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Abstract

Prosthetic devices are essential in enhancing mobility and functionality for individuals with amputations,
enabling them to perform daily activities with improved independence and ease. The effectiveness of these
prosthetic devices depends significantly on their design, functionality, and the user's ability to intuitively
control it and rely on it. In pursuit of enhancing control, our research focused on the integration of
electromyography (EMG) signals into prosthetic control as a means to detect movement intention of the
users. EMG signals offer a promising avenue for developing more natural and intuitive prosthetic systems.
Although this technology has successfully improved the functionality of prosthetic arms, its application in
prosthetic legs has been less extensively explored.

This research aimed to extend the use of EMG technology to lower limb prosthetics, drawing from the
established successes in upper limb applications. While the use of EMG for lower limb prosthetics has been
investigated in prior studies, it remains less extensively explored and adopted compared to upper limb
applications. To this end, we developed an open-source software framework for acquiring and processing
biological data, such as electromyography (EMG), and non-biological data, including inertial measurement
units (IMUs). This framework aims to foster collaboration and drive innovation within the global scientific
community by encouraging researchers to actively develop, compare, and enhance algorithms, thereby
accelerating progress in prosthetic technology. We conducted a benchmark test using a dataset recorded
as part of this thesis, comprising data from 21 able-bodied individuals, which is now openly accessible to
the community, to validate the platform's effectiveness.

Building on this validation, we tested the system with individuals living with limb loss, the next critical step
in achieving robust and reactive control of prosthetic legs. Furthermore, to address the challenges
associated with traditional socket-based systems for EMG-controlled prosthetics—such as signal instability
and user discomfort—we recorded EMG signals from individuals with osseointegration. Osseointegration
eliminates the need for a socket by providing a direct connection between the prosthetic and the skeletal
structure, resulting in more stable electrode placement and reducing motion artifacts caused by shifting
soft tissues. This improves EMG signal quality and consistency, allowing our algorithms to interpret more
accurately the users' intended movements. To further enhance the accuracy and reliability of movement
predictions, we refined our intention detection algorithms by incorporating post-processing techniques
specifically designed to filter out low-confidence predictions from the EMG and IMU data, reducing the risk
of incorrect intention detection and preventing unintended prosthetic movements.

We also explored the integration of neural signals to enhance the responsiveness of prosthetic devices,
aiming for more intuitive and seamless user interactions. In addition, the final phase of this research
focused on the development of a clinical rehabilitation protocol aimed at users of active prosthetic legs and
neuromusculoskeletal interfaces. These initial efforts represent the foundational steps for broader
adoption of EMG-based control systems in lower-limb prosthetics, with the potential to substantially
improve users' quality of life.

Keywords: Prosthetic Control, Electromyography (EMG), Osseointegration, Lower-Limb Prosthetics,
Intention Detection Algorithms
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1. Introductory information

This thesis investigates innovative strategies to enhance lower-limb prosthetic
control, with a focus on advancing movement intention detection algorithms and
addressing the challenges associated with their real-time performance. It
encompasses a combination of theoretical studies, open-source platform
development, and experimental testing to lay the foundation for more reliable and
intuitive prosthetic systems.

This chapter begins with introductory info about this thesis, providing an overview
of the challenges and advancements in lower-limb prosthetic control. It then defines
the specific scope of the research and outlines the objectives of driving this work.
Following the introduction, a detailed background is presented, covering key
aspects of the field, including prosthetic attachment systems, the use of biological
signals for control, and the current state of prosthetic technology. Following this
introduction, the thesis transitions into the core research contributions, presented
as individual papers, each addressing specific aspects of the study.

1.1. Prosthetic Functionality

Following limb loss, many patients opt for prosthetic limbs to facilitate their daily
activities and promote independence. However, not all prosthetics offer the same
level of functionality. Some serve merely as cosmetic enhancements or aids for
maintaining balance, in lower limb cases, without significantly aiding in mobility or
functionality. These basic prosthetics lack user input or control mechanisms. In
contrast, more advanced prosthetic limbs are capable of gathering information from
the body and the surrounding environment and interpreting the user's intentions,
which is more common in upper limb prosthetics. In such cases, biological signals,
such as electromyography signals (EMG), serve as invaluable sources of information,
enabling more sophisticated control and interaction with the prosthetic limb [1].

1.2. Biological Signals for Enhanced Prosthetic Limb Control

Biological signals play a crucial role in prosthetic control as they naturally reflect the
user's intentions, offering a natural and efficient means of limb control suggestive
of how individuals naturally control their limbs. Among the various signals that can
be captured from the body, electromyography (EMG) stands out as particularly
relevant for prosthetic control. EMG records the electrical activity of muscles and can
be detected either through surface electrodes placed on the skin or through
electrodes implanted surgically within the muscles, resulting in two categories:
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surface EMG (sEMG) and intramuscular EMG (iEMG). Each type has its own
advantages and limitations. Surface EMG sensors are easy to apply and carry
minimal risk, but its movement and inability to target specific muscles can affect
control consistency. Conversely, while intramuscular EMG requires surgery and
comes with associated risks such as infection, it offers the potential for more stable
signal acquisition from specific muscles without needing frequent adjustments.
Although no current prosthetic systems widely utilize intramuscular EMG, early
research suggests it could provide more reliable control signals in future
applications [2].

1.3. Future Directions in Prosthetic Control

Despite advancements in the current lower limb prosthetic devices, they still face
significant limitations. They often lack natural control and seamless transitions,
resulting in an unnatural gait that can cause discomfort and pain in other joints,
such as the hips [3]. This limitation not only affects the physical well-being of users
but also their societal integration, as frustration can arise from the inability to use
their prosthetics effectively [4-7]. Electromyography (EMG) emerges as a promising
solution for intuitive prosthetic control [8-10]. By harnessing biological signals, such
as EMG, prosthetic limbs can offer more natural control, leading to increased user
satisfaction and enhanced activity levels. However, integrating EMG poses its own
set of challenges:

1. Socket usage and EMG Quality: The design of the socket can significantly
impact the quality of EMG signals, thereby affecting the control of the
prosthetic limb.

2. Unsatisfactory Control: Current EMG-based control methods require
refinement. Improvements in algorithms, including better pre-processing and
post-processing techniques or the development of more sophisticated
algorithms capable of predicting user intent and excluding interference, are
necessary for optimal prosthetic control [11,12].




2. Scope of Thesis
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Figure 1 Overview of the research process, highlighting key steps: conducting an in-depth literature
review, developing an open-source software platform for signal recording and processing,
implementing post-processing techniques to enhance accuracy of locomotion detection, performing
real-time feasibility testing with individuals using osseointegrated prosthetic attachments (OPRA)
and developing a step-wise safety algorithm, and exploring the integration of combined biosignals
to improve prosthetic control.

2.1. Thesis Goal

The aim of this research is to enhance the control of lower-limb prosthetics by
addressing key challenges in movement intention detection algorithms. This goal is
pursued through a comprehensive literature review, the development of an open-
source platform for signal acquisition and analysis, and the integration of diverse
biological and non-biological signals. Together, these efforts aim to advance the
reliability and effectiveness of prosthetic control systems.



To achieve this objective in this project we followed these steps (Figure 1):

2.2.

Literature Review: To gain a comprehensive understanding of the latest
advancements in prosthetic control and identify the gaps and limitations, we
conducted an extensive literature review focusing on studies that utilized
electromyography (EMG), both with and without additional non-biological
signals, to control prosthetic limbs, decode movements, and detect user intent.

Open-Source Platform Development (LocoD): In order to foster
collaboration, facilitate algorithm development, and enable comparative
analysis, we developed an open-source platform. This platform is capable of
recording signals from both biological such as electromyography (EMG) and
neural signals, and non-biological signals, such as data from inertial
measurement units (IMUs). These signals are used to enable intention
detection while walking on different terrains. This supports the development
of advanced prosthetic control algorithms aimed at improving user experience
and adaptability [13,14].

Real-Time Feasibility Study with OPRA Users and Algorithm Enhancement:
We conducted initial real-time testing of our algorithm with participants who
had undergone osseointegration (OPRA) and transfemoral amputation,
marking a crucial step in our research. To enhance prosthetic control, we then
implemented a post-processing algorithm to filter out movement predictions
with low confidence, ensuring more reliable performance. All processing and
testing were carried out using LocoD, our open-source software platform.

Exploring Combined Biosignals: Recognizing the inherent limitations of
relying solely on EMG for control, we did a feasibility study of using neural
signals alongside muscle signals. This exploration aimed to leverage the
complementary nature of these signals, hypothesizing that the combined
biological information could surpass the capabilities of EMG alone. Through
this innovative approach, we aimed to unlock new avenues for improving
prosthetic control and enhancing user experience.

Research Questions

What are the gaps, limitations, and latest trends in EMG-based control
algorithms for prosthetic legs?



How can an open-source software platform for recording and processing EMG
signals be utilized to enhance lower limb prosthetic control and improve user
experience and functionality?

How do different sensor fusions affect the accuracy of control in lower limb
prosthetics? Can neural signals complement EMG signals to improve control?

How does the movement intention detection algorithm perform during real-
time testing with participants who have osseointegration implants?

Can post-processing of movement intention detection improve the accuracy
and reliability of these algorithms?




3. Background

Projections indicate that the United States could see around 3.6 million individuals
living with limb loss by the year 2050 [15]. Similarly, in Sweden, approximately 2000
amputations are anticipated each year [16]. The majority of these amputations occur
in the lower limb, profoundly impacting individuals' daily lives and their integration
into society. Without adequate support, many may find themselves confined to their
homes, facing not only a loss of income but also a disconnection from their
communities. This is not just a challenge for the individuals affected but also for
society as a whole, as we risk losing valuable, active members of communities. One
promising solution to mitigate the impact of amputation is to provide individuals
with proper prosthetic limbs that address their specific needs. Studies have
identified the five most critical needs of amputees: "Less pain," "Mobility," "Social
integration," "Independence," and the ability to "Walk". These findings underscore
the significance of designing and controlling prosthetic legs that can effectively
meet these needs and alleviate some of the challenges faced by amputees [17].

To better understand how to support amputees effectively, it is essential to examine
the standard prosthetic care available in most countries. This involves taking a closer
look at the different types of prosthetic leg attachments and the various commercial
prosthetic legs available on the market.

3.1. Prosthetic Attachment

Patients have access to two primary attachment options for their prosthetic
devices—sockets and implants—tailored to their unique circumstances. These
attachment methods are crucial for ensuring comfort, stability, and ease of use,
which are key factors in encouraging consistent prosthetic use. A more comfortable
attachment can significantly enhance a patient's ability to rely on their prosthetic
device, helping them regain mobility and independence, and supporting their
reintegration into society.

Socket Attachment: A socket is a custom-fitted interface that slips over the residual
limb, connecting the limb to the prosthetic device. Designed to provide a secure fit,
the socket distributes weight evenly and offers control over the prosthetic. However,
socket use can lead to discomfort, skin irritation, and other skin issues, especially in
warmer conditions. Despite these challenges, sockets remain a non-invasive option
and are widely accessible compared to other attachment methods (Figure 2.a).



Implant Attachment: In recent years, advancements in technology have led to the
development of osseointegrated implants. These implants are surgically anchored
into the residual bone, providing a more direct connection between the prosthesis
and the body. Osseointegration offers benefits such as increased stability, improved
comfort, and enhanced proprioception for the user. It removes the drawbacks of
sockets such as skin irritation and being uncomfortable but it comes with its risk of
infection and surgical complications [18-25]. Therefore for now in Sweden it is only
available to people who cannot use the socket due to skin issues or shortness of
their stump [21] (Figure 2.b).

Figure 2 (a) Socket attachment: A custom-fitted interface that slips over the residual limb to connect
the prosthetic device, distributing weight and providing control. (b) Osseointegrated implants:
Surgically anchored into the residual bone, offering a direct and stable connection between the
prosthesis and the body.

Alongside attachment options, there is a diverse range of prosthetic legs available
on the market, each offering unique features and functionalities and they come with
their pros and cons (Figure 3).

3.2. Prosthetic Legs

Passive Prosthetic Legs: Passive prostheses are designed to resemble the
appearance of a natural limb and provide basic support for activities of daily living.
They do not have active components like motors and are primarily used for aesthetic
purposes or for individuals with low activity levels. The primary advantages of
passive prosthetic legs include their lightweight and uncomplicated design, making
them easy to use and manage. However, because these devices lack active
components like motors and do not have control systems, they cannot provide
energy support—meaning they do not contribute additional force or assistive power
during movement—and cannot adapt to different activities or terrains (Figure 3).
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Semi-Active Prosthetic Legs: Semi-active prostheses are innovative mechanical
limbs designed to enhance both stability and mobility. These prosthetic legs feature
adjustable joints and dynamic response systems. They are equipped with
mechanical sensors that detect speed and gait phase during the gait cycle, allowing
for adaptive movements. The lightweight and user-friendly design makes them easy
to manage. However, semi-active prostheses do not provide energy compensation
for movements like stair ascent or standing up, which may restrict their functionality
in certain situations. Additionally, their control system relies solely on data from the
interaction between the leg and the surrounding environment, and they employ
simpler control logic compared to active prosthetics (Figure 3).

Active Prosthetic Legs: Active prostheses are equipped with advanced
technologies, such as microprocessors, sensors, and motors, to mimic more closely
the functionality of a natural limb. These prosthetic legs can adjust in real-time to
changes in different terrains and movement patterns, providing users with a higher
level of control and performance during dynamic activities like walking or running
(Figure 3).

J ,

‘ kI
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Passive Prostheses Semi-active Prostheses Active Prostheses

]
7
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Figure 3 Different types of prosthetic legs categorized into Passive Prostheses, Semi-Active
Prostheses, and Active Prostheses, showcasing examples of each category: (a) Pro-Flex® LP Torsion,
(b) Balance™ Knee OFM2, (c) Mauch® Knee, (d) Dynion, (e) C-Leg, (f) Rheo Knee®, (g) Genium X3, (h)
Proprio Foot®, (i) Power Knee™, and (j) Empower. Images ©Ottobock and ©Ossur, used with
permission.



Powered prostheses represent a significant advancement in the field of prosthetics,
offering various benefits over passive and semi-active counterparts. These benefits
include the capacity to provide net positive work during movement, which can help
reduce compensatory behaviors often observed in prosthesis users, particularly
during activities like stair climbing [26].

Additionally, powered prostheses have shown promise in increasing self-selected
walking speed compared to passive prostheses, contributing to improved mobility
and quality of life for users [27,28]. However, despite these advantages, several
challenges impede their widespread adoption. These challenges include the
increased weight, complexity, and cost associated with powered prostheses
compared to passive alternatives [29]. Furthermore, the need for customized control
systems tailored to individual users and specific types of movement, such as walking
on different surfaces or climbing stairs, increases the complexity and expense of
these devices [30-32]. To be effective, these control systems must be natural and
responsive, seamlessly integrating with the user's movements. Electromyography
(EMG) is emerging as a promising approach to address these challenges by
providing a way to determine the user's movement intentions. By capturing the
electrical signals produced by muscles during movement, EMG can be used to
interpret the user's intended next movement, enabling more intuitive and
responsive control of prosthetic devices. While this research does not specifically
address these challenges, it explores and enhances some aspects of control system
responsiveness that may contribute to more natural and user-aligned solutions in
the future. This claim reflects the central perspective of this research, emphasizing
the potential of aligning control with the user’s own muscle signals to enhance the
performance and user experience of advanced prosthetics.

Currently, there are only two active prosthetic knees available on the market: the
Power Knee [33] and Reboocon, along with one powered ankle [34]. As powered
prostheses gain popularity, various research groups are utilizing research devices
like the Vanderbilt Leg [35], Open Source Leg [36,37], and Utah Leg [38]. While
further research and development are essential to optimize control algorithms,
reduce device weight and complexity, and improve affordability and accessibility for
prosthetic users, this research did not focus on addressing these hardware-specific
challenges. Instead, our work concentrated on developing and validating control
algorithms for prosthetic applications.



3.3. Electromyography (EMG)

Electromyography (EMG) is a widely used technique in both clinical and research
settings to evaluate the electrical activity produced by muscle contractions
comprehensively. It operates on the principle that contracting muscles generate
electrical signals, which can be detected and recorded [39]. EMG involves the
placement of electrodes either on the surface of the skin or directly into the muscle
tissue, depending on the required resolution of the signal (Figure 4). In this research,
surface EMG (sEMG) is utilized as the primary method for recording muscle activity.
This choice is motivated by its non-invasive nature. Surface EMG (sEMGQG) is typically
used in muscle assessment during physical therapy and sports science research. In
contrast, intramuscular EMG (iEMG) offers more selective recordings by accessing
muscle fibers directly, making it invaluable for diagnosing neuromuscular disorders
and studying detailed muscle activation patterns.

The insights provided by EMG signals are crucial for understanding muscle function,
including the timing and intensity of contractions, coordination during movement,
and motor unit recruitment patterns. These details are instrumental in
understanding neuromuscular control mechanisms, identifying abnormalities,
designing personalized rehabilitation programs, and developing advanced
prosthetic devices controlled by the user's muscle activity. Importantly, EMG offers
critical information for inferring the user’s intentions since it captures signals
directly from the muscles, typically the remnant muscles, which are central to
movement control. EMG is therefore an indispensable tool for clinicians,
researchers, and engineers, enhancing diagnostics, rehabilitation, and assistive
technology.

3.3.1. EMG Revolution in Upper Limbs Prosthetics (Myoelectric control)

In recent years, the application of electromyography (EMG) in controlling upper limb
prosthetics has demonstrated considerable success, showcasing the robustness and
potential of this technology. EMG, which utilizes the electrical signals generated by
muscle contractions, has been effectively harnessed to control prosthetic arms and
fingers [40]. While achieving fully natural control remains a challenge, the
integration of EMG signals has significantly improved the functionality and usability
of upper limb prosthetics, paving the way for transformative advancements in
assistive technology.
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Figure 4 Illustration of electromyography (EMG) signal acquisition, demonstrating electrode
placement on a muscle and the corresponding electrical activity generated by muscle contractions.
This activity forms the basis for analyzing neuromuscular function and is critical for applications
such as prosthetic control.

3.3.2. EMG in the Lower limb

While electromyography (EMG) has demonstrated significant potential in research
for enhancing prosthetic control, its adoption in commercially available devices
remains limited. In lower-limb prosthetics, research has also explored the
combination of EMG with inertial measurement units (IMUs) to improve control,
though such advancements have yet to see widespread commercial application.
Most prosthetic limbs, both upper and lower, continue to rely on passive mechanical
designs, favoring simplicity and durability for daily use. However, innovations like
EMG-based control have the potential to move beyond these limitations, offering
more intuitive and adaptable solutions for lower-limb prosthetics, as they have
begun to do for upper-limb devices.

Controlling a prosthetic leg using EMG presents distinct challenges, particularly in
maintaining consistent and stable signals during dynamic activities like walking
[11,12,41]. Surface EMG signals, while promising in research settings, are often
affected by changes in skin impedance, inconsistent electrode placement, and
movement between electrodes and muscles during daily-life activities, leading to
increased signal noise and user frustration due to insufficient control [10,42-44].
These challenges are especially pronounced in lower limb prosthetics, where the
prosthetic socket environment further complicates signal and reliability (Figure 5).
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Figure 5 Illustration of five EMG sensors integrated into a custom-made prosthetic socket. The design
must accommodate precise sensor placement, which poses challenges due to the movement between
residual limb (stump) and socket. These factors can lead to inconsistent signal quality, discomfort
for the user, and difficulties in accurately targeting specific muscles.

To address these issues and enhance the reliability of EMG signals, researchers are
exploring potential solutions, including implantable sensors, innovative electrode
designs, custom prosthetic sockets with integrated electrodes, and advanced signal
decoding algorithms. While these developments have significantly improved upper
limb prosthetic control, their adaptation to lower limb prosthetics remains limited.
This gap underscores the need for further research to overcome these challenges
and unlock the potential for more natural, reliable, and effective control of lower
limb prosthetics.

By addressing these barriers, future advancements could improve the daily usability
and acceptance of prosthetic legs, providing users with a level of functionality closer
to that of advanced upper limb prosthetics.

3.4. Research Objectives

In this research, we aimed to improve the use of EMG signals for controlling lower
limb prosthetics, striving for a system that is both natural and reliable. To establish
a foundation for our approach, we first conducted a comprehensive literature review
to understand the current state of the art in EMG applications for lower limb
prosthetic control and to identify gaps and limitations in the field. To address one of
these gaps, we developed an open-source software framework that simplifies the
recording, processing, and classification of signals from diverse sources. This
software lays the groundwork for enhanced collaboration and eases the integration
of new algorithms.
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We then conducted a benchmark test involving 21 able-bodied participants to
validate our software's accuracy and reliability in recording, processing, and
classifying EMG signals followed by real-time trials with individuals who have
undergone transfemoral amputations. To further refine our intention detection
algorithms, we incorporated post-processing techniques, which improved the
accuracy and reliability of movement predictions.

Additionally, we explored other biological signals, such as electroneurography [45]
to control a prosthetic device. Finally, we implemented a step-wise safety protocol
to manage risks associated with research on active prosthetic legs.
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4. Advancing the Understanding of EMG-Based Control for Lower
Limb Prosthetics (Paper 1)

In this research, we undertook a comprehensive systematic literature review (Paper
1) to better understand the mechanisms of control used in lower limb prosthetics.
Our inclusion criteria were to evaluate studies that employed electromyography
(EMG) signals, either solely or in combination with other sensors, to control
prosthetic limbs or facilitate lower limb movements. This review encompassed
analysis of 121 distinct studies, providing crucial insights into various experimental
setups and methodologies. With this paper, we address our first research question:
"What are the gaps and latest trends in EMG-based control algorithms for prosthetic
legs?

We examined these 121 studies from different perspectives to understand trends
and identify current and emerging methods. This analysis included participant
demographics, the different movements performed, the sensors used to record
data, and the algorithms implemented. Notably, machine learning was the most
commonly used control algorithm, and we provided detailed information about its
applications. These insights are instrumental in laying the groundwork for
standardized experiments. This research aims to help researchers build upon
existing studies and develop their own experimental setups.

4.1. Participant demography and movements

Among the reviewed studies, fifty percent involved participants with amputations,
while the remaining studies were conducted with able-bodied participants. All
studies with amputee participants focused on individuals with unilateral limb loss,
comprising 56 studies with transfemoral amputees and 26 with transtibial
amputees. The tests included equal distribution of non-weight-bearing and weight-
bearing movements. Non-weight-bearing movements consisted of isolated joint
actions, such as flexion and extension of the knee and ankle, as well as tasks
requiring participants to mimic predefined motion trajectories or perform
movements constrained to a single degree of freedom (DOF). In contrast, weight-
bearing movements included activities such as walking and transitioning across
various surfaces.

4.2. Most common muscles and sensors

Muscle groups commonly used for EMG acquisition in research participants with
transfemoral amputation included the semitendinosus, biceps femoris, tensor
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fasciae latae, rectus femoris, vastus lateralis, vastus medialis, sartorius, adductor
magnus, and gracilis [46-60]. For participants with transtibial amputation, the most
frequently reported muscles used for EMG acquisition were the medial and lateral
gastrocnemius and the tibialis anterior[61-64]. The number of electrodes employed
varied greatly, with some studies using up to 192 electrodes.

Moreover, our review explored the integration of EMG signals with other sensory
technologies such as Inertial Measurement Units (IMUs), depth sensors,
goniometers, laser distance sensors, or load cells. A particularly common sensor
was the foot switch sensor, which is crucial for determining the gait stage based on
ground contact—a critical component for timing in locomotion control (Figure 7)
[58,65-74].

4.3. Control and Intent Detection Methods

Control methods for prosthetic limbs leverage various approaches to interpret user
intent and translate it into movement. These methods vary in complexity, ranging
from straightforward linear responses to advanced machine learning algorithms.
The choice of method often depends on the desired level of control, the available
technology, and the user's specific needs. Broadly, these methods can be
categorized into direct control, model-based control, and machine learning-based
approaches.

4.3.1. Direct Control

This method uses EMG signals to directly control prosthetic joints. In direct control,
each muscle activation has a direct, one-to-one correspondence with a specific joint
movement, meaning that the activation of a particular muscle proportionally drives
the movement of the corresponding joint. While effective, this approach encounters
limitations when controlling multiple degrees of freedom simultaneously, often
requiring additional strategies, such as model-based or machine learning
techniques, to enhance control [62,75-78].

4.3.2. Model-Based Control

In model-based control, body segments are conceptualized as rigid bodies linked by
rotational joints and driven by actuators that simulate muscle functions. Most of
these models derive from motion capture data gathered within specialized gait
laboratories, offering a well-validated foundation for model creation. Despite its
performance, the requirement for specialized equipment limits its applicability
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outside controlled environments. However, the generality of these models provides
a significant advantage as they can be adapted for new subjects [79-81].
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Figure 6 The sequential steps involved in processing the raw signal for training and validating
classifiers designed to detect locomotion modes. This process includes signal filtering to remove
noise, segmenting the data into overlapping or non-overlapping windows, feature extraction in
different domains, classification and validation.

4.3.3. Machine Learning Control Methods:
These approaches do not rely on predefined models but utilize training data to develop
effective classifiers or decoders. The process involves several steps (Figure 6):

. Pre-processing and windowing: Filtering and segmenting EMG signals to
eliminate noise and extract relevant data. Our review showed the most
common filter was between 20-500 Hz [39]. This part is not only limited to the
machine learning algorithms, and it is a common step in all control methods.

. Feature Extraction: This involves extracting features from time windows in
various domains (time, frequency, or combined), or using techniques like
wavelet packet transform followed by dimensionality reduction (e.g., PCA) to
focus on the most relevant data [50,58,82-85]. This step can also be a part of
direct control. In direct control instead of extracting many different features,
the most common feature is the EMG signal's magnitude.
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e Classification: Sophisticated algorithms such as Support Vector Machines
(SVM) classify the extracted features, tailored to find the participant's intention
for different movements and transitions. Linear Discriminant Analysis (LDA)
and SVM were the most common methods [58,65,72,83,86].

. Post-processing: Techniques like majority voting or velocity ramps are used to
rectify potential misclassifications, ensuring the prosthetic's stability and
reliability in real-world scenarios [60,83,87].

Distance Sensing
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Goniometer
MU

Load Cell

—\ Goniometer
IMU
B Pressure Sensor
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Figure 7 Overview of various non-biological signals and their sensor placements, encompassing
IMUs, load cells, goniometers, pressure sensors, and distance measurement systems. [12]. CC-BY-NC

4.4. Performance Metrics

Performance metrics are critical to ensure that the control systems operate
effectively and minimize potential errors that could compromise user safety and
functionality. The most common performance metric is the accuracy/error of
locomotion detection.

4.5. Challenges and Potential Solutions

Using EMG for controlling the lower limb prosthetic is not common yet and our
review identified several limitations when having EMG-based control, often due to
the insufficient quality of the captured data. We propose several avenues for
improvement:

17



e Enhanced EMG Acquisition: Exploring advanced EMG acquisition techniques
such as the use of implanted electrodes could significantly improve signal
quality and reliability [50].

e Integration of Additional Inputs: Combining EMG with other biological or
mechanical sensors could provide a richer dataset for control systems,
enabling a more natural and intuitive response from the prosthetic.

. Development of Advanced Control Algorithms: Significant advancements
have been made in control algorithms for upper limb prosthetics; however, the
research into lower limb control requires more sophisticated algorithms to
enhance functionality and user experience.

4.6. Conclusion from Paper 1

In this study, we systematically reviewed the most prevalent methods of EMG-based
lower limb prosthetic control and identified significant gaps in the field. Our analysis
revealed that, despite the existence of highly effective control algorithms, there is a
noticeable absence of more advanced methods, such as neural networks, in the
field. Additionally, there is a lack of an open-source software platform for
implementing and comparing new algorithms. Furthermore, the scarcity of real-
time studies restricts our ability to draw definitive conclusions. Moreover, weight-
bearing studies involving amputees are not only limited in number but also lack the
reliability needed for external testing beyond laboratory settings. This highlights the
need for advancements in methodology to ensure that these techniques can be
confidently applied in real-world scenarios.
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5. Development of an Open-Source Platforms to Enhance
Prosthetic Research (Paper 2)

To address the gaps in algorithm development for lower limb control and the
absence of both commercial and open-source solutions, we have developed an
open-source platform. This platform not only allows the community to create and
implement their own algorithms but also facilitates the use of existing ones.
Additionally, our platform simplifies the comparison of different algorithms [13,88].
Alongside the platform, we released a dataset to serve as a benchmark for algorithm
comparison. This is particularly beneficial for groups that lack access to recording
facilities, as they can utilize this platform to develop and refine algorithms [13,14].

Electrode Placement Signal Recording Windowing Feature Extraction Classification Prosthetic movement

Figure 8 Workflow of recording and processing EMG signals using LocoD, showing signal acquisition
(a, b), Windowing and filtering (c), feature extraction (d), classification (e), control of the prosthetic

leg (f)

Our software supports recordings from Delsy's devices, known for their stability and
reliability in capturing high-quality electromyography (EMG) signals (Trigno, Delsys,
USA). Additionally, LocoDs versatile communication modes ensure compatibility
with other systems, facilitating broader application across various research setups.
The software manages signal acquisition (Figure 8.b), preprocessing (Figure 8.c),
feature extraction (Figure 8.d), classification (Figure 8.e), and post-processing—
providing a comprehensive solution that streamlines data handling and analysis for
prosthetic control research.

To assess the integration of EMG with mechanical sensors and benchmark our
software, we analyzed the classification error across three different sensor
combinations (EMG, IMU, and EMG+IMU) in 21 participants while ambulating on
various surfaces. This approach combines the stability of mechanical sensors with
the nuanced detection of natural movements via EMG, demonstrating that the

T www.delsys.com
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combination of EMG signals with IMU and pressure signals can effectively predict
movement intentions.

EMG data were conditioned with a 20-500 Hz bandpass filter and a notch filter. Signal
blocks centered around each gait phase (heel contact and toe-off) were extracted
from 200 ms before to 100 ms after, creating a 300 ms segment of data. From this
segment, we extracted 200 ms windows, incrementing by 30 ms (Figure 9). For the
EMG signals, we derived mean absolute value, waveform length, zero crossings, and
slope sign changes [58,89]. From each window of IMU and pressure sensors, we
calculated the mean, maximum, minimum, and standard deviation [90,91]. Features
from selected sensor channels were combined into feature vectors for classification.
For example, in the IMU+EMG scenario, we combined features from the 18 IMU
channels and pressure sensors with those from 8 EMG channels, resulting in a total
of 108 features per time window. These features were then analyzed using LDA
classifiers with a phase-dependent, mode-specific architecture, validated through
10-fold cross-validation. We observed that integrating IMU with EMG significantly
improves classification accuracy for all participants, see Table 1. This finding
highlights the value of combining EMG with IMU data (IMU+EMG) for locomotion
mode detection, which achieves the highest accuracy across all conditions. While
IMU alone also demonstrates strong performance, EMG alone currently lacks the
reliability needed for effectively predicting locomotion modes, particularly during
transitions. Nonetheless, every improvement in locomotion detection accuracy is
crucial for ensuring seamless and safe operation. The combination of multiple data
sources, such as EMG and IMU, represents a promising avenue for future research
and development, offering potential advancements in both user safety and
prosthetic functionality

To progress towards our goal of developing a reliable control system for home
devices, the next logical step is to test the algorithm in real-time scenarios involving
individuals with amputations.

Table 1 Locomotion detection accuracy (%) for different sensor combinations (IMU+EMG, EMG alone,

and IMU alone) during steady-state and transitions. Steady-state refers to continuing in the same
locomotion mode, while transitions involve switching from one locomotion mode to another.

Sensors/SS or TR IMU+EMG EMG IMU
Steady-State 96.54+1.59 90.2214.84 94.52+2.24
Transition 92.45+2.66 67.57+14.2 87.85+3.45
All data 94.02+3.05 76.28+16 90.41+4.45
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Figure 9 a) Pressure sensor signal, b) EMG signal, ¢) 300-millisecond segments of data centered
around each gait phase, including 200 milliseconds prior and 100 milliseconds following the phase,
and d) sequential 30-millisecond overlapping windows extracted from the segmented data [88].

5.1. Conclusion from Paper 2

The addition of EMG to the mechanical sensors enhances the accuracy of
locomotion detection.

SEMG alone is not reliable yet to be used in the control of prosthetics.

Other methods of recording and more advanced and accurate processing are
needed to have a reliable control

With this paper, we addressed two of our research questions:

How can an open-source software platform for recording and processing EMG
signals be utilized to enhance lower limb prosthetic control and improve user
experience and functionality?

How do different sensor combinations affect the accuracy of control in lower
limb prosthetics?
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6. Real-Time Evaluation of EMG-Based Locomotion Detection
Algorithms in Transfemoral Amputees (Paper 3)

After successfully developing our software and testing the algorithm on able-bodied
individuals, we aimed to take the next step which is testing our algorithm on people
with amputation in real-time. We progressed by implementing our algorithm with
five participants who had undergone transfemoral amputations and
osseointegration, as documented in Paper 3. This step was crucial for understanding
the implications of amputation and osseointegration implants on prosthetic control
in a real-time setting.

In our prior research, we hypothesized that EMG signal quality significantly impacts
the performance of our algorithms. Traditional sockets often complicate EMG
measurement due to issues like improper electrode placement and pistoning—
where the prosthetic limb moves within the socket. Osseointegration offers a stable
limb attachment that mitigates these issues, presenting an opportunity to enhance
the EMG data collection, especially when combined with implanted electrodes.
However, osseointegration presents distinct features and limitations. While it
provides a more stable attachment and can improve signal quality by reducing
motion artifacts, it also involves surgical risks and requires ongoing care to prevent
infections at the implant site. These challenges necessitate further adaptations and
considerations in our approach to ensure we can gather robust data for enhancing
prosthetic functionality.

In this phase of the study, we validated real-time locomotion detection using SEMG
signals from the muscles of individuals with osseointegrated implants. Our
methodology involved deploying a machine learning algorithm for real-time
locomotion detection using LocoD, an open-source software tailored for sEMG-
based locomotion detection presented in paper 2.

To better evaluate the performance of the system, we examined two outcome
measures: prediction time of transitions and locomotion detection error. Prediction
time refers to the elapsed time between the critical timing (an ideal moment to
predict a transition safely) and the actual detection of the transition by the system.
Meanwhile, locomotion detection error quantifies the percentage of misclassified
windows during offline and online scenarios, highlighting the system’s reliability in
predicting locomotion modes accurately. Although the system operates in real time,
variability in prediction time—often labeled as delays—represents the temporal gap
between the critical moment of transition and its detection by the system. This does
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not imply a lack of real-time capability but rather reflects the system's
responsiveness and anticipatory prediction ability.

Our findings revealed that while EMG signals have the potential to control prosthetic
legs, there are still considerable challenges to overcome. The variability in detection
accuracy and prediction delays was significantly influenced by individual participant
differences. During the real-time experiments, we observed a range of error rates
during transitions between locomotion modes, with some participants
demonstrating near-perfect performance and others showing less reliability (Figure
10). These variations underscore the participant-dependent nature of our findings
[3]. Notably, all participants in our study had medium to short residual limbs due to
the osseointegration inclusion criteria, which often limits the number of muscles
available for EMG signal detection. This anatomical constraint can hinder signal
quality and affect the control algorithm’s performance [21]. Additionally, we noted
that EMG might only effectively detect certain movements for some participants,
such as transitioning from stair descent to walking. This suggests that EMG may be
more suitable for a limited set of necessary transitions, where its capabilities can be
maximized for reliable detection. Further analysis indicated that differences in
performance could also be attributed to the type of movements, the complexities of
the experimental setup, and individual variations in how movements were executed
[92].

6.1. Conclusion from paper 3

In conclusion, while the potential of EMG to enhance prosthetic control is evident,
the success of such systems is highly dependent on the individual characteristics of
each participant. Future studies should aim to:

. Recruit a larger and more diverse participant pool.
. Incorporate active prosthetics.
e  Explore advanced real-time control algorithms.

Additionally, developing a comprehensive training and feedback system for
participants and investigating alternative electrode configurations such as
implanted electrodes could further optimize the effectiveness of EMG-based
prosthetic control.
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With this paper, we addressed one of the research questions:

How does the movement intention detection algorithm perform during real-time
testing with participants who have osseointegration implants?
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Figure 10 Locomotion detection error of five transfemoral participants while transitioning between
level ground, ramp, and stairs in real-time and in the transitional period. W is walking, RA ramp
ascent, RD ramp descent, SA Stair ascent, and SD stair descent.
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7. Optimizing Accuracy in Movement Detection Through Post-
Processing Techniques (Paper 4)

In Paper 4, we focused on enhancing the accuracy of locomotion detection by
adapting an existing method in the post-processing step. Research on upper limb
prosthetics has more extensively explored various rejection-based post-processing
methods. For instance, Scheme et al. implemented a technique that combines Linear
Discriminant Analysis (LDA) with Fitts' law tests to assess the confidence of each
classification window. Decisions are made only if the confidence level surpasses a
specified threshold; otherwise, the classification is discarded [93,94]. Inspired by
these approaches, we adapted rejection-based post-processing for lower limb
prosthetic control in our study.

To validate and refine each locomotion mode change decision, we implemented a
post-processing technique for offline prediction, utilizing data from able-bodied
individuals. This method applied a probability-based approach, where outputs with
likelihoods below a specified threshold were disregarded to prevent erroneous
transitions that can be unstable in real-time scenarios [95].

In the study from paper 4, we applied LDA with rejection-based post-processing to
our open-access database containing EMG, IMU, and pressure sensor data from 21
able-bodied participants , as referenced in the previous study [14]. The results
demonstrated that this approach significantly enhances the accuracy of locomotion
detection algorithms for lower limb prosthetic control. Figure 11 provides a
comprehensive comparison of locomotion detection errors across 21 participants,
averaged for both steady-state and transition phases. The graph illustrates two
conditions: one without rejection-based classification post-processing and the other
with post-processing applied at a high rejection threshold of 0.989. The key
takeaway from this figure is the notable reduction in locomotion detection error
when post-processing is applied, emphasizing its effectiveness in mitigating
misclassification. This improvement is particularly significant for participants with
higher baseline error rates, suggesting that the method is especially beneficial for
handling challenging data conditions. This improvement agrees with prior research,
which suggests that rejection-based post-processing can effectively enhance
classification and control.

Even though our findings are promising, the study's offline nature limited our ability
to gauge the algorithm's real-time performance. Further testing on individuals with
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amputations, who have different muscle structures than able-bodied individuals in
real-time, would provide valuable insights.

When implementing these algorithms to control a prosthetic leg, it is crucial to
consider the best approach for handling windows of low confidence in classification.
A detailed study is needed to determine whether it is more effective to transition the
prosthetic to a standstill before resuming moving or to reassess and make a new
decision at that point. The primary focus of this study was to reduce misclassification
by identifying classification windows marked by low confidence, which can
otherwise lead to erroneous transitions in the prosthetic’s movement.
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Figure 11 The locomotion detection error for 21 participants is illustrated on this graph, with the
data for both transition and steady-state phases being averaged together. The graph compares the
locomotion detection error in two conditions: 1) when there was no rejection-based classification
post-processing applied, and 2) when there was rejection-based classification post-processing
applied with a threshold of 0.989. This comparison allows us to evaluate the impact of the post-
processing technique on the accuracy of locomotion detection [95]. Copyright © 2023, IEEE

7.1. Conclusion from paper 4

e A simple rejection-based method can enhance the quality of locomotion
detection algorithms.
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This method is effective in the participants with initial low locomotion detection
accuracy and in the movements with the lowest accuracy.

This paper answered the research question “Can post-processing enhance the
quality of classification algorithms?”
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8. Harnessing Neural and Electromyographic Signals for Intuitive
Prosthetic Control (Paper 5)

In this study, we sought to explore the hypothesis that neural signals could
complement electromyographic (EMG) signals to enhance the control of prosthetic
limbs. This hypothesis arises from limitations of using EMG alone, such as variability
in signal quality due to inconsistent electrode placement, skin impedance, and
motion artifacts during dynamic activities [11]. Neural signals, serving as an
additional source of biological information, could provide rich and reliable data for
detecting movement intentions. Supporting evidence from past research
underscores this potential: De Luca et al. (1980s) successfully demonstrated neural
signal acquisition from severed nerves, and more recent studies have highlighted
the effectiveness of cuff and intra-neural electrodes in decoding motor intent with
high precision [9,45,96 97]
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Figure 12 (a) Implanted muscular electrodes (biceps and triceps muscles), (b) extra-neural electrodes
around the nerve (P1 and P2 Ulnar, P3 median), (c-e) hand gestures attempted by the subjects in
their phantom hands. Grayed gestures only used in offline experiment [99]. CC-BY-NC

To evaluate this hypothesis, given the invasive nature of direct nerve recordings, we
utilized existing implants from participants in the e-OPRA study, which focused
exclusively on upper limbs, rather than performing additional implantations solely
for testing our hypothesis. This approach allowed us to record neural signals using
cuff electrodes around the nerves without subjecting participants to further surgical
procedures [8]. The study utilized cuff electrodes around the ulnar and median
nerves and epimysial electrodes on the Biceps Brachii and Triceps Brachii muscles
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to record neural signals associated with specific hand and finger movements [98][8].
These signals were analyzed for their ability to decode motor intent, a crucial factor
for intuitive prosthetic control (Figure 12).

Our results showed that these electrodes could provide stable and detailed neural
information, essential for distinguishing intended movements in individuals with
amputations. However, performance varied significantly across participants, likely
due to individual anatomical differences and the inherent complexity of neural
signal acquisition. Personalizing control algorithms to reflect each user’s unique
neural patterns and optimizing electrode placement based on specific anatomy
could mitigate this variability and improve overall accuracy. Additionally, the study
revealed that the optimal integration of EMG and electroneurography (ENG) signals
depends on the movement being performed. Aligning data sources with
anatomically relevant movements or dynamically adapting signal integration to
specific tasks and user needs could enhance outcomes. High-precision electrode
placement and advanced recording hardware are critical to minimize interference
and maximize signal fidelity.
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Figure 13 Online pattern recognition results from the Motion Test performed by the three
participants (P1-3) over three different scenarios: (1) ENG alone (green), (2) EMG alone (red), and (3)
the combination of EMG and ENG (blue). The outcomes are completion rate, median of classification
error, median of reported completion time, and median of selection time. Finger movements include
ring flex, little flex, for P1, ring to thumb, little to thumb for P2 and thumb flex, index flex, and middle
flex for P3. This graph is adapted from [99] under CC-BY-NC.
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One limitation of this study was the inconsistent accuracy in detecting hand opening
and closing movements (Figure 13). Factors such as variations in setup, differences
in amplifiers compared to previous studies, and the complexity of distinguishing
hand from finger movements in cases of upper-elbow amputation contributed to
this issue. Given these preliminary findings, further research involving a larger
cohort and more advanced training techniques is essential to generalize results and
refine motor intent decoding for extra-neural signals. Future studies should also
explore the use of non-linear classifiers and deep learning algorithms to enhance
decoding capabilities, laying the foundation for more nuanced and effective
prosthetic solutions.

Despite these promising findings, significant challenges remain in translating this
approach to lower-limb prosthetics. The unique complexities of lower-limb
prosthetics—such as the need for stability during weight-bearing activities and
transitions between locomotion modes—require dedicated research. Anatomical
and functional differences between the upper and lower limbs necessitate careful
evaluation of neural signal integration for these applications.

Given these considerations, we do not present our findings as a definitive conclusion
but rather as a foundation for further investigation into whether neural signals can
enhance lower-limb prosthetic control. While our results from upper-limb
prosthetics illustrate the feasibility of using cuff electrodes to record neural signals
and decode motor intent, additional studies are required to validate this approach
for lower-limb applications. Critical questions remain, such as the reliability of neural
signals during locomotion transitions and the optimal strategies for integrating
these signals with other data sources. This research lays the groundwork for
advancing prosthetic control and improving outcomes for users.

8.1. Conclusion from paper 5

. ENG signal has information that can be used for control of upper limb
prosthetics.

. Better technology is needed to record neural signals precisely.
e  The benefit is very subject-dependent

. Further studies are needed to find the long-term use of this data for the control
of prosthetics.
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This paper addressed the final research question: “Can neural signals
complement EMG signals to enhance control?” However, the study focuses on
results related to upper-limb prosthetics. Applying these findings to lower-limb
control for locomotion remains an open question for further research.
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9. Establishing Comprehensive Safety Protocols for Clinical

Testing of Active Prosthetics (Paper 6)

An inevitable advancement in the field of lower limb prosthetic control will be the
integration of implanted electrodes, osseointegration, and prosthetic legs capable
of utilizing various control algorithms. Following the surgical implantation of these
technologies, it is critical to establish a comprehensive rehabilitation protocol that
safequards participant well-being and supports their reintegration into daily
activities. Since the risks inherent to lower limb prosthetic research, especially those
related to falls and resultant injuries, are considerably greater than those
encountered with upper limb prosthetics, we have developed a safety protocol

tailored for active lower limb prosthetic research, as detailed in [100].
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Figure 14 Stepwise safety protocol. The protocol is implemented sequentially, progressing from the
highest to lower safety levels. The columns, arranged from left to right, represent test environments,
participants, safety levels, examples of test methods, and the required outcomes at each stage [100].
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We formulated a rigorous safety protocol specifically for clinical research involving
lower limb prosthetics. As described in Paper 6, this protocol is versatile and suitable
for testing various leg prostheses and control strategies. It ensures participant
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safety by establishing multiple predefined safety levels, each comprising specific
test methods and necessary outcomes before progressing to subsequent phases.
The protocol also outlines necessary precautions for each testing stage, including
the use of walking aids and carefully chosen environments (Figure 14).

This systematic strategy was developed to address the lack of comprehensive safety
protocols for clinical testing of active prosthetics. While the protocol has not
undergone formal evaluation, it is proposed as a preliminary framework aimed at
minimizing risks associated with the testing of prosthetic technologies. The protocol
is grounded in addressing practical safety challenges observed in existing research
processes, such as mitigating fall risks and ensuring participant safety during
rehabilitation and testing. However, we recognize the need for future evaluation to
determine its effectiveness in practice. Further work will involve validating this
protocol through empirical testing and incorporating clinical evidence, expert input,
and patient feedback to ensure its robustness and alignment with established
standards in health-related protocol development.
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10. Summary of Thesis Contributions

Within the scope of this thesis, we have developed new open-source software
designed to record and process electromyography (EMG) signals and tested it both
in real-time and offline with able-bodied participants and participants with
amputation. Afterward, we enhanced the quality of our locomotion detection
algorithm with post-processing methods. Additionally, we explored the potential of
other biological signals for prosthetic control in upper limbs, particularly those
obtained directly from nerves. Given the promising results and the growing
consensus that implanted electrodes represent the future of prosthetic
development, we have designed a comprehensive, step-wise rehabilitation protocol.
This protocol supports the integration of powered knee prosthetics and various
control algorithms, enhancing the adaptability and functionality of these devices for
users.

. Paper 1 offered a comprehensive review of EMG-based control algorithms for
lower limb prosthetic control. This review covered various recording methods,
movements, and muscles involved, and detailed the specifications of different
algorithms, providing a thorough exploration of the current landscape in this
field.

Research question addressed: This paper addresses the research question
“What are the gaps, limitations, and latest trends in EMG-based control
algorithms for prosthetic legs?”, by identifying critical gaps, including the need
for advanced algorithms and tools for lower limb applications.

. Paper 2 introduced an open-source and modular platform designed for the
recording and processing of EMG signals. This platform is aimed at fostering
collaboration among various research groups by potentially accelerating the
development of algorithms and facilitating their comparison. Instead of each
group needing to develop their own algorithms from scratch, this platform
allows for shared advancements and standardized evaluations. While we have
not yet demonstrated external use of the platform by other researchers, it was
designed with this intention in mind, providing the tools and framework
necessary to enable collaborative and comparative studies. We conducted
testing of the software under various sensor combinations, including
IMU+EMG, EMG alone, and IMU alone. Consistent with previous literature, our
findings confirm that the inclusion of EMG significantly enhances the accuracy
of the system.
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Research question addressed: This paper answers the research question:
How can an open-source software platform for recording and processing EMG
signals be utilized to enhance lower limb prosthetic control and improve user
experience and functionality?

Paper 3: This study evaluated the real-time performance of our EMG-based
control algorithm in lower limb amputees who have undergone
osseointegration, with the goal of facilitating daily use. Our algorithm executed
by LocoD software proved successful in real-time applications. Although EMG
provides valuable data, the participants in our study had shorter stumps and a
limited number of muscles due to osseointegration, which restricted the full
potential of EMG in detecting locomotion.

Research question addressed: This paper addresses the research question:
How does the movement intention detection algorithm perform during real-
time testing with participants who have osseointegration implants?

Paper 4: We aimed to implement a post-processing technique to enhance
locomotion detection performance in prosthetic devices. This algorithm
analyzes the probability of outputs from linear discriminant analysis (LDA) and
selectively rejects weaker predictions. This method effectively improved
classification accuracy, particularly benefiting individuals with generally lower
accuracy rates and movements and transitions that are typically less accurately
detected. This approach not only refines the control mechanism but also tailors
the performance to better accommodate the varying needs of users.

Research question addressed: This paper answers the research question: Can
post-processing of movement intention detection improve the accuracy and
reliability of these algorithms?

Paper 5: This study explored the feasibility and potential benefits of using
efferent nerve signals (ENG) alongside electromyography (EMG) for prosthetic
control in upper limbs. Motivated by the possibility of leveraging other
biological pathways for enhanced control, and having access to patients with
implanted electrodes, we investigated whether meaningful information could
be extracted from these signals to control the finger movements of the
participants. Our findings indicated that for some participants, it was indeed
possible to utilize ENG signals effectively for this purpose. This opened up new
avenues for more intuitive and precise control mechanisms in prosthetic
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devices, potentially improving the overall user experience. This study is a
preliminary result, as the underlying reasons for low performance in some
subjects have yet to be fully understood.

Research question addressed: This paper answers the research question: Can
neural signals complement EMG signals to improve control?

Paper 6: This study proposed a stepwise safety protocol for managing risks
associated with research on active prosthetic legs. We have developed a
detailed protocol to address the safety concerns that arise when conducting
research with powered prostheses, which utilize various control algorithms
using muscle signals as inputs. This protocol serves as a comprehensive
reference for safely using different prosthetic legs and control algorithms,
ensuring that both researchers and participants are protected throughout the
study process. This systematic approach not only promotes safety but also
standardizes procedures, enhancing the reliability and efficacy of prosthetic
research.
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11. General Conclusions and Future Directions
11.1. Conclusions

In summary, this thesis has explored the integration of electromyography (EMG) as
a pivotal component in lower limb prosthetic control systems, driven by its potential
to provide natural control and address significant challenges faced by the lower limb
amputee community. We identified and addressed a critical gap with the
development of an open-source software platform, which has laid the ground for
widespread collaborative advancements and innovation. Our feasibility studies
showed promising results yet highlighted the potential for further enhancing EMG
signal quality through the use of implanted electrodes. Although not immediately
pursued, this insight led to refining our methodologies and conducting targeted
experiments on amputees. We also dedicated efforts to improving algorithm quality
and explored the integration of other biological signals, thereby broadening the
research scope and applicational possibilities. Reflecting on our journey, it is clear
that significant work remains in advancing lower limb prosthetic technologies. The
direct interface of these devices with the human body demands meticulous
attention to ensure their robustness and accuracy, especially given the severe
consequences of even minor errors. This underscores the need for ongoing
precision and reliability in our work.

While our findings underscore the promise of EMG technology, it is crucial to
acknowledge that the road ahead is long and complex. While EMG demonstrates
potential, it requires further refinement and optimization to realize its full
capabilities. Nevertheless, with continued dedication and collaborative efforts, we
are poised to overcome these challenges and pave the way for innovative prosthetic
solutions that truly enhance the lives of amputees worldwide.

11.2. Future Direction

Throughout this research, we have identified and addressed various challenges in
prosthetic technology. While we have made progress, some issues remain
unresolved. Looking forward, continued improvements in control algorithms are
expected to significantly enhance the functionality of prosthetic devices. These
advancements are essential for the development of active lower limb prosthetics,
promising more refined and efficient movement capabilities for users. In terms of
signal quality, our findings indicate that surface EMG does not always provide the
necessary quality for effective control in participants with transfemoral
amputations. To address this, our research suggests exploring the potential of
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implanted electrodes. These electrodes could drastically improve signal quality,
leading to more seamless integration and enhanced functionality of prosthetic
devices, marking a substantial advancement in the field.

Powered prostheses hold great potential to revolutionize lower limb prosthetic
control. They can help users avoid compensatory movements, deliver positive net
energy for activities like stair ascent, and can be programmed with complex
algorithms due to their sophisticated systems. Unlike traditional prosthetic legs,
powered prostheses can accept EMG signals as inputs, enhancing their
responsiveness and functionality. Furthermore, the integration of powered
prostheses with osseointegration implants and implanted electrodes presents a
promising avenue for achieving more natural and effective control, making them a
significant advancement in prosthetic technology.

However, there is a gap in the research regarding the effects of powered prostheses
on various implants. Studies are beginning to illuminate crucial factors for safety
margins, but more extensive research is needed to confirm that these implants can
withstand daily use with powered prostheses [101,102]. There is also a pressing
need to enhance prosthetic devices. Although powered prosthetics are potential
candidates for utilizing EMG signals, they require significant improvements to
address drawbacks such as their weight, noise, and cost, and to increase their
compatibility with current technologies.

Our research efforts reflect a collective commitment in the scientific community to
advance prosthetic technologies. We will concentrate on enhancing control
algorithms, assessing the impacts of powered prosthetics on osseointegrated
implants, and exploring innovative solutions like implanted electrodes. These
initiatives will help individuals with limb loss regain mobility and improve their
quality of life, reinforcing our dedication to bettering outcomes for amputees
globally.
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12. Author Contribution

Paper 1: Electromyography-Based Control of Lower Limb Prostheses: A Systematic
Review

Bahareh Ahkami, Kirstin Ahmed, Alexander Thesleff, and Max Ortiz-Catalan
collaborated on the design and scope of the review. Bahareh Ahkami conducted the
literature search and primary analysis, while Bahareh Ahkami and Alexander
Thesleff completed the literature review. Max Ortiz-Catalan supervised the research.
Bahareh Ahkami drafted the manuscript, with all co-authors reviewing and editing
it.

Paper 2: Locomotion Decoding (LocoD) - An Open-Source and Modular Platform for
Researching Control of Lower Limb Assistive Devices

Max Ortiz-Catalan conceptualized the platform. Bahareh Ahkami designed and
programmed the platform. All authors designed the study. Morten B. Kristoffersen
supervised the implementation of the platform and assisted with platform testing.
Max Ortiz-Catalan and Kirstin Ahmed supervised the project. Max Ortiz-Catalan
secured funding. Bahareh Ahkami and Kirstin Ahmed drafted the manuscript. All
authors edited and approved the final manuscript.

Paper 3: Probability-Based Rejection of Decoding Output Improves the Accuracy of
Locomotion Detection During Gait

Bahareh Ahkami, Fabian Just collaborated on the study design and methodology.
Bahareh Ahkami conducted analysis. Fabian Just provided technical support for
algorithm development. Max Ortiz-Catalan supervised the research. Bahareh
Ahkami drafted the manuscript, while Fabian Just and Max Ortiz-Catalan reviewed
and edited it.

Paper 4: Real-Time Locomotion Mode Detection in Individuals with Transfemoral
Amputation and Osseointegration

Bahareh Ahkami, and Max Ortiz-Catalan designed the study. Bahareh Ahkami
conducted the study, analyzed the data, and developed the algorithms, while

39



Morten Bak Kristoffersen provided technical support and feedback. Max Ortiz-
Catalan supervised the research and secured funding. Bahareh Ahkami drafted the
manuscript, with Morten Bak Kristoffersen and Max Ortiz-Catalan contributing to its
review and revision.

Paper 5: Extra-Neural Signals from Severed Nerves Enable Intrinsic Hand
Movements in Transhumeral Amputations

Bahareh Ahkami, Enzo Mastinu, and Max Ortiz-Catalan designed the study and
developed the electronics needed for the experiments. Eric J. Earley supported data
processing and statistical analysis. Max Ortiz-Catalan supervised the research and
secured funding. Bahareh Ahkami drafted the manuscript, with Enzo Mastinu, Eric .
Earley, and Max Ortiz-Catalan contributing to its review and revision.

Paper 6: Design of a Stepwise Safety Protocol for Lower Limb Prosthetic Risk
Management in a Clinical Investigation

Alexander Thesleff, Bahareh Ahkami, Jenna Anderson, Kerstin Hagberg, and Max
Ortiz-Catalan conceptualized the protocol. Alexander Thesleff and Bahareh Ahkami
developed the stepwise safety protocol framework. Jenna Anderson and Kerstin
Hagberg provided clinical insights and expertise. Max Ortiz-Catalan supervised the
project and secured funding. Alexander Thesleff wrote the manuscript, with all co-
authors reviewing and revising it.
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