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Abstract
Specifying data requirements for machine learning (ML) software
systems remains a challenge in requirements engineering (RE).
This vision paper explores causal modelling as an RE activity that
allows the systematic integration of prior domain knowledge into
the design of ML software systems. We propose a workflow to
elicit low-level model and data requirements from high-level prior
knowledge using causal models. The approach is demonstrated
on an industrial fault detection system. This paper outlines future
research needed to establish causal modelling as an RE practice.

CCS Concepts
• Software and its engineering → Requirements analysis;
Reusability; Software prototyping.
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1 Introduction
Rahimi et al. called for more attention towards the ability of speci-
fying software with machine learning (ML) components [24]. Many
industrial applications require robustness of ML models against
changes in input data distribution [4]. A key reason for lacking
robustness is the difficulty of specifying ML models, because “if
input and/or output data are high-dimensional, both defining pre-
conditions and detailed function specifications are difficult"[18].
Robustness against context changes can only be tested if the ex-
pected operational context is explicitly defined, for instance through
contextual requirements[16, 17]. However, assumptions about the
operational context are often implicit in the design process [21],
such as in the selection of the training dataset. Recent surveys on
requirements engineering (RE) confirm that specifying training
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data for ML models remains an open challenge [1, 10, 23]. Cur-
rent RE techniques struggle to translate high-level functional and
non-functional requirements into data requirements [2, 26]. This
leads to an underspecification causing variability in implementation
choices and a lack of robustness against context changes [6].

A possible way to address underspecification is reasoning about
expected causal relationships in the ML system’s operational con-
text. Typically, ML cannot infer causality from data alone [22].
An ML model learns a probabilistic representation from data that
seems compatible in a training context, but its performance might
deviate drastically in a different operational context as statistical
correlations do not capture true causal mechanisms [5]. Addressing
this challenge requires incorporating prior domain knowledge and
causal reasoning into the design of ML systems.

This vision paper proposes causal modelling to communicate
prior knowledge about causal relations in the operational context.
We argue that by formulating prior domain knowledge as causal
models we can derive requirements towards data, as well as deduce
rules for runtime verification. This will lead to causally motivated
requirements specifications for software with ML.

Objective of this vision paper. First, we outline our vision of inte-
grating causal modelling as an RE activity for ML systems. Then,
we illustrate its application in eliciting data requirements for an
industrial prototype of an ML-based cooling fault-detection system
for electric motors. Finally, we discuss a research agenda to explore
the potential of causal modelling as an RE activity for ML systems.

2 Related Work
The potential of using causal modelling as part of RE activities is
not yet fully explored [12]. Fischbach et al. proposed an NLP-based
process to extract and structure causal relationships from natural
language [7, 9]. A tree recursive neural network (TRNN) model
was trained to detect causality in natural language requirements us-
ing logical markers such as conjunctions and negations [15]. They
further developed an approach to converts extracted causal rela-
tionships into a DAG-like structure to automatically generate test
cases [8]. Maier et al. proposed modelling cause-effect relationships
as part of scenario-based testing for automotive system safety [19].
Maier et al. also introduced the concept of “CausalOps”, an indus-
trial lifecycle framework for causal models [20]. Gren et Brentsson
Svensson proposed Bayesian Data Analysis (BDA) to evaluate the
outcome of experiments on the effect of obsolete requirements on
software effort estimation [14]. Similarly, Frattini et al. investigated
the impact of requirements quality defects on domain modelling
by using BDA and causal reasoning in a in a controlled experi-
ment [11]. While the latter two studies do not use causal modelling
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Figure 1: A proposed workflow for Causal RE

as an explicit RE activity, these studies demonstrates the potential
of applying causal reasoning to RE activities.

3 Causal modelling as an RE activity
In a typical ML development pipeline, causal modelling would be
a step between problem definition and data collection as it allows
to formalise domain knowledge, identify relevant variables, and
refine data requirements by distinguishing causal relationships from
mere correlations before collecting the training data. Particularly,
graphical causal models in the form of directed acyclic graph (DAG)
allow to communicate explicitly assumed directions of causality and
assumptions about confounders, i.e., situations in which a variable 𝑍
is associated to two random variables𝑋1 and𝑋2 such that a spurious
relationship between 𝑋1 and 𝑋2 can be observed: 𝑋1 ← 𝑍 → 𝑋2.

Figure 1 outlines a proposed workflow. The workflow bases on
the principle of causal factorisation [25]:

𝑝 (𝑋1, . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

𝑝 (𝑋𝑖 |PA𝑖 ) , (1)

where PA𝑖 denotes the set of parents (variables that have a di-
rect causal effect) of a variable 𝑋𝑖 in the DAG. Causal factorisation
implies that an observed joint distribution of interest can be decom-
posed into a product of conditional distributions, where each term
corresponds to a causal mechanism.

Step 1) Identify individual causal mechanisms: The aim
is to pinpoint specific cause-effect pathways informed based on
high-level requirements, prior domain knowledge, and context as-
sumptions.

Step 2) Update causal graph: Once a causal mechanism is iden-
tified, the relevant observable and latent variables are determined,
and a causal graph is updated to include these variables along with
the assumed directions of cause-and-effect relationships.

Step 3) Perform d-separation and extract requirements:
With the causal model, d-separation1 allows to identify variables
that are needed to block “non-causal” association paths. Taking the
example from above, in𝑋1 ← 𝑍 → 𝑋2, there is a “non-causal” path
between 𝑋1 and 𝑋2. If the ML model can condition on 𝑍 (assuming
𝑍 is observable), 𝑋1 and 𝑋2 become d-separated, closing the “non-
causal” path. This is an example of a resulting data requirement: 𝑍
must be included in the training dataset to avoid learning a spuri-
ous correlation between 𝑋1 and 𝑋2. Additionally, Step 3 provides
independence criteria based on global Markov properties: If 𝑋1 and
𝑋2 are d-separated by 𝑍 , they are conditionally independent given
𝑍 , i.e., 𝑋1 ⊥ 𝑋2 | 𝑍 . This provides testable criteria to verify prior
knowledge and assumptions encoded in the causal graph.

Step 4) Check consistency and observability: The graphical
causal model must be checked for cyclic dependencies because
a variable cannot be its own cause [13]. Furthermore, variables
needed to block “non-causal” paths must be observable. If this is
not the case, the systemmust be adjusted to enable their observation
or suitable instrument variables must be identified [3].

The resulting causal graph becomes part of an ML specification
because it encodes the assumed causal structures, prior knowledge,
and operational context, from which data and model requirements,
as well as testing criteria, are derived.

4 Demonstration on industrial prototype
We demonstrate the use of causal modelling as an RE activity on
an industrial prototype use case, specifically a system for detecting
faults in the cooling system of electric motors.

Methodology: We held three workshops with two Siemens engi-
neers and two academic researchers to explore using causal models
for requirements specification in the second half of 2022. The re-
searchers introduced causal models with examples like temperature
← sunrise→ birds chirping and explaining key concepts such as
confounding, colliders, and d-separation using for example the back-
door criteria. The company experts then presented the prototype
system, and prior knowledge rules were formalised together by
identifying causal mechanisms and updating the causal model iter-
atively with each newly found causal mechanism. We then applied
d-separation to close non-causal paths between the exposure (i.e., a
cooling fault) and the outcome (i.e., the classification result) which
resulted in data and model requirements to ensure the ML model
controls for potential confounding.

Description of demonstration case: The demonstration case, pro-
vided by Siemens, is a motor diagnostic application for monitoring
electrical motors using an attachable sensor device. Initially, the
system detected cooling faults from vibrations caused by mechani-
cal faults, such as a broken fan blade. The new device will use an
ML model to detect faults based on multiple sensor inputs. The
high-level functional requirement is:
FR-1: GIVEN indoor operational environment WHEN the cooling

system is abnormal THEN an alarm should be raised.
The following prior knowledge of the company engineers was
considered for identifying causal mechanisms:
1Due to space constraints, background on d-separation is omitted but can be found
in [22].
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Table 1: Variables for motor diagnostic use case.

Variable Related PKs Definition

Cooling Fault PK1, PK2 Fan system status
𝑄 PK2 Max. possible airflow
Mech. Fault PK2, PK3 Mechanical fault of motor
𝑃𝑀 PK1 Mechanical power
𝑅1 PK1 Electrical (inner) losses
𝑇𝐸 PK4 Environmental temperature
𝑈𝑋 PK5 Unmeasured noises
𝑇 (𝑇𝑠 ) Surface temperature (measured)
𝐻 (𝐻𝑠 ) Magnetic Flux (measured)
𝑉 (𝑉𝑠 ) Vibrations (measured)

PK-1: A fault in the cooling system can affect the magnetic flux
by changing the temperature of the rotor material and thus
affecting the electrical resistance.

PK-2: Mechanical faults of the fan can reduce the available airflow.
PK-3: Mechanical faults cause vibrations of the system.
PK-4: Environmental temperature has an influence on the tem-

perature signal because the sensor is mounted outside the
motor.

PK-5: Unmeasured sensor disturbances exist in general.

Results: The resulting causal model for the motor diagnostic use
case is shown in Figure 2.

Figure 2: DAG for the motor diagnostic use case. Gray-
background nodes are latent (unobservable) variables, while
white-background nodes are observable at runtime.

Explanations for the variables and their relations to the prior
knowledge are provided in Table 1.

The causal graph in Figure 2 includes three causal mechanisms
between Cooling Fault occurrence and Classificationwhether or not
a cooling fault has occurred:

Temperature mechanism: A cooling fault increases the mo-
tor’s surface temperature𝑇 (via the core temperature), measured by
the temperature sensor 𝑇𝑠 , which can be used to classify a cooling
fault.

Magnetic flux mechanism: A cooling fault changes the inner
resistance (via the core temperature), which affect the magnetic
flux 𝐻 . This is measured by the fluxmeter 𝐻𝑠 for classification.

Table 2: Requirements derived from causal graph

ID Requirement (RQ-D: Data Req., RQ-M: Model Req.)

RQ-D1 Training data shall include cases wheremechanical faults cause
vibrations𝑉 without leading to cooling faults .

RQ-D2 The occurrence of cooling faults shall be conditioned on differ-
ent environmental temperatures𝑇𝐸 such that the model can
learn the confounding influence of𝑇𝐸 .

RQ-D3 Measurements shall include characteristic sensor noise.
RQ-M1 Cooling faults shall not be classified based on vibration data

𝑉𝑠 alone.
RQ-M2 The input layer shall accept temperature, magnetic flux, and

vibration measurements.

Mechanical power mechanism: A cooling fault changes the
magnetic flux 𝐻 , which affects the mechanical power 𝑃𝑀 and sur-
face temperature 𝑇 . The latter is measured by the sensor 𝑇𝑠 for
classification.

Two confounding paths were identified:
Mechanical fault confounding: A mechanical fan blade fault

can reduce the available airflow 𝑄 causing a cooling fault and
vibrations 𝑉 , which are measured by a vibration sensor 𝑉𝑠 for
classification.

Environmental temperature confounding: A sudden change
in environment temperature 𝑇𝐸 can temporarily limit cooling with-
out indicating a fault and it affects the surface temperature 𝑇 .

Data and model requirements: We checked which variables must
be observed and controlled for to close non-causal paths between
cooling fault occurrence and classification of a cooling fault, which
resulted in the requirements listed in Table 2. Vibration data 𝑉𝑠
alone is insufficient to detect cooling faults, as not all mechanical
faults lead to a cooling fault (RQ-D1, RQ-M1). Instead, data on
temperature and magnetic flux mechanisms should be included
(RQ-M2).2 An additional sensor should record the environmental
temperature 𝑇𝐸 to control for confounding (RQ-D2). Sensor noise
must also be represented in the training data (RQ-D3).

Testing and runtime checks: The causal graph in Figure 2 implies
a set of independence conditions:

ID1 : Classification ⊥ 𝑇𝐸 | 𝐻𝑠 ,𝑇𝑠 ,𝑉𝑠

ID2 : 𝐻𝑠 ⊥ 𝑇𝐸 | Cooling Fault
ID3 : 𝐻𝑠 ⊥ 𝑉𝑠 | Cooling Fault
ID4 : 𝑇𝑠 ⊥ 𝑉𝑠 | Cooling Fault,𝑇𝐸
ID5 : 𝑉𝑠 ⊥ 𝑇𝐸

As an example for a resulting test case, ID1 states that classification
is independent of 𝑇𝐸 given 𝐻𝑠 , 𝑇𝑠 , and 𝑉𝑠 . A test case could trigger
faults at varying𝑇𝐸 to verify that the detection probability remains
unchanged. As an example for runtime monitoring, ID5 suggests𝑉𝑠
and 𝑇𝐸 should be independent. An additional monitor could track
their correlation during operation and trigger an alarm if a threshold
is exceeded which would indicate a shift in the assumed operational
context (e.g., the probability of a mechanical fault could depend on

2In fact, vibration data may be unnecessary for detecting cooling faults unless it is
desired to distinguish mechanical from non-mechanical causes.
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the environmental temperature which would be a violation of the
assumed causal models for this system).

5 Discussion and research agenda
In this vision paper we argue that causal modelling and its math-
ematical framework have significant potential as an RE activity
for ML software system development by systematically integrating
prior knowledge into the design. However, based on the experience
in our demonstration use case, further research is needed before
this vision becomes standard industry practice.

Causal models as complement to natural language requirements.
Causal graphs originates from mathematics. We must explore how
they can complement current requirements specifications and how
they must be adopted for RE. Terms like “treatment”, “confounder”,
and “collider” are uncommon in RE and require interpretation.

Criteria for sufficient variable selection. A key challenge is know-
ing when a causal graphs includes “enough” prior knowledge. We
need methods to determine a sufficient set of variables that must
be included for a given use case and methods for deciding between
competing causal DAGs given a ´´sufficient” set of variables.

Modularisation of ML software systems. Isolating causal mecha-
nisms can guide the modularisation of ML systems, i.e., dividing
large monolithic ML models into smaller sub-models.

A common language between different stakeholders of ML software
systems. Causal models provide a unified way to communicate prior
knowledge and assumptions. Research should explore how this
can facilitate coordination between different groups such as data
scientists, product experts, and software engineers.

Data requirements derived through causal reasoning. Causal rea-
soning in RE helps identifying data requirements. Further research
should assess to what degree data requirements derived from causal
models can enhance ML robustness and reduce data needs com-
pared to traditional RE methods.

Testing and runtime checks. ML software system must align with
expected (causal) behaviour. Causal graphs imply independence
criteria that lead to testable implications for the runtime behaviour.
Research should explore how to translate these into testing strate-
gies and monitors and how reliable such monitors are in practice.

Conclusion. Causal reasoning offers a systematic way to integrate
prior knowledge into RE for ML software systems. We outlined
a vision and demonstrated a preliminary workflow to derive and
argue for low level model and data requirements from high level
prior knowledge using causal graphs. We discussed future research
activities that are needed to turn this vision into industrial practice.
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