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 A B S T R A C T

This paper presents a comprehensive study on the free vibration analysis of rectangular plates with variable 
thickness, utilizing three-dimensional elasticity theory and a meshless method. Traditional plate theories, such 
as classical and shear deformation theories, often fail to provide accurate results for thick plates or those with 
complex geometries. To overcome these limitations, the study adopts the three-dimensional elasticity approach, 
which considers the full material behavior and the entire plate structure. The meshless method, specifically the 
Radial Point Interpolation Method (RPIM) with multi-quadrics radial basis functions, is employed to solve the 
vibration problem. This method offers advantages over traditional finite element methods by using scattered 
nodes and higher-order shape functions, thus eliminating issues related to meshing and re-meshing. The plates’ 
thickness is assumed to vary linearly and nonlinearly in one or both directions in the plate plane, and the study 
investigates the impact of different thickness ratios, aspect ratios, and boundary conditions on the natural 
frequencies of the plate. The results show that the meshless method provides a high degree of accuracy and 
fast convergence for both thin and thick plates with variable thickness, making it a reliable and efficient 
tool for free vibration analysis. This work thus contributes with valuable insights to the dynamic behavior of 
variable-thickness plates, with applications in many engineering fields where weight reduction and structural 
performance are critical. The work also provides eigenfrequency results on several plate structures with varying 
thickness, which may serve as a reference using 3D theory.
 

1. Introduction

Plates play a critical role as structural components in various en-
gineering applications, making the study of their dynamic behavior 
essential for optimizing design. Most research on the free vibration of 
plates relies on simplified theories, such as classical plate theory [1–4], 
first-order shear deformation theory [5–9], and higher-order shear 
deformation theory [10–13], which include several assumptions regard-
ing stress and displacement fields. However, to achieve more accurate 
results for thick plates, it is necessary to apply three-dimensional elas-
ticity theory [14–17]. Analytical solutions become inadequate when 
dealing with complex geometries and boundary conditions, prompt-
ing the widespread use of numerical methods like the finite element 
method (FEM) and meshless methods (MM) in many practical scenar-
ios [18–21]. In FEM, elements are connected via predefined nodes, 
while MM use scattered nodes that do not form a mesh. Moreover, 
MM employ higher-order shape functions that can vary with each point 
of interest, in contrast to the low-order predefined shape functions in 
FEM. As a result, MM address issues related to meshing and re-meshing 
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(adaptive analysis) more effectively than FEM, although MM generally 
incur higher computational costs and require careful selection of certain 
parameters.

Among the meshless methods, the Radial Point Interpolation Method
(RPIM) stands out for its stability, even with arbitrary nodal dis-
tributions. RPIM’s shape functions possess Kronecker delta behavior, 
facilitating the straightforward application of boundary conditions 
through an elimination approach. Previous studies, such as the static 
and free vibration analysis of moderately thick non-homogeneous 
plates using the meshless local radial point interpolation method [22], 
and free vibration analysis of laminated composite plates based on 
layer-wise theory [23], have demonstrated the versatility of meshless 
methods. Plates with variable thickness are particularly important 
in real-world engineering applications, where they enhance dynamic 
behavior and reduce structural weight. This is especially crucial in 
aerospace engineering, where reducing weight is essential due to high-
speed operational demands. Although several studies have focused on 
variable-thickness plates [24–31], limited research has explored the 
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Fig. 1. Plate with variable thickness that is modeled using scattered nodes and the support domain.
̂

free vibration analysis of rectangular plates based on three-dimensional 
theory [32].

In [5], the vibrations of rectangular Mindlin plates with linearly 
tapered thicknesses in one direction were analyzed using the spline 
strip method, which integrates exact solutions based on Mindlin plate 
theory. The two opposite edges, perpendicular to the direction of 
thickness variation, are simply supported, while the remaining two 
edges can have arbitrary boundary conditions. The transverse vibra-
tions of rectangular plates with variable thicknesses have been explored 
with different boundary condition combinations at the four edges [1]. 
In [33], precise numerical calculations of the natural frequencies for 
elastic rectangular plates of variable thickness are presented, con-
sidering various boundary condition combinations and applying both 
first-order and higher-order theories. An efficient and accurate vari-
ational approach to study the vibration behavior of thin and thick 
plates with variable thickness, incorporating elastic restraints against 
both rotation and translation at the edges, is developed using the Ritz 
method in [3]. Linear and stepped thickness variations for plates are ex-
plored by utilizing the node-dependent kinematic approach of Carrera’s 
unified formulation, alongside Lagrange expansion functions [34].

The work presented here aims to explore 3D solutions for free 
vibration behavior of rectangular plates with varying thickness, using 
RPIM with multi-quadrics radial basis functions. Here, the thickness of 
the plates is considered to vary linearly and nonlinearly in one or both 
directions in the plate plane. Eigenfrequency results are presented for 
both thin and thick plates, as well as the influence of different thickness 
ratios, aspect ratios, and boundary conditions. These results indicate 
that the proposed numerical method is both accurate and efficient and 
provide a reliable tool for the analysis of such structural problems.

2. RPIM

This section gives a brief description of the radial point interpolation 
method (RPIM). Consider a scalar field 𝜂(𝐱, 𝐱𝑄) such as a displacement 
component. To interpolate a field function at a point 𝐱𝑄 = (𝑥𝑄, 𝑦𝑄, 𝑧𝑄)
within a space 𝑉  defined by an arbitrary distribution of 𝑁 nodes, a 
support domain is considered. This domain, centered at 𝐱𝑄 can have 
any size and shape, as illustrated in Fig.  1, and contains a set of 
scattered nodes. In this approach, only the nodes located within the 
support domain are used to estimate the field function at the point 
𝐱𝑄 while nodes outside the domain do not influence the interpolation 
at that point. RPIM employs radial and polynomial basis functions to 
perform the interpolation as described in [35]: 

𝜂(𝐱, 𝐱𝑄) =
𝑛
∑

𝑅𝑖(𝐱)𝑎𝑖 +
𝑚
∑

𝑃𝑗 (𝐱)𝑏𝑗 = 𝐑𝑇 (𝐱)𝐚 + 𝐏𝑇 (𝐱)𝐛. (1)

𝑖=1 𝑗=1 ̂

2 
In this context, 𝑛 represents the number of radial basis functions and 
𝑚 the number of polynomial basis functions. 𝑅𝑖(𝐱) and 𝑃𝑗 (𝐱) denote 
the radial and polynomial basis functions, respectively, while 𝑎𝑖 and 𝑏𝑗
are constants that need to be determined. The inclusion of polynomial 
functions 𝑃𝑗 (𝐱) enhances both the accuracy and the stability of the 
interpolation.

The radial basis functions 𝑅𝑖(𝐱) depend on the distance 𝑟𝑖 between 
𝐱𝑄 and a node at 𝐱𝑖

𝑟𝑖 =
√

(𝑥𝑄 − 𝑥𝑖)2 + (𝑦𝑄 − 𝑦𝑖)2 + (𝑧𝑄 − 𝑧𝑖)2. (2)

A variety of radial basis functions are described in the literature, and 
the multiquadric (MQ) function used in this study takes the following 
form [35,36]: 

𝑅𝑖(𝐱) = (𝑟2𝑖 + (𝛼𝑐𝑑𝑐 ))𝑞𝑟 . (3)

The parameters 𝛼𝑐 and 𝑞𝑟 are the shape parameters of the radial 
basis function, while 𝑑𝑐 represents the average nodal spacing. The shape 
parameter 𝑞𝑟 can be any real value, with 𝑞𝑟 = 0.98 or 1.03 commonly 
yielding good results for solid and fluid mechanics, and 𝛼𝑐 is typically 
a positive number less than 1.0 [35]. The average nodal spacing, 𝑑𝑐 , is 
calculated as 

𝑑𝑐 =
√

𝑑2𝑐𝑥 + 𝑑2𝑐𝑦 + 𝑑2𝑐𝑧. (4)

Here, 𝑑𝑐𝑥, 𝑑𝑐𝑦 and 𝑑𝑐𝑧 represent the nodal spacings in the 𝑥, 𝑦 and 𝑧
directions, respectively. The polynomial basis functions for the 3D case 
are 

𝐏𝑇 (𝐱) = [1 𝑥 𝑦 𝑧 𝑥2 𝑥𝑦 𝑥𝑧 ... 𝑃𝑚(𝐱)] (5)

The vectors 𝐚  and 𝐛  associated with the point 𝐱𝑄 are deter-
mined by applying Eq. (1) at all 𝑛 nodes within the support domain of 
𝐱𝑄

𝜂𝑘 =
𝑛
∑

𝑖=1
𝑅𝑖(𝐱𝐤)𝑎𝑖 +

𝑚
∑

𝑗=1
𝑃𝑗𝐱𝐤𝑏𝑗 (𝑘 = 1, 2,… , 𝑛). (6)

Clearly 𝜂𝑘 represents the value of the field function at the 𝑘th node. 
Eq. (6) can be rewritten in matrix form as 

𝜼 = 𝐑̂𝐚 + 𝐏̂𝐛, (7)

where 𝜼̂ is a vector that encompasses field functions, such as the 
displacements, of all nodes within the support domain 

𝑇 (8)
𝜼 = [𝜂1, 𝜂2,… , 𝜂𝑛] .
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Table 1
Eigenfrequencies for square homogeneous plates with CCCC boundary conditions.
 𝑁𝑧 𝑁𝑥 𝑁𝑦 ℎ∕𝑏 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 5 36 36 0.1 3.328 6.359 6.359 8.922 10.522 10.622 12.536 
 37 37 3.328 6.359 6.359 8.921 10.521 10.621 12.535 
 38 38 3.328 6.358 6.358 8.921 10.520 10.620 12.535 
 6 36 36 3.328 6.358 6.358 8.919 10.517 10.618 12.535 
 37 37 3.328 6.357 6.357 8.918 10.516 10.617 12.535 
 38 38 3.327 6.357 6.357 8.917 10.515 10.616 12.535 
 [37] 3.348 6.394 6.394 8.967 10.576 10.679 12.549 
 [38] 3.326 6.356 6.356 8.919 10.519 10.619 12.536 
 [39] 3.325 6.352 6.352 8.912 10.509 10.609 12.535 
 7 36 36 0.2 2.731 4.782 4.782 6.281 6.281 6.430 7.338  
 37 37 2.731 4.781 4.781 6.281 6.281 6.430 7.337  
 38 38 2.731 4.781 4.781 6.281 6.281 6.430 7.337  
 8 36 36 2.731 4.781 4.781 6.281 6.281 6.429 7.336  
 37 37 2.731 4.780 4.780 6.280 6.280 6.429 7.336  
 38 38 2.730 4.780 4.780 6.280 6.281 6.429 7.336  
 9 36 36 2.731 4.780 4.780 6.281 6.281 6.428 7.336  
 37 37 2.730 4.780 4.780 6.281 6.281 6.428 7.335  
 38 38 2.730 4.780 4.780 6.280 6.280 6.428 7.335  
 [37] 2.745 4.802 4.802 6.288 6.288 6.454 7.364  
 [38] 2.736 4.793 4.793 6.283 6.283 6.448 7.360  
 [39] 2.729 4.777 4.777 6.280 6.280 6.425 7.332  
 7 36 36 0.5 1.554 2.447 2.447 2.518 2.518 2.979 3.203  
 37 37 1.554 2.447 2.447 2.518 2.518 2.979 3.203  
 38 38 1.554 2.447 2.447 2.518 2.518 2.979 3.203  
 8 36 36 1.553 2.445 2.445 2.518 2.518 2.979 3.201  
 37 37 1.553 2.445 2.445 2.518 2.518 2.979 3.201  
 38 38 1.553 2.445 2.445 2.518 2.518 2.979 3.201  
 9 36 36 1.553 2.444 2.444 2.518 2.518 2.979 3.199  
 37 37 1.553 2.444 2.444 2.518 2.518 2.979 3.199  
 38 38 1.553 2.444 2.444 2.518 2.518 2.979 3.199  
 [37] 1.558 2.448 2.448 2.522 2.522 2.980 3.203  
 [39] 1.551 2.442 2.442 2.518 2.518 2.980 3.165  
Table 2
Eigenfrequencies for square homogeneous plates with SSSS boundary conditions.
 𝑁𝑧 𝑁𝑥 𝑁𝑦 ℎ∕𝑏 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 7 36 36 0.1 1.936 4.626 4.626 6.526 6.527 7.108 8.668 
 37 37 1.936 4.626 4.626 6.527 6.527 7.108 8.668 
 38 38 1.935 4.626 4.626 6.526 6.526 7.108 8.668 
 8 36 36 1.935 4.625 4.625 6.525 6.525 7.105 8.664 
 37 37 1.935 4.625 4.625 6.526 6.526 7.105 8.665 
 38 38 1.935 4.625 4.625 6.526 6.526 7.106 8.665 
 9 36 36 1.935 4.625 4.625 6.526 6.526 7.106 8.665 
 37 37 1.936 4.625 4.626 6.526 6.526 7.106 8.666 
 38 38 1.935 4.625 4.625 6.526 6.527 7.106 8.666 
 [37] 1.937 4.629 4.629 6.530 6.530 7.115 8.672 
 [38] 1.936 4.627 4.627 6.530 6.530 7.111 8.672 
 [39] 1.936 4.627 4.627 6.530 6.530 7.110 8.671 
 7 36 36 0.2 1.777 3.264 3.264 3.903 3.903 4.618 5.658 
 37 37 1.777 3.264 3.264 3.903 3.903 4.617 5.658 
 38 38 1.777 3.264 3.264 3.903 3.903 4.617 5.658 
 8 36 36 1.777 3.264 3.264 3.903 3.903 4.617 5.657 
 37 37 1.777 3.264 3.264 3.903 3.903 4.617 5.657 
 38 38 1.777 3.264 3.264 3.903 3.903 4.617 5.657 
 9 36 36 1.777 3.264 3.264 3.903 3.903 4.617 5.657 
 37 37 1.777 3.264 3.264 3.903 3.903 4.618 5.657 
 38 38 1.777 3.264 3.264 3.903 3.903 4.617 5.657 
 [37] 1.778 3.265 3.265 3.904 3.904 4.617 5.660 
 [38] 1.778 3.265 3.265 3.905 3.905 4.617 5.664 
 [39] 1.778 3.265 3.265 3.903 3.903 4.617 5.658 
 7 36 36 0.5 1.261 1.305 1.305 1.847 2.335 2.335 2.609 
 37 37 1.261 1.305 1.305 1.847 2.335 2.335 2.609 
 38 38 1.261 1.305 1.305 1.847 2.335 2.335 2.610 
 8 36 36 1.260 1.305 1.305 1.847 2.334 2.334 2.610 
 37 37 1.260 1.305 1.305 1.847 2.334 2.334 2.610 
 38 38 1.260 1.305 1.305 1.847 2.334 2.334 2.610 
 9 36 36 1.260 1.305 1.305 1.847 2.334 2.334 2.610 
 37 37 1.260 1.305 1.305 1.847 2.334 2.334 2.610 
 38 38 1.260 1.305 1.305 1.847 2.334 2.334 2.610 
 [37] 1.260 1.306 1.306 1.847 2.334 2.334 2.612 
 [39] 1.260 1.306 1.306 1.847 2.333 2.333 2.612 
3 
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Table 3
Convergence study of eigenfrequencies for square plates with linear thickness 
variation in the 𝑥 direction 𝛼 = 0.25 for ℎ0∕𝑏 = 0.4 and CCCC boundary 
conditions.
 𝑁𝑧 𝑁𝑥 𝑁𝑦 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 9 31 31 1.758 2.859 2.860 3.716 4.224 4.285 4.958 
 32 32 1.758 2.859 2.860 3.715 4.224 4.285 4.958 
 33 33 1.758 2.859 2.861 3.716 4.224 4.285 4.958 
 34 34 1.759 2.860 2.861 3.717 4.224 4.286 4.959 
 35 35 1.756 2.856 2.859 3.716 4.222 4.283 4.955 
 10 31 31 1.758 2.858 2.860 3.717 4.223 4.285 4.957 
 32 32 1.757 2.857 2.860 3.716 4.223 4.284 4.957 
 33 33 1.757 2.857 2.860 3.716 4.222 4.284 4.956 
 34 34 1.757 2.857 2.860 3.716 4.222 4.283 4.955 
 35 35 1.757 2.857 2.859 3.716 4.222 4.283 4.955 
 11 31 31 1.757 2.858 2.860 3.716 4.222 4.284 4.956 
 32 32 1.757 2.858 2.860 3.716 4.223 4.284 4.956 
 33 33 1.756 2.856 2.859 3.716 4.222 4.283 4.955 
 34 34 1.756 2.855 2.859 3.716 4.221 4.282 4.954 
 35 35 1.756 2.854 2.858 3.716 4.220 4.281 4.952 

The matrices 𝐑̂ and 𝐏̂ are defined as 

𝐑̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑅1(𝐱𝟏) 𝑅2(𝐱𝟏) ... 𝑅𝑛(𝐱𝟏)
𝑅1(𝐱𝟐) 𝑅2(𝐱𝟐) ... 𝑅𝑛(𝐱𝟐)
... ... ... ...

𝑅1(𝐱𝐧) 𝑅2(𝐱𝐧) ... 𝑅𝑛(𝐱𝐧)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (9)

𝐏̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 𝑥1 𝑦1 𝑃𝑚(𝐱𝟏)
1 𝑥2 𝑦2 𝑃𝑚(𝐱𝟐)
... ... ... ...

1 𝑥𝑛 𝑦𝑛 𝑃𝑚(𝐱𝐧)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (10)

The system of equations in Eq. (6) consists of 𝑛 equations and 𝑛 +
𝑚 unknowns. Therefore, 𝑚 additional equations are required, which 
can be provided by the following 𝑚 constraint conditions to facilitate 
solving the system 
𝐏̂𝑇 𝐚 = 𝟎. (11)

By combining Eqs. (7) and (11) gives a matrix form 

𝜼̄ =
[

𝜼̂
𝟎

]

=

[

𝐑̂ 𝐏̂
𝐏̂𝑇 𝟎

]

[

𝐚
𝐛

]

= 𝐆𝐚𝟎, (12)

where 
𝐚𝟎 = [𝑎1 𝑎2 ... 𝑎𝑛 𝑏1 𝑏2 ... 𝑏𝑛]𝑇 . (13)

Eq. (12) allows for the determination of 𝐚𝟎
𝐚𝟎 = 𝐆−𝟏𝜼̄. (14)

Since Eq. (1) can be expressed as 
𝜂 = 𝐑𝑇 (𝐱)𝐚 + 𝐏𝑇 (𝐱)𝐛 =

{

𝐑𝑇 (𝐱) 𝐏𝑇 (𝐱)
}

𝐚𝟎, (15)

one obtains using Eq. (14)
𝜂 =

{

𝐑𝑇 (𝐱) 𝐏𝑇 (𝐱)
}

𝐆−𝟏𝜼̄ = Ψ̄𝑇 (𝐱)𝜼̄. (16)

The RPIM shape functions are thus defined as 
̄Ψ𝑇 (𝐱) =

{

𝐑𝑇 (𝐱) 𝐏𝑇 (𝐱)
}

𝐆−𝟏

=
[

𝜙1(𝐱) 𝜙2(𝐱) ...𝜙𝑛(𝐱) 𝜙𝑛+1(𝐱) 𝜙𝑛+2(𝐱) ...𝜙𝑛+𝑚(𝐱)
]

,
(17)

where the shape function associated with the nodal displacement vector 
becomes 
Ψ𝑇 (𝐱) =

[

𝜙1(𝐱) 𝜙2(𝐱) ...𝜙𝑛(𝐱)
]

. (18)

Eq. (16) can thus be expressed in an alternative form 
𝑇 (19)
𝜂 = Ψ 𝜼̂,

4 
and the spatial derivatives of 𝜂 are given by 
𝜂,𝑙 = Ψ𝑇

,𝑙 𝜼̂. (20)

3. Governing equations

Consider a rectangular plate with non-uniform thickness, having 
length 𝑎 and width 𝑏, as illustrated in Fig.  1. The plate’s thickness 
is defined by the continuous function ℎ(𝑥, 𝑦). A Cartesian coordinate 
system (𝑥, 𝑦, 𝑧) is employed, where the associated displacement field is 
given by 
𝐮 = [𝑢 𝑣 𝑤]𝑇 . (21)

Here, 𝑢, 𝑣 and 𝑤 represent the displacement components in the 𝑥, 𝑦 and 
𝑧 directions, respectively. In accordance with 3D elasticity theory, the 
stress and strain components are expressed as 
𝝈 = [𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑦𝑧 𝜎𝑥𝑧 𝜎𝑥𝑦 ]𝑇 , (22)

𝜺 = [𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑦𝑧 𝜀𝑥𝑧 𝜀𝑥𝑦 ]𝑇 . (23)

The relationship between stress and strain is 
𝝈 = 𝐃𝜺, (24)

where 𝐃 represents the elastic material matrix 

𝐃 = 𝐸
(1 + 𝜈)(1 − 2𝜈)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 0.5 − 𝜈 0 0
0 0 0 0 0.5 − 𝜈 0
0 0 0 0 0 0.5 − 𝜈

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(25)

Here 𝐸 denotes the elastic modulus, and 𝜈 represents Poisson’s ratio. 
The relationship between strains and displacements is given by 
𝜺 = 𝐋𝐮, (26)

where the operator matrix 𝐋 is defined as 

𝐋𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕𝑥 0 0

0 𝜕
𝜕𝑦 0

0 0 𝜕
𝜕𝑧

0 𝜕
𝜕𝑧

𝜕
𝜕𝑦

𝜕
𝜕𝑧 0 𝜕

𝜕𝑥
𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (27)

Adopting Hamilton’s principle from variational calculus 

𝛿 ∫

𝑡2

𝑡1
𝐿̄𝑑𝑡 = 0. (28)

Here the functional 𝐿̄ is defined as 
𝐿̄ = 𝛱 + 𝑇 −𝑊 (29)

where 𝛱 and 𝑇  represent the strain energy and kinetic energy, respec-
tively 

𝑇 = ∫𝑉
𝜌𝐮̇𝑇 𝐮̇𝑑𝑉 , (30)

𝛱 = ∫𝑉
𝜺𝑇 𝝈𝑑𝑉 , (31)

while the work done by external forces, including the potential body 
force 𝐏𝑏 and surface force 𝐏𝑠, is given by 

𝑊 = ∫𝑉
𝐮𝑇𝐏𝑏𝑑𝑉 + ∫𝑆

𝐮𝑇𝐏𝑠𝑑𝑆. (32)
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Table 4
Eigenfrequencies for square and rectangular plates with linear thickness variation in the 𝑥 direction and SSSS boundary conditions.
 ℎ0∕𝑏 𝑎∕𝑏 𝛼 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.2 1 0.25 1.587 3.554 3.555 4.627 6.210 6.216 7.577 
 2 1.022 1.584 2.449 3.247 3.645 4.275 5.875 
 0.4 1 1.306 2.581 2.586 3.543 4.089 4.097 4.813 
 2 0.813 1.305 1.824 2.301 2.584 2.939 3.802 
 0.2 1 0.5 1.376 3.124 3.141 4.692 5.527 5.611 6.910 
 [28] (FSDT) 1.374 3.110 3.128 4.661 5.488 5.566 6.844 
 0.4 1.177 2.399 2.400 3.249 3.676 3.845 4.610 
 [28] (FSDT) 1.166 2.360 2.364 3.285 3.794 3.805 4.504 
 0.2 2 0.874 2.145 2.724 4.271 4.700 4.846 6.472 
 0.4 0.781 1.608 1.616 2.421 2.820 3.122 3.675 
Table 5
Eigenfrequencies for square and rectangular plates with linear thickness variation in the 𝑥 direction and CCCC boundary conditions.
 ℎ0∕𝑏 𝑎∕𝑏 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.2 1 2.507 4.473 4.475 6.066 6.960 7.051 8.293 
 [28] (FSDT) 2.476 4.405 4.405 5.965 6.877 6.880 8.139 
 [28] (HSDT) 2.496 4.465 4.465 6.065 7.011 7.016 8.313 
 1.5 1.959 2.863 4.105 4.225 4.808 5.908 6.719 
 2 1.797 2.271 3.065 3.980 4.376 4.995 6.607 
 0.4 1 1.756 2.854 2.858 3.716 4.220 4.281 4.952 
 [28] (FSDT) 1.718 2.784 2.786 3.657 4.128 4.129 4.811 
 [28] (HSDT) 1.771 2.914 2.915 3.849 4.370 4.370 5.112 
 0.4 1.5 1.424 1.996 2.644 2.800 3.082 3.720 4.104 
 [28] (FSDT) 1.394 1.952 2.732 2.577 3.004 3.627 3.982 
 [28] (HSDT) 1.429 2.010 2.692 2.830 3.137 3.794 4.207 
 0.4 2 1.313 1.635 2.141 2.572 2.816 3.210 4.161 
 [28] (FSDT) 1.285 1.601 2.094 2.505 2.751 3.128 3.930 
 [28] (HSDT) 1.317 1.642 2.152 2.616 2.871 3.261 4.147 
Table 6
Eigenfrequencies for square plates with linear thickness variation in both directions and CCCC boundary conditions.
 ℎ0∕𝑏 𝛼 𝛽 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7   
 0.1 0.25 0.25 2.608 5.082 5.097 7.269 8.604 8.682 10.538  
 [28] (FSDT) 2.602 5.073 5.073 7.240 8.609 8.609 10.523  
 [28] (HSDT) 2.605 5.083 5.083 7.261 8.636 8.636 10.564  
 0.2 2.280 4.136 4.154 5.675 6.250 6.254 7.828   
 [28] (FSDT) 2.262 4.100 4.100 5.603 6.494 6.494 7.726   
 [28] (HSDT) 2.275 4.142 4.142 5.676 6.592 6.592 7.857   
 0.4 1.670 2.756 2.765 3.712 4.103 4.166 4.829   
 [28] (FSDT) 1.637 2.697 2.697 3.555 4.024 4.024 4.702   
 [28] (HSDT) 1.677 2.799 2.799 3.711 4.219 4.219 4.949   
 0.1 0.25 0.5 2.221 4.340 4.389 6.320 7.377 7.519 9.229   
 [28] (FSDT) 2.221 4.350 4.377 6.322 7.389 7.511 9.259   
 [28] (HSDT) 2.222 4.355 4.383 6.333 7.402 7.527 9.284   
 0.2 1.999 3.691 3.718 5.146 5.930 6.006 7.177   
 [28] (FSDT) 1.995 3.687 3.694 5.121 5.921 5.956 7.142   
 [28] (HSDT) 2.003 3.712 3.721 5.170 5.980 6.021 7.232   
 0.4 1.544 2.595 2.612 3.462 3.910 3.967 4.613   
 [28] (FSDT) 1.521 2.564 2.559 3.402 3.863 3.861 4.533   
 [28] (HSDT) 1.548 2.637 2.634 3.523 4.009 4.011 4.726   
Fig. 2. Homogeneous and linear variation of thickness plates.
5 
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Table 7
Eigenfrequencies for rectangular plates 𝑎∕𝑏 = 2 with linear thickness variation 
in both directions and CCCC boundary conditions.
 ℎ0∕𝑏 𝛼 𝛽 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7   
 0.1 0.25 0.25 1.808 4.450 4.492 6.878 8.286 8.394 9.876  
 0.2 1.624 3.680 3.786 4.940 6.191 6.199 7.570  
 0.4 1.238 2.035 2.102 3.341 3.573 3.581 4.152  
 0.1 0.25 0.5 1.534 3.811 3.828 5.959 6.963 7.219 8.733  
 0.2 1.415 3.286 3.356 4.408 5.578 5.579 6.839  
 0.4 1.132 2.470 2.560 2.935 3.930 3.934 4.597  

Table 8
Eigenfrequencies for rectangular plates 𝑎∕𝑏 = 2 and ℎ0∕𝑏 = 0.1 with linear 
thickness variation in the 𝑥 direction and CFFF boundary conditions.
 Mode [40] (Quasi 3D) [40] (FEM 3D) [28] (HSDT) Present work 
 1 0.094 0.094 0.096 0.094  
 2 0.330 0.328 0.326 0.325  
 3 0.446 0.449 0.456 0.447  
 4 0.878 0.877 0.876 0.875  

Table 9
Convergence study of eigenfrequencies for square plates with symmetric 
concave thickness variation ℎ0∕𝑏 = 0.4, 𝛥 = 1 and CCCC boundary conditions.
 𝑁𝑧 𝑁𝑥 𝑁𝑦 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 7 31 31 1.746 2.837 2.846 3.738 4.192 4.252 4.929 
 32 32 1.745 2.833 2.846 3.738 4.189 4.250 4.928 
 33 33 1.747 2.837 2.847 3.739 4.193 4.253 4.930 
 34 34 1.747 2.837 2.847 3.739 4.193 4.254 4.931 
 35 35 1.745 2.834 2.845 3.738 4.189 4.250 4.927 
 8 31 31 1.746 2.836 2.845 3.738 4.190 4.250 4.926 
 32 32 1.745 2.834 2.844 3.737 4.187 4.248 4.924 
 33 33 1.745 2.835 2.845 3.738 4.190 4.250 4.926 
 34 34 1.746 2.836 2.845 3.737 4.190 4.250 4.926 
 35 35 1.745 2.834 2.845 3.737 4.188 4.248 4.924 
 9 31 31 1.745 2.835 2.844 3.738 4.188 4.248 4.924 
 32 32 1.744 2.833 2.843 3.737 4.186 4.246 4.921 
 33 33 1.745 2.834 2.843 3.738 4.187 4.247 4.922 
 34 34 1.745 2.834 2.843 3.738 4.188 4.248 4.923 
 35 35 1.743 2.831 2.840 3.737 4.184 4.244 4.919 

Assuming there are 𝑛 nodes in the support domain of a specific 
point 𝐱𝑄 on the plate, the displacement field can be written in line 
with Eq. (19)
𝐮 = [𝑢 𝑣 𝑤]𝑇 = 𝐍𝐮̂, (33)

where 𝐍 is the shape function matrix using Eq. (18)

𝐍𝑇 =

⎡

⎢

⎢

⎢

⎣

𝜙1 0 0 𝜙2 0 0 ... 𝜙𝑛 0 0

0 𝜙1 0 0 𝜙2 0 ... 0 𝜙𝑛 0

0 0 𝜙1 0 0 𝜙2 ... 0 0 𝜙𝑛

⎤

⎥

⎥

⎥

⎦

, (34)

and ̂𝐮 represents the local displacement vector in accordance to Eq. (8)

𝐮 =
[

𝑢1 𝑣1 𝑤1 𝑢2 𝑣2 𝑤2 ... 𝑢𝑛 𝑣𝑛 𝑤𝑛

]𝑇
. (35)

By introducing the strain–displacement matrix operator 𝐁 = 𝐋𝐍, the 
strains and stresses can be expressed as 
𝜺 = 𝐁𝐮̂, (36)

𝝈 = 𝐃𝐁𝐮̂. (37)

Substituting this set of equations into the functional 𝐿̄ Eq. (29) and 
adopting Hamilton’s principle, the resulting system of equations be-
comes 
𝐌𝐔̈ +𝐊𝐔 = 𝐅. (38)

Here, 𝐔 and 𝐔̈ represent the global displacement and acceleration 
vectors, respectively. The mass matrix, stiffness matrix, and force vector 
6 
are given by 

𝐌 = ∫𝑉
𝜌𝐍𝑇𝐍𝑑𝑉 , (39)

𝐊 = ∫𝑉
𝐁𝑇𝐃𝐁𝑑𝑉 , (40)

𝐅 = ∫𝑉
𝐍𝑇𝐏𝑏𝑑𝑉 − ∫𝑆

𝐍𝑇𝐏𝑠𝑑𝑆. (41)

The equation to be solved for the free vibration analysis is 
𝐌𝐔̈ +𝐊𝐔 = 𝟎. (42)

The solution is obtained using 
𝐔(𝑥, 𝑦, 𝑧, 𝑡) = 𝐔̄(𝑥, 𝑦, 𝑧)𝑒𝑖𝜔𝑡, (43)

where 𝜔 represents the circular eigenfrequency of vibration. Substitut-
ing into Eq. (42), we obtain the standard eigenvalue equation 
(𝐊 − 𝜔2𝐌)𝐔̄ = 𝟎. (44)

4. Results

In order to illustrate the RPIM applied to vibrational problems on 
plates with varying thickness, sets of 3D based eigenfrequencies for 
various boundary conditions are presented for different plate configu-
rations. Comparisons are made with results presented in the literature, 
both based on simplified plate theories and 3D theory.

The plate is modeled by distributing 𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 nodes in the 
𝑥, 𝑦 and 𝑧 directions, respectively, so the total number of nodes on 
the boundary and inside the plate is 𝑁 = 𝑁𝑥 ∗ 𝑁𝑦 ∗ 𝑁𝑧. Results are 
presented for homogeneous, linear, and nonlinear thickness variation 
plates where the length (𝑥) and width (𝑦) of the plate are denoted by 
𝑎 and 𝑏, respectively. The effects of different boundary conditions are 
considered, using clamped, simply supported, and free edges. These 
boundary conditions are defined as:

Clamped boundary conditions (C) 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 0,

{

𝑥 = 0, 𝑎

𝑦 = 0, 𝑏
(45)

Simply supported boundary conditions (S) 
𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝜎𝑥𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑥 = 0, 𝑎

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝜎𝑦𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑦 = 0, 𝑏
(46)

Free boundary conditions (F) 
𝜎𝑥𝑥(𝑥, 𝑦, 𝑧, 𝑡) = 𝜎𝑥𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 𝜎𝑥𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑥 = 0, 𝑎

𝜎𝑦𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 𝜎𝑥𝑦(𝑥, 𝑦, 𝑧, 𝑡) = 𝜎𝑦𝑧(𝑥, 𝑦, 𝑧, 𝑡) = 0, 𝑦 = 0, 𝑏
(47)

4.1. Homogeneous and linear thickness variation

The geometry of both homogeneous and linearly varying thickness 
plates are illustrated in Fig.  2. In the latter case, linear variation may 
be in 𝑥 and/or 𝑦 directions where 
ℎ(𝑥, 𝑦) = ℎ0(1 − 𝛼𝜁 )(1 − 𝛽𝜂). (48)

Here ℎ0 represents the thickness of the plate at 𝑥 = 𝑦 = 0 while 𝜁 = 𝑥∕𝑎
and 𝜂 = 𝑦∕𝑏. Clearly 𝛼 = 𝛽 = 0 corresponds to a homogeneous plate.

In order to illustrate the RPIM for a homogeneous plate, eigen-
frequency results are presented for two different boundary condi-
tions, CCCC and SSSS, for square plates with varying thickness-to-
side ratios. Here a nondimensional natural frequency parameter 𝜔̄ =
(𝜔𝑏2∕𝜋2)

√

𝜌ℎ∕𝐷 is introduced where 𝜌 is the density and 𝐷 is the plate 
flexural rigidity. These results are given in Table  1 and Table  2 for the 
first modes, illustrating convergence effects. The presented results are 
based on the fact that the number of nodes in the plane (𝑁𝑥 and 𝑁𝑦) 
affects the accuracy to a greater extent than the number of nodes in 
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Table 10
Eigenfrequencies for square plates with arched thickness variation and CCCC boundary conditions.
 ℎ0∕𝑏 𝛥 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.1 0.25 3.054 5.868 5.934 8.322 9.832 9.961 11.927 
 [28] (FSDT) 3.042 5.837 5.899 8.271 9.793 9.872 11.857 
 [28] (HSDT) 3.047 5.854 5.917 8.307 9.841 9.922 11.926 
 0.2 2.559 4.534 4.568 6.152 7.055 7.158 8.389  
 [28] (FSDT) 2.534 4.478 4.510 6.068 6.982 7.016 8.259  
 [28] (HSDT) 2.557 4.544 4.579 6.180 7.128 7.170 8.447  
 0.4 1.761 2.860 2.869 3.696 4.235 4.298 5.147  
 [28] (FSDT) 1.732 2.795 2.807 3.679 4.152 4.161 4.837  
 [28] (HSDT) 1.791 2.933 2.949 3.884 4.404 4.424 5.156  
 0.1 0.5 2.748 5.305 5.425 7.647 9.014 9.125 11.013 
 [28] (FSDT) 2.742 5.291 5.406 7.622 8.986 9.077 10.976 
 [28] (HSDT) 2.745 5.303 5.419 7.648 9.019 9.110 11.026 
 0.2 2.359 4.231 4.309 5.822 6.697 6.810 7.996  
 [28] (FSDT) 2.343 4.195 4.270 5.766 6.641 6.712 7.903  
 [28] (HSDT) 2.360 4.245 4.323 5.855 6.752 6.832 8.053  
 0.4 1.674 2.750 2.784 3.659 4.122 4.192 4.846  
 [28] (FSDT) 1.655 2.704 2.736 3.588 4.055 4.081 4.742  
 [28] (HSDT) 1.702 2.818 2.858 3.766 4.266 4.311 5.013  
Table 11
Eigenfrequencies for square plates with concave thickness variation and CCCC boundary conditions.
 ℎ0∕𝑏 𝛥 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.1 0.25 2.843 5.453 5.528 7.796 9.166 9.310 11.249 
 [28] (FSDT) 2.828 5.418 5.494 7.746 9.107 9.246 11.168 
 [28] (HSDT) 2.832 5.430 5.508 7.773 9.141 9.284 11.221 
 0.2 2.445 4.355 4.389 5.945 6.815 6.908 8.146  
 [28] (FSDT) 2.414 4.326 4.290 5.851 6.721 6.767 8.002  
 [28] (HSDT) 2.431 4.380 4.341 5.941 6.837 6.893 8.159  
 0.4 1.745 2.835 2.844 3.738 4.188 4.248 4.924  
 [28] (FSDT) 1.702 2.761 2.770 3.631 4.092 4.101 4.780  
 [28] (HSDT) 1.750 2.877 2.893 3.810 4.311 4.332 5.060  
 0.1 0.5 2.292 4.348 4.540 6.437 7.324 7.731 9.402  
 [28] (FSDT) 2.284 4.333 4.523 6.417 7.300 7.717 9.373  
 [28] (HSDT) 2.285 4.338 4.529 6.429 7.312 7.736 9.397  
 0.2 2.070 3.728 3.831 5.238 5.955 6.125 7.290  
 [28] (FSDT) 2.049 3.689 3.793 5.188 5.887 6.059 7.217  
 [28] (HSDT) 2.057 3.713 3.823 5.239 5.942 6.136 7.316  
 0.4 1.592 2.633 2.656 3.504 3.937 3.989 4.654  
 [28] (FSDT) 1.559 2.581 2.607 3.436 3.866 3.898 4.562  
 [28] (HSDT) 1.587 2.652 2.691 3.563 4.005 4.064 4.768  
Table 12
Eigenfrequencies for square plates with symmetric concave thickness variation and CCCC boundary conditions.
 ℎ0∕𝑏 𝛥 Ref. 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.1 0.25 2.893 5.371 5.654 7.836 8.977 9.436 11.204 
 [28] (FSDT) 2.883 5.341 5.613 7.782 8.920 9.364 11.127 
 [28] (HSDT) 2.887 5.352 5.628 7.809 8.950 9.406 11.178 
 0.2 2.505 4.338 4.490 5.995 6.768 6.964 8.163  
 [28] (FSDT) 2.465 4.270 4.406 5.889 6.659 6.824 8.010  
 [28] (HSDT) 2.482 4.317 4.466 5.980 6.764 6.963 8.163  
 0.4 1.794 2.852 2.887 3.798 4.190 4.244 4.924  
 [28] (FSDT) 1.741 2.776 2.815 3.657 4.089 4.125 4.795  
 [28] (HSDT) 1.790 2.885 2.947 3.840 4.294 4.375 5.072  
 0.1 0.5 2.432 4.223 4.804 6.507 6.983 8.028 9.250  
 [28] (FSDT) 2.437 4.218 4.791 6.492 6.969 7.997 9.233  
 [28] (HSDT) 2.438 4.222 4.799 6.504 6.978 8.021 9.255  
 0.2 2.221 3.687 4.069 5.354 5.789 6.335 7.432  
 [28] (FSDT) 2.185 3.644 3.987 5.269 5.727 6.214 7.313  
 [28] (HSDT) 2.194 3.663 4.024 5.322 5.770 6.310 7.426  
 0.4 1.719 2.668 2.793 3.584 3.931 4.029 4.713  
 [28] (FSDT) 1.660 2.605 2.714 3.498 3.843 3.959 4.596  
 [28] (HSDT) 1.690 2.665 2.813 3.627 3.960 4.160 4.785  
the thickness (𝑁𝑧). It is clear that the results have stabilized for the 
number of nodes covered by the tables, and that an increased number 
of nodes 𝑁𝑧 is justified for thicker plates.

The results have been compared with numerical solutions based on 
the Rayleigh–Ritz method for 3D theory [37–39]. The agreement is 
good with small deviations, especially for SSSS according to Table  2. 
7 
The more numerically challenging case CCCC (Table  1) gives larger 
deviations in the results (the mutual variation among [37–39] is also 
more prominent). The present results are in most cases lower than 
the ones based on Rayleigh–Ritz method, with the closest agreement 
with [39].
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Table 13
Eigenfrequencies for square plates with arched thickness variation and SSSS 
boundary conditions.
 ℎ0∕𝑏 𝛥 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.1 0.25 1.773 4.267 4.273 6.418 8.044 8.064 10.135 
 0.2 1.647 3.668 3.671 5.354 6.359 6.375 7.728  
 0.4 1.338 2.624 2.624 3.581 4.122 4.131 4.878  
 0.1 0.5 1.600 3.864 3.868 6.007 7.279 7.341 9.292  
 0.2 1.504 3.138 3.224 4.745 5.960 5.975 7.264  
 0.4 1.251 2.502 2.506 3.448 3.986 3.998 4.621  

Table 14
Eigenfrequencies for square plates with concave thickness variation and SSSS 
boundary conditions.
 ℎ0∕𝑏 𝛥 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.1 0.25 1.622 3.896 3.903 6.080 7.371 7.423 9.415 
 0.2 1.525 3.250 3.304 5.077 6.017 6.045 7.255 
 0.4 1.272 1.625 1.652 2.536 3.254 3.270 4.037 
 0.1 0.5 1.295 3.065 3.111 4.921 5.748 5.992 7.691 
 0.2 1.243 2.819 2.849 4.320 5.027 5.169 6.458 
 0.4 1.088 1.602 1.677 2.307 3.227 3.278 3.680 

Table 15
Eigenfrequencies for square plates with symmetric concave thickness variation 
and SSSS boundary conditions.
 ℎ0∕𝑏 𝛥 𝜔̄1 𝜔̄2 𝜔̄3 𝜔̄4 𝜔̄5 𝜔̄6 𝜔̄7  
 0.1 0.25 1.631 3.863 3.887 6.083 7.245 7.382 9.398 
 0.2 1.535 3.246 3.410 4.464 5.084 5.950 7.314 
 0.4 1.277 2.517 2.535 3.503 3.802 4.020 4.763 
 0.1 0.5 1.339 3.059 3.075 4.946 5.599 6.366 7.685 
 0.2 1.285 2.812 2.822 4.215 4.926 5.133 6.407 
 0.4 1.111 1.587 1.862 2.256 3.189 3.198 4.411 

Next, consider linearly varying thickness plates. Here the nondimen-
sional natural frequency parameter is defined as 𝜔̄ = (𝜔𝑏2∕𝜋2)

√

𝜌ℎ0∕𝐷0. 
Similarly to the homogeneous plate, the convergence effects are illus-
trated in Table  3 for square plates with linear thickness variation in the 
𝑥 direction and CCCC boundary conditions. As for the corresponding 
homogeneous case in Table  1, the results have essentially stabilized 
for the number of nodes covered by the tables. Here the number of 
nodes in the thickness direction 𝑁𝑧 have been increased compared to 
Table  1, in order to better capture the effects from the varying thickness 
parameter.

Tables  4 and 5 show for one directional linear thickness variation 
how natural frequencies vary with respect to the thickness-to-side 
ratio for square and rectangular plates with SSSS and CCCC boundary 
condition, respectively. To validate the accuracy of the present work, 
the results are to be compared with those from the literature. Here 
there seem to be a lack of 3D results, so comparisons are made with 
two simplified theories [28]: the Mindlin’s first-order shear deformation 
theory (FSDT), where transverse shear strains do not vary through 
the thickness, and the Reddy’s higher-order shear deformation theory 
(HSDT), where transverse shear strain is estimated using second or 
higher-order terms in the thickness. As expected, results from HSDT 
are closer to the present 3D RPIM results when compared to FSDT. 
Moreover, discrepancies from 3D RPIM using simplified theories are 
more pronounced for higher modes and thicker plates.

More involved cases for plates with linear thickness variation in 
both 𝑥 and 𝑦 directions are illustrated in Tables  6 and 7. Here results 
assuming CCCC boundary conditions are presented for square and 
rectangular plates, respectively. The accuracies among the different 
theories in Table  6 are of the same order as in Table  5, with lower 
frequencies in Table  6 as expected (essentially thinner plates). Similar 
lower frequency results also occur for rectangular plates in Table  7 
compared to Table  5. Such eigenfrequency investigations for plates 
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with thickness variation in two directions as in Table  7 do not appear 
to have been presented in the literature.

Yet another case is presented in Table  8 for a partially free plate. 
Here linear thickness variation in 𝑥 direction is studied for CFFF 
boundary conditions for a rectangular plate. Comparisons are done with 
results studying this particular case through other methods, rendering 
similar results for each mode among the studied cases.

4.2. Non-linear thickness variation

Consider plates with nonlinear thickness variation. Here three dis-
tinct forms are to be investigated: concave, arched, and symmetric 
concave as illustrated in Fig.  3.

As noted, the thickness varies solely in the 𝑥-direction. The three 
forms are parametrically defined as

Arched form: 

ℎ(𝑥, 𝑦) = ℎ0(1 − 𝛥𝜁2), 𝛥 = 1 −
ℎ𝐿
ℎ0

. (49)

Concave form: 

ℎ(𝑥, 𝑦) = ℎ0(1 − 2𝛥𝜁 + 𝛥𝜁2), 𝛥 = 1 −
ℎ𝐿
ℎ0

. (50)

Symmetric concave form: 

ℎ(𝑥, 𝑦) = ℎ0(1 − 4𝛥𝜁 + 4𝛥𝜁2), 𝛥 = 1 −
ℎ0.5𝐿
ℎ0

. (51)

Here, ℎ𝐿 represents the thickness at 𝑥 = 𝑎 and ℎ0.5𝐿 denotes the 
thickness at the midpoint at 𝑥 = 𝑎∕2.

Table  9 illustrates the convergence effects for square plates with 
symmetric concave form in the 𝑥 direction and CCCC boundary con-
ditions. As for the corresponding homogeneous and linearly varying 
cases in Table  1 and Table  3 respectively, the results show a stabilizing 
behavior albeit slightly more fluctuating than in the simpler previous 
cases. Here the number of nodes in the thickness direction 𝑁𝑧 was not 
increased further as in Table  3 due to numerical limitations.

Results for the three groups of nonlinear thickness forms are pre-
sented in Tables  10–12 for various thickness-to-side ratios and parame-
ters 𝛥 for square plates with CCCC boundary conditions. Due to lack of 
existing 3D results in the literature, comparisons are made with plates 
using FSDT and HSDT. Naturally, results from HSDT are generally 
closer to the present 3D RPIM results when compared to FSDT. The 
discrepancies from 3D RPIM using simplified theories are mostly more 
pronounced for higher frequencies.

Similarly, results for plates with SSSS boundary conditions are 
presented in Tables  13–15. Here, no comparisons seem to exist in the 
literature. As for the CCCC cases in Tables  10–12, lower frequencies 
occur for larger 𝛥 as expected (essentially thinner plates). Naturally, 
the SSSS cases renders lower frequencies than the corresponding cases 
for CCCC due to different structural stiffening effects.

5. Conclusion

This paper studies eigenfrequency analysis of rectangular plates 
with variable thickness, using three-dimensional elasticity theory and 
the mesh-free method RPIM. This method offers advantages over tradi-
tional FEM by using scattered nodes and higher-order shape functions 
which eliminates problems related to meshing and re-meshing, and 
where the numerical procedure is effective rendering accurate solutions 
for low computational costs. As for the thickness variation of the 
plates, it is assumed to vary linearly and nonlinearly in the plane of 
the plate. The study investigates the vibrational effects from different 
thickness ratios, aspect ratios, and boundary conditions. The various 
eigenfrequencies are in several cases compared to results using other 
methods given in the literature. A few of these cited results are based 
on 3D solutions rendering similar frequencies as in this report. As for 
previously reported results using simplified plate theories, the present 
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Fig. 3. Nonlinear variation of thickness plates.
eigenfrequencies differ for all modes. Consequently, the present results 
indicate that RPIM provides good accuracy and fast convergence for 
both thin and thick plates with variable thickness. The presented results 
may hereby serve as a reference for eigenfrequency studies of plate 
structures with varying thickness.

A possible continuation of the present work is to provide compre-
hensive sets of 3D benchmark solutions for various plate configurations 
(varying thickness ratio, aspect ratio, thickness function, boundary 
conditions). Moreover, vibrational studies related to plate shape opti-
mization is a natural continuation of the methods used in this work. 
Since plates play a critical role as structural components in various 
engineering applications, accurate studies of vibrational modes are 
essential for design problems. Examples are in aerospace engineering 
where weight reduction and optimizing design using variable plate 
thickness may enhance structural dynamic behavior and reduce struc-
tural weight. Consequently, effective procedures calculating reliable 
results for eigenfrequencies and eigenmodes based on 3D theory may 
serve as a base for designing and evaluating advantageous thickness 
variation functions in plates.
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