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Abstract

The Convex Gaussian Min-Max Theorem
(CGMT) is a powerful method for the study
of min-max optimization problems over bilin-
ear Gaussian forms. It provides an alterna-
tive optimization problem whose statistical
properties are tied to that of the target prob-
lem. We prove a generalization of the CGMT
to a family of problems in machine learning
(ML) with correlated entries in the data ma-
trix. This family includes various familiar ex-
amples of problems with shared weights or
repeated features. We make use of our theo-
rem to obtain asymptotically exact learning
curves for regression with vector-valued la-
bels, complex variables, and convolution.

1 INTRODUCTION

Let X € R™™ be a random matrix and S; C
R™ S; C R™ two sets. Then, for a given function
¥ 1 81 X So — R, consider the following min-max op-
timization problem
: T

1uin max z X0 +1(0,z). (1)
A multitude of problems in statistics, machine learn-
ing and Al can be expressed by , and its analysis
for large dimensions m,n has recently received much
attention. While studying in complete generality is
extremely difficult, in many common cases, especially
for convex-concave programs, precise descriptions of
this problem are readily available. Many of these re-
sults rely on the Convex Gaussian Min-Max Theorem
(CGMT) (Thrampoulidis et al., [2014), which provides
a fairly straightforward way to obtain computable ex-
pressions for the asymptotic properties of the solution
of and provable concentration bounds on them.

Proceedings of the 28" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2025, Mai Khao,
Thailand. PMLR: Volume 258. Copyright 2025 by the au-
thor(s).

However, the CGMT is limited to random matrices
with i.i.d. entries. As a result, it is inapplicable to
problems with shared or repeated features that occur
even in simple cases such as regression with vector-
valued labels or convolutional models. In this work,
we resolve this limitation by extending the CGMT to a
wide range of setups with statistical correlation among
the elements of G, including sharing of the features.
Our main contributions are summarized below:

1. We resolve the limitation of the CGMT requir-
ing i.i.d. elements of the data matrix by prov-
ing a more general theorem, of which the CGMT
is a special case. In contrast to the conventional
proof of the CGMT by Gordon’s comparison theo-
rem, we make use of an approach pioneered by [Sto-
jnic (2016alb), who has previously demonstrated
that both Slepian’s lemma and Gordon’s compari-
son theorem can be expressed and derived through
a single framework. We extend those results to the
case of weight sharing, proving both a “Slepian”
style expression, concerning max — max optimiza-
tion in the form of , and a “Gordon” style ex-
pression involving min — max optimization.

2. We make use of our theorem to analyze the prob-
lems which cannot be analyzed by the classical
CGMT. These problems include regression with
vector labels, regression with convolutions, and re-
gression over complex variables. We verify our
claims experimentally, showing a match between
the primary and CGMT alternative optimizations,
and show that our theory can predict specific phe-
nomena, such as double descent for vector labeled
regression and complex regression.

1.1 Relevance to Machine Learning:

We consider the analysis of linear models as a promi-
nent use case of the CGMT in machine learning. Con-
sider such a model parameterized by a real vector
0 € R?, a loss function ¢, regularization function R,
and a dataset { (x;,5;) € R x R}, . A linear model
parameterized by @, which is a predictor of y, is com-
monly obtained by solving the following empirical risk
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minimization problem:

min — ZK x; 0,y;) + R(0). (2)

6cRd N

It is well-known that can be expressed in the form
of , by means of a Legendre transform, £*, of the loss
function with respect to the first element, (Bauschke

et al, 2011):

Txg - L 0 (2, R(6 3
éréﬁ@?é?énz Z (zi,9:) + R(6),  (3)

where the matrix X € R™*? is the collection of the
samples x;. In , the transformed loss and regular-
ization function amount to v in .

1.1.1 Application of CGMT

If X hasi.i.d. standard Gaussian elements, then under
mild assumptions on the loss and regularizer this prob-
lem is amenable to the CGMT, offering the following
alternative optimization to :

min max 0] g7z + 2] bTO+ v(0.2), (1)

where g € R". h € R™ are i.i.d. standard Gaussian
vectors. In simple words, the CGMT establishes that
the solutions of and are identical in a wide
range of asymptotic statistical properties. Calculating
these properties for (4)) is significantly simpler than the
original problem in. If X is i.i.d., but not Gaus-
sian, there are universality arguments, which under
certain assumptions on the loss function, regularizer,
and the p.d.f. of X, demonstrate that the same ex-
pressions as in the Gaussian case, hold valid for the
non-Gaussian case (Panahi and Hassibil [2017; [Hu and|
2022} Bosch et al. [2023; [Han and Shenl [2023).
This makes CGMT a powerful tool of analysis, even
for non-Gaussian data.

1.1.2 Limitation of CGMT

For the analysis of more complex problems, the central
limitation of the CGMT is the requirement that the
elements of G are i.i.d. For example, consider the
case of linear regression with vector-valued labels of
dimension k:

min
®cRmxk 2n

||X® Y7 + R(©), (5)
where we assume the data matrix X € R™*"™ has i.i.d.
Gaussian entries, Y € R™*¥ is the collection of vector-
valued labels y; € R¥, and |||| » denotes the Frobenius
norm. Invoking the Legendre transform again, this

problem can be expressed in the form of as follows:

1 1
min max —z’ (X®1;)0 — —z'y
OER™k ZER"E T n

1(9)), (6)

where I, is the identity matrix of size k, 8 = vec(®),
z = vec(Z) and y = vec(Y), where vec denotes the
vectorization operation, and ® denotes the kronecker
product. This problem is of the form of , but cannot
be analyzed by means of currently existing comparison
theorems as the matrix X ® Iy, is no longer i.i.d. and
instead repeats elements of X many times over. In the
rest of this paper, we develop a generalized result that
can address this problem and many similar ones.

1 2 _
~ 5 12} + R(vee

2 RELATED WORKS

The approach of Gaussian comparison theorems stems
from the seminal work of , which relates
the maximum value of a pair of Gaussian processes
with specific relations between their covariance func-
tions. Slepian also introduced the following instance
of the Gaussian pairs to achieve sharp bounds on the
operator norm of Gaussian matrices:

x"Gy +yllxllllyll,  Ixlg"y +lylh™<  (7)

where G € R g € R™ h € R",v € R are i.i.d.
Gaussian. |Gordon| (1985, |1988)) extended Slepian’s
comparison theorem, and showed that the same pair
of primary and alternative Gaussian processes are also
linked in terms of their miny max, values. Appli-
cations of this theorem include, (Rudelson and Ver-|
Shyninl, [2006; Stojuid Oymak et al} [2013;
Thrampoulidis et al), 2014 |2015). Subsequently,
Thrampoulidis et al.| (2014), based on observations by
earlier work (Stojnic, 2013bj; [Amelunxen et al., [2013)),
demonstrated that under the additional assumptions
of convexity, the bounds coincide with exact asymp-
totic optimal values in the Gordon and Slepian re-
sults. This so-called convex Gaussian min-max the-
orem (CGMT) has been used to study a wide range of
problems in signal processing and machine learning,
including but not limited to (Akhtiamov et all, 2023

Aolaritei et all [2023; [Javanmard and Soltanolkotabi

2022; [Mignacco et al. 2020} [Montanari et all, 2019;
Salehi et al., [2019; [Thrampoulidis et al., 2018}

et al., [2024; [Loureiro et all [2021} Bosch et al., 2022)).

Several studies have attempted to address the central
limitation of the CGMT, namely the i.i.d. require-
ment on the matrix G. |Thrampoulidis et al.| (2020)
studied the problem of multiclass regression by con-
sidering a set of pairwise CGMTs between each pair
of classes. [Dhifallah and Lu (2021)) considers an exten-
sion to the case of a sum of bilinear Gaussian forms;
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Zszl fokyk, where each Gy, is i.i.d. Gaussian and
independent. Recently, |Akhtiamov et al.| (2024) con-
sidered a further generalization to the case where the
bilinear Gaussian form is given by; Zle x{GkZ}C/Qy;
where y is shared between all K terms, and each Gg
is i.i.d. Gaussian and independent and E,lc/ % are pos-
itive semi-definite covariance matrices. Our approach
is a more general extension to a wider class of weight-
sharing setups.

Our approach is based on an alternative proof to the
Gaussian min-max theorem, as well as a “Slepian”
variant concerning a max-max optimization theorem,
pioneered by |Stojnic| (2016aybl). This study proves
both of these results through a single argument, called
random duality theory (RDT). More recently, [Stojnic
(2023alblc)) has extended these results to optimization
problems with random linear constraints. These re-
sults however do still require that the random con-
straints are i.i.d. Gaussian, and cannot be used to
consider cases of weight sharing, such as those dis-
cussed in this work.

3 MAIN RESULTS

3.1 Notation

For any natural number K € N we will use [K] to de-
note the set {1,2,..., K } of natural numbers up to
and including K. We will denote the Kronecker delta
by 044, where a,b € N, defined to be 1 if a = b and 0
otherwise. We will denote vectors using boldface lower
case letters, such as a, b, c, and matrices by boldface
upper case letters, ie. A,B,C. When considering a
particular element of a vector or matrix, we will use
a non-bold font and subscript the object, for example,
Agqp means the (a,b) element of the matrix A. By
contrast, boldfaced letters with subscripts will denote
an element of a set of matrices or vectors, for exam-
ple, A; means the ith matrix of a set of matrices, e.g.
{A;},. When considering an element of a set of
matrices, we use the notation (A;),p to refer to the
(a,b)th element, of the ith matrix of a set of matrices.

For any natural number K € N, we denote by SIJQ C
REXE the cone of symmetric Positive Semi-Definite
(PSD) matrices of size K x K. For a PSD matrix A,
we will denote by A'/2 the unique PSD matrix square
root. For any natural number K € N, the matrices
Ix and O denote the identity matrix and all zeros
matrices of size K x K, respectively. For a PSD matrix
A vector b and function f, we denote by

Ma s(b) = min f(x) + £ (x ~ )T A(x ~b),  (8)

the matrix version of the Moreau envelope. Corre-
spondingly, prox, ;(b) is the proximal operator, refer-

ring to the optimal point of the optimization in equa-

tion .

3.2 Extension to the Gaussian Min-Max
Theorem

Our result concerns a particular pattern of statistical
correlation in G that we refer to as Gaussian Matriz
Sum (GMS). We first formalize this idea:

Definition 1 (Gaussian Matrix Sum (GMS)). Let
G € R™™ be an i.i.d. standard Gaussian matrix, let
K € N be a positive integer, and let A € R**" By, €
R™*™ for k € [K], be two sets of deterministic ma-
trices. Then G is a Gaussian Matriz Sum (GMS) of

order K and with components { Ag, By }kl,(:l, if

K
G =) A{GB,. (9)
k=1

In a GMS, the components Ay, By, express the manner
in which the weights of the Gaussian matrix G are
shared in the total matrix G. In section [5] we show
how common cases, such as multiclass regression can
be expressed as GMSs.

Given this definition, we state our main result for this
section, which consists of two claims: first, an exten-
sion of the Gaussian Min-Max Theorem (GMT) (Gor-
don, 1985}, [Thrampoulidis et al., [2014)) and second, an
extension of Slepian’s Lemma (Slepian) 1962)). For
completeness, we state the original comparison the-
orems in appendix [A]

We take a Gaussian Matrix Sum G € R™*™ of order K
and components { Ag, By }szl, as defined in definition
[[] Further, we consider two compact sets X C R™ and
Y C R™, and a continuous function ¢ : X x Y — R.
We define the following primary objective function

Hp(x,y, G, 7, ) = x" Gy + [P/ 2yQ'?) +4(x, y),

(10)
where x € X,y € J, v € REXK {5 an i.i.d. standard
Gaussian matrix independent of G, and P, Q € REXK
are defined element-wise as follows:

Py =x"AlApx, Qrr =y BlBpy. (11)
for k, k' € [K]. We note that P and Q are positive
semi-definite (PSD) matrices, and hence P'/2,Q'/2 ¢
REXK are the unique PSD square roots of P and Q,
respectively. Next, we define the following alternative
objective function

K

Ha(x,y, FH9) => fBry + hi Apx + ¥(x,y),
k=1

(12)



A Novel Convex Gaussian Min Max Theorem for Repeated Features

where F € R™K H € R"™X are Gaussian matrices
with columns f;, € R™ hy € R™ for k € [K], respec-
tively. F and H have zero mean, and are defined by:

F=FPY?  H=HQ'?, (13)

where F € R™*K H e R"*K have i.id.
Gaussian entries.

standard

Having defined the primary and alternative objectives,
we now express the following extension to the Gaussian
Comparison Theorems.

Theorem 1 (Generalization to Slepian compari-
son and Gaussian Min Max Theorem). Let X C
R™ Y C R™ be compact sets, and consider the primary
Hp(x,y,G,v,¥) and alternative Ha(x,y,F, H, )
objectives as defined in equations and respec-
tively. Furthermore, assume that ¥ (x,y) is continuous
and strictly concave in 'y and x. Then:

E H Gy,
Gy maxmax Hp(x,y, G, v, ¢)
= EFHmaxmaXHA(x v, F,H,¥).
xeEX y€ey

Alternatively, assume that ¥(x,y) is continuous,
strictly concave in y and jointly strictly convex in x.
Then:

E
Gv)r(rggmgxﬂp(x y. G, v, ¢)
fIEFHmmmaX’HA(X vy, F, H 1/’)
xeX yey

Furthermore, let (Xp,yp) and (X4,y.4) denote the op-
timal points of Hp and H 4 respectively, for either the
maz-max or min-max optimization. Then,

Varg ~[Hp(Xp,¥r, G,7,v)]
- VGT‘F’H[HA()A(A, yAa Fa H7 w)]

Remark 1. We note that the primary and alterna-
tive objectives of the GMT are a special case of this
theorem, where K =1, and A =1,,B = I,,,. In this
case P € RV*! = ||x||* and Q € R**! = |ly||®, which
results in the familiar pair of primary and alternative
objectives given by:

Hp =x" Gy + [|x[| [y ]| v + (x,y),
Ha = x| 7y + Iyl h"x + 9(x,y).

3.2.1 Proof Sketch

The two statements of theorem [I| are proved together
in a single master theorem. To prove the equivalence
of the expected values, we consider an interpolation
between Hp and H.4:

Hi =1 —tHp +VtHyu, (14)

where ¢ € [0,1], such that at ¢ = 0 we have that
Ho = Hp and at t = 1 we have H1 = H 4. We then
re-express the max — max or min — max optimization
over H; as the low-temperature limit of a soft-max
(Boltzmann distribution) over the sets X, ):

E(X, D, 8,81, t) =
EGmFHm  log (fx dx (fy dy ePHi(xy.¥) ) )(15)

Here 8 > 0 corresponds to the “inverse temperature”
and s € {—1,1} is a parameter. In the limit of 5§ —
oo, we observe that

hmﬁ%oo £(X7y757 S7¢7t) =
EcFH max s r;lg)}}( He(x,y,v). (16)

Then, we see that taking s = 1 results in a max — max
optimization and s = —1 to a min — max optimization.
The proof proceeds by considering the t—derivative of
the function £, where eventually we show (see supple-
ment section that

lim = =0. (17)

Then, we conclude by the dominated convergence the-
orem that:

Bh_>m f(Xay’ﬁ’Sa%O) :511111 f(X,y,B,S,’(/J,l), (18)

which implies the desired results. For the variance,
we consider the expected value of the observable H?
with respect to both the Boltzmann distribution and
the Gaussian terms { G, v, F,H }. We once again take
the derivative of this observable with respect to ¢ and
show that in the large 8 limit the derivative goes to
zero. The full proof is found in appendix

3.3 Extension to the Convex Gaussian
Min-Max Theorem

We note that the previous theorem requires the exis-
tence of the 4 term in the primary optimization. As
discussed above, in the majority of the optimization
problems of interest, this term is not present. In the
following theorem below, we show that the results of
the theorem continue to hold even if this term is re-
moved.

Theorem 2 (Generalization of the Convex Gaussian
Min-Max Theorem). Assume the setup of Theorem|]
and consider instead the following primary objective
Sfunction:

HR(Xa Y, G7 1/’) = XTGy + 1/}()(, y) (19)
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Then assume that ¥(x,y) is continuous and strictly
concave in x andy. Then,

Ec maxmaX’HR(x v, G, )
xeX y€

= EFHmaxmaXHA(X v, F,H,¥).
xeEX yey
Assume instead that (x,y) is continuous, strictly
convex in X and strictly concave in y. Then,

Ec H.IEIKIYI max’HR(x v, G, )

= Ep gminmaxH(x,y,F,H,¢).
F,erxy@)}( A( Y 1/1)

Furthermore, let (Xr,yr) and (X4,¥.4) denote the op-
timal points of Hr and H 4 respectively, for either the
maz-max or min-max optimization. Then,

Varg[Hr (Xp, P, G, ¢)]
S VCLT’F’H[H_A()A(_A, y.Aa Fa H7 7/’)]

A proof can be found in the supplement section [C}

We note that the results of theorems [I and ] are not
asymptotic. The expected values match, regardless
of the dimension of the problem. This is in contrast
to the CGMT which provides bounds on the relation-
ship between the optimal values, and tightness of the
bounds requires the concentration of optimal values.
Our theorem, of which the objectives considered by
the CGMT are a special case, shows that the ex-
pected values of the objectives will match even non-
asymptotically if strict convexity is assumed.

While the theorems above show that the expected val-
ues of the objectives match at the optimal points, it
does not prove any relationship between the distribu-
tion of the optimal points, themselves. In the following
theorem, we show that many functions of the optimal
solutions of Hp,H 4, and Hr will also match in ex-
pectation. This allows for more general properties of
the optimization problems in question to be analyzed
by proxy. For example, in the case of empirical risk
minimization, the expected generalization error can be
predicted by means of the optimal solutions to the al-
ternative optimization problem, instead of those of the
primary.

Theorem 3 (Functions of Solutions). Assume the
setup of Theorem (1, and let (Xp,yp) and (X4,5A),
denote the optimal points of Hp and H 4 respectively.
Furthermore, assume that Hp and H 4 have finite val-
ues at their optimal points, and that 1) is a continuous
function.

Let ¢(x,y)
function, ie. H¢||oo

: X XY — R be any bounded continuous
< 00. Then,

Eg 4 [¢(xp,¥P)] = Er u[o(X4,¥4)] (20)

Furthermore, assuming the conditions of Theorem [3,
and denoting by (Xr,yr) the optimal point of Hg,
and assuming that Hg is finite at the optimal point,
we can similarly find that:

Eclp(xr,¥r)| = Er m[d(XA,¥.4)]- (21)

A proof is given in the supplement section

4 SPECIAL CASES

In this section we consider two specific cases for the
shape of the GMS G and show that in these cases the
alternative optimization form, as described in ,
can be re-expressed into more convenient and intu-
itive forms. We first consider the case in which the
quadratic form xT Gy is a re-expression of a trace.
This is, for example, the case in regression with vector-
valued labels, discussed in more detail below.

Corollary 1 (Trace Form). Consider the compact sets
X C R and Y ¢ R™** and the following primary
objective function:

T
)I(Ilel% max Tr[X' GY] +¢(X,Y). (22)

Then the corresponding alternative optimization is

given by:

min max Tr[(X7X)'/2FY]
XeX Yey

+Te[(YTY)Y?HX] + (X, Y), (23)

where F € RF*™ and H € RF*" are i.i.d.
Gaussian matrices.

standard

This is a direct extension of the ordinary CGMT to
the case of vector-valued labels, and we can see that if
k = 1, this alternative expression exactly matches the
alternative of the classical CGMT. A proof of this fact
is given in the supplement section

A second special case that we consider is the case
where G takes an alternating form. This form shows
up in the analysis of regression over complex variables,
which we also discuss in more detail below.

Corollary 2 (Complex Form). Consider two compact
sets X C R?® and Y € R?™, let G, H € R™*™ be two
i.i.d. Standard Gaussian matrices. Then consider the
following primary optimization:

T
. X1 G —-H
;%15(11;133))( [Xz} {H G ] [ } +9(x,¥), (24)
where x = [x7 xI]7 and y = [y? y2]7, and x;1,x2 €
R™ y1,y2 € R™. Then the corresponding alternative
optimization is given by:

)rcrg;(lmaXHyHQth—&- x|, £y + 1(x,y), (25)
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where h € R?", f € R>™ have i.i.d. standard Gaussian
elements.

We note that this form is identical to that of the clas-
sical CGMT. A proof of this fact is given in the sup-

plement section

5 APPLICATIONS

In this section, we discuss three applications of our
comparison theorems. The first is regularized regres-
sion with vector-valued labels. As shown in the intro-
duction, this problem is not accessible to the previ-
ously known comparison theorems. The second appli-
cation is regression over complex variables. The third
application is the case of regularized regression with
convolutions. The third example shows a more com-
plex form of weight sharing than vector-valued regres-
sion. Additional details regarding numerical simula-
tions may be found in supplement section [G]

5.1 Regularized Regression with Vector
Valued Labels

We consider a dataset {(x;,y;) € R™ x RE}™_| where
x; ~ N(0,I). We collect x; and y; into matrices X €
R™ ™ and Y € R™*X and consider a problem of the
form:

2

+

—XO0-Y —
o mK

. 1 1
min ——
@crmx K 2nK H\/m
Here |||z is the Frobenius norm, and R(®) is a
strongly convex regularization function. Introducing
the variable Z as the Legendre transform of the Frobe-
nius norm, we obtain:

R(©). (26)

1
T[ZTXOe] - —Tr[ZTY
H2"X0] — —Tr(Z"Y]

min max
©cRmxK ZeRnxK nK\/m

1 ) 1
5 121+ —R(©). (27)

Note that this is one of the special cases considered in
corollary [}

We assume a simple model for the labels, where y; =
(©@)Tx; + v; where ®* € R™*K is an underlying
“true” model, and v; € R¥ are i.i.d. noise samples
with zero mean and covariance ¥ € RE*X, By mak-
ing use of our comparison theorem and simplifying the
result, we can find the following alternative optimiza-
tion problem:

1
: f’I‘rP T 21/2
uin P & P(Q"Q+ )7

1 m
——Tr[PTP TQl -
ok TPTP+VQIQI - o

1 m
—F L —=FTPV~l). (2
+mK My, R() (@ - A\ ) ( 8)

Tr[PV~'P]

Here F € R™*¥ is an i.i.d. Gaussian matrix, and M
is the matrix Moreau envelope over R(-).

The problem can be further simplified for a spe-
cific choice of the regularization function. We choose
the case of quadratic regularization, where we choose
R(©) = i Tr[@AOT], where A € RE*X is a PSD ma-
trix of regularization parameters whose elements cor-
respond to the pairwise regularization between classes.
In this case we can simplify the alternative optimiza-
tion further, to following form:

1 1
min max —Tr {A (@*T@* + STSH
sesk Tesk 2K m

1 T 1 T\ 1/2
— 5 BT T + - Tr [T (D +878) 7|
(29

1 1 m 1/2
——Tr|S (A@*TO*A + TTT>
K m n

where the matrix square roots all denote the unique
PSD square root for a PSD matrix. We also note
that the resulting alternative optimization only con-
tains variables of size K x K. No element of the ob-
jective function grows with either n,m which allows
for significantly more efficient computation of the al-
ternative problem.

Furthermore, by theorem [3| we can also compute the
expected generalization error. In figure [1| below we
compare the theoretical prediction and numerical sim-
ulation of the generalization error of this problem for
two choices of the number of classes K = 3,5 and
the regularization matrix A given by A = Mg +
0.1A(1xxx — Ik) for a base value of A > 0, as a func-
tion of the ratio 7*. We observe that the theoretical
values (lines) predicted by the CGMT-alternative op-
timization, and the numerical simulations (points) of
the primary objective, match exactly. Furthermore,
we observe that our theory is predicts a double descent
phenomenon (Belkin et al., [2020) in this setup, which
is suppressed as the regularization strength increases,
as is common among regularized regression problems.

5.2 Regularized Complex Variable
Regression

Next, we consider a complex-valued vector 8 € C™ of
variables and a dataset { (z;,y;) € C™ x C};"_,, where
z; = a; + ib; where both a;, b; € R™ ~ N(0,1), and i
denotes the imaginary unit. We collect z; and y; into
a matrix Z € C™*™ and vector y € C", and consider
a problem of the form:

1 1
ot 4n || v/2m
where |all, = Vaf’a, where  denotes the hermitian
conjugate, and R : C™ — R. We denote Z = G +

2

, + %R(@L (30)

70 —y
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Figure 1: Generalization Error for Multi-class Re-

gression for number of classes K and regularization
A = Mg + 0.1X(1gxx — Ix) parameterized by A as
a function of the ratio of the number of parameters m
to the number of data points n. Theory is given by
solid lines and numerical simulations by triangles and
squares.

iH, where G,H € R™*™ are i.i.d. standard Gaussian
matrices. Similarly, we denote 8 = 61 + 10, and y =
y1 +1iy2. Then, we can express the problem in as:

1 2

min —
61,0:€R™ 4n

1
E(Ggl — HOQ) — ¥y

1
E(Gez +H6O,) —y2

To proceed, we introduce z1,z, € R™ as the Legendre
transform of the two norms:

1 2
+—

1
in + %3(91,92)' (31)

min max L z G —H| 6
01,0:€R™ z;,2:€R™ Anm (22| |H G | |0

where f € R?™ has i.i.d. standard Gaussian entries.
In figure [2] we consider the case of R being the square
loss % |65 and show the resulting theory for a variety
of choices of A\ as a function of the ratio ”*. Once
again, we observe that the results match, and that
double descent is observed in this setup around the

interpolation threshold of 7+ = 1.

Generalization Error

Figure 2: Generalization Error for Complex valued re-
gression with square regularization for a number of
choices of regularization strength A as a function of
the ratio between the number of parameters m and
the number of data points n. Theory is given by lines
and numerical simulations by squares.

5.3 Regularized Convolutional Regression

In this part, we study a single convolutional filter
©® ¢ RFMXFz2 and a data set {(X;,Y;) € RIxdz x
RP1xD23n  where D1 = dy — k1 + 1 and Dy =

T
z1| |y1 1 2 1 2, 1
+ |:Z2:| [yQ] " 4n 21" = in lZ2 " + %Rwlve?)' (32)d2 — kg + 1. We require dy > ki,dy > ks, such that

This form is an optimization of the special case dis-
cussed in corollary

Now, we assume a simple model for the labels y; =
z]'0* + v;, where 8* € C™ is the "true” model, and
v; € C = v;1+1iv; 2 is a zero mean complex noise, with
noise power 0371,03,2 for v; 1,142, respectively. The
simplified alternative optimization can be expressed
as:

. Bq m Blog,+0ls) B2
%35(?21517(1 E)jLT 2
1 qgvm
—EMa 0" — ——f1). 33
FIEMy g ( - ) (33)

D1, D5 > 1. We consider the problem:

2

XZ-*Q—YZ-

.
min
O cRk1 xXk2 2’17,D1D2 klk‘g

=1 F

1
+%R(®), (34)

where ||| » is the Frobenius norm, and * is the (Ma-
chine Learning) convolution operator here between two
matrices, and R is some strongly convex regularization
function. We assume that each X; has i.i.d. standard
Gaussian entries. We first re-express the convolution
as a matrix product. We define X € RnP1D2xkiks
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defined as
(X) aD1Da+BD2+vy,nka+e

(35)

Where o € [n],8 € [D1],y € [D2],n € [k1],€ € [ko].
We further define 8 € R¥F2 = vec(®) and y €
R"P1D2 glement-wise by YaD1Ds+BDa+y = (YQ)BW.
Making use of the Legendre transform of the square
loss, our original problem may be expressed as:

- 1
: - TXB— T
06%13%111’% z€ﬂ$aD}1{D2 nDlDQ\/ k‘lk’gz nD1D2Z
1 2 -1
—_— R 0)). (36
55, I + Rivec™ (). (36)

Where we have introduced z by means of the Legendre
transform of the £3-norm. In this case, the matrix X
is a GMS, and the bilinear form can be expressed as

ki1 ke

z'X0 =z2" (Z > AEVXbW> 0,

w=1lv=1

(37)

where X € R™192%1 hag ii.d. standard Gaussian en-
tries, and A, € RndidexnDiDz gng b e R1xkik2
are defined by:

5a,a5w+ﬂ,b57+v,ca
(38)

(AWV)GDl D3+BD2+7,ad1da+bda+c =
(bwu)nkz+e = (;w,n(swév

where a,a € [n],b € [di],c € [d2],8 € [Di],y €
[D2],n € [ki],e € [k2]. Once again, we consider a
simple model for the labels, we assume that Y; =
X; % ®* + N;, where ®* € RF1*k2 ig the “true” model
and N; € RP1%P2 ig 3 noise matrix with i.i.d. elements

with zero mean and variance o2.

We can find the simplified alternative optimization
corresponding to this problem, but due to its complex-
ity we leave it in the supplement, see section [F.3.1}
Instead, as in the case of multiclass regression, the
problem may be simplified further with a particular
choice for the regularization function. Here we only
consider the case of ridge regression, where we choose
R(®) = 2 ||®||2F In this case, the alternative opti-

2
mization can be expressed as:

A
min  max —— H@*H;
SESile TESleQ 2k‘1k’2

1
2D1 Doy

Tr [T7T] + Tr [S"'S]

2k1 ko
1

_ 7
feiky

S [ A2vec(®@*)vec(®*)T + ik "
7’LD1D2

+ == Tr [T (®Ip, p, + V) /?]

DD,

where U € RkFtkaxkikz gnd v e RP1DP2xD1D2 10 de-
fined by:

1 U
Uokotvw kotv = D, D, Tr [TTTAZ;yAw’V’
1 k1 ko
_ T AT &
V= k1ko Z Z (S S)Wk2+V’w’k2+V’Aquw’V’~ (39)

w,w'=1v,v'=1

In figure [3] we consider the convolutional regression
problem with square loss as a function of the num-
ber of data points n, for fixed choices d; = dy = 20
and k1 = ko = 9. We again note that our theory ac-
curately predicts the expected behavior of this setup.
We can note that as n grows large the generalization
error drops asymptotically to a minimal value, which
for A = 0 regularization is exactly the noise floor.

I T T
pe-se-e-50 . —A=10"°
A=0.1
;6 107057 — A=1 -
= —— A=10
S \Q\DE‘DQ‘QE"ﬁmu = ol oogo e-as a0
=
X
E
Z 107t i
[«
O X\x@ﬂ\aﬁ%
| | | | |

|
0 20 40 60 80 100

Figure 3: Generalization Error for Convolutional re-
gression with square regularization for a number of
choices of regularization strength A\ as a function of
the number of data points n. Theory is given by lines
and numerical simulations by squares.

6 CONCLUSION

In this work, we addressed the key difficulty with
the CGMT theorem, namely its requirement for i.i.d.
Gaussian entries. We provided a generalized compari-
son theorem for min-max and max-max, convex opti-
mization problems over Gaussian processes with GMS
structure, and established equality of the expected op-
timal value and many other quantities of the optimal
point, even in finite dimensions. This allowed us to ob-
tain and verify exact learning curves for multiple prob-
lems with weight and feature sharing. Together with
universality arguments, this result paves the path to
the analysis of more complex models in future studies.
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A Comparison Lemmas and Theorem’s

In this section we state the currently existing comparison theorems that we extend, for the sake of completeness.

A.1 Slepian’s Lemma and Slepian’s Comparison Theorem

Theorem 4 (Slepian’s Lemma (Slepian, 1962)). Let { X; };_, and {Y;}!_, be two sequences of real valued
centered Gaussian random variables, which satisfy the following conditions:

o E[X?] =E[Y?] for alli € [n]

e E[X,X;] < EY}Y;] for alli,j #1i € [n]

Then for any cq,ca,...,¢c, € R:

Pr (40)

CJYv;>C¢

i=1

OX@>C¢] > Pr

i=1

There exist a standard pair of Gaussian processes that satisfy Slepian’s Lemma which allows for the following
max-max Theorem:

Theorem 5 (Slepian Max-Max Theorem). Let G € R"*™ ~v € R,g € R™ h € R" have i.i.d. Standard
Gaussian elements. Let X C R™ and Y C R™ be two compact sets and let ¢ : X x Y — R be a continuous
function. Consider the following two Gaussian processes

P(G, ) = mascmaex” Gy + x| Iy |17 + ¥x,),

xeX y€
A(g, h) = maxmax x| g"y + [y h"x + ¥(x,y). (41)
xXEX yey
Then, for any c € R
Pr[P(G,v) > c] < Pr[A(g,h) > (. (42)

A.2 Gordon’s Lemma, Gaussian Min-Max Theorem, and the Convex Gaussian min-Max
Theorem

Gordon| (1985)) later proved an extension of Slepian’s comparisons lemma:

Theorem 6 (Gordon’s Comparison Lemma (Gordon, [1985)). Let { X; ; } and {Y; ; } fori € [n] and j € [m] be
two sequences of real valued centered Gaussian random variables, which satisfy the following conditions:

o E[X7,] =E[Y?] for alli € [n],j € [m]

o EIX, ;X;x| < EY; ;Y] for alli € [n], j, k € [m]

o E[X; X, x| > E[Y; ;Y1 k] for alli,l #i € [n],j,k € [m]
Then, for any ¢; ; € R fori € [n],j € [m]:

Pr ﬁ 6 Xij>cij| >Pr ﬁ 6 Yij>cij| - (43)

i=1j=1 i=1j=1

Similarly to Slepian’s Theorem the same set of processes hold for Gordon’s Theorem, which is summarized in
Gaussian Min-Max Theorem (GMT):
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Theorem 7 (Gaussian Min-Max Theorem (GMT) (Gordonl [1985))). Let G € R"*™ v € R,g € R™ h € R"
have i.i.d. Standard Gaussian elements. Let X C R™ and Y C R™ be two compact sets and let ¢ : X x Y — R
be a continuous function. Consider the following two Gaussian processes

PG‘, - i TG ) 9
(G,7) min maxx y + x|yl v+ (x,y)

h) = mi T h” : 44
Alg, h) = min max x|l g7y + [[y[h"x + 0 (x,y) (44)

Then, for any c € R
Pr[P(G,7) < ] <Pr[A(g,h) < . (45)

Later work by Thrampoulidis et al.| (2014) extended this theorem to more general processes at the cost of
additional convexity requirements on the sets X', ) and function .

Theorem 8 (Convex Gaussian Min-Max Theorem (CGMT) (Thrampoulidis et all [2014))). Let G € R™*™ g €
R™ h € R" have i.i.d. Standard Gaussian elements and be independent of each other. Let X C R™ and Y C R™
be two compact sets and let p : X X Y — R be a continuous function. Consider the following two Gaussian
processes

P(G,7) = minmaxx’ Gy + 9(x,y),

xeX yey
h) = mi T h” . 4
A(g, h) gg;;glggIIXIIg y +lyllh"x+¥(x,y) (46)
Then, for any c € R
Pr[P(G) < d < 2Pr[A(g,h) < d. (47)

Furthermore, assume that X,Y are convez sets, and that v is convex-concave on X X Y, then for any co € R:

Pr[P(G) > ] <2Pr[A(g,h) > ]. (48)
B Proof of Theorem [1]

B.1 Problem Setup

We consider two sets X C R™ and Y € R™ and consider a constant K € N. We consider a random matrix
G € R™™ which is a Gaussian Matrix Sum, given by:
K
G =) A[GB, (49)
k=1
where Aj, € R"™*" B, € R™*X™ are sets of deterministic matrices and G € R™ is an i.i.d. standard Gaussian
matrix. We further define the following two matrices P(x), Q(y) € REXK given by:

(P(x)kp =x AfApx  (Q(y))kw =y BiBry. (50)
We can note that P, Q are Positive Semi-Definite (PSD) matrices, and therefore have canonical PSD square

roots, which we denote as P1/2(x) and Q'/?(y) respectively.

We define the following two functions:
He(x,y 0) = xT (L/0, ATGBy) y +Tr [PY2(x07Q2(y)] + v(x.¥)

Ha(x,y,0) = K 7By + hP Apx + ¢(x,y). (51)

Here ¢ : X xY — Rand F € R™K H ¢ IjKﬁXK,'y € REXK have ii.d. standard Gaussian elements are
independent of each other and independent of G. The columns of F, H are denoted by f; and hy respectively,
and are defined as:

F=FPY?(x) H=HQ?(y), (52)

where F € R™*X H e R"™X have i.i.d. standard Gaussian elements. Finally, we recall the objects of interest,
that being:

3.~) = mi F,H) = mi )
P(G,7) gg;gryngg?{p(x,y,w) A(F,H) xmel)gr;lggHA(xy,w (53)
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B.2 Thermodynamic Representation

We consider a parameter § > 0, corresponding to the “inverse temperature”, and a parameter s € { —1,1}. We
consider the function

FG1. 2.V, Bus.) = |1og < / dx ( /y dy eﬁ”ﬂ"W) ) (54)

Then, we see that:

511_{1;0 Eg /(G X, V.6, 5,9) = Eg , max s max Hp(x,y, ). (55)
Specializing to the case of s = 1 or s = —1, this results in a max-max or min-max problem respectively. We note

that for this evaluation we have interchanged the limit over 8 and the expected value over Eg o this is justified
by the dominated convergence theorem. We can first note that:

lim —1og (/ dx (/ dy eBHP(x’y’w)> > = maxsmax?—[p(x v, ), (56)
y yey

B—+00 5‘ xeX

By the assumptions of strict convexity and/or concavity on v there exists a unique solution to the max-max or
min-max optimization problem. Furthermore, by continuity of the objective this optimal point is not in a null
set with respect to to the double integral. As such in the 8 limit the Boltzmann distribution will converge to the
optimal value of Hp. Finally by the assumptions that the sets X and ) are compact there exists a maximum
value of the logarithm independent of the choice of 8, which justifies the usage of the dominated convergence
theorem, to interchange the 8 limit and the expected value Eg .

To study the function f (G, v, X, Y, B,s,1) we study the following interpolating function:

E(X,V,8,8,1,t) = mFH/@' | log (/X dx (/y dy BBHt(X,yf‘p)) > ) (57)
Here t € [0, 1] and H;(x,y, ) is given by:

Ht(xvya 77[1) = ﬂ’(xy}’) + \/i XT

K
(Z Agé3k> y + TP (x)y Q2 (y)]

k=1

k=1

K
+VI—t [Z f'Bry + h{Akx] . (58)

We can see therefore that (X, ), 8,s,9,1) = IEG,,,f(ér,'y,X,y,ﬁ,s,w). For the sake of convenience we will
define the set Y = { G,~,F,H } and express £ as:

§(X7 y? B? S? w? t) = EZ/{ 1Og Z7 (59)

1
Bls|
where:

7% /X ix (Cx)° O /y dy A(x,y)  Alx,y) % ePHuteye), (60)

We will call Z the partition function.

To determine the properties of the interpolating function £ we will examine its derivative with respect to t.
We compute this in the following section. However we first prove some useful lemma and properties of this
distribution. We first note that:

s—1
o1 I dyePHi(ay.¥) eBH(x,y )
- (€ xy) (s ) o o
fX dx (fy dyeﬁHt(x’yf‘/’))

is a probability distribution, in the sense that [, [}, Wdydx = 1. As such we define the following
expected value with respect to this distribution:

<>H1)5_/ dx/dy ) 1A(X Y) (. (62)
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Throughout the proof we will find two other similar probability distributions, which we denote by:

(C(x) A%, y)A(x,y") (Cx)* MO Alx,y) AKX, y')
Z ’ 72

we will denote the expected values with respect to these distributions by:

O = [, (€02 [Layaeey) [ ayacey)o
O =75 [ a0y~ [ a6 [ avapey) [ ayaed.y)o). (64

I, = I0; = . (63)

We now prove the following lemma:

Lemma 1. Consider a continuous function f : X x X x Y x Y — R. Consider H;, and let (X,y) denote the
unique optimal point of this objective (the point that corresponds to the maz-mazx or min-maz value; uniqueness
guaranteed by the strict convexity/concavity). Then,

ﬁlgrolo EU <f(X7 x,y, y)>H1,5 = Euf(f(, )A(, yv y)
ﬂh—{r;o EM <f(X,X,y,y/)>H2“3 = EUf(*v*aS@S’)

hm EZ/I <f(X7 X/aY7y/)>H3,B = Euf(ﬁvfgyvy) (65)
B—o0

Proof. We can first note that by the properties of the Boltzmann distribution and the fact that the optimal point
is guarantee to be unique, we can see that the measures

Axy) _ —v(x im
Jm o =0y—-y()  Jim

= §(x — %) (66)

and that in the limit of § — oo the product measure will converge to the product of the delta functions. As
such, we note for i = 1,2, 3 that:
hm <f(x7xl7Y7y/)>Hi 8 = f()A(, A?S’ay% (67)
B—o00 ’
by the properties of the Boltzmann distribution. This convergence is point-wise. As discussed above, the solution
to the objective H; is unique, and by the continuity of the objective H; the unique solution is not in a null set
of the integral. Finally, because of the fact that the integrals are bounded to compact sets and the fact that f
is continuous implies the existence of a total upper bound M on the expected values independent of the choice
of 8, which by the dominated convergence theorem allows for the interchange of limits and expectation. O

As a consequence of this lemma we note the following corollary, which we will make use of frequently in the
subsequent:

Corollary 3. Consider a continuous function f: X x X x Y x Y — R, and let s € {—1,1} be a parameter,
then:

ﬁh~>n;o EZ/{ |:<f(xa XayaY)>H1”6 + (5 - 1) <f(xax7y7y/)>l'[27[3 - S <f(xa X/,yayl)>ﬂ3,ﬂi| = 07 (68)
and
Jim By [{f e,y ¥, 5 + (5= D (£ 9, Di s = 8 (P X3.¥ i, 5] = 0. (69)

Proof. The first claim is directly justified by lemmal[l] For the second claim we can note that:
Jim B[ 3. 3, o + (5= D 3. D, 5 — 5 (X325 )y 5] =0 (70)

This is due to the fact that the concentration of each ( f>n 5 on their optimal value is exponential. As such
the sum concentrates to 0 at an exponential rate, overpowering the linear term. By the same argument as in
lemma|[l] the fact that f is continuous and x,y are restricted to compact sets allows for the use of the dominated
convergence theorem, which gives the result. 0



A Novel Convex Gaussian Min Max Theorem for Repeated Features

B.3 The t-derivative

We now compute the derivative of the function ¢ with respect to t. We see that:

e 1.d
i Euﬁ|s|dt log Z
1 d
_E“ﬁ|s|2%
=By /dx(C(x))s_l/d A y) Lo (71)

We can see that

@ _ ZkK:1 XTA;;FGBkY + Zk,k’,k” V' k" (Pl/z(x))k,k'(Ql/Z(Y))k“,k

dt 2v/t
B Zﬁk,zl Sy YT (P2 (%) kpr Fii (Bi )i s + ng’:l S Y (QY2(Y)) ke Hi g (Ak)i s (72)
21—t '

We can the express the derivative with respect to ¢ as

d¢  sign(s) us =
i g2 / dx/ dy Z (T@,,C + Z Ty —Tr gl — TH,k) ) (73)
x y k=1

k'=1

where

Ty, = L 330, (COO T AR Y)(A0)e By )iy,

t 7
K s— / , / S
Ty kwr = %]Eu kz (Cx)* A y)(P! 2(?)k K (QY2(Y)) ke Vi ,
"=1
1 S (Cx) A Y)(PY2(x)w (Birry)sFoi
T = 1—75,;::1;}2“ 7 )
ol E & (CE) T y)(QYA () ko (ArX)aHa
Tar = 1*75;{,2:1;:11&1 7 ) (74)

We now examine each of these terms in turn.

B.3.1 The Té,k group

We can first make use of Gaussian integration by parts to fnd the following:

o1 (C(x)* A, ¥) (Arx)a(Bry)sGap
Ter = 7i ;;Eu Z
1 & o2 -~ d (Cx))* AKX, y)(Arx).(B
_ 7221&/{ Z ZEL{(Ga,bGa’,b’) _ ( ( )) ( y)( k ) ( ky)b
[ b=1 a’'=1b=1 dGar 4

- L3 $op, 4 (O AN A By

. (75)
Vit a=1b=1 Gap Z
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Where we have made use of the fact that G has i.i.d. elements, as such Euéabéa/b/ = 04a'0py - We can then see
that:

To, =33 |5, ACOD T ACY) Ty (Aux)a(Arx)u(Biy ) (Bry)y

a=1b=1 z
\E Bls = )(C(x))*2A(x,y) [y dy’ A%, y') Xpo—i (Axx)a(Apx)a(Bry)s(Bry')s
U
Z
g BCE) TN Y) [y dx (Cx))*" [y dy" AK,y) 25_1<Akx>a<Ak1x’>a<Bky>b<Bk/y’>b] (76)
— Iy
72
From this we can see that:
K K
/de/ dy Y Te, = BBy < > xTAfAk,xyTBka,y>
Vo k=1 kk=1 1.8
K K
+(s—1) < Z xTAgAk/xyTBgBk/y'> —s < Z XTAgAk/X’yTBgBk/y'> . (77)
kk'=1 s,3 k.k'=1 3,8

B.3.2 The Other Groups

The same strategy of Gaussian integration by parts can be applied to re-express the other terms. We can find
that for T j i that:

K
/X dx/ydy > Tyrw = PEu <z:(P(X))zc,l~c/(Q(.‘)’))1~c7k'>n1 /3

kk/=1 k.’

+(s—1) <Z(P(X)>k,k’(Ql/Q(Y)Ql/Q(yI))k,k’> - S <Z(P1/2(X)Pl/2<x/))k,k’(Q1/2(Y)Q1/2(y/))k:,k’>
15,8 15,8

kK’ .. kK’
(78)
For T, we find that:
K K
[ ax [ dy > T = pE < 3 (P(x)>k,k/yTB£Bk/y>
XY k= kb =1 .58
K K
+(s—1) < > (P(X))k,k'yTBka'yl> - 3< > (Pm(X)P1/2(X'))k,k’yTBka'y/> ~ (79)
kk'=1 ., k,k'=1 13,8
and finally for T§;, we find that
K K
/ dX/ dszH,k :B]EM < Z (Q(y))k’k/XTAfAk/X>
XY k= kk/=1 1.5

K K
+(s — 1>< > QWY kwxT AL Ak/x> —s< > (Q“Q<y>Q1/2(y')>k,k1xTA£Ak/x’> - (80)
12,8 13,8

kk'=1 kk'=1

We can see that all 4 of these groups take the form specified in corollary [3] from which we can conclude the
following theorem.

Theorem 9. Consider the function £(X, Y, 8,s,1,t) and the setup described in section , Then

lim % 0. (81)
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This gives rise to the obvious corollary:

Corollary 4. Assuming the setup of theorem [9] then we have that:

t
d X’ y’ ) 87 ) T
EX.D, B tt) = E(X . s 0) + [ EEL R0 gy (52)
0
and we obtain the following comparison principle:
lim g(Xayvﬁvsv¢70) = lim g(vauﬂasad]at) = lim g(vavﬂasawa 1) (83)
B—00 B—o0 B—ro0
B.4 Return to the Original Problem
Now, we recall that:
1 X, 84
im §(X, Y, 8,5,9,1) = Eg , max s maxHp(x,y, ), (84)
and similarly
hm f(X y Bv S ¢7 ) g hmea}((smgXHA(X Yy, 1)[)) (85)
As such by corollary [4] we see that:

Eg ,max smax?p (x,y,¢) = Er . maxs mex Ha(x,y, ). (86)
when specializing to the two different cases of s = 1 and s = —1 we obtain the following results for max — max
problems:

Eg max meax Hp(x,y,¥) =Ern max r;leafjc Ha(x,y,0). (87)
and the following result for min — max problems:
Eg,, minmax #p(x,y,9) = Ep mmin max H.a(x,y, 9). (88)

This completes the first claim of the proof.

B.5 Relating the Variance

Now that we have demonstrated the relationship between the expected values of the two optimizations, we also
with to compare their variance. To study this we consider the following object:

By (H7(%,5,9)m, 5 (89)

which in the large 8 limit will evaluate to Ey[HZ(X,¥,1)] evaluated at the optimal point of the max-max or
min-max optimization (X,y) by lemma (I} We will compute the ¢t-derivative of this quantity:

Bugig [ ax(Cex)! /y dy A(x, y)H2 (%, v, )

= Euf KH?(XJW)W% ﬂ+(371) <H?(X’y’w)w>n 6

dHt (X/a yla 77[1) > dHt (Xa Yy, 7/}) >
15,8 11,8

o 2
S <Ht (X7Y7’¢)) dt dt

+ 2]EZ/{ <Ht (X7 y)

= 25, (e ) PHETD)  , (90)
II,,8



David Bosch, Ashkan Panahi

We note that the first 3 terms are of the form of corollary [3] and will therefore go to 0 in the large 8 limit. We
collect all these terms in a constant Cj, where limg_,o, Cg = 0. We can then note that:

Eqy <Ht(X,Y)drHt<);;y7w)> , =
I,

K 2 K 2
% < (Z x" A GBy + TT[P1/2(X)’7Q1/2(Y)]) - <Z f'Bry + h{Akx>
k=1 =1
\/ﬁ \/i ( K . o L ) ( K . , >>
* ( xT A GByy + Tr[P'?(x)yQ"*(y £/ By + h Ajx . (91)
Vit V1—t Zl k ; 2 k -

We can now use the same strategy of using Gaussian integration by parts to examine each of these terms in turn:

K K
]Eu < Z XTAkGBkyXTAk/GBk/y> = ]EZ/{ < Z XTAgAk/XyTBgBk/y>
k,kI=1 I3 .8

k,k'=1
K
+\/£5Eu < Z XTA;;FAkuxyTB{Bku yXTAk/ GBk/y>
k,k' k" =1

Iy, B

K
+(s—1) < Z XTAgAk”XyTBgBMY/XTA’“/GBW>
kK k=1 2,3

K
—s< Z XTAgAkux/yTBgBkuy'xTAkrGBk/y>
ke, k' =1 1.5

kk'=1

K
- IEM< Z xTAfAk,xyTB{Bk,y> +V1C;, (92)
II.,8

and,

Eu (TP (07 Q () TP (1 Q*()]), =B <
b k

(]~
s}
=
=
o
=
=
=
\/

k=1

K
+V1BEy < > (P(X))k,k'(Q(Y))k,k’Tr[Pl/Q(X)7Q1/2(Y)]>
.8

K
+(s — 1)< > (PE)ew (QV2(y)Q(Y)kw Tr[PV?(x)7Q 2 (v)]
k,k'=1 Iz,

K
—5< > (P1/2(X)P1/2<X/))k,k’(Ql/Z(Y)Ql/Q(y/))k,k’Tr[Pl/Q(X)'YQl/Q(Y)]>
k,k'=1 3,8

k,k'=1

=Ey < > (P(X))k,/c'(Q(Y))k7kf> +VtCg, (93)
1,8
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and,

K K
EZ/{ < Z ngkyfk/Bk’y> = Eu < Z (P(X))hk/yTBsz/y
k

k=1 1,8 11,8

K

+\/ 1-— tﬂ]Eu < Z (P(X))k,k//yTBsz//yfk/Bk/y>

’ 1 —
kK’ k=1 1.8

K
+(s = 1) < > (P(x»k,myTBEBk//y'fk/Bk/y>
k,k! k' =1 .3

K
=5 < > (P1/2(X)P1/2(X/))k,k”yTBgBk”yfk’Bk’}’>
k,k' k'"=1 5,8

kk'=1

K
= Ey < Z (P(x))k,k/yTBkT.Bk/y> ++v1-— th,
1,8

and,

kk'=1

K K
IEU < Z ththk’Ak’X> = EL{ < Z (Q(y))kyk/XTAgAk/X>
.8 4§ I8

K
+\/ 1-— tﬂ]Eu < Z (Q(y))k7k//XTA£Ak//th/Ak/X>
Iy, B

kK k=1

kK k=1

K
+(51)< > (QW(Y)QW(yl))k7kf/XTA£Ak“th/Ak'X>
2,8

kK k=1

K
—3< > (Ql/Q(Y)QW(Y'))k,k"XTAfAk//X'hk/Ak/X>
13,8

K
= Bu < ) (Q(Y))k,k’XTAgAk/X> + V1 —1tCp,
k 1,8

k=1

and,

K
Ey <ZXTAEGBkyTr[PW(x)wQW(y)]> =
k=1 II,,8
k.k'=1

K
ViBEy < > XTAgAk'XyTBka'yTF[Pl/Q(X)7Q1/2(Y)]>
.8

K
+(s — 1)< > XTAfAkfxyTBkafy’Tr[Pl/Q(X)VQ”Z(y)]>
k=1 .6

K
—s< Z xTAgAk/x’yTBgBk/y'Tr[P1/2(X)’le/Q(y)]> = VtCj.
k' =1 1.3

We also see that:

kk'=1

K
Eu< > f,{Bkyh{,Ak,x> = /1 —tCs,
1,8

(94)

(95)
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and for the cross terms

K
IEJM< Z xTATGBLyfL By =V1—tCs = VtCy,

k,k'=1 .8

kk'=1

K
Eu< > TATGkahk,Ak/x> =1—-tCs = ViCs,

I,,B
K
Ey <Z Tr[P/2(x)yQ'/*(y)]yf! Bry =V1-1tCs = ViCy,
k=1 1,8
K ~
Fy <Z Tr[Pl/Q(x)»yQVZ(y)]h{Akx> =1 —tCs = VtCs, (98)
k=1 I,,B

either has a factor v/1 — t or a factor v/ depending on around which Gaussian you complete the integration by
parts. Collecting all the terms, and ensuring that all factors of v/1 —  and /% in the denominators are cancelled
we can find that:

K

Eu% <H?(X,y,¢)>nl,ﬁ =Ey < Z (XTAkAk/x — (P(X))k,k/) (yTBkBk/y _ (Q(Y))k,k’)> e
1,8

k,k'=1
=Cg, (99

where in the final equality we have made use of the definitions of P(x) and Q(y). As such, making use of the
dominated convergence theorem we can find that:

. d
lim By (M7 (%, ¥, 9)), 5 =0 (100)

Then letting (Xp,yp) and (X4,¥.4) be the optimal points of Hp and H 4 respectively, we can conclude that:
From which we can conclude that:

EG,'VH% ()A(P7 ypa ¢) = EF,HH?A(&Av y.Aa ¢) (101)
Which combined with the results of part 1 of the theorem, allows us to find that:
Varg ~Hp (Xp, ¥p, ) = Varp aHA(XA, Y 4,7). (102)

C Proof of Theorem 2|

This proof proceeds in much the same manner as the proof in section [B] In this case we consider the primary
optimization given by:

Hr(x,y,v) = xT (/0 ATGBL)y + (x.y). (103)

We define a similar function ¢ defined by

f(X y 673 '(/)7 ) G F, H6| | log </X dX (A dy eﬂﬁt(x’%w)) ) ) (104)
where
~ K ~ K
Hi(x,y,0) = (x,y) + Vi | Y x"ALGByy | +V1—1 [Z £ Bry + h%Akx] : (105)
k=1 k=1

We can compute the t-derivative of é , using the same methods as described in section and we can find the
following:
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dt = 2 Z XTAgAk/XyTB{Bk/y — (P(X))k’k/yTBgBk/y
k,k'=1

dE _ Bsin(s) < S

_(Q(Y))k,k’XTAgAk/X>Hhﬂ

K
+(s—1) < Z xTAT Apxy'BiBry' — (P(x))k’kzyTBkazy’
koki=1

_(Q”Q(.Y)Ql/Q(Y’))k,k'XTAfA’“’X>n2,ﬂ

K
_S< S xTATApXy"BIByy — (PY2(x)P2 (X))t 0y B By’
k,k'=1

_(Q1/2(y>Q1/2(yl))k,k’xTAgAk’X/>H3 [3:| . (106)

We can note that all terms are the same, except we do not have the terms that relate to . By corollary |3 we
can similarly find that

lim — =0. (107)

The same arguments as in section result in the following two results. In the case of s = 1 and ¢(x,y) is
strictly concave in both x and y

Es maxmax Hr (x,y,9¥) = E axmax H 4(x,y, V), 108
G maxmax Hr (x,y,¢) = Ep.p maxmax H(x,y, ) (108)
and similarly in the case where s = —1 and ¥(x,y) is strictly convex in x and strictly concave in y.
Es minmax Hr (x,y,9) = E min max H 4(x,y, ). 109
& min max r(X,¥,9) F 1 in max Ay, ) (109)

Which completes the first claim of the proof.

C.1 Relating the Variances

The proof for comparing the variances is completed identically to the one discussed in section All terms
remain the same except we are now missing terms with respect to 7. Collecting all of the terms we can find the
following:

d .
aEU <Ht2 (X7 Yy, ¢)>H1,B
e <ZXTA£A’“XYTB’“B’“’Y ~ Py BiBry - <Q<y>>k,k/xTA£AkfX> +Cp
k,k’ m,5

= —-Ey <Z(P(X))k,k’(Q(Y))k,k’> +Cp
1,8

kK’
= —Ey (Tr[P(x)Q(y))m, s + Cs- (110)

Where in the third line we made use of the definition of P(x) and Q(y). We can now note that P(x) and Q(x)
are PSD matrices, and the trace of the product of two PSD matrices is always a positive number. As we can
therefore conclude that:

. d ~
ﬁhj& @EM <7'[?(Xa§’a7/))>n1,g <0. (111)
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Then letting (Xg,¥xr) and (X4,¥.4) be the optimal points of Hr and H 4 respectively, we can conclude that:

Which combined with the results of the first part of this theorem allows us to conclude that:

VargHr (xR, ¥R, ¢¥) < Varp uH A (X4, Y .4,1). (113)

This concludes the proof.

D Proof of Theorem [3l

To prove this statement, we consider a small value of ¢ > 0, and instead consider the function ¥.(x,y) =
Y(x,y) + ed(x,y). Provided that € is sufficently small Hp and H 4 remain strictly concave in y. We then
denote by (X%,¥%) as the optimal point of Hp(x,y,G,~,%.) and similarly (x,y¢) as the optimal point of
HA(X’ y,F,H, '(/)e)

We can note that because Hp and H 4 are finite, and continuous, due to the continuity of ¥ and ¢, for all x
and y in some small neighborhood around the optimal point the value of Hp and H 4 remains finite. Provided
that e is sufficiently small, and by the fact that ¢ is bounded, Hp and H 4 evaluated at the points (X%,¥%) and
(%54, ¥5) respectively will also be finite.

We can then see that:

2 S d SE€GE : H ﬁ€7A6aG7 ) Ve - Hp(x 7A )G, )
6(Xp,yp) = ZHp(Xp, 95, G, v, 0e)| = lim P(Xp: 95, G, ¥e) — Hp(kp, 97, G, 7,9) (114)

=0 e—0 €

We can then further note that:

d SE GE d SE €
&EG,’YH'P(Xpay’Pa Gavawé) = EG,’yaH'P(vaypv G7’77 1/16) (1]‘5)

This may be readily observed by the dominated convergence theorem theorem by the fact that ¢(x,y) can be
upper bounded by |||, for all x € X and y € ), in other words we can see that

HP()A(;Dvyepv G777¢6) S 7‘[73(5(7975’7?7@'»%77[1 + € ||¢||oo) < 00. (116)

As such we can then finally conclude that

5 o d SE GE d SE GE
EG,’7¢(XP7 YP) = ]EG,’Y %HP(X’P7yP7 G7 g ¢E) = &EG,’YH'P(Xpa Ypr, Gu g we)
e=0 e=0
d SE GE S ~
= %EF,HH.A(X,A7yAaF7H;¢e) = EF,HQS(XAay.A)' (117)
e=0

The same argument may be repeated for the second claim concerning Hx.

E Proof of Corollaries [1l and 2]

E.1 Proof of Corollary

We consider the trace form of interest in this case Tr[XTGY], where X € R"** Y ¢ R™**¥ and G € R"*™
with i.i.d. standard Gaussian entries. We note that we can express this form as a GMS, as follows:

k

Tr[X'GY] = xT (Z AZTGB1> Y, (118)
=1

where x € R™ = vec(X) and y € R™* = vec(Y), and A; € R"*" B; € R™k*™ are given by:

(Al)an—l-b,c = 5a,l5b,c (Bl)am+d,e = 6a,l5d,ea (119)
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where a € [K],b,c € [n],d,e € [m]. We can see that in this case that the elements of (P(x));; are given by:

k n
(P(x))r =x" AT Apx = Z Z Xan+59a,106, ¢0a’ 100 cXa/ntb = len+bxl’n+b (120)
a,a’=1b,b',c=1 b=1

Or equivalently we can see that P(x) € R¥*¥ = XTX. Similarly we can see that Q(y) € R*** = YTY. We can
then note that by Theorem [2] that the first terms of the alternative optimization are given by:

k
> fBly+hiAx
k n m
= Z Z Z Fl,d(Bl)d,an—i-EYQn—i-e + Hl,b(Al)b,an-‘rchn—i-c
a,l=1b,c=1d,e=1
k n m
= Z Z Z (PY2), 0 Fy a(B)danteYante + (QYV2)rHy o (ADb.antcXante

k n
=3 D > (PP ayimsa + (QY) i Hi pXin v
b d

= Te[(XTX)V2FY] + Tr[(YTY) Y 2HX]. (121)

Where in the second line we made use of the definitions of F, H with columns f;, h; respectively. In the third
line we made use of the definition of F = FPY/2 and H = HQY2, where F € R™*** and H € R™** have i.i.d.
standard Gaussian entries. In the fourth line we made use of the definitions of A; and B;, and in the final line
the definitions of P and Q.

E.2 Proof of Corollary
We consider the complex bilinear form of interest for this special case:
T
X1 G -—-H| |y
)R a2

where x1,%x2 € R, y1,y2 € R™ and G, H € R™*"™ are i.i.d. standard Gaussian and independent. We can first
note that the Gaussian matrix can be expressed as a GMS:

G -H I, O G 0, -1 G
=" " I, O, —I—[ " n} |: ] 0, IL.|. 123
{H G] {On IJ [H}L,_l 1, o, |m| O In] (123)
T B, ﬁ,_/ B,
1 2

We can see that in this case that P, Q € R?*? are given by:

_[lI=® 0 _ Iyal® ¥y
P(x) = 2 Qy) = |7 2| - (124)
0 x| yiyz |lyell
Where x = [x¥ xI]7, and similarly we will define y = [y{ y2]7. We can then see that the alternative

optimization take the form
(fIBY + By + (hTAT + h]AT) x. (125)

f h

We can note that f is zero mean and has covariance:

2
= Y PuBiBl = x| L, (126)

i,i'=1
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and similary h is zero mean and has covariance:

2 2 T

+ ly2)L,  (yiy2 —y1y2)In 2

) = 3 QoA = (0 : — Iy . (127)
”z,:l o (yTy2 = vyl (Iyal* + ly2l*)Tn L

As such we can finally conclude that the alternative optimization will take the form:
Il £y + [lyll, h"x, (128)

where f € R?2™ and h € R2" have i.i.d. Gaussian entries.

F Applications

In this section we consider the applications discussed in section [b] where we apply our CGMT extention and
simply the results. We take a similar approach to simplification of the alternatives as (Loureiro et al., 2021}
Bosch et al., 2023).

F.1 Vector Valued Regression

We recall the optimization problem of interest in this case:

min max
@cRmxk ZeRnxk nK\/m

THZTXO)] - niKT 7Y~ o 1ZI% + —R( ). (129)

We will assume for simplicity that R is strongly convex. We then further recall that we choose the following

model for the labels Y = X©* + N, where N € R™*¥ is zero mean noise, with %ENTN = Y. We therefore
obtain:

1
Tr[ZTXE] — —kTr[ZTN] - — ||Z||F + —R(E +O%). (130)

min

1
EeRka ZE]RTIXIC "’LK,V/

where E = ©® — ©*. We first show that this problem can be restricted to compact and convex sets:
Lemma 2. Let E, 7 be the optimal values of (130)). Then there exists positive constants Cx and Cgz such that:

(o], <o) 2on (el < ond) Lo o

m—r 00

Proof. We can first note that by the strong convexity of the optimization problem with respect to E that the set
of minimizers is a compact set, as such there there exists some constant Cg that is independent of m, such that:

HEH2 < Cgv/m. (132)

We can next consider the optimality condition for Z, taking the derivative we can find:
. 1
Z=—XE-N 133
J=XE-N. (13)

we can therefore see that

1Z1l; < —= Xl [[Ell; + [N, - (134)

1
vm
We can note that X and N are random matrices, whose operator norms are bounded C'/n in the limit of large
n, for some constant C' by classical results in random matrix theory (Vershyninl 2018]). We further know that
IE|| < Cr+/m with high probability, as such there exists some constant Cz independent of n such that

Pr(|Z]|, < Czv/n) % 1. (135)

O
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As such we can construct sets Sg = {E € E™*X | ||E||, < Cgy/m} and Sz = {Z € E"*¥ | |Z|, < Czy/n}
and reduce our optimization to the following form:

min max
EcSg Z€Sz nK+/m

Tr[Z" XE] — %szN] -— ||Z||F + —KR(E +O"). (136)

We can now apply the special case of our novel CGMT extention to this setup to obtain the following optimization:

1 1 1
Z"7)'/°FE Tr[(ETE)'/?HZ THZTN] - —— | Z|% + —— R(®). (137
iy i — o T(272)!°FE) + o T{(E7E) *HE] - [ {ZTN] - o |20+ s R(O). (137)
We now let A = T(ZTZ)l/2 and B = \/IE(ETE)I/2 and we reintroduce these constraints using Lagrange
multipliers A and B:
1 1
i ———Tr[AFE| + —Tr[BHZ ——T Z'N] - — ||Z —RE CH
nin, max o THAFE] + e T{BHZ] - 5 T(Z7N] - o |l I + (E+©7)
1 AAT T 1 5 T T
+2KTr[A(A A nZ Z)] + 2KTr[B( E'E-B'B)|. (138)
We can then solve over Z to find
Z=(I+A)"'(H"B-N). (139)
Substituting we obtain:
1 _ 1 1 _ 1
i — Tr[AA"A -BB'B Tr[AFE Ti[BE"E] + — R(E + ©*
i a5 r| ]+Kr r| ]+ Kr[ ]+mKR( +©O%)
—i—ﬁT‘r[(HTB NI+ A)" ' (H'B - N)]. (140)
n

We can then complete the square over E to find:

T
1 1 _ _ _
min max — Tr[AATA - BB"B] + — Ti[(E— ,/ “FTAB~') B(E” - ,/ZB'AF|]
E.B,A AB 2K mK n n

+ER(E +©*) — Tr[FTAB'AF] + Tr[(H'B - N)'(I+A)"'(H'B - N)]. (141)

2nK 2nK

We can reintroduce ® = E 4+ ©* and recognize the Moreau envelope over R to find:

1 m _
— Tr[AATA —-BB”"B| + — e —,/—FTAB™!
BRRE ™ e (0=

_ 1 A—1
2nKTr[FTAB AF] + 2nKTr[(HTB -N)T(1+A)"'HTB - N). (142)

Then in the following lemma we show that this result concentrates for large values of m,n.

Lemma 3. Consider the term:

o 1= _ 1 / =
F(A,A,B,B) = ﬁTr[AATA —-BB'B] + Mz r (@* - 7:FTABl)

an Tr{FTAB™1AF] + an T{H"B-N)"(I+A)"'(H"B - N)], (143)

and let F' be given by

o 1= _ 1 / =
F(A,A,B,B) = ﬁTr[AATA - BB'B] + m—KEMB R <@* - ZLFTABI)

M opagoars L s At
KT’I“[AB Al+ 5% T{(BB+X)" (I+A)""]. (144)
Then

min max F ———— min max F. (145)
B,A AB n,m—oo B, A A B
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Proof. We can see clearly from standard results in probably theory (Vershyninl 2018]) that

%Tr[(HTB ~-N)T1+A)"'H'B - N), (146)

will converge to
Tr(B"B+X)(I+A)7"], (147)

in the limit of large n, where %EHTH =TI and %IENTN = 3. Furthermore, Moreau envelopes of Gaussian
variables will concentrate on their expected values as the dimensions of the problems increases, see for example
(Loureiro et al., 2021)[Supplement, lemma 5.]. As such the concentration of F to F' is pointwise. Using similar
arguments to lemmawe can bound A, A, B, B to convex sets. We can then find from the well known result that
convergence of convex functions on convex sets implies uniform convergence, (Andersen and Gill, |1982))[appendix
2], to conclude that

min max F’ N min max F. (148)
B,A AB nm— BA AB
O
As such we obtain the following optimization:
min max LTr[AATA - BB'B] + LIE./\/l B o -, /IFTAB™!
B,A A,B 2K mK B R n
m — 1 _
- Tr[AB'A] + -——Tr[(BB+ =)/ (I+ A)~ ). 14
S THABTA] + o T(BB + )7 (14 A) ) (149)

We now wish to solve over A. To accomplish this we need to interchange the order of the min and max, this can
be justified, principally on the convexity/concavity of the problem and the fact that the problem can be reduced
to compact convex sets. We do not prove this here, but refer to (Loureiro et all 2021])[supplement section B.4]
where a similar argument is used in their simplification of the the CGMT alternative. We now solve over A to
find:

A=A"'BB+X)2 -1 (150)
Substituting we obtain:
min ma —iTr[ATA] - iTr[BBTB] + LEM* o — /| ZFTAB!
B AB 2K 2K mK  BR n
_m B-1A]+ L 172
2nKTr[AB Al + KTr[A(BB + X)L (151)

We can now specialize to the case of R = $Tr[@AGT] where A € RF*K_ We return to equation and
substitute in this value

1

K/mn
1 1

Tr[EAET] + — Tr[EA®*] + —Tr[A(BB + £)'/?]. (152

r| ]+mK[ @]+K[( +3X)77 (152)

Tr[BETE]

Tr[AFE] +

1 1 1 _ 1
i Tr[@*A®*T] — —Tr[ATA] — — Tr[BB”B

wimax oK HOTAST ] - o AT Al - S T I+ omK
1

+ 2mK

we can now solve over E to find

E=(B+A)" {A@* + /mAF} : (153)
n
and substituting in this value we obtain:

. 1 * *T7 i T 7 i RRT i 1/2
min max KTr[@ AO™] 2KTr[A A] 2KTr[BB B]+KTr[A(BB+2) ]

B AB 2m
QTiKTr[(A@* + ﬁAF) B+A)" (AG)* + \/TAF)]. (154)
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Using the same arguments as lemma [3| this concentrates to:

1 _ 1
: * «*T7 _  — T - T . 1/2
1111311112%( 2mKTr[® AO] 2KTr[A A] 2KTr[BB B] + KTr[A(BB+2) ]
1 1 m _
——Tr[| —A®*TO*A+ —AA ) (B+A)Y]. 155
0o +TAA) (B4 A) ] (155)
We can now solve over B to fin that
B 1 m 1/2
B=B"! (A@*Te*A + AA) — A, (156)
m n

from which we obtain:

1 1 1
* «T TR _ T 1/2
Tr[©°A®"] + - TAB"B] - —-TrATA] + -Tr[A(BB + %)/

. 1
min max
B A 2mK

1 1 m 12
——Tr[B| —A®*" O"A + —AA . 1
e [ (m + p ) ] (157)
F.2 Complex Regression
We recall the optimization of interest:
o v ] [ &[] - g+ g (159

We recall that we choose the following model for the labels y = (G + iH)0* + v, where v = vy + iv, is zero

mean complex noise with variances 012,1, . We therefore obtain the following model

T
1 VAl G -H (S3] T 1 1 *
elgilean 21,2 CR dny/m [ZJ [H G } {92} “V T Izl + QmR(e +07), (159)

where e = 8 — 0*. In the following lemma we show that the problem can be restricted to compact and convex
sets:

Lemma 4. Let &,z be the optimal values of (159). Then there exists positive constants Ce and Cy such that:

Pr([e]l, < Covim) ——— 1, Pr(|lz], < Cuv/n) —— 1. (160)
Proof. The proof is very similar to the proof of lemma [2| we do not reproduce it here. O

WE can therefore defin the sets Se = {e € R?™ | |le| < Cy/m} and S, = {z € R*" | |z]|, < Cy/n} for some
constant C. Our optimization is therefore of the form:

1 [z [¢ —H][ei] , 1 1 .
érégl%?sx dny/m {ZJ [H G} {62 ™ Izl + ZmR(e+0 ) (161)

The objective is now in a form where we can apply a special case of our CGMT extension, corollary [2| we obtain
the following optimization:

1
i v el - Rle 6%, (162)

min max

1 T
€|, Z
min max o ——r— flef, 2" g+ ﬁll In*

we now define 3 = \/%TL ||z||, and solve over z:

W S R o), (163)
2

min max

b prey L | L je|g
e€Se >0 /Anm \/ﬁ \/%

2 2m
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Using similar arguments as in lemma [3| we can show that in the large n, m regime the 2-norm will concentrate
on its expected value. As such we consider the following optimization

2
1
e+6\/||e|| +o2 +0327ﬂ—+—R(e+0*). (164)

min max

B
e€Se >0 /Anm

We then introduce ¢ using the square root trick:

/8 B T /8(0-12/1 +012/2) 52 1 *
eersrll,rql>o%1§5(7+ Wh et || 2 +T 7+%R(e+0 ). (165)

We can now complete the square over e

Bq aym ﬁqm L Bloy o) B2 1 .
eerslrllg>0 max + Tqm + Jn h |h| + 5 Y + —R( +6). (166)
We then reintroduce 8 = e 4+ 8* and note the Moreau envelope over e
Bq ﬂqm Blof, +op,) B 1 . aym
minmax IBl® + 2 > PopMer\O - ah) (167)

Finally using similar concentration arguments as lemma [3] we obtain the following optimization:

. Bq Bgm Boi +o2) B> 1 . qym
X S~ o T T oy 5 T My e\ 07— T )

(168)

Furthermore, when specializing to the case that R(8) = 5 16|?, we can find the following. Returning to equation

(165), we find

Bq B T B 2 B(Ug +012/) 2 A el A 2
B S R My 7mmee i el b B 5+ 4 lel* + 5 —e"o" + (6% (169)

Solving over e we find:

e:—ﬁqu[ 0" B\/*/?h}. (170)

Substituting and taking the concentration we finally end up with:

Bq  Blog, o) B° BA 5 qB*m
P4 P\ T Ty AN = 171
mma S g > T g 10 sy (171)

F.3 General Applications

For the application to the case of convolutional regression we can note that the generic version of the problem
that do not have a special case as given by corollaries can be expressed as:

2

X6 —y|| + R(6), (172)

eeRM 2N H

where X € RV*M and y € RY. In the case of convolutional regression N = nD;Dy and M = kiko, and
X € RnP1P2xkikz g defined element wise by:

n d1 d2
(X)aD1 Da+BDa+7,mka+e = Z Z Z a)bc0a,a084n,b0y+¢,c; (173)

a=1b=1 c=1
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where each X; € R%4*92 for j € [n] had i.i.d. standard Gaussian elements. We consider the generic setup of
equation ([172)) first before specializing. We can first note that we can rexpress this optimization as a min-max
problem:

1 T 1 T
oDin, max ——r? X0 — 7 y—*H 73 + R(O). (174)

We now assume that X is a GMS of order K € N and takes the form X = Zszl ATXB,, for some X € RN xM

and each Ay € RV*N and B € RM*M  We will further assume that y = ﬁf(@* + v, for some true parameter

6* and some zero mean noise v € RY with covariance 3. We therefore define the error vector e = 8 — 6*. In
the lemma below we show that this optimization can be restricted to compact sets:

Lemma 5. Let &,z be the optimal values of (174]). Then there exists positive constants Ce and Cy such that:

Pr (|\é||2 < Ce\/M) — 2 51, Pr (||2\|2 < CZ\/JV) 1 (175)
M—o0 N—oo
Proof. The proof is very similar to the proof of lemma [2] O

As such we can construct two sets Se = {e € RM | e, <CVM} and S, = {z€ RY | ||z||, <Cy/n}. Our
optimization takes the following form:

S 1
gel}sn max N\/ﬁ 7z’ Xe — NZTV - — ||z||2 + R(0). (176)

We can now apply our novel CGMT extention to obtain the following alernative optimization

min max

ecSeze€S, N/ M

Zf,;’“Bke thAkz— —zTv— — ||z||2+R( ). (177)
=1

Next, we recall that E[fify/] = zTAgAk/z and E[hihy/] = eTBka/e. We now define Py = %ZTAfAk/z
and Qg p = ﬁeTBEBk/e, where P, Q € BKXK._We note that these are PSD matrices. We reintroduce these
constraints with PSD lagrange multiplier P and Q respectively:

1
min ma; min ma, fTB e—|—— hAz——zTV—— zl|5 + R
L e s i i/ B kz TAw— 213 + R(6)
K 1 1 & 1
5 TAT A TRT
+ow ZPk,k' (Pk,k' Nz Aj Ak'Z) tox ZQk,k' (Me B;Bre— Qk,k/) : (178)

ke k! ok

We now note that E[fyfy/] = Py and Elhihy] = Qg r. We can now solve over z, to find that:

—1

K K
1 _
2= |1+ k} Py AT Ay <k§1j AThy — u> : (179)

Substituting in this value, we obtain:

K
kaTBke+R<0> Ty[PP - QQ| + Z Qrwe’ B Bye
=1

min ax min
Q, PE]RKXK P QERKXK ecSe ,/

K T K -
1 1 _
o (Z Alhy, — u) I+ 7 Z okt AL Ay (Z Alny, - ,,) . (180)

k=1

?T‘
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We can now complete the square over e to find that:

. . 1= ~
Qi dRax min R(O) + 5 TrPP - QQ

-1
K K K
1 IM [ 1 ~ 1 -
m e+ N ? E Qk,k/BCISBk’ ( E Bgfk> ? E Qkyk/Bsz,

k,k/ k=1 k,k/

-1

K T K K
1 1 -
+ﬁ < E Ath - V) I+ E E Pk,k/AgAk/ ( E Aghk - I/) . (181)

We can recognize the Matrix Moreau envelope over e, simplifying we obtain:

1 _ _
min max —1Tr|[PP —
Q,PERKXK P7Q€]RK><K 2 [ QQ]

—1
K
1 /M .
MM(% S QuwBI By ) R(+6%) | ZQ’“ vBi By (Z ka’“)

k k' k=1

K 1k
k ) ( Z Qr.w'Bj B <ZBffk>
Kk k=1
1 &
+=3"h
wt

1 K T 1k
tox (Z ATh, — u> I wAT A (;1 Alh, — u> . (182)

Using similar concentration arguments as used in lemma[3] we can note the concentration of the Moreau envelope
and the quadratic form, we therefore consider instead the following optimization:

1 _ _
min max —Tr|[PP —
Q,PcREXK P, QeRExK 2K [ QQl

-1
K K

1 /M [ 1 - T T

MM(% Zﬁk/ Qk,k’BgBk/) R(-+6%) - N E Z Qk,k/Bk Bk;/ (; Bk; fk)

k,k’

—17
1 K
T ! T
_WTI‘ ;c:lpk,k/Bk Bk Z k’Bk Bk-/
-1
1 T
o T 2+§Qk,k/AkAk/ kz Py i AL Ay . (183)

To simplify this further we let C =1 + % Dok pk,k/AgAk/ and reintroduce this constraint with a Lagrange
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multiplier D

1 _ _
~ min ~ max —Tr[PP — QQ)]
Q,PEREXK CERNXN P QcRK XK DERNXN 2K

1
K K
1 M[1E . L .
MM (5t auptey) eson | TV | & 2 Qe BiBe (;ka'f>
—17

K
1 1 _
——Tr § P 1vBiBK 75 Q1. Bi By

2N
k.k’ L
+LTI‘ X + Z Qk k/ATAk/ C_l + i’]._‘I'DC: — ir]:‘I'D - L Z -Pk k/TI‘DATAk/
2N A 2N 2N 2KN & " S

We can then solve over P, to find that:
1
Pk,k/ = NTTDAzAk/'

Substituting we can find that:

max - iTlr[QQ]

min
QERKXK CERNXN QeREKXK DeRNxN 2K

1
K K

1 M(1E L, .

M55, 0Bty reson | TV W | T 2o @erBiBe (Zkak>

kK’ k=1
—17

K
1 1 1 _
—oy ;k, (NﬂDA{Ak,) BIBK | | — }l l; QrwBIBy

1 1 1
+o=Tr | | B4 ) QuwA{Ap | C'| + 5 TrDC — S TrD.

2N 2N 2N
k,k/
We can now solve over C to find that:
1/2
cC=D1?2[xz+ Z Qr AL Ay
k, k!
Which after substitution, we obtain:
) 1 _ 1
min max -—Tr[QQ] — —=TrD

QERKXK QERKXK,DG]RNXN 2K 2N

1 M[1E K
T — -_— — 9 ’ T / T
M (x5, auenrsy) v | VW | & g Qi BBy, (; B/ fk)

—17
K
1 1 1 ~
——Tr E <NTI'DA,£A]€/) BZB]{J/ ? E Qk,k’BZBk’
k,k’ LU

1/2

1
+NTI'D1/2 > + Z Qk,k'AZ;Ak'
k,k’

(184)

(185)

(186)

(187)

(188)
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For Convolution, we also specifically consider the case where the regression is a square function. We will choose
, and specialize the form of A in each of the cases discussed below. The

R(0) = Q}VIOTAH where A € RM*M
Moreau envelope for this choice takes the form:

-1
K K K
1 M (1 _ 1 _
EQk wBIB <§ Bffk> EE QriwBIBy
k=1 k&’

otV |\ ®

koK’
-1
M1 E L L T 1 T
x et/ & E%Qk,k’BkBk/ ;kak + 5y (e+0) Al +67). (189)
Which has the optimal solution:
-1
K
(190)

e=—

K
1 ~ M
7§: ‘BTB,. ABQ* ,/f§ BTt | .
+Kkk/Qk,k x Bk < + N 2 % fx

and optimal value:

T _1
*T * 1 = T 1 = A T = T
—0"TA0" + — [ > Blf ?ZQk,k’BkBk/ > Bif
k=1

M 2N
k=1 kK’

1 [M & ! 1 & - [M &
* T 2 T * T
_7M (AG + F ]}zl Bk fk> A+ E E Qk,k’Bk By <A0 + F ];:1 Bk fk> . (191)

kK’

By arguments similar to those used in lemma [3} this value will concentrate on
-1

1 1 1 1 ~
g0 A0 = ST | Y (NTrDAf Ak,) BiBK | | =D QuB{By
k,k’ NG
K -1
L[ aereTasd Z TYDATA NBTB, | [A+ L > QuBIBy (192)
oM N 2 k L Bk K . LBy by
Substituting in this value we obtain:
ax L —0*AO” L Tr[QQ] — L TrD
min m — —Tr —Tr
QERKXK QeREXK DeRNxN 2M 2K 2N
-1
1 1 ~
_WTI' AG* O*TA+ 72 ( TI'DAk Ak') BTBk/ A—|— XZQZJ/B;TBI/
kK’ L
1/2
(193)

1
+NTI'D1/2 E+ZQk,k’AgAk’
k,k’
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We next define E = A + % Zsz/ Ql’l/BITBl/ and reintroduce this constraint with F

1 1 1 1
L gae— L —TtD — — TrFE + — TrFA

Qerc B oo qerroo DERRSN memnn 20 2 HQQ) = oD — 5 TFE + T
L o[ aeema+ %Z L npara, ) BTB, | B + LZQ /TYFB! B/
2M N N AR B IMK e,k kR

k,k’ kK’

1/2

1
—|—NTrD1/2 >+ Z QrwAF A,
bk’

We can now solve over Q to obtain:
1 T
Qi = M’HFBk By .
Substituting we obtain:

1 1 1 1
—0*A0" — —TrD — —TrFE + — TrFA
FE]RMHXM DeRNxIJIvl EecRMxM 2N 2N ! 2M r * 2M :

1
——Tr || AO*OTA + — Z ( TrDATAk/> BB, | E7!

2M
1/2
1
—s—NTrDl/Q >+ Z ( TrFBY B, ) AT A,
kK
Finally we can solve over E to obtain:
1/2
M
_ —1/2 ‘A4 L T T
E=F AO*6*A N;( DA’ Ak,>BkBk/
Which after substitution gives us:
IR oIS 53707 A0" — 5D + 5 TFA
1/2
1 1/2 1 T T
++Tr D >+ M;;Tr[FBkBk,]Ak A
1/2

1 M
—af FY/2 | AO*0"TA + 7 > Tr[DA{ A B/ By
k.k’

. (194)

(195)

(196)

(197)

(198)

Finally we introduce S, T such that S”S = F and T7T = D, so that our optimization can be expressed as:

1 1
*T * T T
s s p B 2M0 AG" = SN TIT T + 5y TS SA]

1/2
1 1 E T T T
+NTI' T E+ 7kkl TI'[S SBk-Bk"]AkAk’

1/2

1
—7Tr |8 AO*O°TA + —ZT [T"TAT A |BI B,

k,k’

(199)
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F.3.1 Convolutional Regression

In this we recall the following, we have K = kiko classes, the value of N = nD; Dy and the value of M = kjks.
We also recall that A, , € RnP1D2xndidz anq b, € R**1%2 are defined by:

(A%V)llDlD2+ﬁD2+%ﬂd1d2+bd2+c = §a,a6B+w,b5’y+u,c,
(bw,u)nkz-i-e = 0uw,nle,v, (200)
where a,« € [n],8 € [D1],v € [D2],b € [di],c € [da],n,w € [k1],€,v € [ke]. WIill also for convenience introduce

A, v E RDlD?Xd1d2 defined element wise by (A 1)8Ds++,bda+c = 08+w,b0v+v,c, sSuch that A, , = Aw’u ®1,. We
can then note that our optimization takes the form:

1 1
i *AO* — ———Tr[TTT Tr[STSA
SER’CIII}CIZQM’Q TGR"'DIII’}:)a2§"D1D2 2]411]626 0 2nD1 Doy I'[ ]+ 2]€1k2 T[S S ]
1/2
+ Tr [T =+ Tr[S”Sb,, bl AL AL .
nD1Dsy klkg % ’ ’ } ’ ’
feiks o 2 v
Tr A6*0*TA L2 Tr[TTTAT , , , . 1
T [s (AveTas e 303 T TAL Avilbusbl (201)
Here we can note that:
(Bu,ubLr oy nks teater = Onewbew Ot o Ser - (202)
We can then define two matrices:
1 k] kz
D1DyxD1Day _ T AT A
(U € RV1H2 ! 2) = k‘1k‘2 wzu;yz;(s S)wk2+u,w/k2+u’Aw,yAw,u
1 S
(Ve Rklkzxklkz)nkl+w,k2+u, -5 Tr[TTA;éA,,,,E,] (203)
12

where T®I,, = T. We finally assume that £ = X ®1,,, where 3 € RP1P2XP1D> We can then find the following
optimization:

1 1 s 1
0TA0* — ——T[TTT Tr[STSA
sepiin, L, FeRD1 L D103 2h1kg 2D, D, T + 2k ks r ]
1 ~ [~ 1/2 1 kiko 1/2
Tr |T (2 U) — — Tr|s(A66*TA \% . 204
+D1D2 : |: + :| kle ' ( + nD1D2 ) ( )

Similarly, for the case that contains a general regularization function, rather than the specific choice of the square
regularizer, we can find the following form:

1 1 0'2 1
i T UP-VQ| - ——Tr [PV LT [(1 D)"'|
Q,Unelg}iwz P,VH;Z}E]’@ 27 [k‘1k’2 Q} 2nD1 Dy | J+ 2D,D, (Ip:p, +D)
k1 ko
1 kiko 1
—E. M 0 — wrV by,
1 o
-1
200, wgll,;lQmﬁwlkﬁylA vAuw | @pip, +D) 1| . (205)
Here g € R¥¥2 is a zero mean Gaussian vector with covariance E[guky+v 0w kstv’] = Poks-tvw kv’ fOr w w' €
[k1], v,V € [ko], and D € RP1P2xD1D2 g defined by:
1 k1 ko
= Tk Do Y Uskarbariarv ALyAu (206)

a,a’=1b,b'=1
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G Numerical Simulation Details

For figures[I] [2] and[3] we compare the expected generalization error for both the primary and CGMT alternative
optimizations.

For the primary optimization we make use of CVXPY (Diamond and Boyd), 2016; | Agrawal et al., 2018]) to directly
solve to the optimization for Gaussian data x and labels y generated according to the rule specified in sections
Each primary optimization was repeated 100 times for different instantiations of the Gaussian data, and were
averaged to approximate the expected value.

For the alternative optimizations, we do not make use of CVXPY, but instead solve optimizations by means of a
fixed point iteration strategy, similarly to (Loureiro et al., [2021). As an example we will consider the specific case
of the vector valued regression. Recalling equation , we can note that this optimization can be equivalently
expressed as:

min max
QUeSE P,VesK 2m

Tr[A®*TO*] + %Tr[QA - P+ %Tr[U*P -vlQ] + %Tr[U(E + Q)]

1 m 1 *T" oy *
We can note this equivalence by solving over V and U, and then defining S, T € SI such that Q = ST'S and

P = TTT. By taking the derivatives with respect to the four parameters Q, U, P,V we can find the following
set of equations:

U= [(BV 4+ 1], (208)
V= [U+A, (209)
Q= V[ZP+AOTOA|V, (210)
P= U[Z+QU. (211)

By starting with an initial guess of U = V = P = Q = Ix and repeatedly iterating this set of equations
the values of U, V, P, Q converge rapidly to their unique solution. Furthermore as all matrices involved in the
iteration are PSD, this invariant is maintained at all steps of the iterations, in contrast to gradient methods
which require projection onto the PSD matrix cone at each step of the iteration. Similar fixed point equations
can be readily found for the complex, and convolutional cases discussed in section
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