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From ecology to engineering: the role of myxobacteria in 
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ABSTRACT Open microbial communities play vital roles in many engineered systems, 
providing essential ecosystem services but also posing operational challenges. In 
recirculating aquaculture systems (RASs), microbial activity is crucial for water purifi­
cation, yet it can also lead to the accumulation of taste-and-odor compounds that 
compromise fish quality. In a recent study, Södergren et al. (Appl Environ Microbiol 
91:e00757-25, 2025, https://doi.org/10.1128/aem.00757-25) report the first successful 
isolation of myxobacteria from RAS and demonstrate their ability to produce geosmin 
and other volatile organic compounds under various nutrient conditions, including 
in real RAS water. This work provides foundational insights into the ecological roles 
of myxobacteria and their contributions to off­flavor formation in aquaculture environ­
ments. In this commentary, I reflect on the broader significance of microbial ecology 
in environmental biotechnology and discuss how the findings of Södergren et al. may 
inform future strategies for managing microbial communities in RAS to improve system 
performance and product quality.

KEYWORDS myxobacteria, geosmin, recirculating aquaculture systems, microbial 
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E nvironmental biotechnology relies on the management of open microbial commun­
ities to deliver services such as water and wastewater treatment, pollutant degra­

dation, energy and food production, and public health protection (1). I propose that 
advances in environmental biotechnology can be illustrated by a conceptual model 
comprising three interlinked components: microbial ecology, simulations, and engineer­
ing (Fig. 1a). Microbial ecology provides the foundational understanding of microbial 
interactions and functions (2). This knowledge enables the development of models that 
simulate microbial community responses to environmental conditions. These simula­
tions, in turn, guide the engineering of systems that harness microbial processes 
for specific outcomes, such as water purification in recirculating aquaculture system 
(RAS). The cycle is iterative: insights from engineered systems feed back into ecological 
understanding, refining both models and designs. This integrated approach has driven 
significant advances, for example, new and improved technologies for nitrogen removal 
from wastewater and valorization of organic waste streams (3, 4).

RAS is a technological system for food production in which open microbial communi­
ties play essential roles. By continuously recirculating water, the system enables fish 
farming with minimal water consumption (Fig. 1b). However, fish feces contaminate the 
water, necessitating microbial processes for purification. Nitrification is particularly 
critical for reducing ammonia toxicity (5). While microorganisms are vital for maintaining 
water quality, they can also pose challenges. Pathogenic microbes may cause disease 
outbreaks (6), and certain microbial metabolites, referred to as taste-and-odor com­
pounds or off­flavors, can accumulate in fish tissue and render it unpalatable (7). A 
common mitigation strategy is depuration in clean water for several days to weeks while 
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depriving the fish of food. This consumes large volumes of clean water and leads to 
weight loss in the fish (8). Consequently, depuration has economic implications for fish 
farmers, reduces RAS efficiency due to high water consumption and lower product yield, 
and may negatively impact fish welfare through stress associated with handling and 
starvation. With global fish demand projected to double by 2050, and aquaculture 
expected to meet this need, RAS is poised to grow (9). A deeper understanding of the 
underlying causes of taste-and-odor issues and the development of effective mitigation 
strategies would benefit the industry.

Geosmin and 2-methylisoborneol (2-MIB) are widely recognized as the primary 
odor-producing compounds in RAS. These secondary metabolites are produced by 
various bacteria and some eukaryotes and are also known to cause taste and odor issues 
in drinking water (10). While bacteria from the phyla Cyanobacteriota, Actinobacteriota, 
and Myxococcota have been identified as geosmin producers, recent studies employing 
amplicon sequencing of the geosmin synthase gene and genome-resolved metagenom­
ics suggest that the diversity of geosmin-producing organisms is likely broader than 
previously recognized (11, 12). The photosynthetic cyanobacteria are mainly present in 
outdoor systems, whereas actinobacteria and myxobacteria are associated with indoor 
RAS (7, 8). Members of the genera Streptomyces and Nocardia within Actinobacteriota 
have been isolated from RAS and shown to produce geosmin (13, 14). However, 
culture-independent methods have shown that both actinobacteria and myxobacteria 
can be abundant (12, 15, 16). Although myxobacteria have previously been isolated from 
environments such as soil (17), Södergren et al. (18) are the first to successfully isolate 
them from RAS and quantify their production of geosmin and other taste-and-odor 
compounds.

Their study offers several key contributions that could advance microbial manage­
ment in RAS. First, the authors quantify geosmin production per cell under varying 
nutrient conditions. This is an essential step toward developing mathematical models 
that can predict off­flavor concentrations in RAS water. While a model for the uptake 
and elimination of geosmin and 2-MIB in fish flesh has been proposed (19), there is 
a notable gap in models that incorporate microbial production of off­flavors within 
biofilters and other system components. Although dynamic models exist for water 
quality parameters such as organic carbon and nitrogen (20), integrating taste-and-odor 
dynamics requires detailed knowledge of the microbial producers, the conditions under 
which they operate, and their production rates. Södergren et al. provide initial data to 
support such a development.

Second, a major strength of the study lies in its comprehensive quantification of 
volatile organic compounds. Using gas chromatography coupled with mass spectrom­
etry and olfactometry, supported by a sensory panel, the authors identified a wide 

FIG 1 (a) Conceptual model of progress in environmental biotechnology as a combination of microbial 

ecology, simulations, and engineering. (b) An example of a schematic of a recirculating aquaculture 

system. Denitrification may also be included for complete nitrogen removal. Another alternative is 

aquaponics systems, where plants utilize nutrients in the circulating water.
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spectrum of both known and previously uncharacterized compounds produced by the 
myxobacterial isolates. While geosmin and 2-MIB are well-established contributors to the 
“earthy” and “muddy” off­flavors in RAS, other volatile organic compounds may also be 
relevant (21). This broader chemical profiling is crucial for engineering better systems, as 
it informs which compounds should be monitored and mitigated.

Third, the study contributes to our understanding of microbial ecology in RAS by 
exploring the ecological roles of the isolated myxobacteria. The authors isolated 16 
additional heterotrophic strains from RAS water and demonstrated that the myxobacte­
rial isolates preyed on 14 or 15 of these strains. Interestingly, neither isolate could prey on 
a Tahibacter sp., suggesting that predatory interactions may shape microbial community 
structure by selectively targeting specific taxa. Current process models, such as those 
describing nitrification, often represent microbial decay as a simple first­order process 
(22). A better understanding of microbial predation could lead to improved representa­
tions of decay in process models and, ultimately, more accurate reactor designs. The 
findings of Södergren et al. (18) represent a step in that direction.

The isolation and characterization of two myxobacterial strains, Myxococcus virescens 
AT3 and Corallococcus exiguus AT4, from RAS represents an advancement in understand­
ing the ecological role of myxobacteria and their contribution to taste-and-odor issues 
in these systems. However, as the authors themselves acknowledge, there is often a 
disconnect between the fast-growing strains typically isolated in laboratory settings 
and those that dominate complex microbial communities in situ. This underscores 
the importance of combining cultivation-independent approaches, which can reveal 
the relative abundance and distribution of taxa in real systems, with cultivation-based 
methods that provide mechanistic insights into the conditions under which specific taxa 
produce off­flavors. The term “reverse metagenomics” was used by Podar and Reysen­
bach (23) to describe how cultivation strategies can be informed by metagenomic data 
on the genetic potential of target organisms. Perhaps such an approach could be used to 
culture putative off­flavor producers identified in metagenomic studies (e.g., references 
12, 24). In a sense, this approach was also reflected in the present study. Previous 
culture-independent investigations had already indicated the ecological relevance of 
myxobacteria in RAS. These findings motivated Södergren et al. (18) to pursue targeted 
isolation and characterization of myxobacteria from RAS environments. Their results are 
essential for elucidating the functional roles of these organisms within RAS microbial 
ecosystems and for informing future efforts to model and manage taste-and-odor 
dynamics. Microbial management strategies have previously been proposed to reduce 
the risk of pathogen invasions in RAS (25). Perhaps microbial communities could also be 
managed to mitigate off­flavor issues.
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