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Toward Stable and Reliable Lower Limb Prosthetics Control with Signals Recorded from Muscles 
Bahareh Ahkami 
Department of Electrical Engineering 
Chalmers University of Technology 

Abstract 
Prosthetic devices are essential in enhancing mobility and functionality for individuals with amputations, 
enabling them to perform daily activities with improved independence and ease. The effectiveness of these 
prosthetic devices depends significantly on their design, functionality, and the user's ability to intuitively 
control it and rely on it. In pursuit of enhancing control, our research focused on the integration of 
electromyography (EMG) signals into prosthetic control as a means to detect movement intention of the 
users. EMG signals offer a promising avenue for developing more natural and intuitive prosthetic systems. 
Although this technology has successfully improved the functionality of prosthetic arms, its application in 
prosthetic legs has been less extensively explored. 

This research aimed to extend the use of EMG technology to lower limb prosthetics, drawing from the 
established successes in upper limb applications. While the use of EMG for lower limb prosthetics has been 
investigated in prior studies, it remains less extensively explored and adopted compared to upper limb 
applications. To this end, we developed an open-source software framework for acquiring and processing 
biological data, such as electromyography (EMG), and non-biological data, including inertial measurement 
units (IMUs). This framework aims to foster collaboration and drive innovation within the global scientific 
community by encouraging researchers to actively develop, compare, and enhance algorithms, thereby 
accelerating progress in prosthetic technology. We conducted a benchmark test using a dataset recorded 
as part of this thesis, comprising data from 21 able-bodied individuals, which is now openly accessible to 
the community, to validate the platform's effectiveness. 

Building on this validation, we tested the system with individuals living with limb loss, the next critical step 
in achieving robust and reactive control of prosthetic legs. Furthermore, to address the challenges 
associated with traditional socket-based systems for EMG-controlled prosthetics—such as signal instability 
and user discomfort—we recorded EMG signals from individuals with osseointegration. Osseointegration 
eliminates the need for a socket by providing a direct connection between the prosthetic and the skeletal 
structure, resulting in more stable electrode placement and reducing motion artifacts caused by shifting 
soft tissues. This improves EMG signal quality and consistency, allowing our algorithms to interpret more 
accurately the users' intended movements. To further enhance the accuracy and reliability of movement 
predictions, we refined our intention detection algorithms by incorporating post-processing techniques 
specifically designed to filter out low-confidence predictions from the EMG and IMU data, reducing the risk 
of incorrect intention detection and preventing unintended prosthetic movements.  

We also explored the integration of neural signals to enhance the responsiveness of prosthetic devices, 
aiming for more intuitive and seamless user interactions. In addition, the final phase of this research 
focused on the development of a clinical rehabilitation protocol aimed at users of active prosthetic legs and 
neuromusculoskeletal interfaces. These initial efforts represent the foundational steps for broader 
adoption of EMG-based control systems in lower-limb prosthetics, with the potential to substantially 
improve users' quality of life.  

Keywords: Prosthetic Control, Electromyography (EMG), Osseointegration, Lower-Limb Prosthetics, 
Intention Detection Algorithms  



ii 
 

List of Publications 
This thesis is based on the following publications: 

I  Electromyography-Based Control of Lower Limb Prostheses: A Systematic 
Review. Bahareh Ahkami, Kirstin Ahmed, Alexander Thesleff, Levi Hargrove, 
Max Ortiz-Catalan. IEEE Transactions on Medical Robotics and Bionics, 2023 

II Locomotion Decoding (LocoD): An Open-Source and Modular Platform for 
Researching Control of Lower Limb Assistive Devices. Bahareh Ahkami, 
Kirstin Ahmed, Morten Bak Kristoffersen, Max Ortiz-Catalan. Available at 
SSRN: https://ssrn.com/abstract=4575926, 2023 

III Probability-Based Rejection of Decoding Output Improves the Accuracy of. 
Locomotion Detection During Gait. Bahareh Ahkami, Fabian Just, Max 
Ortiz-Catalan 2023 45th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC) 

IV Real-Time Locomotion Mode Detection in Individuals with Transfemoral 
Amputation and Osseointegration. Bahareh Ahkami, Morten B. 
Kristoffersen, Max Ortiz-Catalan. Journal of NeuroEngineering and 
Rehabilitation, vol. 22, article 142, 2025 https://doi.org/10.1186/s12984-
025-01672-2 

V Extra-Neural Signals from Severed Nerves Enable Intrinsic Hand 
Movements in Transhumeral Amputations. Bahareh Ahkami, Enzo Mastinu, 
Eric J. Earley, Max Ortiz-Catalan. Scientific Reports, 2022 

VI Design of a Stepwise Safety Protocol for Lower Limb Prosthetic Risk 
Management in a Clinical Investigation. Alexander Thesleff, Bahareh 
Ahkami, Jenna Anderson, Kerstin Hagberg, Max Ortiz-Catalan. 2021 43rd 
Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC) 

 

Other Publications by the Author (not included in this thesis) 

VII Walking Mode-Dependent Improvements of Locomotion Detection 
Through Rejection-Based Post-Processing. Fabian Just, Bahareh Ahkami, 
Max Ortiz-Catalan. Proceedings of the 2024 Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1–4, July 



iii 
 

2024 
https://doi.org/10.1109/EMBC53108.2024.10782478 — PMID: 40040204 

VIII A Modular Open-Source Platform for Lower Limb Prosthetic Control and 
Locomotion Decoding (LocoD). Bahareh Ahkami, Kirstin Ahmed, Morten 
Bak Kristoffersen, Max Ortiz-Catalan. Presented at the ISPO 19th World 
Congress, 2023, Mexico 

IX A Systematic Review of Electromyography-Driven Control Algorithms for 
Lower Limb Prostheses. Bahareh Ahkami, Max Ortiz Catalan. Presented at 
the ISPO 18th World Congress (Virtual Edition), 2021 

X Extraneural Recordings Enable the Decoding of Intrinsic Hand Movements 
in Transhumeral Amputations. Bahareh Ahkami, Max Ortiz Catalan. 
Presented at the ISPO 18th World Congress (Virtual Edition), 2021 

 

 

  



iv 
 

Acknowledgement 
The journey to this thesis has been long, intense, and deeply transformative. It 
has been filled with challenges, learning, moments of doubt, and moments of 
strength I did not know I had. I am grateful to everyone who, in one way or 
another, walked beside me during this time. 

I want to thank Silvia Muceli, my co-supervisor, for her kind presence throughout 
and her consistent encouragement. Her support, even when things were difficult, 
helped keep me grounded. 

Hana Dobsicek Trefna, thank you for stepping up as my supervisor and running 
the final stretch of this ultra-marathon with me. 

Thank you to Petter Falkman for being part of this final stage, and to Tomas 
McKelvey my examiner, as well as to my first supervisor, who gave me the initial 
opportunity to begin this work. 

To Sabine Reinfeldt and Erik Agrell, whose doors were always open, thank you for 
listening and trying to help whenever I needed it. 

To Maria Munoz, thank you for being there for me. You listened, stood by me, 
lifted me up, and never let me fall too hard. I will never forget that. 

To Malin Ramne, Emily Pettersen, Eithne McGowan and Jan Zbinden, thank you 
for being there through it all. The last stretch was not easy, but I am so glad I had 
you to talk to, to rant with, and to stand beside. 

To the CBPR team, especially Morten Kristoffersen and Fabian Just, your support 
and friendship made all the difference. Fabian, your everyday encouragement 
and optimism helped me stay afloat when things felt heavy. 

To former CBPR members Autumn Naber, Eric Earley, Enzo Mastinu, Alexander 
Thesleff, Andrew Smiles, and Victoria Lang, thank you for sharing your knowledge 
and shaping my perspective throughout my journey. 

To Chiara Fantinato, Tiffany Hamstreet, and Mehdi Shirzadi at NIMC, thank you 
for welcoming me with open arms, even before I officially joined your team. You 
made me feel at home. 

To WISE colleagues Jennifer Alvén, and Sofie Allgöwer, thank you for reminding 
me and everyone why equity matters in science and beyond. 



v 
 

To the participants of my studies, thank you for your time, your trust, and for 
making this research possible. None of this would have been possible without 
you. 

Special thanks to Farnaz Ghassemi and Zahra Tabanfar. My academic journey 
started with you, and your belief in me gave me the confidence to look for more. 

To My Husband, Family, and Friends 

Ali, you are my best friend and my person. There is no part of this journey that 
would have been possible without you. Your strength, your love, and your fight 
gave me the courage to keep going. You are my home, my hope, and the reason 
I keep believing in life. I am endlessly thankful for every moment we share, and 
grateful to science for each one it continues to give us. 

To my brother Reza, who always believed in me, and to my parents, thank you for 
being my unwavering foundation. Thank you for pushing me and believing in me. 
I could not have done this without you. 

Paniz, thank you for listening to me every single day after work. It made the 
distance between us feel smaller. Thank you for hearing everything I had to say, 
big or small. 

Sara, thank you for your kindness and for always reminding me to slow down, 
breathe, and enjoy life. Mina and Alis, thank you for your wisdom and our 3+ hour 
video calls, which always helped me see things more clearly. 

To Mona, I am thankful for all the moments we shared, for our deep conversations 
and late-night talks. 

To Mahsa and Shadab, thank you for always listening and helping me with your 
fairness, thoughtful ideas, and empathy. 

To Nadia, Majid, and Emma, who always made us feel at home in Sweden. 

To my friends Hanieh, Amin, Jennifer, Kat, Sonam, Sanaz, Sina, Ryan, Ava, Arian, 
Lea, Arezou, Mahdi, Maede, Ghazal, Hossein, Tirdad, Sören, Maite, Rodrigo, Britta, 
and Jenna, thank you for all the support, laughs, messages, meals, and memories. 
You helped me stay grounded and human through this long journey. 

Finally, to all the experiences, both good and bad, that shaped me during this 
time, thank you. They taught me strength, patience, resilience, and how to stand 
tall when it matters most. 

This thesis is for everyone who kept going, even when it was hard.  



vi 
 

Acronyms 
 

DOF 
 

Degree of Freedom 

EMG 
 

Electromyography 

sEMG 
 

Surface Electromyography 

iEMG 
 

Intramuscular Electromyography 

ENG 
 

Electroneurography 

IMU 
 

Inertial Measurement Unit 

LDA 
 

Linear Discriminant Analysis 

NN 
 

Neural Networks 

OPRA 
 

Osseointegration Prosthetic Rehabilitation Approach 

SS 
 

Steady-State 

TR 
 

Transition 

Q-TFA Questionnaire for Persons with a Transfemoral Amputation 
 

PCA Principal Component Analysis 
  



vii 
 

Contents 
Abstract ............................................................................................................................ i 

List of Publications ........................................................................................................ ii 

Acknowledgement ........................................................................................................ iv 

Acronyms ....................................................................................................................... vi 

1. Introductory information ....................................................................................... 1 

1.1. Prosthetic Functionality ................................................................................. 1 

1.2. Biological Signals for Enhanced Prosthetic Limb Control.......................... 1 

1.3. Future Directions in Prosthetic Control ....................................................... 2 

2. Scope of Thesis ........................................................................................................ 3 

2.1. Thesis Goal ...................................................................................................... 3 

2.2. Research Questions ....................................................................................... 4 

3. Background ............................................................................................................. 6 

3.1. Prosthetic Attachment ................................................................................... 6 

3.2. Prosthetic Legs ............................................................................................... 7 

3.3. Electromyography (EMG) ............................................................................. 10 

3.4. Research Objectives ..................................................................................... 12 

4. Advancing the Understanding of EMG-Based Control for Lower Limb 
Prosthetics (Paper 1) ................................................................................................. 14 

4.1. Participant demography and movements ................................................ 14 

4.2. Most common muscles and sensors ......................................................... 14 

4.3. Control and Intent Detection Methods...................................................... 15 

4.4. Performance Metrics ................................................................................... 17 

4.5. Challenges and Potential Solutions ........................................................... 17 

4.6. Conclusion from Paper 1 ............................................................................. 18 

5. Development of an Open-Source Platforms to Enhance Prosthetic Research 
(Paper 2) ..................................................................................................................... 19 

5.1. Conclusion from Paper 2 ............................................................................. 21 

6. Real-Time Evaluation of EMG-Based Locomotion Detection Algorithms in 
Transfemoral Amputees (Paper 3) ........................................................................... 22 



viii 
 

6.1. Conclusion from paper 3 ............................................................................. 23 

7. Optimizing Accuracy in Movement Detection Through Post-Processing 
Techniques (Paper 4) ................................................................................................. 25 

7.1. Conclusion from paper 4 ............................................................................. 26 

8. Harnessing Neural and Electromyographic Signals for Intuitive Prosthetic 
Control (Paper 5) ....................................................................................................... 28 

8.1. Conclusion from paper 5 ............................................................................. 30 

9. Establishing Comprehensive Safety Protocols for Clinical Testing of Active 
Prosthetics (Paper 6) ................................................................................................. 32 

10. Summary of Thesis Contributions .............................................................. 34 

11. General Conclusions and Future Directions .............................................. 37 

11.1. Conclusions ................................................................................................... 37 

11.2. Future Direction............................................................................................ 37 

12. Author Contribution ..................................................................................... 39 

Reference ...................................................................................................................... 41 

Papers 

Electromyography-Based Control of Lower Limb Prostheses: A Systematic 
Review ......................................................................................................................... P1 

Locomotion Decoding (LocoD) – An Open-Source and Modular Platform for 
Researching Control Algorithms for Lower Limb Assistive Devices .................... P2 

Real-time locomotion mode detection in individuals with transfemoral 
amputation and osseointegration .......................................................................... P3 

Probability-Based Rejection of Decoding Output Improves the Accuracy of 
Locomotion Detection During Gait ......................................................................... P4 

Extra‑neural signals from severed nerves enable intrinsic hand movements in 
transhumeral amputations ...................................................................................... P5 

Design of a stepwise safety protocol for lower limb prosthetic risk 
management in a clinical investigation .................................................................. P6 

 



1 
 

1. Introductory information 
This thesis investigates innovative strategies to enhance lower-limb prosthetic 
control, with a focus on advancing movement intention detection algorithms and 
addressing the challenges associated with their real-time performance. It 
encompasses a combination of theoretical studies, open-source platform 
development, and experimental testing to lay the foundation for more reliable and 
intuitive prosthetic systems. 

This chapter begins with introductory info about this thesis, providing an overview 
of the challenges and advancements in lower-limb prosthetic control. It then defines 
the specific scope of the research and outlines the objectives of driving this work. 
Following the introduction, a detailed background is presented, covering key 
aspects of the field, including prosthetic attachment systems, the use of biological 
signals for control, and the current state of prosthetic technology. Following this 
introduction, the thesis transitions into the core research contributions, presented 
as individual papers, each addressing specific aspects of the study. 

1.1. Prosthetic Functionality 

Following limb loss, many patients opt for prosthetic limbs to facilitate their daily 
activities and promote independence. However, not all prosthetics offer the same 
level of functionality. Some serve merely as cosmetic enhancements or aids for 
maintaining balance, in lower limb cases, without significantly aiding in mobility or 
functionality. These basic prosthetics lack user input or control mechanisms. In 
contrast, more advanced prosthetic limbs are capable of gathering information from 
the body and the surrounding environment and interpreting the user's intentions, 
which is more common in upper limb prosthetics. In such cases, biological signals, 
such as electromyography signals (EMG), serve as invaluable sources of information, 
enabling more sophisticated control and interaction with the prosthetic limb [1]. 

1.2. Biological Signals for Enhanced Prosthetic Limb Control 

Biological signals play a crucial role in prosthetic control as they naturally reflect the 
user's intentions, offering a natural and efficient means of limb control suggestive 
of how individuals naturally control their limbs. Among the various signals that can 
be captured from the body, electromyography (EMG) stands out as particularly 
relevant for prosthetic control. EMG records the electrical activity of muscles and can 
be detected either through surface electrodes placed on the skin or through 
electrodes implanted surgically within the muscles, resulting in two categories: 
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surface EMG (sEMG) and intramuscular EMG (iEMG). Each type has its own 
advantages and limitations. Surface EMG sensors are easy to apply and carry 
minimal risk, but its movement and inability to target specific muscles can affect 
control consistency. Conversely, while intramuscular EMG requires surgery and 
comes with associated risks such as infection, it offers the potential for more stable 
signal acquisition from specific muscles without needing frequent adjustments. 
Although no current prosthetic systems widely utilize intramuscular EMG, early 
research suggests it could provide more reliable control signals in future 
applications [2]. 

1.3. Future Directions in Prosthetic Control 
Despite advancements in the current lower limb prosthetic devices, they still face 
significant limitations. They often lack natural control and seamless transitions, 
resulting in an unnatural gait that can cause discomfort and pain in other joints, 
such as the hips [3]. This limitation not only affects the physical well-being of users 
but also their societal integration, as frustration can arise from the inability to use 
their prosthetics effectively [4–7]. Electromyography (EMG) emerges as a promising 
solution for intuitive prosthetic control [8–10]. By harnessing biological signals, such 
as EMG, prosthetic limbs can offer more natural control, leading to increased user 
satisfaction and enhanced activity levels. However, integrating EMG poses its own 
set of challenges: 

1. Socket usage and EMG Quality: The design of the socket can significantly 
impact the quality of EMG signals, thereby affecting the control of the 
prosthetic limb.  

2. Unsatisfactory Control: Current EMG-based control methods require 
refinement. Improvements in algorithms, including better pre-processing and 
post-processing techniques or the development of more sophisticated 
algorithms capable of predicting user intent and excluding interference, are 
necessary for optimal prosthetic control [11,12]. 
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2. Scope of Thesis 

 
Figure 1 Overview of the research process, highlighting key steps: conducting an in-depth literature 
review, developing an open-source software platform for signal recording and processing, 
implementing post-processing techniques to enhance accuracy of locomotion detection, performing 
real-time feasibility testing with individuals using osseointegrated prosthetic attachments (OPRA) 
and developing a step-wise safety algorithm, and exploring the integration of combined biosignals 
to improve prosthetic control. 

2.1. Thesis Goal 
The aim of this research is to enhance the control of lower-limb prosthetics by 
addressing key challenges in movement intention detection algorithms. This goal is 
pursued through a comprehensive literature review, the development of an open-
source platform for signal acquisition and analysis, and the integration of diverse 
biological and non-biological signals. Together, these efforts aim to advance the 
reliability and effectiveness of prosthetic control systems.  
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To achieve this objective in this project we followed these steps (Figure 1): 

• Literature Review: To gain a comprehensive understanding of the latest 
advancements in prosthetic control and identify the gaps and limitations, we 
conducted an extensive literature review focusing on studies that utilized 
electromyography (EMG), both with and without additional non-biological 
signals, to control prosthetic limbs, decode movements, and detect user intent. 

• Open-Source Platform Development (LocoD): In order to foster 
collaboration, facilitate algorithm development, and enable comparative 
analysis, we developed an open-source platform. This platform is capable of 
recording signals from both biological such as electromyography (EMG) and 
neural signals, and non-biological signals, such as data from inertial 
measurement units (IMUs). These signals are used to enable intention 
detection while walking on different terrains. This supports the development 
of advanced prosthetic control algorithms aimed at improving user experience 
and adaptability [13,14]. 

• Real-Time Feasibility Study with OPRA Users and Algorithm Enhancement: 
We conducted initial real-time testing of our algorithm with participants who 
had undergone osseointegration (OPRA) and transfemoral amputation, 
marking a crucial step in our research. To enhance prosthetic control, we then 
implemented a post-processing algorithm to filter out movement predictions 
with low confidence, ensuring more reliable performance. All processing and 
testing were carried out using LocoD, our open-source software platform.  

• Exploring Combined Biosignals: Recognizing the inherent limitations of 
relying solely on EMG for control, we did a feasibility study of using neural 
signals alongside muscle signals. This exploration aimed to leverage the 
complementary nature of these signals, hypothesizing that the combined 
biological information could surpass the capabilities of EMG alone. Through 
this innovative approach, we aimed to unlock new avenues for improving 
prosthetic control and enhancing user experience. 

2.2. Research Questions 
1. What are the gaps, limitations, and latest trends in EMG-based control 

algorithms for prosthetic legs? 
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2. How can an open-source software platform for recording and processing EMG 
signals be utilized to enhance lower limb prosthetic control and improve user 
experience and functionality? 

3. How do different sensor fusions affect the accuracy of control in lower limb 
prosthetics? Can neural signals complement EMG signals to improve control? 

4. How does the movement intention detection algorithm perform during real-
time testing with participants who have osseointegration implants?  

5. Can post-processing of movement intention detection improve the accuracy 
and reliability of these algorithms?  
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3. Background 
Projections indicate that the United States could see around 3.6 million individuals 
living with limb loss by the year 2050 [15]. Similarly, in Sweden, approximately 2000 
amputations are anticipated each year [16]. The majority of these amputations occur 
in the lower limb, profoundly impacting individuals' daily lives and their integration 
into society. Without adequate support, many may find themselves confined to their 
homes, facing not only a loss of income but also a disconnection from their 
communities. This is not just a challenge for the individuals affected but also for 
society as a whole, as we risk losing valuable, active members of communities. One 
promising solution to mitigate the impact of amputation is to provide individuals 
with proper prosthetic limbs that address their specific needs. Studies have 
identified the five most critical needs of amputees: "Less pain," "Mobility," "Social 
integration," "Independence," and the ability to "Walk". These findings underscore 
the significance of designing and controlling prosthetic legs that can effectively 
meet these needs and alleviate some of the challenges faced by amputees [17]. 

To better understand how to support amputees effectively, it is essential to examine 
the standard prosthetic care available in most countries. This involves taking a closer 
look at the different types of prosthetic leg attachments and the various commercial 
prosthetic legs available on the market. 

3.1. Prosthetic Attachment 

Patients have access to two primary attachment options for their prosthetic 
devices—sockets and implants—tailored to their unique circumstances. These 
attachment methods are crucial for ensuring comfort, stability, and ease of use, 
which are key factors in encouraging consistent prosthetic use. A more comfortable 
attachment can significantly enhance a patient's ability to rely on their prosthetic 
device, helping them regain mobility and independence, and supporting their 
reintegration into society.  

Socket Attachment: A socket is a custom-fitted interface that slips over the residual 
limb, connecting the limb to the prosthetic device. Designed to provide a secure fit, 
the socket distributes weight evenly and offers control over the prosthetic. However, 
socket use can lead to discomfort, skin irritation, and other skin issues, especially in 
warmer conditions. Despite these challenges, sockets remain a non-invasive option 
and are widely accessible compared to other attachment methods (Figure 2.a). 
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Implant Attachment: In recent years, advancements in technology have led to the 
development of osseointegrated implants. These implants are surgically anchored 
into the residual bone, providing a more direct connection between the prosthesis 
and the body. Osseointegration offers benefits such as increased stability, improved 
comfort, and enhanced proprioception for the user. It removes the drawbacks of 
sockets such as skin irritation and being uncomfortable but it comes with its risk of 
infection and surgical complications [18–25]. Therefore for now in Sweden it is only 
available to people who cannot use the socket due to skin issues or shortness of 
their stump [21] (Figure 2.b). 

 
Figure 2 (a) Socket attachment: A custom-fitted interface that slips over the residual limb to connect 
the prosthetic device, distributing weight and providing control. (b) Osseointegrated implants: 
Surgically anchored into the residual bone, offering a direct and stable connection between the 
prosthesis and the body. 

Alongside attachment options, there is a diverse range of prosthetic legs available 
on the market, each offering unique features and functionalities and they come with 
their pros and cons (Figure 3). 

3.2. Prosthetic Legs 
Passive Prosthetic Legs: Passive prostheses are designed to resemble the 
appearance of a natural limb and provide basic support for activities of daily living. 
They do not have active components like motors and are primarily used for aesthetic 
purposes or for individuals with low activity levels. The primary advantages of 
passive prosthetic legs include their lightweight and uncomplicated design, making 
them easy to use and manage. However, because these devices lack active 
components like motors and do not have control systems, they cannot provide 
energy support—meaning they do not contribute additional force or assistive power 
during movement—and cannot adapt to different activities or terrains (Figure 3). 
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Semi-Active Prosthetic Legs: Semi-active prostheses are innovative mechanical 
limbs designed to enhance both stability and mobility. These prosthetic legs feature 
adjustable joints and dynamic response systems. They are equipped with 
mechanical sensors that detect speed and gait phase during the gait cycle, allowing 
for adaptive movements. The lightweight and user-friendly design makes them easy 
to manage. However, semi-active prostheses do not provide energy compensation 
for movements like stair ascent or standing up, which may restrict their functionality 
in certain situations. Additionally, their control system relies solely on data from the 
interaction between the leg and the surrounding environment, and they employ 
simpler control logic compared to active prosthetics (Figure 3). 

Active Prosthetic Legs: Active prostheses are equipped with advanced 
technologies, such as microprocessors, sensors, and motors, to mimic more closely 
the functionality of a natural limb. These prosthetic legs can adjust in real-time to 
changes in different terrains and movement patterns, providing users with a higher 
level of control and performance during dynamic activities like walking or running 
(Figure 3). 

 
Figure 3 Different types of prosthetic legs categorized into Passive Prostheses, Semi-Active 
Prostheses, and Active Prostheses, showcasing examples of each category: (a) Pro-Flex® LP Torsion, 
(b) Balance™ Knee OFM2, (c) Mauch® Knee, (d) Dynion, (e) C-Leg, (f) Rheo Knee®, (g) Genium X3, (h) 
Proprio Foot®, (i) Power Knee™, and (j) Empower. Images ©Ottobock and ©Össur, used with 
permission. 
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Powered prostheses represent a significant advancement in the field of prosthetics, 
offering various benefits over passive and semi-active counterparts. These benefits 
include the capacity to provide net positive work during movement, which can help 
reduce compensatory behaviors often observed in prosthesis users, particularly 
during activities like stair climbing [26]. 

Additionally, powered prostheses have shown promise in increasing self-selected 
walking speed compared to passive prostheses, contributing to improved mobility 
and quality of life for users [27,28]. However, despite these advantages, several 
challenges impede their widespread adoption. These challenges include the 
increased weight, complexity, and cost associated with powered prostheses 
compared to passive alternatives [29]. Furthermore, the need for customized control 
systems tailored to individual users and specific types of movement, such as walking 
on different surfaces or climbing stairs, increases the complexity and expense of 
these devices  [30–32]. To be effective, these control systems must be natural and 
responsive, seamlessly integrating with the user's movements. Electromyography 
(EMG) is emerging as a promising approach to address these challenges by 
providing a way to determine the user's movement intentions. By capturing the 
electrical signals produced by muscles during movement, EMG can be used to 
interpret the user's intended next movement, enabling more intuitive and 
responsive control of prosthetic devices. While this research does not specifically 
address these challenges, it explores and enhances some aspects of control system 
responsiveness that may contribute to more natural and user-aligned solutions in 
the future. This claim reflects the central perspective of this research, emphasizing 
the potential of aligning control with the user’s own muscle signals to enhance the 
performance and user experience of advanced prosthetics. 

Currently, there are only two active prosthetic knees available on the market: the 
Power Knee [33] and Reboocon, along with one powered ankle [34]. As powered 
prostheses gain popularity, various research groups are utilizing research devices 
like the Vanderbilt Leg [35], Open Source Leg [36,37], and Utah Leg [38]. While 
further research and development are essential to optimize control algorithms, 
reduce device weight and complexity, and improve affordability and accessibility for 
prosthetic users, this research did not focus on addressing these hardware-specific 
challenges. Instead, our work concentrated on developing and validating control 
algorithms for prosthetic applications.  
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3.3. Electromyography (EMG) 

Electromyography (EMG) is a widely used technique in both clinical and research 
settings to evaluate the electrical activity produced by muscle contractions 
comprehensively. It operates on the principle that contracting muscles generate 
electrical signals, which can be detected and recorded [39]. EMG involves the 
placement of electrodes either on the surface of the skin or directly into the muscle 
tissue, depending on the required resolution of the signal (Figure 4). In this research, 
surface EMG (sEMG) is utilized as the primary method for recording muscle activity. 
This choice is motivated by its non-invasive nature. Surface EMG (sEMG) is typically 
used in muscle assessment during physical therapy and sports science research. In 
contrast, intramuscular EMG (iEMG) offers more selective recordings by accessing 
muscle fibers directly, making it invaluable for diagnosing neuromuscular disorders 
and studying detailed muscle activation patterns. 

The insights provided by EMG signals are crucial for understanding muscle function, 
including the timing and intensity of contractions, coordination during movement, 
and motor unit recruitment patterns. These details are instrumental in 
understanding neuromuscular control mechanisms, identifying abnormalities, 
designing personalized rehabilitation programs, and developing advanced 
prosthetic devices controlled by the user's muscle activity. Importantly, EMG offers 
critical information for inferring the user’s intentions since it captures signals 
directly from the muscles, typically the remnant muscles, which are central to 
movement control. EMG is therefore an indispensable tool for clinicians, 
researchers, and engineers, enhancing diagnostics, rehabilitation, and assistive 
technology. 

3.3.1. EMG Revolution in Upper Limbs Prosthetics (Myoelectric control) 
In recent years, the application of electromyography (EMG) in controlling upper limb 
prosthetics has demonstrated considerable success, showcasing the robustness and 
potential of this technology. EMG, which utilizes the electrical signals generated by 
muscle contractions, has been effectively harnessed to control prosthetic arms and 
fingers [40]. While achieving fully natural control remains a challenge, the 
integration of EMG signals has significantly improved the functionality and usability 
of upper limb prosthetics, paving the way for transformative advancements in 
assistive technology. 
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Figure 4 Illustration of electromyography (EMG) signal acquisition, demonstrating electrode 
placement on a muscle and the corresponding electrical activity generated by muscle contractions. 
This activity forms the basis for analyzing neuromuscular function and is critical for applications 
such as prosthetic control. 

3.3.2. EMG in the Lower limb 
While electromyography (EMG) has demonstrated significant potential in research 
for enhancing prosthetic control, its adoption in commercially available devices 
remains limited. In lower-limb prosthetics, research has also explored the 
combination of EMG with inertial measurement units (IMUs) to improve control, 
though such advancements have yet to see widespread commercial application. 
Most prosthetic limbs, both upper and lower, continue to rely on passive mechanical 
designs, favoring simplicity and durability for daily use. However, innovations like 
EMG-based control have the potential to move beyond these limitations, offering 
more intuitive and adaptable solutions for lower-limb prosthetics, as they have 
begun to do for upper-limb devices. 

Controlling a prosthetic leg using EMG presents distinct challenges, particularly in 
maintaining consistent and stable signals during dynamic activities like walking 
[11,12,41]. Surface EMG signals, while promising in research settings, are often 
affected by changes in skin impedance, inconsistent electrode placement, and 
movement between electrodes and muscles during daily-life activities, leading to 
increased signal noise and user frustration due to insufficient control [10,42–44]. 
These challenges are especially pronounced in lower limb prosthetics, where the 
prosthetic socket environment further complicates signal and reliability (Figure 5). 
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Figure 5 Illustration of five EMG sensors integrated into a custom-made prosthetic socket. The design 
must accommodate precise sensor placement, which poses challenges due to the movement between 
residual limb (stump) and socket. These factors can lead to inconsistent signal quality, discomfort 
for the user, and difficulties in accurately targeting specific muscles. 

To address these issues and enhance the reliability of EMG signals, researchers are 
exploring potential solutions, including implantable sensors, innovative electrode 
designs, custom prosthetic sockets with integrated electrodes, and advanced signal 
decoding algorithms. While these developments have significantly improved upper 
limb prosthetic control, their adaptation to lower limb prosthetics remains limited. 
This gap underscores the need for further research to overcome these challenges 
and unlock the potential for more natural, reliable, and effective control of lower 
limb prosthetics. 

By addressing these barriers, future advancements could improve the daily usability 
and acceptance of prosthetic legs, providing users with a level of functionality closer 
to that of advanced upper limb prosthetics. 

3.4. Research Objectives 

In this research, we aimed to improve the use of EMG signals for controlling lower 
limb prosthetics, striving for a system that is both natural and reliable. To establish 
a foundation for our approach, we first conducted a comprehensive literature review 
to understand the current state of the art in EMG applications for lower limb 
prosthetic control and to identify gaps and limitations in the field. To address one of 
these gaps, we developed an open-source software framework that simplifies the 
recording, processing, and classification of signals from diverse sources. This 
software lays the groundwork for enhanced collaboration and eases the integration 
of new algorithms.  
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We then conducted a benchmark test involving 21 able-bodied participants to 
validate our software's accuracy and reliability in recording, processing, and 
classifying EMG signals followed by real-time trials with individuals who have 
undergone transfemoral amputations. To further refine our intention detection 
algorithms, we incorporated post-processing techniques, which improved the 
accuracy and reliability of movement predictions. 

 Additionally, we explored other biological signals, such as electroneurography [45] 
to control a prosthetic device. Finally, we implemented a step-wise safety protocol 
to manage risks associated with research on active prosthetic legs. 
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4. Advancing the Understanding of EMG-Based Control for Lower 
Limb Prosthetics (Paper 1) 

In this research, we undertook a comprehensive systematic literature review (Paper 
1) to better understand the mechanisms of control used in lower limb prosthetics. 
Our inclusion criteria were to evaluate studies that employed electromyography 
(EMG) signals, either solely or in combination with other sensors, to control 
prosthetic limbs or facilitate lower limb movements. This review encompassed 
analysis of 121 distinct studies, providing crucial insights into various experimental 
setups and methodologies. With this paper, we address our first research question: 
"What are the gaps and latest trends in EMG-based control algorithms for prosthetic 
legs?  

We examined these 121 studies from different perspectives to understand trends 
and identify current and emerging methods. This analysis included participant 
demographics, the different movements performed, the sensors used to record 
data, and the algorithms implemented. Notably, machine learning was the most 
commonly used control algorithm, and we provided detailed information about its 
applications. These insights are instrumental in laying the groundwork for 
standardized experiments. This research aims to help researchers build upon 
existing studies and develop their own experimental setups. 

4.1. Participant demography and movements 
Among the reviewed studies, fifty percent involved participants with amputations, 
while the remaining studies were conducted with able-bodied participants. All 
studies with amputee participants focused on individuals with unilateral limb loss, 
comprising 56 studies with transfemoral amputees and 26 with transtibial 
amputees. The tests included equal distribution of non-weight-bearing and weight-
bearing movements. Non-weight-bearing movements consisted of isolated joint 
actions, such as flexion and extension of the knee and ankle, as well as tasks 
requiring participants to mimic predefined motion trajectories or perform 
movements constrained to a single degree of freedom (DOF). In contrast, weight-
bearing movements included activities such as walking and transitioning across 
various surfaces.  

4.2. Most common muscles and sensors 
Muscle groups commonly used for EMG acquisition in research participants with 
transfemoral amputation included  the semitendinosus, biceps femoris, tensor 
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fasciae latae, rectus femoris, vastus lateralis, vastus medialis, sartorius, adductor 
magnus, and gracilis [46–60]. For participants with transtibial amputation, the most 
frequently reported muscles used for EMG acquisition were the medial and lateral 
gastrocnemius and the tibialis anterior[61–64]. The number of electrodes employed 
varied greatly, with some studies using up to 192 electrodes. 

Moreover, our review explored the integration of EMG signals with other sensory 
technologies such as Inertial Measurement Units (IMUs), depth sensors, 
goniometers, laser distance sensors, or load cells. A particularly common sensor 
was the foot switch sensor, which is crucial for determining the gait stage based on 
ground contact—a critical component for timing in locomotion control (Figure 7) 
[58,65–74]. 

4.3. Control and Intent Detection Methods 

Control methods for prosthetic limbs leverage various approaches to interpret user 
intent and translate it into movement. These methods vary in complexity, ranging 
from straightforward linear responses to advanced machine learning algorithms. 
The choice of method often depends on the desired level of control, the available 
technology, and the user's specific needs. Broadly, these methods can be 
categorized into direct control, model-based control, and machine learning-based 
approaches. 

4.3.1. Direct Control 
This method uses EMG signals to directly control prosthetic joints. In direct control, 
each muscle activation has a direct, one-to-one correspondence with a specific joint 
movement, meaning that the activation of a particular muscle proportionally drives 
the movement of the corresponding joint. While effective, this approach encounters 
limitations when controlling multiple degrees of freedom simultaneously, often 
requiring additional strategies, such as model-based or machine learning 
techniques, to enhance control [62,75–78]. 

4.3.2. Model-Based Control 
In model-based control, body segments are conceptualized as rigid bodies linked by 
rotational joints and driven by actuators that simulate muscle functions. Most of 
these models derive from motion capture data gathered within specialized gait 
laboratories, offering a well-validated foundation for model creation. Despite its 
performance, the requirement for specialized equipment limits its applicability 
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outside controlled environments. However, the generality of these models provides 
a significant advantage as they can be adapted for new subjects [79–81]. 

 
Figure 6 The sequential steps involved in processing the raw signal for training and validating 
classifiers designed to detect locomotion modes. This process includes signal filtering to remove 
noise, segmenting the data into overlapping or non-overlapping windows, feature extraction in 
different domains, classification and validation. 

4.3.3.  Machine Learning Control Methods:  
These approaches do not rely on predefined models but utilize training data to develop 
effective classifiers or decoders. The process involves several steps (Figure 6): 

• Pre-processing and windowing: Filtering and segmenting EMG signals to 
eliminate noise and extract relevant data. Our review showed the most 
common filter was between 20-500 Hz [39]. This part is not only limited to the 
machine learning algorithms, and it is a common step in all control methods. 

• Feature Extraction: This involves extracting features from time windows in 
various domains (time, frequency, or combined), or using techniques like 
wavelet packet transform followed by dimensionality reduction (e.g., PCA) to 
focus on the most relevant data [50,58,82–85]. This step can also be a part of 
direct control. In direct control instead of extracting many different features, 
the most common feature is the EMG signal's magnitude. 
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• Classification: Sophisticated algorithms such as Support Vector Machines 
(SVM) classify the extracted features, tailored to find the participant's intention 
for different movements and transitions. Linear Discriminant Analysis (LDA) 
and SVM were the most common methods [58,65,72,83,86]. 

• Post-processing: Techniques like majority voting or velocity ramps are used to 
rectify potential misclassifications, ensuring the prosthetic's stability and 
reliability in real-world scenarios [60,83,87]. 

 
Figure 7 Overview of various non-biological signals and their sensor placements, encompassing 
IMUs, load cells, goniometers, pressure sensors, and distance measurement systems. [12]. CC-BY-NC  

4.4. Performance Metrics 
Performance metrics are critical to ensure that the control systems operate 
effectively and minimize potential errors that could compromise user safety and 
functionality. The most common performance metric is the accuracy/error of 
locomotion detection. 

4.5. Challenges and Potential Solutions 

Using EMG for controlling the lower limb prosthetic is not common yet and our 
review identified several limitations when having EMG-based control, often due to 
the insufficient quality of the captured data. We propose several avenues for 
improvement: 
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• Enhanced EMG Acquisition: Exploring advanced EMG acquisition techniques 
such as the use of implanted electrodes could significantly improve signal 
quality and reliability [50]. 

• Integration of Additional Inputs: Combining EMG with other biological or 
mechanical sensors could provide a richer dataset for control systems, 
enabling a more natural and intuitive response from the prosthetic. 

• Development of Advanced Control Algorithms: Significant advancements 
have been made in control algorithms for upper limb prosthetics; however, the 
research into lower limb control requires more sophisticated algorithms to 
enhance functionality and user experience. 

4.6. Conclusion from Paper 1 
In this study, we systematically reviewed the most prevalent methods of EMG-based 
lower limb prosthetic control and identified significant gaps in the field. Our analysis 
revealed that, despite the existence of highly effective control algorithms, there is a 
noticeable absence of more advanced methods, such as neural networks, in the 
field. Additionally, there is a lack of an open-source software platform for 
implementing and comparing new algorithms. Furthermore, the scarcity of real-
time studies restricts our ability to draw definitive conclusions. Moreover, weight-
bearing studies involving amputees are not only limited in number but also lack the 
reliability needed for external testing beyond laboratory settings. This highlights the 
need for advancements in methodology to ensure that these techniques can be 
confidently applied in real-world scenarios. 
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5. Development of an Open-Source Platforms to Enhance 
Prosthetic Research (Paper 2) 

To address the gaps in algorithm development for lower limb control and the 
absence of both commercial and open-source solutions, we have developed an 
open-source platform. This platform not only allows the community to create and 
implement their own algorithms but also facilitates the use of existing ones. 
Additionally, our platform simplifies the comparison of different algorithms [13,88]. 
Alongside the platform, we released a dataset to serve as a benchmark for algorithm 
comparison. This is particularly beneficial for groups that lack access to recording 
facilities, as they can utilize this platform to develop and refine algorithms [13,14]. 

 
Figure 8 Workflow of recording and processing EMG signals using LocoD, showing signal acquisition 
(a, b), Windowing and filtering (c), feature extraction (d), classification (e), control of the prosthetic 
leg (f) 

Our software supports recordings from Delsy1s devices, known for their stability and 
reliability in capturing high-quality electromyography (EMG) signals (Trigno, Delsys, 
USA). Additionally, LocoDs versatile communication modes ensure compatibility 
with other systems, facilitating broader application across various research setups. 
The software manages signal acquisition (Figure 8.b), preprocessing (Figure 8.c), 
feature extraction (Figure 8.d), classification (Figure 8.e), and post-processing—
providing a comprehensive solution that streamlines data handling and analysis for 
prosthetic control research. 

To assess the integration of EMG with mechanical sensors and benchmark our 
software, we analyzed the classification error across three different sensor 
combinations (EMG, IMU, and EMG+IMU) in 21 participants while ambulating on 
various surfaces. This approach combines the stability of mechanical sensors with 
the nuanced detection of natural movements via EMG, demonstrating that the 

 
1 www.delsys.com 
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combination of EMG signals with IMU and pressure signals can effectively predict 
movement intentions. 

EMG data were conditioned with a 20-500 Hz bandpass filter and a notch filter. Signal 
blocks centered around each gait phase (heel contact and toe-off) were extracted 
from 200 ms before to 100 ms after, creating a 300 ms segment of data. From this 
segment, we extracted 200 ms windows, incrementing by 30 ms (Figure 9). For the 
EMG signals, we derived mean absolute value, waveform length, zero crossings, and 
slope sign changes [58,89]. From each window of IMU and pressure sensors, we 
calculated the mean, maximum, minimum, and standard deviation [90,91]. Features 
from selected sensor channels were combined into feature vectors for classification. 
For example, in the IMU+EMG scenario, we combined features from the 18 IMU 
channels and pressure sensors with those from 8 EMG channels, resulting in a total 
of 108 features per time window. These features were then analyzed using LDA 
classifiers with a phase-dependent, mode-specific architecture, validated through 
10-fold cross-validation. We observed that integrating IMU with EMG significantly 
improves classification accuracy for all participants, see Table 1. This finding 
highlights the value of combining EMG with IMU data (IMU+EMG) for locomotion 
mode detection, which achieves the highest accuracy across all conditions. While 
IMU alone also demonstrates strong performance, EMG alone currently lacks the 
reliability needed for effectively predicting locomotion modes, particularly during 
transitions. Nonetheless, every improvement in locomotion detection accuracy is 
crucial for ensuring seamless and safe operation. The combination of multiple data 
sources, such as EMG and IMU, represents a promising avenue for future research 
and development, offering potential advancements in both user safety and 
prosthetic functionality 

To progress towards our goal of developing a reliable control system for home 
devices, the next logical step is to test the algorithm in real-time scenarios involving 
individuals with amputations. 

Table 1 Locomotion detection accuracy (%) for different sensor combinations (IMU+EMG, EMG alone, 
and IMU alone) during steady-state and transitions. Steady-state refers to continuing in the same 
locomotion mode, while transitions involve switching from one locomotion mode to another.  

Sensors/SS or TR IMU+EMG EMG IMU 
Steady-State 96.54±1.59 90.22±4.84 94.52±2.24 

Transition 92.45±2.66 67.57±14.2 87.85±3.45 
All data 94.02±3.05 76.28±16 90.41±4.45 
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Figure 9 a) Pressure sensor signal, b) EMG signal, c) 300-millisecond segments of data centered 
around each gait phase, including 200 milliseconds prior and 100 milliseconds following the phase, 
and d) sequential 30-millisecond overlapping windows extracted from the segmented data [88]. 

5.1. Conclusion from Paper 2 

• The addition of EMG to the mechanical sensors enhances the accuracy of 
locomotion detection. 

• sEMG alone is not reliable yet to be used in the control of prosthetics. 

• Other methods of recording and more advanced and accurate processing are 
needed to have a reliable control 

With this paper, we addressed two of our research questions: 

• How can an open-source software platform for recording and processing EMG 
signals be utilized to enhance lower limb prosthetic control and improve user 
experience and functionality? 

• How do different sensor combinations affect the accuracy of control in lower 
limb prosthetics? 
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6. Real-Time Evaluation of EMG-Based Locomotion Detection 
Algorithms in Transfemoral Amputees (Paper 3) 

After successfully developing our software and testing the algorithm on able-bodied 
individuals, we aimed to take the next step which is testing our algorithm on people 
with amputation in real-time. We progressed by implementing our algorithm with 
five participants who had undergone transfemoral amputations and 
osseointegration, as documented in Paper 3. This step was crucial for understanding 
the implications of amputation and osseointegration implants on prosthetic control 
in a real-time setting. 

In our prior research, we hypothesized that EMG signal quality significantly impacts 
the performance of our algorithms. Traditional sockets often complicate EMG 
measurement due to issues like improper electrode placement and pistoning—
where the prosthetic limb moves within the socket. Osseointegration offers a stable 
limb attachment that mitigates these issues, presenting an opportunity to enhance 
the EMG data collection, especially when combined with implanted electrodes. 
However, osseointegration presents distinct features and limitations. While it 
provides a more stable attachment and can improve signal quality by reducing 
motion artifacts, it also involves surgical risks and requires ongoing care to prevent 
infections at the implant site. These challenges necessitate further adaptations and 
considerations in our approach to ensure we can gather robust data for enhancing 
prosthetic functionality. 

In this phase of the study, we validated real-time locomotion detection using sEMG 
signals from the muscles of individuals with osseointegrated implants. Our 
methodology involved deploying a machine learning algorithm for real-time 
locomotion detection using LocoD, an open-source software tailored for sEMG-
based locomotion detection presented in paper 2. 

To better evaluate the performance of the system, we examined two outcome 
measures: prediction time of transitions and locomotion detection error. Prediction 
time refers to the elapsed time between the critical timing (an ideal moment to 
predict a transition safely) and the actual detection of the transition by the system. 
Meanwhile, locomotion detection error quantifies the percentage of misclassified 
windows during offline and online scenarios, highlighting the system’s reliability in 
predicting locomotion modes accurately. Although the system operates in real time, 
variability in prediction time—often labeled as delays—represents the temporal gap 
between the critical moment of transition and its detection by the system. This does 
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not imply a lack of real-time capability but rather reflects the system's 
responsiveness and anticipatory prediction ability.  

Our findings revealed that while EMG signals have the potential to control prosthetic 
legs, there are still considerable challenges to overcome. The variability in detection 
accuracy and prediction delays was significantly influenced by individual participant 
differences. During the real-time experiments, we observed a range of error rates 
during transitions between locomotion modes, with some participants 
demonstrating near-perfect performance and others showing less reliability (Figure 
10). These variations underscore the participant-dependent nature of our findings 
[3]. Notably, all participants in our study had medium to short residual limbs due to 
the osseointegration inclusion criteria, which often limits the number of muscles 
available for EMG signal detection. This anatomical constraint can hinder signal 
quality and affect the control algorithm’s performance [21]. Additionally, we noted 
that EMG might only effectively detect certain movements for some participants, 
such as transitioning from stair descent to walking. This suggests that EMG may be 
more suitable for a limited set of necessary transitions, where its capabilities can be 
maximized for reliable detection. Further analysis indicated that differences in 
performance could also be attributed to the type of movements, the complexities of 
the experimental setup, and individual variations in how movements were executed 
[92].  

6.1. Conclusion from paper 3 

In conclusion, while the potential of EMG to enhance prosthetic control is evident, 
the success of such systems is highly dependent on the individual characteristics of 
each participant. Future studies should aim to: 

• Recruit a larger and more diverse participant pool. 

• Incorporate active prosthetics. 

• Explore advanced real-time control algorithms. 

Additionally, developing a comprehensive training and feedback system for 
participants and investigating alternative electrode configurations such as 
implanted electrodes could further optimize the effectiveness of EMG-based 
prosthetic control. 
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With this paper, we addressed one of the research questions: 

How does the movement intention detection algorithm perform during real-time 
testing with participants who have osseointegration implants? 

 
Figure 10  Locomotion detection error of five transfemoral participants while transitioning between 
level ground, ramp, and stairs in real-time and in the transitional period. W is walking, RA ramp 
ascent, RD ramp descent, SA Stair ascent, and SD stair descent. 
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7. Optimizing Accuracy in Movement Detection Through Post-
Processing Techniques (Paper 4) 

In Paper 4, we focused on enhancing the accuracy of locomotion detection by 
adapting an existing method in the post-processing step. Research on upper limb 
prosthetics has more extensively explored various rejection-based post-processing 
methods. For instance, Scheme et al. implemented a technique that combines Linear 
Discriminant Analysis (LDA) with Fitts' law tests to assess the confidence of each 
classification window. Decisions are made only if the confidence level surpasses a 
specified threshold; otherwise, the classification is discarded [93,94]. Inspired by 
these approaches, we adapted rejection-based post-processing for lower limb 
prosthetic control in our study. 

To validate and refine each locomotion mode change decision, we implemented a 
post-processing technique for offline prediction, utilizing data from able-bodied 
individuals. This method applied a probability-based approach, where outputs with 
likelihoods below a specified threshold were disregarded to prevent erroneous 
transitions that can be unstable in real-time scenarios [95]. 

In the study from paper 4, we applied LDA with rejection-based post-processing to 
our open-access database containing EMG, IMU, and pressure sensor data from 21 
able-bodied participants , as referenced in the previous study [14]. The results 
demonstrated that this approach significantly enhances the accuracy of locomotion 
detection algorithms for lower limb prosthetic control. Figure 11 provides a 
comprehensive comparison of locomotion detection errors across 21 participants, 
averaged for both steady-state and transition phases. The graph illustrates two 
conditions: one without rejection-based classification post-processing and the other 
with post-processing applied at a high rejection threshold of 0.989. The key 
takeaway from this figure is the notable reduction in locomotion detection error 
when post-processing is applied, emphasizing its effectiveness in mitigating 
misclassification. This improvement is particularly significant for participants with 
higher baseline error rates, suggesting that the method is especially beneficial for 
handling challenging data conditions. This improvement agrees with prior research, 
which suggests that rejection-based post-processing can effectively enhance 
classification and control. 

Even though our findings are promising, the study's offline nature limited our ability 
to gauge the algorithm's real-time performance. Further testing on individuals with 
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amputations, who have different muscle structures than able-bodied individuals in 
real-time, would provide valuable insights.  

When implementing these algorithms to control a prosthetic leg, it is crucial to 
consider the best approach for handling windows of low confidence in classification. 
A detailed study is needed to determine whether it is more effective to transition the 
prosthetic to a standstill before resuming moving or to reassess and make a new 
decision at that point. The primary focus of this study was to reduce misclassification 
by identifying classification windows marked by low confidence, which can 
otherwise lead to erroneous transitions in the prosthetic’s movement. 

 
Figure 11 The locomotion detection error for 21 participants is illustrated on this graph, with the 
data for both transition and steady-state phases being averaged together. The graph compares the 
locomotion detection error in two conditions: 1) when there was no rejection-based classification 
post-processing applied, and 2) when there was rejection-based classification post-processing 
applied with a threshold of 0.989. This comparison allows us to evaluate the impact of the post-
processing technique on the accuracy of locomotion detection [95]. Copyright © 2023, IEEE 

7.1. Conclusion from paper 4 
• A simple rejection-based method can enhance the quality of locomotion 

detection algorithms. 
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• This method is effective in the participants with initial low locomotion detection 
accuracy and in the movements with the lowest accuracy. 

• This paper answered the research question “Can post-processing enhance the 
quality of classification algorithms?”  
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8. Harnessing Neural and Electromyographic Signals for Intuitive 
Prosthetic Control (Paper 5) 

In this study, we sought to explore the hypothesis that neural signals could 
complement electromyographic (EMG) signals to enhance the control of prosthetic 
limbs. This hypothesis arises from limitations of using EMG alone, such as variability 
in signal quality due to inconsistent electrode placement, skin impedance, and 
motion artifacts during dynamic activities [11]. Neural signals, serving as an 
additional source of biological information, could provide rich and reliable data for 
detecting movement intentions. Supporting evidence from past research 
underscores this potential: De Luca et al. (1980s) successfully demonstrated neural 
signal acquisition from severed nerves, and more recent studies have highlighted 
the effectiveness of cuff and intra-neural electrodes in decoding motor intent with 
high precision [9,45,96,97]. 

 
Figure 12 (a) Implanted muscular electrodes (biceps and triceps muscles), (b) extra-neural electrodes 
around the nerve (P1 and P2 Ulnar, P3 median), (c–e) hand gestures attempted by the subjects in 
their phantom hands. Grayed gestures only used in offline experiment [99]. CC-BY-NC  

To evaluate this hypothesis, given the invasive nature of direct nerve recordings, we 
utilized existing implants from participants in the e-OPRA study, which focused 
exclusively on upper limbs, rather than performing additional implantations solely 
for testing our hypothesis. This approach allowed us to record neural signals using 
cuff electrodes around the nerves without subjecting participants to further surgical 
procedures [8]. The study utilized cuff electrodes around the ulnar and median 
nerves and epimysial electrodes on the Biceps Brachii and Triceps Brachii muscles 
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to record neural signals associated with specific hand and finger movements [98][8]. 
These signals were analyzed for their ability to decode motor intent, a crucial factor 
for intuitive prosthetic control (Figure 12). 

Our results showed that these electrodes could provide stable and detailed neural 
information, essential for distinguishing intended movements in individuals with 
amputations. However, performance varied significantly across participants, likely 
due to individual anatomical differences and the inherent complexity of neural 
signal acquisition. Personalizing control algorithms to reflect each user’s unique 
neural patterns and optimizing electrode placement based on specific anatomy 
could mitigate this variability and improve overall accuracy. Additionally, the study 
revealed that the optimal integration of EMG and electroneurography (ENG) signals 
depends on the movement being performed. Aligning data sources with 
anatomically relevant movements or dynamically adapting signal integration to 
specific tasks and user needs could enhance outcomes. High-precision electrode 
placement and advanced recording hardware are critical to minimize interference 
and maximize signal fidelity. 

 
Figure 13 Online pattern recognition results from the Motion Test performed by the three 
participants (P1–3) over three different scenarios: (1) ENG alone (green), (2) EMG alone (red), and (3) 
the combination of EMG and ENG (blue). The outcomes are completion rate, median of classification 
error, median of reported completion time, and median of selection time. Finger movements include 
ring flex, little flex, for P1, ring to thumb, little to thumb for P2 and thumb flex, index flex, and middle 
flex for P3. This graph is adapted from [99] under CC-BY-NC.  
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One limitation of this study was the inconsistent accuracy in detecting hand opening 
and closing movements (Figure 13). Factors such as variations in setup, differences 
in amplifiers compared to previous studies, and the complexity of distinguishing 
hand from finger movements in cases of upper-elbow amputation contributed to 
this issue. Given these preliminary findings, further research involving a larger 
cohort and more advanced training techniques is essential to generalize results and 
refine motor intent decoding for extra-neural signals. Future studies should also 
explore the use of non-linear classifiers and deep learning algorithms to enhance 
decoding capabilities, laying the foundation for more nuanced and effective 
prosthetic solutions. 

Despite these promising findings, significant challenges remain in translating this 
approach to lower-limb prosthetics. The unique complexities of lower-limb 
prosthetics—such as the need for stability during weight-bearing activities and 
transitions between locomotion modes—require dedicated research. Anatomical 
and functional differences between the upper and lower limbs necessitate careful 
evaluation of neural signal integration for these applications. 

Given these considerations, we do not present our findings as a definitive conclusion 
but rather as a foundation for further investigation into whether neural signals can 
enhance lower-limb prosthetic control. While our results from upper-limb 
prosthetics illustrate the feasibility of using cuff electrodes to record neural signals 
and decode motor intent, additional studies are required to validate this approach 
for lower-limb applications. Critical questions remain, such as the reliability of neural 
signals during locomotion transitions and the optimal strategies for integrating 
these signals with other data sources. This research lays the groundwork for 
advancing prosthetic control and improving outcomes for users. 

8.1. Conclusion from paper 5 
• ENG signal has information that can be used for control of upper limb 

prosthetics. 

• Better technology is needed to record neural signals precisely. 

• The benefit is very subject-dependent 

• Further studies are needed to find the long-term use of this data for the control 
of prosthetics. 
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• This paper addressed the final research question: “Can neural signals 
complement EMG signals to enhance control?” However, the study focuses on 
results related to upper-limb prosthetics. Applying these findings to lower-limb 
control for locomotion remains an open question for further research. 
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9. Establishing Comprehensive Safety Protocols for Clinical 
Testing of Active Prosthetics (Paper 6) 

An inevitable advancement in the field of lower limb prosthetic control will be the 
integration of implanted electrodes, osseointegration, and prosthetic legs capable 
of utilizing various control algorithms. Following the surgical implantation of these 
technologies, it is critical to establish a comprehensive rehabilitation protocol that 
safeguards participant well-being and supports their reintegration into daily 
activities. Since the risks inherent to lower limb prosthetic research, especially those 
related to falls and resultant injuries, are considerably greater than those 
encountered with upper limb prosthetics, we have developed a safety protocol 
tailored for active lower limb prosthetic research, as detailed in [100]. 

 
Figure 14 Stepwise safety protocol. The protocol is implemented sequentially, progressing from the 
highest to lower safety levels. The columns, arranged from left to right, represent test environments, 
participants, safety levels, examples of test methods, and the required outcomes at each stage [100]. 
Copyright © 2021, IEEE  

We formulated a rigorous safety protocol specifically for clinical research involving 
lower limb prosthetics. As described in Paper 6, this protocol is versatile and suitable 
for testing various leg prostheses and control strategies. It ensures participant 
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safety by establishing multiple predefined safety levels, each comprising specific 
test methods and necessary outcomes before progressing to subsequent phases. 
The protocol also outlines necessary precautions for each testing stage, including 
the use of walking aids and carefully chosen environments (Figure 14). 

This systematic strategy was developed to address the lack of comprehensive safety 
protocols for clinical testing of active prosthetics. While the protocol has not 
undergone formal evaluation, it is proposed as a preliminary framework aimed at 
minimizing risks associated with the testing of prosthetic technologies. The protocol 
is grounded in addressing practical safety challenges observed in existing research 
processes, such as mitigating fall risks and ensuring participant safety during 
rehabilitation and testing. However, we recognize the need for future evaluation to 
determine its effectiveness in practice. Further work will involve validating this 
protocol through empirical testing and incorporating clinical evidence, expert input, 
and patient feedback to ensure its robustness and alignment with established 
standards in health-related protocol development. 
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10. Summary of Thesis Contributions 
Within the scope of this thesis, we have developed new open-source software 
designed to record and process electromyography (EMG) signals and tested it both 
in real-time and offline with able-bodied participants and participants with 
amputation. Afterward, we enhanced the quality of our locomotion detection 
algorithm with post-processing methods. Additionally, we explored the potential of 
other biological signals for prosthetic control in upper limbs, particularly those 
obtained directly from nerves. Given the promising results and the growing 
consensus that implanted electrodes represent the future of prosthetic 
development, we have designed a comprehensive, step-wise rehabilitation protocol. 
This protocol supports the integration of powered knee prosthetics and various 
control algorithms, enhancing the adaptability and functionality of these devices for 
users. 

• Paper 1 offered a comprehensive review of EMG-based control algorithms for 
lower limb prosthetic control. This review covered various recording methods, 
movements, and muscles involved, and detailed the specifications of different 
algorithms, providing a thorough exploration of the current landscape in this 
field. 

Research question addressed: This paper addresses the research question 
“What are the gaps, limitations, and latest trends in EMG-based control 
algorithms for prosthetic legs?”, by identifying critical gaps, including the need 
for advanced algorithms and tools for lower limb applications. 

• Paper 2 introduced an open-source and modular platform designed for the 
recording and processing of EMG signals. This platform is aimed at fostering 
collaboration among various research groups by potentially accelerating the 
development of algorithms and facilitating their comparison. Instead of each 
group needing to develop their own algorithms from scratch, this platform 
allows for shared advancements and standardized evaluations. While we have 
not yet demonstrated external use of the platform by other researchers, it was 
designed with this intention in mind, providing the tools and framework 
necessary to enable collaborative and comparative studies. We conducted 
testing of the software under various sensor combinations, including 
IMU+EMG, EMG alone, and IMU alone. Consistent with previous literature, our 
findings confirm that the inclusion of EMG significantly enhances the accuracy 
of the system. 
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Research question addressed: This paper answers the research question: 
How can an open-source software platform for recording and processing EMG 
signals be utilized to enhance lower limb prosthetic control and improve user 
experience and functionality? 

• Paper 3: This study evaluated the real-time performance of our EMG-based 
control algorithm in lower limb amputees who have undergone 
osseointegration, with the goal of facilitating daily use. Our algorithm executed 
by LocoD software proved successful in real-time applications. Although EMG 
provides valuable data, the participants in our study had shorter stumps and a 
limited number of muscles due to osseointegration, which restricted the full 
potential of EMG in detecting locomotion. 

Research question addressed: This paper addresses the research question: 
How does the movement intention detection algorithm perform during real-
time testing with participants who have osseointegration implants? 

• Paper 4: We aimed to implement a post-processing technique to enhance 
locomotion detection performance in prosthetic devices. This algorithm 
analyzes the probability of outputs from linear discriminant analysis (LDA) and 
selectively rejects weaker predictions. This method effectively improved 
classification accuracy, particularly benefiting individuals with generally lower 
accuracy rates and movements and transitions that are typically less accurately 
detected. This approach not only refines the control mechanism but also tailors 
the performance to better accommodate the varying needs of users. 

Research question addressed: This paper answers the research question: Can 
post-processing of movement intention detection improve the accuracy and 
reliability of these algorithms? 

• Paper 5: This study explored the feasibility and potential benefits of using 
efferent nerve signals (ENG) alongside electromyography (EMG) for prosthetic 
control in upper limbs. Motivated by the possibility of leveraging other 
biological pathways for enhanced control, and having access to patients with 
implanted electrodes, we investigated whether meaningful information could 
be extracted from these signals to control the finger movements of the 
participants. Our findings indicated that for some participants, it was indeed 
possible to utilize ENG signals effectively for this purpose. This opened up new 
avenues for more intuitive and precise control mechanisms in prosthetic 
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devices, potentially improving the overall user experience. This study is a 
preliminary result, as the underlying reasons for low performance in some 
subjects have yet to be fully understood. 

Research question addressed: This paper answers the research question: Can 
neural signals complement EMG signals to improve control? 

• Paper 6: This study proposed a stepwise safety protocol for managing risks 
associated with research on active prosthetic legs. We have developed a 
detailed protocol to address the safety concerns that arise when conducting 
research with powered prostheses, which utilize various control algorithms 
using muscle signals as inputs. This protocol serves as a comprehensive 
reference for safely using different prosthetic legs and control algorithms, 
ensuring that both researchers and participants are protected throughout the 
study process. This systematic approach not only promotes safety but also 
standardizes procedures, enhancing the reliability and efficacy of prosthetic 
research. 
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11. General Conclusions and Future Directions 
11.1. Conclusions 

In summary, this thesis has explored the integration of electromyography (EMG) as 
a pivotal component in lower limb prosthetic control systems, driven by its potential 
to provide natural control and address significant challenges faced by the lower limb 
amputee community. We identified and addressed a critical gap with the 
development of an open-source software platform, which has laid the ground for 
widespread collaborative advancements and innovation. Our feasibility studies 
showed promising results yet highlighted the potential for further enhancing EMG 
signal quality through the use of implanted electrodes. Although not immediately 
pursued, this insight led to refining our methodologies and conducting targeted 
experiments on amputees. We also dedicated efforts to improving algorithm quality 
and explored the integration of other biological signals, thereby broadening the 
research scope and applicational possibilities. Reflecting on our journey, it is clear 
that significant work remains in advancing lower limb prosthetic technologies. The 
direct interface of these devices with the human body demands meticulous 
attention to ensure their robustness and accuracy, especially given the severe 
consequences of even minor errors. This underscores the need for ongoing 
precision and reliability in our work. 

While our findings underscore the promise of EMG technology, it is crucial to 
acknowledge that the road ahead is long and complex. While EMG demonstrates 
potential, it requires further refinement and optimization to realize its full 
capabilities. Nevertheless, with continued dedication and collaborative efforts, we 
are poised to overcome these challenges and pave the way for innovative prosthetic 
solutions that truly enhance the lives of amputees worldwide. 

11.2. Future Direction 
Throughout this research, we have identified and addressed various challenges in 
prosthetic technology. While we have made progress, some issues remain 
unresolved. Looking forward, continued improvements in control algorithms are 
expected to significantly enhance the functionality of prosthetic devices. These 
advancements are essential for the development of active lower limb prosthetics, 
promising more refined and efficient movement capabilities for users. In terms of 
signal quality, our findings indicate that surface EMG does not always provide the 
necessary quality for effective control in participants with transfemoral 
amputations. To address this, our research suggests exploring the potential of 
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implanted electrodes. These electrodes could drastically improve signal quality, 
leading to more seamless integration and enhanced functionality of prosthetic 
devices, marking a substantial advancement in the field.  

Powered prostheses hold great potential to revolutionize lower limb prosthetic 
control. They can help users avoid compensatory movements, deliver positive net 
energy for activities like stair ascent, and can be programmed with complex 
algorithms due to their sophisticated systems. Unlike traditional prosthetic legs, 
powered prostheses can accept EMG signals as inputs, enhancing their 
responsiveness and functionality. Furthermore, the integration of powered 
prostheses with osseointegration implants and implanted electrodes presents a 
promising avenue for achieving more natural and effective control, making them a 
significant advancement in prosthetic technology. 

However, there is a gap in the research regarding the effects of powered prostheses 
on various implants. Studies are beginning to illuminate crucial factors for safety 
margins, but more extensive research is needed to confirm that these implants can 
withstand daily use with powered prostheses [101,102]. There is also a pressing 
need to enhance prosthetic devices. Although powered prosthetics are potential 
candidates for utilizing EMG signals, they require significant improvements to 
address drawbacks such as their weight, noise, and cost, and to increase their 
compatibility with current technologies. 

Our research efforts reflect a collective commitment in the scientific community to 
advance prosthetic technologies. We will concentrate on enhancing control 
algorithms, assessing the impacts of powered prosthetics on osseointegrated 
implants, and exploring innovative solutions like implanted electrodes. These 
initiatives will help individuals with limb loss regain mobility and improve their 
quality of life, reinforcing our dedication to bettering outcomes for amputees 
globally. 
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collaborated on the design and scope of the review. Bahareh Ahkami conducted the 
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Thesleff completed the literature review. Max Ortiz-Catalan supervised the research. 
Bahareh Ahkami drafted the manuscript, with all co-authors reviewing and editing 
it. 
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algorithm development. Max Ortiz-Catalan supervised the research. Bahareh 
Ahkami drafted the manuscript, while Fabian Just and Max Ortiz-Catalan reviewed 
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Paper 4: Real-Time Locomotion Mode Detection in Individuals with Transfemoral 
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Morten Bak Kristoffersen provided technical support and feedback. Max Ortiz-
Catalan supervised the research and secured funding. Bahareh Ahkami drafted the 
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Bahareh Ahkami, Enzo Mastinu, and Max Ortiz-Catalan designed the study and 
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processing and statistical analysis. Max Ortiz-Catalan supervised the research and 
secured funding. Bahareh Ahkami drafted the manuscript, with Enzo Mastinu, Eric J. 
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Management in a Clinical Investigation 

Alexander Thesleff, Bahareh Ahkami, Jenna Anderson, Kerstin Hagberg, and Max 
Ortiz-Catalan conceptualized the protocol. Alexander Thesleff and Bahareh Ahkami 
developed the stepwise safety protocol framework. Jenna Anderson and Kerstin 
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