the straight
maneuver. An equivalent for the turning maneuver section is shown in (d) for
position and (e) for heading.
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Chapter

Concluding remarks and
future work

The main conclusions of this thesis and the possible paths for future work are
presented in this chapter.

6.1 Conclusions

The main conclusions from this thesis are as follows:

(i)

(ii)

Retinal optic flow is a major perception cue for human locomotor control.
This thesis introduced and implemented a computational approach to quantify
dense retinal optic flow field using experimental gazing and head-fixed visual
video data (Paper A). The quantity retinal optic flow angle was derived
and successfully utilized (RQ1) for analyzing human locomotor control in
maintaining a curvilinear path, as inspired by the retinal optic flow path and
flow lines as central concepts in nulling flow curvature-strategy proposed by
researchers [138, 64].

Intermittent control in combination with theories of reaching and muscle
synergies was introduced and discussed for human limb control and, by
extension, human locomotor control (RQ2). A novel method for experimen-
tally identifying individual ballistic corrections in simulated and real human
data, utilizing particle swarm optimization, was successfully demonstrated

(Paper A).
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(iii)

(iv)

(v)

(vi)

(vii)

(viii)

Further advancements in characterizing ballistic corrections as reaching move-
ments were carried out and presented by studying the human-operated
steering wheel. Using intermittent control for modeling human movement
behavior has yielded a more detailed and accurate picture of human driver

modeling (RQ1), compared to the contemporary models in narrow research
fields.

Unification and harmonization of cross-disciplinary research contributions
from human locomotor perceptions, control, and behavior were demonstrated
using high-fidelity data [91, 93] and computing techniques. The study con-
ducted on human research participants in Paper A, investigating human
visual motion processing and intermittent control adjustment in high-speed
curvilinear motion. The underlying work loosely connects the interaction
between human perception, control, and locomotion,

The human response time 74 ~ 0.14 s for retinal optic flow angle triggering a
ballistic steering correction was found (RQ2) using cross-correlation analysis
on data from human research participants; see Paper A. Using the character-
istic of reaching, a well-defined definition of movement onset could be made,
which excludes the movement travel time. Analogously, the response time for
locomotor heading cue was found at 74 ~ 0.44s.

Optic flow-based odometry is a computational estimation technique of a
general nature and may be applied beyond the traditional visual image
domain. This idea is explored and demonstrated in Paper D on topographic
map data derived from radar data. The radar sensor was mounted on a
marine vehicle, and the odometry estimation was performed in coastal settings.
Thanks to the detailed topographic data, well-defined topographic features
were exploited for motion tracking using sparse optic flow, similar to visual
feature identification techniques. Using IMU and GNSS as ground truth
comparison unveils that the topographic flow performs considerably well in
specific favorable conditions (RQ3) as static and feature-rich environments
in littoral waters.

A traditional optic flow-based odometry, direct sparse odometry, was also
investigated in a similar environment with comparable results (RQ3). How-
ever, it suffers from scaling issues in position estimation, which need to be
dealt with in future work.

Microservice software design enables rapid prototyping and testing by ab-
stracting the hardware layer, and harmonizing the data structure sent between
microservices. The design allows researchers and developers to mainly focus
on the core implementation of their prototype without worrying about the
underlying robotic platform and computer architecture. Software modularity
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is particularly favorable for robotics development (RQ4), as it mitigates
the code complexity, increases run-time robustness, and enables real-time
computing of complex tasks at the cost of increased deployment complex-
ity. It simultaneously addresses other problems like prevalent irreproducible
results and partially disclosed methods in the scientific community. The
adoption enables continuous experimentation, continuous deployment, and
continuous integration, which would greatly benefit the scientific community
by increasing their impact, transparency, and comparability.

6.2 Future work

The thesis demonstrates the proof of concept of constructing and estimating the
retinal optic flow field using human gazing data and head-fixed video feed. However,
there is still much to be desired for optic flow regarding data volumes, represen-
tation, and sensors. Early work on estimating optical flow using event-driven
sensors demonstrates promising accuracy, reliability, and faster data acquisition
and processing. These aspects make the event-based camera far superior when
estimating optic flow. Due to the limited data to process and fundamentally
different data processing pipelines, it could enable high-quality retinal optic flow
field implementation in a live robotic system and real-time applications.

Originally for Paper A, electromyography was planned for studying the muscle
activation of the human research participants at four measurement points from
the shoulder to the elbow. Unfortunately, it was quickly realized that more
measurement points with better precision are needed. This is especially true
when studying how the muscle synergies are expressed when operating a steering
wheel, resulting in a steering correction. The movements expressing the steering
corrections further involve muscle groups in the back (e.g. latissimus dorsi) and
front chest (e.g. pectoralis minor) that must be considered. Furthermore, how
these muscle groups form different configurations of muscle synergies creates the
antagonistic dynamics of “pulling” and “pushing”, rotating the steering wheel.

The interaction between local navigation, motion planning, and motion an-
ticipation should be investigated to further the understanding of how humans
solve the navigation task as a whole. This is indicated when humans negotiate
into and out of curve bends, as the proposed heuristic strategy “look where you
are going” fails to explain the mechanism of human locomotor control. From the
initial glance, the mechanism likely stems from anticipation and internal models to
produce steering corrections, which could explain the look-ahead fixation behavior
reported by Lehtonen et al. [37].

Intermittent control and ballistic corrections are introduced and described in this
work for studying humans, but not fully implemented in live robotics for actuating
movements. The implementation would significantly progress the development of
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a bionic robotic system with features such as evidence accumulation to trigger
the ballistic correction, via, for example, a computational sustained sensorimotor
model [81].

More research on superposed ballistic control is needed to fully answer whether
it is multiple out-of-sync overlapping reaching movements or a single reaching
movement. If it is overlapping ballistic reaching movements, it would better fit our
current understanding of how the human brain coordinates complex movements
through muscle synergies, but more evidence is needed. For example, this could
be studied more carefully through electromyography in combination with motion
capture of multiple joints.

Much work remains to interpret the retinal optic flow field for navigation. In this
work, short-term steering maintenance is mainly considered. However, it is known
that visual flows, e.g. looming, may inform emergency decisions like initiating
braking or avoidance maneuvers. Another topic, as suggested by the works of
Matthis et al. [83, 82], is to study the interpretation of the local retinal optic flow
field around the gaze point. Intricate information may be embedded in the local
field, aiding humans in their bipedal or curvilinear locomotor control.

Another future topic will be investigating how one can artificially generate
retinal optic flow for robotics. That work would imply that gazing behavior needs
to be artificially created, mimicking that in humans. Therefore, more research is
required to understand why and where we are looking when we are going.

Finally, retinal optic flow remains to be implemented in a live robotic navigation
system combined with intermittent control. Validation and comparison of such a
system could bring a valuable analysis of the existing automated driving system
concerning technology acceptance, user comfort, and system interpretability. More
work is needed to improve computational performance and predictability related
to retinal optic flow estimation and implementing artificial gazing behavior to
support this type of bionic subsystem, emphasizing sufficiently hard deadlines for
high-stakes decisions.



Chapter

Summary of included papers

This thesis consists of five papers investigating visual perception and locomotor
control in humans (Paper A), how software design patterns and techniques for
bionic research and robotics (Paper C and Paper D), and bio-inspired methods
may be applied within robotics for navigational purposes (Paper B and Paper E).

7.1 Paper A

The primary purpose of Paper A is to investigate and understand human locomotor
behavior, specifically how humans intermittently maintain proper steering during
curve bends with the help of visual cues such as retinal optic flow and heading.
An observational study was performed on fourteen research participants, eight of
whom qualified for further analysis, driving in virtual reality on a two-lane S-shaped
drive track equipped with an eye-tracking system. The simulated environment was
designed to be simplistic and texture-rich to study the perceptual cues impacting
human locomotor performance. A perceptual quantity, retinal optic flow angle, was
derived using the immediately readily available visual cues (as may be seen from the
point of view of the research participants), such as lane detection and segmentation.
In addition, a novel method of identifying and approximating ballistic corrections
in experimental positional reaching data using particle swarm optimization was
developed and presented. In total, 3204 individual ballistic intermittent corrections
were identified in the collected data, of which 2084 were used for the analysis. From
this, a time-delay analysis using cross-correlation was performed, given the stimulus
onset to the identified ballistic correction onset. It was revealed that human
response time is approximately 0.14s for retinal optic flow-based cues and 0.44 s
for heading-based cues. The work showcased and demonstrated the intermittency
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property in human neuromuscular control of muscle synergies, through the principle
of satisficing behavior.

7.2 Paper B

Paper B applied and evaluated an existing monocular optic flow-based visual odom-
etry system on a vessel in coastal settings. The motivation was that such systems
were comparably unexplored for marine environments, as visual odometry systems
are typically developed and target indoor use or on land. Using a simplistic single-
camera system on a marine vehicle showed that the odometry system performed
considerably well compared to GNSS regarding the orientation estimation under
suitable and favorable conditions, such as visibility and feature-rich visual land-
marks. It was clear from this work that additional work and further considerations
were required to make it fully performant, as the marine environment imposed
greater challenges for this particular odometry system. One challenge to properly
estimate absolute positioning is that the method suffers from scaling problems.
Another challenge of the method is the decomposition of the odometry into the
rotational and translational contributions. However, the visual odometry system
can complement existing and traditional navigational systems such as GNSS or
IMU using sensor fusion approaches to increase localization reliability, robustness,
and accuracy.

7.3 Paper C

Paper C addresses an evident challenge of reproducing research findings in scien-
tific papers, especially in claimed run-time in performance benchmarks, without
normalizing with respect to the used computational resources or retrospective
performance analysis. Adopting containerization as demonstrated and proposed in
Paper D showed that a fair and reproducible comparison can be made using optic
flow estimators as the example. This may further aid the process of reproducing
the research results and increase the transparency and credibility of the scientific
community beyond paper results. The evaluations in the paper were based on
computation using a real-time capable system. Using our methodology, the run-
time results are normalized to a single system, which may provide more valuable
comparison insight. Moreover, the performance uplift concerning error metrics and
run-time metrics could be observed as contributed by technological advancements in
the underlying dependency libraries, and computational resources are continuously
improving (see Section 4.3.2). This allows researchers and developers to discuss the
trade-offs of computational performance and accuracy and make a fair comparison
across contributions and time.
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7.4 Paper D

Paper D presents and details the accumulated experiences, best practices, and
pitfalls of utilizing containerized software with the microservice design paradigm
for self-driving road vehicles. This methodology of creating a microservice and
packaging it into a self-contained software bundle, with all necessary dependency
libraries, allows for clear binary traceability, software modularity, and easy deploy-
ment. Another motivating purpose was quickly introducing new researchers to the
hardware and software, allowing them to focus on their core goals and problems.
This way, decoupling computational resources from the algorithms made a dynamic
restructuring of data processing pipelines possible. This allows for more flexible
and interchangeable software blocks, resulting in convenient ways to introduce con-
tinuous integration, continuous deployment, and continuous experimentation. The
work presented OpenDLV as an implementation of these design choices, including
a standard message set, an a priori established communication protocol among
the application microservices.

7.5 Paper E

Paper E explored and demonstrated a non-conventional application of optic flow
to estimate odometry, which is presented as topographic flow. It is applied to
topographic data instead of the conventional visual image data (compare this to
visual odometry). By analyzing the motion of the pixels in the topographic map,
it is possible to estimate the rotational and translational velocities of the agent
caused by relative motion. The performance results when compared to GNSS as a
ground truth showed mean errors of less than 0.003rads™! for angular velocity,
0.04m s~ for lateral velocity, and 0.22m s~ for longitudinal velocity. This method
was presented as a stand-alone alternative to the de facto standard GNSS used
in navigation. The topographic data was solely derived from, but not limited to,
experimental data from radar mounted on a marine vehicle. Due to the nature of
optic flow, the challenge in odometry estimation lies in separating and identifying
the translational and rotational components in the emergent optic flow analysis,
similar to the challenges present in Paper B.
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