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 A B S T R A C T

Separation of neutrally buoyant sub-micron particles from a fluid flow in a microfluidic device under the 
action of an external field (e.g. electric, magnetic, gravitational, concentration) is an important challenge in the 
engineering sciences. In such processes, the hydrodynamic force resisting the motion of the particles towards 
a target wall becomes distinctively nonlocal, being influenced by particle velocities in past locations via the 
history force. The nonlocality of the hydrodynamic force implies that the Brownian force exhibits similar 
correlations in time, owing to the fluctuation–dissipation relation. The problem of identifying the optimal 
design parameters for the microfluidic system then traditionally necessitates the application of computationally 
expensive simulation models.

In this work, we develop a novel computationally efficient nonlocal multiscale model for Brownian particles 
in confined geometries. The model accounts for nonlocality and hindrance effects by employing multiphase 
Direct Numerical Simulation (DNS) data to determine the memory kernels associated with the particles in the 
system. The memory kernels are then used in a Lagrangian Particle Tracking (LPT) routine to evolve particle 
trajectories without the need for analytical models to describe the forces involved and their modulation due 
to hindrance.

We show that the focusing of particles on a target wall during hindered deposition in microfluidic 
systems can be controlled via two parameters (the magnitude of the attracting force and the size of the 
geometry) that interact in non-trivial ways. For the parameter space investigated in the current work, the 
focusing, as quantified via the normalized impact radius, can be reduced by up to 80% by optimally designing 
the microfluidic device. The implications of using the new model for further development of microfluidic 
particulate systems are discussed.
1. Introduction

Microfluidic systems have emerged over the past decades as a tool 
to potentially define new operational paradigms for chemically reactive 
systems (deMello, 2006). One application of particular interest is the 
microfluidic separation or focusing of particles or droplets dispersed 
in a liquid. Such controlled particle migration can be accomplished in 
many different ways: via diffusophoresis (particle motion induced by a 
concentration gradient) (Fan et al., 2022; Shin, 2020; Liu and Pahlavan, 
2025), dielectrophoresis (particle motion induced by a non-uniform 
electric field) (Çetin and Li, 2011; Midelet et al., 2019), magnetophore-
sis (particle motion induced by a magnetic field) (Forbes and Forry, 
2012), magnetic biotransport (using magnetic particles as carrier par-
ticles to transport biomaterials) (Furlani, 2010), gravitational settling 
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(leveraging gravitational effects to control particle trajectories) (Ma 
et al., 2011), or surface-pattern-based control of microparticles in the 
design of the microfluidic system (Hale and Mitchell, 2001). All of 
these variants require precise control of the behavior of the system to 
enable optimal and functional designs. The main challenge is to devise 
a microfluidic system in which particles suspended in a carrier fluid can 
be directed to a specific location with high accuracy and selectivity.

Despite the wide range of phenomena involved, all aforementioned 
methods are essentially based on the combination of Brownian motion, 
a non-conservative hydrodynamic force, and a conservative body force 
arising due to the application of an external field. The mathematical 
basis for deriving models on which to base numerical simulations is 
therefore very similar for microfluidic systems based on these prin-
ciples. However, the situation is complicated by the fact that indus-
trially relevant particle systems contain close to neutrally buoyant 
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Nomenclature

𝛥𝑡 Time step size
𝛾 Drag coefficient of spherical particle
𝝈 Viscous stress from fluid
𝐚 Acceleration of particle
𝐅𝐁 Brownian force on particle
𝐅𝐂 Conservative force on particle
𝐅𝐇 Hydrodynamic force on particle
𝐟 Fluid body force
𝐊 Hydrodynamic memory kernel tensor
𝐧 Normal to particle surface
𝐮 Fluid velocity
𝐕 Velocity of particle
𝐱 Position in domain
𝜇 Fluid viscosity
𝜌𝑓 Density of fluid
𝜌𝑝 Density of a particle
𝜏 Lag time into the past from current time
𝜏𝑝 Particle response time
𝐶 Cost function
𝐶𝑉 Velocity autocorrelation function
𝐷 Diffusion coefficient of unhindered spheri-

cal particle
𝑔 Acceleration due to gravity
ℎ Distance of particle from wall
𝑘𝐵 Boltzmann constant
𝐿 Number of data points used for finding 

average particle statistics
𝑀 Total number of terms in the discretized 

memory kernel
𝑚∗
∥ Effective mass of particle in wall-parallel 

direction
𝑚∗
⟂ Effective mass of particle in wall-normal 

direction
𝑚𝑒 Effective mass of unhindered particle
𝑚𝑓 Mass of fluid occupying the same volume 

as particle
𝑚𝑝 Mass of particle
𝑛𝐾 Total number of known kernels used in a 

simulation
𝑝 Fluid pressure
𝑅 Impact Radius
𝑟𝑝 Radius of spherical particle
𝑅𝑒 Reynolds number
𝑆 Particle surface
𝑇 Absolute temperature
𝑡 Current time
𝑉𝑅𝑀𝑆 Root Mean Square velocity
𝑣𝑧 Velocity in 𝑧 direction in simulation
𝑥𝑖𝑝 Impact position of particle on wall along 𝑥

direction
𝑥𝑛𝐾 Position of particle in simulation with 𝑛𝐾

kernels
𝑦𝑖𝑝 Impact position of particle on wall along 𝑦

direction
𝑧 Position in 𝑧 direction in simulation

particles of sub-micrometer size (such as proteins, DNA, or other macro-
molecules (Ruggeri et al., 2018; Haghparas et al., 2025; Lee et al., 2018; 
Kroslak et al., 2007; Choi et al., 2020); viruses, bacteria, or cells (Arefi 
2 
𝑧𝐷𝑁𝑆 Position in 𝑧 direction in DNS simulation
𝑧𝐿𝑃𝑇 Position in 𝑧 direction in LPT simulation

et al., 2020; Arefi, 2021; Bonilla et al., 2007); polymers (Mustin and 
Stoeber, 2010; De Santo et al., 2014); nanoparticles (Midelet et al., 
2019; Unni and Yang, 2005, 2006, 2009; Cejas et al., 2019; Arefi 
et al., 2020; Cejas et al., 2017; Qiu et al., 2023; Sznitman, 2022); 
or asphaltene nanoaggregates (Lin et al., 2019; Mohammadghasemi 
et al., 2024)). Not only are such particles subjected to Brownian mo-
tion, which introduces a stochastic component to their trajectories 
in the microfluidic system (and hence make them more difficult to 
control (De Santo et al., 2014)), but the low particle-to-fluid density 
ratio also implies the action of significant nonlocal effects on particle 
migration. More specifically, the hydrodynamic force on the particles 
depends on the complete history of the development and rearrange-
ments of the hydrodynamic boundary layers in the system (Daitche, 
2015; van Hinsberg et al., 2011). These nonlocal effects also carry over 
to the Brownian motion via the fluctuation–dissipation relation (Hauge 
and Martin-Löf, 1973). At the same time, inertial effects are negligible, 
such that the lift forces are not important (Michaelides, 2016). Instead, 
hindrance effects arise when the particles interact with the walls of 
the microfluidic system. These hindrance effects modulate the hydro-
dynamic force and, for complicated system configurations, invalidate 
the traditional approach of approximating the hydrodynamic force as 
the steady drag force on a particle in an infinite reservoir (Kannan 
et al., 2019). Hence, simplistic models that describe particle motion as 
a balance between a simplified hydrodynamic force and a conservative 
force must be expected to fail.

Microfluidic devices for the aforementioned particulate types are 
typically associated with two important engineering challenges. When 
the microfluidic reactor acts as a sensor, where one would like to 
optimize the detection rate, detection level, and sensitivity (Choi et al., 
2020; De Santo et al., 2014; Ruggeri et al., 2018). This implies that 
one wants to efficiently direct certain types of particles to a narrowly 
focused region somewhere within the device. At the same time, in most 
microfluidics applications, deterioration because of unwanted fouling is 
a critical issue due to the short distances to walls due to the miniatur-
ization (Mohammadghasemi et al., 2024; Cejas et al., 2019; Yan et al., 
2025; Lee et al., 2018; Lin et al., 2019; Mustin and Stoeber, 2010). Both 
of these challenges require high-fidelity simulation methods to enable
in silico design and optimization.

Molecular simulation techniques (e.g. Brownian dynamics (Unni 
and Yang, 2005, 2006; Bonilla et al., 2007)) and continuum-based 
multiphase DNS techniques (Kannan et al., 2021; Michael et al., 2025) 
represent accurate approaches to modeling and simulation of hindered 
Brownian particle migration and deposition in microfluidic systems. 
However, as such simulations either describe the interactions among 
solute molecules at the particle level (Unni and Yang, 2005) or re-
solve the entire particle–fluid interaction (Michael et al., 2025), they 
remain computationally expensive. The high accuracy attainable with 
multiphase DNS, for example, allows detailed investigations of specific 
phenomena, but the computational cost associated with these tech-
niques renders efficient collection of system statistics challenging. The 
development of new reactor designs for microfluidic particulate systems 
would benefit significantly from the establishment of more computa-
tionally efficient simulation methods, as long as their accuracy can be 
maintained close to that of DNS. As analytical models for hindrance ef-
fects for complex systems and particle configurations are not generally 
available, a universally applicable Lagrangian particle tracking (LPT) 
approach using a particle equation of motion with distinct force con-
tributions cannot be established (Lee et al., 2018; Michaelides, 2016). 
Consequently, previous studies are primarily based on experimental 
investigations, supplemented by more general theoretical analyses.
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In this work, we instead propose a novel nonlocal multiscale model 
for Brownian particles. This model combines an LPT routine with a mul-
tiphase DNS method to determine the hydrodynamic memory kernel 
of the particles. In this multiscale setup, the memory kernel (Hauge 
and Martin-Löf, 1973; Jung et al., 2017, 2018) can be optimally de-
termined from short DNS sequences (Michael et al., 2025), providing 
DNS quality predictions of the nonlocal effects on hydrodynamic as 
well as Brownian forces. Particle trajectories can then be evolved over 
long times, and with variations in the random number sequence to 
collect proper statistics, in a Lagrangian frame of reference, which is 
much more computationally efficient and allows the investigation of 
realistic system sizes. The proposed model does not in any way depend 
on the availability of analytical expressions or correlations on how the 
hydrodynamic force varies due to interactions between particles and 
other nearby surfaces (Michaelides, 2016). There is also no need to 
exclude any contribution to the total hydrodynamic force by choosing a 
force model a priori. The only deterioration in accuracy as compared to 
a full DNS is related to the coarsened spatial resolution of the variation 
of the memory kernels with system configuration, the effect of which 
is systematically investigated and quantified.

The proposed model is used to investigate hindered deposition of 
particles in a microfluidic system in a channel flow configuration. In 
particular, we calculate the average area on the wall of a microfluidic 
system that a diffusing Brownian particle will strike, characterized by 
the average radius of the particle impact region referred to in this 
work as the impact radius. This is a key performance index in many 
microfluidic devices where particles need to be separated from or 
focused towards specific areas of the microfluidic device (De Santo 
et al., 2014). We show that there is a non-trivial variation of the 
impact radius with domain size and the strength of the conservative 
force attracting the particle to the wall. These results indicate that 
engineers designing microfluidic particulate systems can balance two 
independent design variables to tailor a specific system to the task at 
hand, thus illustrating the usefulness of accurate simulation models for 
the improved understanding and optimization of microfluidic systems.

2. Methodology

In this section, we introduce the novel nonlocal multiscale model 
developed to simulate particle migration in microfluidic devices. The 
multiscale framework has two constituent parts: a multiphase DNS 
component for the determination of particle memory kernels, and an 
LPT routine for evolving particle trajectories over long times.

As will become clear in the following, the new method can be used 
in two different ways: either a memory kernel library is pre-computed 
and used in subsequent Lagrangian simulations, or the memory kernels 
are computed on-the-fly as required by the Lagrangian framework. 
As the first approach is consistent with possible future developments, 
in which a machine-learning approach to determination of memory 
kernels based on a limited dataset of pre-computed kernels is used 
to supplement the model as presented here, we shall describe the 
model in accordance with the first way (a memory kernel library is 
pre-computed).

The method used to develop the memory kernel library is thus first 
described. The subsequent section details the implementation of the 
LPT method that utilizes the memory kernel library to simulate the 
particle motion. The final section of the methodology describes the 
sample cases set up to study how a particle migrates towards a wall 
in a microfluidic device using the developed methodology.

2.1. Determining memory kernels

The hydrodynamic force (𝐅𝐇(𝑡)) acting on a particle immersed in a 
fluid can mathematically be modeled as the convolution integral be-
tween a hydrodynamic memory kernel tensor (𝐊(𝑡, 𝜏)) and the velocity 
3 
(𝐕(𝑡)) history of the particle at low Reynolds numbers (Re ≪ 1) (Hauge 
and Martin-Löf, 1973; Díaz, 2021): 

𝐹𝐻 ,𝑖(𝑡) = −∫

𝑡

0
𝐾𝑖𝑗 (𝑡, 𝜏)𝑉𝑗 (𝑡 − 𝜏)𝑑𝜏. (1)

In case the particle is immersed in a fluid that is not stagnant, the 
relative velocity of the particle with respect to the fluid if it occupied 
the same position is used in place of the actual velocity of the particle.

The memory kernel is thus used to match the velocity history of the 
particle with the hydrodynamic force acting on the particle, allowing 
for the force to be nonlocal as the velocities of past times and previous 
locations are allowed to influence the current force. The hydrodynamic 
force in a particular direction, as shown in Eq.  (1), is influenced by the 
history of the particle motion in all three orthogonal directions. The 
memory kernel tensor (𝐊(𝑡, 𝜏)) at each lag time 𝜏 is a 3 × 3 tensor 
that represents how the velocity in different directions at time 𝜏 in 
the past from the current instance 𝑡 influences the force in a particular 
direction. Since the hydrodynamic force acting on the particle depends 
on the surroundings of the particle as well as the history of motion 
of the particle, the memory kernel contains information regarding 
the surroundings and can thus be thought of as a ’’fingerprint’’ of 
the particle neighborhood and history of motion. This mathematical 
understanding of the hydrodynamic force has been used to generate 
memory kernel libraries in this work using optimization techniques, 
that is, by finding the memory kernel that optimally satisfies Eq.  (1) 
for the available multiphase DNS data.

For a spherical particle, the memory kernel has been proven to be 
symmetric (Hauge and Martin-Löf, 1973). In the case of anisotropic 
particle or domain geometry, the non-diagonal terms of the memory 
kernel can become significant leading to cross-correlations between 
different directions. However, in the cases simulated in this work, 
the symmetrical nature of the domain and the spherical shape of the 
particles cause the non-diagonal terms of the memory kernel tensor 
to be negligibly small (Lauga and Squires, 2005; Simha et al., 2018). 
In order to reduce the numerical noise in the optimization procedure, 
it is then beneficial to simplify the memory kernel so that 𝐾𝑖𝑗 =
𝛿𝑖𝑗𝐾𝑖𝑖 (Michael et al., 2025). In the case of an asymmetric particle 
or domain, the optimization techniques can be modified to include 
significant non-diagonal terms where required (Michael et al., 2025). 
Under the assumption that the particle does not move a long distance in 
a single time step, the memory kernel becomes independent of the time 
instance 𝑡 at which it is estimated, i.e. 𝐊(𝑡, 𝜏) = 𝐊(𝜏). The hydrodynamic 
force then becomes: 

𝐹𝐻,𝑖(𝑡) = −∫

𝑡

0
𝐾𝑖(𝜏)𝑉𝑖(𝑡 − 𝜏)𝑑𝜏. (2)

It is then sufficient to determine the memory kernel in each direc-
tion corresponding to the hydrodynamic force in the same direction 
(conventional splits also used in this study comprise the normal (⟂) 
and parallel (∥) directions to the boundaries used in the simulations).

In this work, DNS data of a particle moving under the influence 
of a steady force is used to establish the memory kernels. These sim-
ulations are carried out using the mirroring Immersed Boundary (IB) 
method (Mark and van Wachem, 2008) incorporating Fluid–Structure 
Interactions (IB-FSI) implemented using in-house software (Mark et al., 
2011). The mirroring IB method discretizes and solves the Navier–
Stokes equation shown below to obtain the pressure and velocity fields 
of the fluid surrounding the particle: 
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (3)

𝜌𝑓

(

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

)

= −
𝜕𝑝
𝜕𝑥𝑖

+ 𝜇
𝜕2𝑢𝑖
𝜕𝑥2𝑗

+ 𝑓𝑖, (4)

where 𝑢 is the fluid velocity, 𝑥 is the position in the domains, 𝑝 is the 
pressure, 𝜇 is the fluid viscosity and 𝑓 is any body force.

At the particle–fluid boundaries, an implicit Dirichlet IB boundary 
condition is applied such that the fluid velocity at the boundary is 
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equal to the particle velocity at the same point. In practice, this is 
accomplished by mirroring the fluid velocity across the boundary of 
the particle such that linear interpolation between the velocity of the 
internal point and the external point in the fluid gives the boundary 
velocity. The pressure and velocity fields obtained from solving the 
Navier–Stokes equations using this method are then used to calculate 
the hydrodynamic force on the surface of the particle as shown in Eq. 
(5). Here, the pressure (𝑝) and the viscous stresses (𝜎) are integrated 
over the surface (𝑆) of the particle to give the total force exerted by 
the fluid on the particle. 

𝐅𝐇(𝑡) = ∫𝑆
(−𝑝𝛿𝑖𝑗 + 𝜎𝑖𝑗 )𝑛𝑗𝑑𝑆,

= ∫𝑆

(

−𝑝𝛿𝑖𝑗 + 𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

))

𝑛𝑗𝑑𝑆.
(5)

The hydrodynamic force calculated in this manner is equivalent to 
the force modeled using the convolution integral between the memory 
kernel and the velocity history of the particle as shown in Refs. (Bian 
et al., 2016; Jaganathan et al., 2023): 

𝐅𝐇 = ∫𝑆
(−𝑝𝛿𝑖𝑗 + 𝜎𝑖𝑗 )𝑛𝑗𝑑𝑆 = −∫

𝑡

0
𝐊(𝑡, 𝜏) ⋅ 𝐕(𝑡 − 𝜏)𝑑𝑠 (6)

Thus, knowledge of the hydrodynamic force and the velocity history 
of the particle from the DNS method can be used to determine the 
memory kernel. To accomplish this, the particle is moved in the IB-
FSI framework simulations by applying a constant force proportional 
to the variance of the Brownian force (Ounis et al., 1991; Li and 
Ahmadi, 1992; Kannan et al., 2019) acting on a particle of the same 
size immersed in the same fluid: 

𝐹𝑠 =

√

2𝑘𝐵𝑇 𝛾
𝛥𝑡

. (7)

Here, 𝑘𝐵 is the Boltzmann constant, 𝑇  is the absolute temperature 
of the system, and 𝛥𝑡 is the size of the time step used in the simulation. 
The term 𝛾 = 6𝜋𝜇𝑟𝑝, where 𝑟𝑝 is the particle radius, is the hydrodynamic 
drag coefficient for a spherical particle and represents a measure of 
the hydrodynamic resistance that an unhindered spherical particle 
experiences while moving in a fluid. The hydrodynamic force acting 
on the particle in response to the resulting particle motion and the 
corresponding particle velocity are recorded at each time step of the 
IB-FSI simulation.

Once the hydrodynamic force at a time instance and the velocity 
history of a particle leading to the same instance are known from the IB-
FSI simulation, optimization techniques are applied to Eq.  (1) to obtain 
the hydrodynamic memory kernel using the limited-memory Broyden–
Fletcher–Goldfarb–Shanno optimization routine (L-BFGS-B) (Liu and 
Nocedal, 1989; Byrd et al., 1995; Zhu et al., 1997) from the scipy
python library (Virtanen et al., 2020).

The cost function (𝐶(𝐾𝑖(𝑡, 𝜏))) for the optimization routine is created 
from Eq.  (2) by summing the hydrodynamic force acting on the particle 
with the convolution integral of the memory kernel and the velocity 
history, and normalizing the whole quantity: 

𝐶(𝐾𝑖(𝑡, 𝜏)) =
|𝐹𝐻,𝑖(𝑡) + ∫ 𝑡

0 𝐾𝑖(𝑡, 𝜏)𝑉𝑖(𝑡 − 𝜏)𝑑𝜏|
|𝐹𝐻,𝑖(𝑡)|

. (8)

In practice, the normalized cost function must be discretized in time 
according to: 

𝐶(𝐾𝑖(𝑡, 𝜏)) =
|𝐹𝐻,𝑖(𝑡) +

∑𝑀
𝑚=0𝐾𝑖(𝑡, 𝑚𝛥𝑡)𝑉𝑖(𝑡 − 𝑚𝛥𝑡)𝛥𝑡|

|𝐹𝐻,𝑖(𝑡)|
. (9)

Here, 𝑀 denotes the number of terms in the kernel. The memory 
kernel in each direction is initialized with zero for all its terms, and 
the values are then optimized against the cost function at each time 
step. Before the simulation has crossed 𝑀 time steps, only a subset of 
the values from the memory kernel are optimized, corresponding to 
the number of times steps completed by the simulation. At each new 
time step, one additional value of the memory kernel is optimized, until 
4 
the number of time steps in the simulation crosses 𝑀 , at which point 
the whole memory kernel is optimized at each time step against the 
corresponding velocity history. The memory kernel values from the 
previous time step are used as the initial guesses for the optimiza-
tion process in the current time step to allow for faster convergence. 
This memory kernel optimization routine is explained in more detail 
by Michael et al. (2025). For this work, the IB-FSI simulations used to 
optimize the memory kernel were run with a time step of 𝛥𝑡 = 𝜏𝑝∕50 for 
a total duration of 20𝜏𝑝. The particle response time 𝜏𝑝 = 𝑚𝑝∕𝛾, where 
𝑚𝑝 is the mass of the particle, characterizes how fast a particle responds 
to external stimuli. The response time is used in this work to normalize 
temporal quantities. The memory kernel (𝐊(𝜏)) has sufficient terms to 
record the history effects for 𝜏 ∈ [0, 10𝜏𝑝]

2.2. Evolving particle trajectories

The Generalized Langevin Equation (GLE) can be used to describe 
the motion of a particle immersed in a fluid undergoing Brownian 
motion: 
𝑚𝑝

𝑑𝐕(𝑡)
𝑑𝑡

= 𝐅𝐇(𝑡) + 𝐅𝐁(𝑡) + 𝐅𝐂(𝑡)

= −∫

𝑡

0
𝐊(𝑡, 𝜏) ⋅ 𝐕(𝑡 − 𝜏)𝑑𝜏 + 𝐅𝐁(𝑡) + 𝐅𝐂(𝑡).

(10)

Here, the total force acting on a particle can be split into a dissipa-
tive hydrodynamic force (𝐅𝐇), a random force representing Brownian 
forcing (𝐅𝐁) and a net conservative force (𝐅𝐂). The hydrodynamic 
force, as discussed in the previous section, can be represented as the 
convolution integral between the hydrodynamic memory kernel and 
the corresponding velocity history.

The random Brownian force and the hydrodynamic memory kernel 
are related via the fluctuation–dissipation theorem when the fluid is at 
thermal equilibrium (Hauge and Martin-Löf, 1973): 
⟨𝐹𝐵,𝑖(𝑡 − 𝜏)𝐹𝐵,𝑗 (𝑡)⟩ = 𝑘𝐵𝑇𝐾𝑖𝑗 (𝑡, 𝜏). (11)

The GLE and its associated fluctuation–dissipation theorem show 
that the random Brownian force has a non-Markovian colored nature, 
with the random forces separated by a lag time 𝜏 exhibiting a cor-
relation proportional to the hydrodynamic memory kernel value at 
the same time lag. These memory effects that also affect the Brow-
nian motion are especially relevant at low particle–fluid density ra-
tios (Mainardi et al., 2010; Hauge and Martin-Löf, 1973).

The memory kernel changes as a function of the hydrodynamic 
neighborhood of the particle. Thus, given a particular wall-bounded 
domain, the memory kernel associated with a particle will change 
depending on the particle position. For a simulation that causes the 
particle to traverse over wide ranges of the domain with different 
features, it is essential to figure out the memory kernel values at 
different positions along the trajectory. While, ideally, the kernel values 
along all positions traversed in the path of the motion of the particle are 
required, in this work we instead choose to build a library of memory 
kernels obtained at strategic positions along the particle trajectory. 
The memory kernel library, containing the kernel values 𝐊(𝐱, 𝜏) cor-
responding to each sampled position 𝐱, is built by running short IB-FSI 
simulations of the particle as described in Section 2.1.

Once the memory kernel library is built, the kernels can be used to 
simulate particle motion by utilizing them in the GLE shown in Eq. 
(10). The hydrodynamic force is now calculated as the convolution 
integral between the memory kernel in each direction and the velocity 
history of the particle in the same direction as shown in Eq.  (2). The 
colored Brownian random force is determined based on the fluctuation–
dissipation relation, which, when modified using the previously stated 
simplification of assuming that the non-diagonal terms of the memory 
kernel are zero (i.e. 𝐾𝑖𝑗 = 𝛿𝑖𝑗𝐾𝑖𝑖), reduces to: 

⟨𝐹𝐵,𝑖(𝑡 − 𝜏)𝐹𝐵,𝑗 (𝑡)⟩ = 𝑘𝐵𝑇𝐾𝑖𝑖(𝑡, 𝜏)𝛿𝑖𝑗 . (12)
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Based on this relationship between the covariance of the Brownian 
force and memory kernel, the memory kernel scaled with 𝑘𝐵𝑇  is used 
to initially build the covariance matrix for the random Brownian force 
at each time step. Once the covariance matrix is available, it can be 
factorized into root matrices which when multiplied with a series of 
normal random numbers with zero mean and unit variance generate the 
required colored random Brownian forces (Michael et al., 2025). The 
conservative force can be any body force arising due to the response of 
the particle to some sort of field (electrostatic, magnetic, gravitational, 
concentration, etc.) and can be modeled using traditional mathematical 
models for the same. In our simulation cases, we have used a constant 
force to simulate the attraction of a particle towards a surface, as 
explained further in Section 2.3.

The discretized form of the GLE (Eq.  (10)) becomes: 

𝑚𝑝
𝑑𝑉𝑖(𝑡)
𝑑𝑡

= 𝐹𝐻,𝑖(𝑡) + 𝐹𝐵,𝑖(𝑡) + 𝐹𝐶,𝑖(𝑡)

= −
𝑀
∑

𝑚=0
𝐾𝑖(𝑡, 𝑚𝛥𝑡)𝑉𝑖(𝑡 − 𝑚𝛥𝑡)𝛥𝑡 + 𝐹𝐵,𝑖(𝐾(𝑡)) + 𝐹𝐶,𝑖(𝑡).

(13)

The hydrodynamic force as well as the colored random Brownian 
force, are now derived from the memory kernel associated with the 
particle at its current position. They contain nonlocal information due 
to their construction via the convolution integral, and the combined 
framework constitutes a multiscale model as the memory kernels are 
obtained from DNS data with the particle trajectories evolved in an LPT 
routine.

The memory kernel at the current position (𝐱(𝑡)) of the particle is 
derived from the memory kernel library by linear interpolation based 
on the position of the particle: 

𝐊(𝑡, 𝜏) = 𝐊(𝐱𝟏, 𝜏) +
(𝐱(𝑡) − 𝐱𝟏)
𝐱𝟐 − 𝐱𝟏

(𝐊(𝐱𝟐, 𝝉) −𝐊(𝐱𝟏, 𝝉)) where 𝐱𝟏 < 𝐱(𝑡) < 𝐱𝟐.

(14)

Thus, at time 𝑡 if the particle is in a position 𝐱(𝑡) such that 𝐱𝟏 <
𝐱(𝑡) < 𝐱𝟐, then the memory kernel associated with the particle 𝐊(𝑡, 𝜏)
can be obtained by linear interpolation between 𝐊(𝐱𝟏, 𝝉) and 𝐊(𝐱𝟐, 𝝉). 
Here, 𝐱𝟏 and 𝐱𝟐 are the positions at which the memory kernel has been 
determined and stored in the kernel library.

The hydrodynamic force (𝐅𝐇) and the random Brownian force (𝐅𝐁) 
generated using the interpolated memory kernel are added to the 
conservative force (𝐅𝐂) to arrive to the net force acting on the particle. 
The acceleration the particle experiences can then be derived as shown: 

𝐚(𝑡) =
𝐅𝐇(𝑡) + 𝐅𝐁(𝑡) + 𝐅𝐂(𝑡)

𝑚𝑝
. (15)

The velocity and position of the particle are then modified using the 
Newmark scheme (Newmark, 1962). The acceleration 𝐚(𝑡 + 𝛥𝑡) refers 
to the implicit acceleration at the new position reached, based on the 
time-stepping scheme. This implicit acceleration is iteratively derived 
by assuming that the force balance holds between the hydrodynamic 
and conservative force at the new position while maintaining the same 
Brownian force: 
𝐕(𝑡 + 𝛥𝑡) = 𝐕(𝑡) + 𝛥𝑡

2
[𝐚(𝑡) + 𝐚(𝑡 + 𝛥𝑡)] , (16)

𝐱(𝑡 + 𝛥𝑡) = 𝐱(𝑡) + 𝐕(𝑡)𝛥𝑡 + 𝛥𝑡2

2
[𝐚(𝑡)] . (17)

While explicit time stepping schemes are traditionally used to solve 
such Stochastic Differential Equations (SDEs), the Newmark implicit 
scheme has been implemented in this work to maintain consistency 
between the IB-FSI framework used to estimate the memory kernel 
and the LPT simulations, which then use these kernels in their im-
plementation. The IB-FSI framework requires an implicit scheme for 
stable convergence of the solution while moving the particle as part 
of the DNS simulations. These can influence the values of the memory 
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kernel, and hence a similar time stepping scheme in the LPT simula-
tions ensures cross-framework consistency in the hydrodynamic force 
generation (Michael et al., 2025). It has previously been shown that 
the implicit Newmark scheme is able to capture the Mean Square 
Displacement (MSD) and the Velocity Autocorrelation Function (VACF) 
trends in both short and long terms (Kannan et al., 2019, 2021; Michael 
et al., 2025). The small time steps used in the simulations (i.e. 𝛥𝑡 =
𝜏𝑝∕50) are also selected to minimize the differences in individual paths 
between implicit and explicit versions of the simulation.

Thus, the simulation process starts with the determination of the 
memory kernels at different positions in the simulation domain using 
DNS based on the IB-FSI framework. A kernel library is created map-
ping the hydrodynamic behavior of the particle as it moves through 
the domain. The kernels from the library are utilized to move the 
particle in an LPT framework using the GLE. During the LPT simula-
tion, interpolation is used to determine the memory kernel associated 
with the current particle position. Once the kernel is determined, 
the hydrodynamic force and the random Brownian force acting on 
the particle are created from the kernel based on the GLE and the 
fluctuation–dissipation relationship. The net force on the particle in-
corporating hydrodynamic, Brownian and conservative components are 
finally employed to propagate the particle.

2.3. Microfluidic cases

We employ the new memory-kernel based LPT methodology to 
investigate the attraction of target particles to the surface in wall-
bounded microfluidic domains. The domain is considered unbounded in 
the 𝑥 and 𝑦 directions, while there are walls present at the top and the 
bottom in the 𝑧 direction. The distance between the walls is set to 5𝑟𝑝, 
10𝑟𝑝 and 30𝑟𝑝, to study the effect that the variation in the wall distance 
and the geometrical extent of the reactor have on the particle dynamics. 
The large domain of size 30𝑟𝑝 is chosen because when the particle is 
placed in the center of the domain, it is not influenced by the wall. 
In contrast, as the domain size is reduced to 10𝑟𝑝 and 5𝑟𝑝, the particle 
experiences increasing wall effects even when placed in the center of 
the domain. Thus, the various sizes of the domain were chosen to show 
how the wall effect increasingly influences the particle dynamics and 
the shapes of the kernel as the domain size decreases. The particle 
enters the center of the domain between the walls and then approaches 
the bottom wall under the influence of a steady conservative force, 
while also undergoing Brownian motion. This attracting force is set 
to either 𝑚𝑝𝑔 or 5𝑚𝑝𝑔, where 𝑚𝑝 is the mass of the particle and 𝑔
is the gravitational constant, to demonstrate how the magnitude of 
the attracting force affects the particle deposition behavior in the two 
domains. A representation of the case domain and the starting position 
of the particle is shown in Fig.  1(a). A representation of how the 
particle moves following a meandering path under the influence of the 
hydrodynamic, Brownian and conservative attractive forces is shown in 
Fig.  1(b).

The objectives of the simulations are to capture the behavior of the 
particle in terms of position and velocity as it moves from the center 
of the domain towards the wall. In particular, the influence of the wall 
on the approach of the particle towards the wall under the application 
of the attractive force is studied using this information. Controlling 
the particle impacting location on the walls of a microfluidic device 
is also of interest, as mentioned in the introduction, so the final impact 
location on the bottom wall at the end of the simulations is also 
recorded. This indicates how the device geometry and the attracting 
force influence the diffusion of the Brownian particle in the 𝑥𝑦 plane 
in the time it takes the particle to hit the wall. Since the particle in 
each iteration of the simulation can be captured at a different point on 
the wall, the average radius on the wall where the particle can impact 
is represented in this figure as the impact radius (R*), which will be 
described in further detail in Section 3.3.
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Fig. 1. Figure (a) gives a general representation of the domain used in the settling cases. Figure (b) shows a representation of how the particle starting from the 
center progresses towards the bottom attracting wall while experiencing hydrodynamic, Brownian and conservative forces. The average radius within which the 
particle impacts the wall is represented here as the impact radius.
Fig. 2. The hydrodynamic force obtained using the memory-kernel-based LPT 
and the multiphase DNS using IB-FSI for a non-Brownian particle accelerated 
by a steady force.

The memory kernel libraries for all the domains used in this work 
are developed by running IB-FSI simulations of the particle at different 
𝑧 positions. As shown in Fig.  1(a), the domains used in the determi-
nation of the memory kernels consist of two walls at the top and the 
bottom in the 𝑧 direction. In the 𝑥 and 𝑦 directions, the domains extend 
for 15𝑟𝑝 from the particle position to minimize any potential boundary 
influence on the kernel values. The simulations in the wall-bounded 
domains are run at a particle–fluid density ratio (𝜌𝑝∕𝜌𝑓 ) of 1. For this 
density ratio, the added mass effect is the dominant force compared to 
the drag and history effects (Michaelides, 2016). Theoretical estimates 
of the effective mass (including the added mass) for a particle close to 
a wall take the following form (Simha et al., 2018): 

𝑚∗
⟂ = 𝑚𝑝 +

𝑚𝑓
2

[

1 + 3
8

( 𝑟𝑝
ℎ

)3
]

,

𝑚∗
∥ = 𝑚𝑝 +

𝑚𝑓
2

[

1 + 3
16

( 𝑟𝑝
ℎ

)3
]

.

(18)
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The symbols ∥ and ⟂ indicate the added mass effect in the directions 
parallel to and normal to the wall, respectively. Here, 𝑚𝑓 = 𝑚𝑝𝜌𝑓∕𝜌𝑝 is 
the mass of the fluid if it occupied the same volume as the particle 
and ℎ is the distance of the particle center to the wall. It can be seen 
from these equations that the increase in the added mass as the particle 
moves closer to the wall is proportional to (𝑟𝑝∕ℎ)3. The positions in the 
𝑧 direction used to create the memory kernel library were developed 
on the basis of this formula. The distances of the particle from the wall 
(ℎ) were chosen starting from the center (for example ℎ = 15𝑟𝑝 in the 
domain of size 30𝑟𝑝) such that the term (𝑟𝑝∕ℎ)3 increased by the same 
amount as the particle was shifted closer to the wall. The positions 
used to sample and create the memory kernel library from the IB-FSI 
simulations are shown in Table  1 for each domain.

In the present work, we focus on the role of hydrodynamics and 
thermal fluctuations of the suspended particles, such that the compu-
tational framework fully accounts for particle–particle and particle–
wall interactions mediated via the fluid fields. Van der Waals attrac-
tion and electrostatic repulsion, collectively referred to as Derjaguin–
Landau–Verwey–Overbeek (DLVO) interactions (Cejas et al., 2019; 
Haghparas et al., 2025), which occur over very short distances, are not 
included. The distance at which DLVO interactions become significant 
to the hydrodynamic force on a particle approaching a wall depends on 
the particle velocity, as well as the properties of the wall–particle–fluid 
system. For a neutrally buoyant Brownian particle moving in water at 
moderate to high ionic strength towards a silicon wall and at a drift 
velocity resulting from the application of an external conservative force 
of the orders of magnitude considered in the current work, the DLVO 
interactions remain insignificant down to distances of approximately 
one percent of the particle diameter. This situation supports the de-
cision to neglect these effects in the current analysis. If the particle 
volume fraction in the near-wall region becomes high, rheological and 
structural effects induced by electric double layer forces could possibly 
emerge (Srinivasan et al., 2022). The extension of the current method 
to also include van der Waals and electric double-layer effects as forces 
in the GLE (Eq.  (10)) in such situations is however, straightforward, as 
the resulting force can be derived from potential energy functions and 
therefore is conservative by definition (Lyklema et al., 1999). Thus, 
a DLVO force can be combined with the present 𝐹𝐶 without further 
changes to the numerical methodology developed here, if the current 
methodology is to be applied to systems where these interactions are 
deemed important.
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Fig. 3. Velocity Autocorrelation Function (VACF) comparison between the GLE-based DNS (IB-FSI) and GLE-based LPT using memory kernels from IB-FSI.
Fig. 4. Comparison of trajectories obtained from settling simulations run using DNS (IB-FSI) and the LPT method utilizing linear interpolation of hydrodynamic 
memory kernels. The figure on the left shows settling in the 5𝑟𝑝 domain while the figure on the right shows settling in the 30𝑟𝑝 domain. The positions at which 
the kernels are known from previous DNS simulations are shown as blue dots overlaid on the trajectories obtained from the LPT simulations.
Table 1
The particle positions represented as a distance from the wall (ℎ) used for sampling the memory kernel in the 
IB-FSI simulations for the two different domain sizes.
 Domain Particle position (h/rp)
 30 rp 15.00 11.91 9.45 7.50 5.95 4.72 3.75 2.98 2.36 1.88 1.49 1.18 
 10 rp 5.00 4.37 3.82 3.33 2.91 2.54 2.22 1.94 1.70 1.48 1.29 1.13 
 5 rp 2.50 2.32 2.15 2.00 1.86 1.72 1.60 1.49 1.38 1.28 1.19 1.10 
3. Results and discussion

3.1. Verification and validation

The novel nonlocal multiscale method is verified and validated 
by running a simulation where the particle is pushed using a steady 
force equivalent to that shown in Eq.  (7) in the absence of Brownian 
motion. The hydrodynamic force (𝐅𝐇) modeled using the convolution 
integral between the memory kernel and the velocity history of the 
particle in this case is recorded. The equivalent simulation is also 
performed in full DNS (using the IB-FSI method) and the corresponding 
hydrodynamic force (obtained by carrying out the surface integral of 
the viscous stresses and pressure exerted by the fluid on the particle) 
is recorded here as well. The comparison between the hydrodynamic 
forces obtained in both these manners in the initial 5𝜏𝑝 of the simulation 
is presented in Fig.  2. Both the memory-kernel-based LPT simulation 
and the IB-FSI simulation are run at particle-to-fluid density ratios 
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of 1 and 10 to demonstrate the validity of the method at varying 
density ratios. The steady force used to push the particle has been 
used to normalize the hydrodynamic force in all the cases (an asterisk 
denotes a normalized value, 𝐅∗

𝐇). It can be seen that the forces obtained 
from the memory-kernel-based LPT simulations closely follow the force 
produced in the IB-FSI simulations. There are minor differences in the 
initial few times steps, but in the long term they tend to the same force 
in both cases. The differences are somewhat more pronounced at the 
lower particle-to-fluid density ratio.

To verify that the simulations are capable of simulating Brow-
nian motion accurately, the memory kernel was determined for an 
unhindered Brownian particle immersed in a fluid. The unhindered 
configuration implies that there are no other objects near the particle 
that could alter the hydrodynamic forces acting on the particle. The 
memory kernel determined was used to run an LPT simulation as 
described in Section 2.2. The same simulation is also carried out in 
the more computationally expensive but also more accurate IB-FSI 
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Fig. 5. Peaks of memory kernels (𝐾∗(0)) in the domains with walls at distances of 5𝑟𝑝, 10𝑟𝑝 and 30𝑟𝑝.
framework, where the memory kernel is determined on-the-fly at each 
time step. To characterize the Brownian motion, the VACF (or 𝐶𝑉 ) for 
the particle is calculated for both simulations at different lag times: 

𝐶𝑉 (𝜏) = ⟨𝑉 (0) ⋅ 𝑉 (𝜏)⟩ = 1
𝐿

𝑡=𝑇−𝜏
∑

𝑡=0
[𝑉 (𝑡) ⋅ 𝑉 (𝑡 + 𝜏)] . (19)

Here, 𝑉 (𝑡) is the velocity of the Brownian particle at time 𝑡, 𝜏
is the time lag by which the two velocities used for the correlation 
are separated, and 𝐿 is the number of data points used to create the 
correlation. The 𝐶𝑉  calculated in this manner is normalized using 
the expected Root Mean Square velocity (𝑉𝑅𝑀𝑆 ) for an unhindered 
particle at the given particle-to-fluid ratio. The 𝑉𝑅𝑀𝑆 velocity is given 
as 𝑉𝑅𝑀𝑆 =

√

3𝑘𝐵𝑇 ∕𝑚𝑒, where 𝑚𝑒 = 𝑚𝑝(1 + 𝜌𝑓∕2𝜌𝑝) is the effective 
mass of the particle that includes the added mass effect from the fluid 
dragged along with the particle (Mainardi et al., 2010).

The normalized VACFs obtained from the memory-kernel-based LPT 
and IB-FSI frameworks are depicted in Fig.  3. The VACF lines obtained 
from the nonlocal multiscale LPT framework proposed here, for both 
particle-to-fluid density ratios of 1 and 10, can be seen to overlap well 
with the lines obtained from IB-FSI framework which was shown in the 
work by Michael et al. (2025) to accurately model Brownian motion. 
The oscillations towards the larger time lags are due to lower number of 
data points available for creating the correlations. The proximity of the 
hydrodynamic force lines (Fig.  2), as well as the VACF lines obtained 
from the LPT framework to those obtained from the IB-FSI framework 
(Fig.  3), show that the new method is capable of accurately modeling 
hydrodynamic effects while also incorporating Brownian motion.
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As previously mentioned, for the positions between those specified 
in Table  1, the memory kernel is determined via linear interpolation 
between known kernels as shown in Eq.  (14). To verify the accuracy of 
this approach, pure settling simulations are carried out in the domains, 
excluding any Brownian effects, using the IB-FSI framework, as well 
as the LPT framework. The settling force used in this case was set to 
5𝑚𝑝𝑔, to traverse the full position range, starting from the center of the 
domain to the wall. The trajectories obtained in both cases are shown in 
Fig.  4 for the smallest domain of 5𝑟𝑝, as well as for the largest domain of 
30𝑟𝑝. We observe that the trajectories obtained using LPT simulations 
employing linear interpolation between the kernels are very close to 
those obtained from DNS using the IB-FSI framework. The blue marks 
on the trajectory indicate the positions of the known kernel values. At 
all other points along the trajectory, the kernels have been determined 
using linear interpolation. After the particle crosses the last position 
where the kernel is known, the kernel values are held constant until 
the particle is captured by the wall, leading to some deviation from 
this point forward from the DNS trajectory.

𝐸𝑟𝑟𝑜𝑟(𝑧) =
∑𝑛

𝑖=0 |(𝑧𝐿𝑃𝑇 ,𝑖+1 − 𝑧𝐿𝑃𝑇 ,𝑖) − (𝑧𝐷𝑁𝑆,𝑖+1 − 𝑧𝐷𝑁𝑆,𝑖)|
𝑧𝐷𝑁𝑆,𝑛

(20)

The error in the trajectory between the DNS and the LPT simulations 
is calculated using Eq.  (20), where the numerator gives a measure of the 
relative difference in positions between the trajectories obtained from 
the LPT and DNS simulations, while the denominator gives the total 
distance traversed by the particle. The error up to the final position 
where the kernel is known is approximately 1% and 4.8% for the 5𝑟
𝑝
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Fig. 6. The initial parts of the 12 memory kernels (𝐾∗ = 𝐾(ℎ, 𝜏)𝛥𝜏∕2𝛾) 
sampled from the bounded domains are shown as surface plots against time 
(𝑡) and the distance of the sampling point from the wall (ℎ). There are two 
surfaces plotted in each figure corresponding to the kernel associated with 
the directions normal (⟂) and parallel (∥) to the wall. As the particle moves 
closer to the wall, the associated peaks and valleys in the initial part of the 
memory kernel attain higher values, indicating the increased drag and added 
mass effects that the particle experiences close to the wall. The increase is 
more pronounced in the wall-normal direction as compared to that in the 
parallel direction. Away from the wall, the kernels converge to the same values 
irrespective of the direction indicating the decreasing influence from the wall.

and the 30𝑟𝑝 domain, respectively. The error is more pronounced in 
the larger domain due to the sparser sampling of kernels overall. But 
apart from that, in the center of the domain, the history effects die 
out much more slowly, meaning that longer kernels are required for 
a more accurate representation of the hydrodynamics (Michael et al., 
2025). However, as previously mentioned, the kernel lengths have been 
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limited in the simulations to reduce computational cost, leading to 
some minor loss of hydrodynamic information in unhindered scenarios. 
In the near-wall regions, where the history effect decays much faster, 
the tail of the kernel correspondingly decays faster, contributing less to 
the force model. Therefore, shorter kernels could be used in the smaller 
domains to get accurate trajectories, since wall effects will dominate 
in such domains. Beyond the final point where the kernel is known, 
the deviation from the DNS path caused by maintaining the kernel 
constant is 2.3% and 0.7% for the 5𝑟𝑝 and the 30𝑟𝑝 domain, respectively. 
The increased hindrance effect (drag and added mass) in the smaller 
domain likely causes a larger deviation after the final sampling point 
when compared to the larger domain. In cases where the wall adjacent 
region is of primary interest, denser sampling of the kernels in this 
area can minimize such deviations. The LPT simulations utilizing the 
linear interpolation between the kernels are thus able to capture the 
DNS results quite accurately, thereby paving the way for the settling 
simulations incorporating Brownian motion as well.

3.2. Characteristics of the memory kernels

The nonlocal multiscale method is used to simulate hindered par-
ticle deposition on a target wall in wall-bounded domains where the 
walls are separated by a distance of either 5𝑟𝑝, 10𝑟𝑝 or 30𝑟𝑝. The memory 
kernels in these cases were obtained by running brief IB-FSI simulations 
at the locations shown in Table  1. These simulations were run at a 
particle-to-fluid density ratio of 1 (i.e. neutrally buoyant), which is 
most relevant to the microfluidic particulate systems of interest.

The peaks of the memory kernels (that is, their value at 𝐾(𝜏 = 0)) 
in the domains are shown in Fig.  5. To provide a more comprehensive 
illustration of the richness of data contained in the memory kernel 
library, the initial parts of the memory kernel, as well as the tails, are 
also illustrated (Figs.  6 and Fig.  7 respectively). The peaks are predom-
inantly an indication of the magnitude of the drag and the added mass 
effect, while the tail of the kernel depicts how the history effect decays 
with time. It can be seen in Figs.  5 and 6 that, as the particle moves 
closer to the wall, the peaks of the kernels increase, indicating that the 
drag and the added mass effects increase, as expected from theoretical 
predictions (Felderhof, 2005). The changes in the peaks and tails of the 
kernels are more pronounced in the normal direction to the wall than 
in the parallel direction to the wall, as seen from the wider separation 
between the kernel values in each direction in Figs.  6 and 7, indicating 
the stronger influence of the wall on the dynamics of the particles in the 
normal direction. The memory kernel inherently carries information 
regarding the hydrodynamic effects that the presence of the wall will 
have on particle dynamics. The memory kernel, thus, removes the need 
for analytical mathematical models that are otherwise required to carry 
out LPT simulations, incorporating the various hydrodynamic effects 
observed at such a low particle-to-fluid density ratio, along with their 
modulation due to the presence of walls and other particles.

3.3. Particle migration in microfluidic systems

In this section, we use the method developed herein to analyze the 
particle segregation from a fluid in microfluidic systems of varying 
geometrical size. We do this by also varying the magnitude of the 
steady force that attracts the particles to the target wall. The layout 
of the systems analyzed was presented in Section 2.3. The particle 
starts from rest at the centerline between the bounding walls of each 
domain, and moves towards the bottom wall of the domain under the 
influence of a constant attractive force while also undergoing Brownian 
motion in all directions. The simulations are run until the particle 
deposits on the target wall, i.e. when the particle center is at a distance 
of a particle radius from the attracting wall. The random numbers 
required for the generation of the Brownian force in these simulations 
were generated by using the random module in Python (Python 
Software Foundation, 2025). For each domain and force combination, 
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Fig. 7. The logarithmic values of the tails of the 12 memory kernels (𝐾∗ = 𝐾(ℎ, 𝜏)𝛥𝜏∕2𝛾) sampled from the bounded domains are shown as surface plots vs. 
time (𝑡) and the distance of the sampling point from the wall (ℎ). There are two surfaces plotted in each figure corresponding to the kernel associated with the 
directions normal (⟂) and parallel (∥) to the wall. The dip in the tail indicates the rate at which the history effect decays. The rate of decay is more pronounced 
in the wall-normal direction as compared to that in the parallel directions, indicating that the force decorrelation is stronger in this direction. Away from the 
wall, the tails converge to a common surface irrespective of orientation, indicating the decreasing influence from the wall.
10 random number seeds were used to create 10 variations of the same 
simulation for ensemble averaging of the statistics. To understand the 
effects of the wall on the particle dynamics, unhindered simulations 
are also performed where the particle is allowed to migrate over the 
same distance as in the corresponding wall-bound case, but with the 
assumption that the wall is far enough from the particle to not affect 
its motion. This section focuses on comparing the hindered simulations 
based on domain size and forces utilized, while the next section focuses 
on a comparison between the unhindered and hindered simulations.

Since there are no external forces in the 𝑥 and 𝑦 directions, the parti-
cle undergoes pure Brownian motion in these directions. In contrast, in 
the 𝑧 direction, the steady force causes the particle to migrate towards 
the wall. The position of the particle in the 𝑧 direction is depicted as a 
function of time in Fig.  8. The velocity of the particle in the 𝑧 direction 
is presented against the particle position in the same direction in Fig. 
9. In these figures, time is normalized with the particle response time 
(𝜏𝑝), position is normalized with the particle radius (𝑟𝑝), and particle 
velocity is normalized with the RMS velocity (𝑉𝑅𝑀𝑆 ).

In Fig.  8, the green lines indicate the trajectories of the particle at 
the lower force of 𝑚 𝑔 while the red lines indicate the trajectories at 
𝑝

10 
the larger force of 5𝑚𝑝𝑔. The dashed lines in magenta and blue indicate 
the unhindered trajectories at the force of 𝑚𝑝𝑔 and 5𝑚𝑝𝑔, respectively. 
The endpoints of the trajectories in each domain are indicated by the 
correspondingly labeled horizontal lines. It can be seen that the slope 
of the position graph is steeper for the simulations performed with the 
higher conservative force. The slope is initially almost identical in the 
10𝑟𝑝 and 30𝑟𝑝 domains, indicating that there are no significant effects 
from the presence of the wall on the channel centerline. In contrast, the 
5𝑟𝑝 domain exhibits a lower slope from the very beginning, indicating 
that wall effects are present even in the center of the domain in this 
case. In all cases, as the particle approaches the wall in each domain, 
it begins to slow down, as seen from the reduced slopes in the position 
graph.

Similarly, in Fig.  9, the velocity value is plotted against the position 
of the particle in the domain. Here, labeled vertical lines are used to 
indicate the end of the trajectory in each domain. The particle velocity 
can be seen to approach higher values initially in the simulations in 
which the particle experiences a higher conservative force. The particle 
initially attains a terminal velocity that is proportional to the force 
applied to direct it towards the wall. This velocity, however, changes 
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Fig. 8. The position of a particle in the 𝑧 direction as the particle migrates 
towards the bottom wall is depicted against time. A force equivalent to either 
𝑚𝑝𝑔 or 5𝑚𝑝𝑔 is used in each of the reactor geometries. The label UH is used 
here to identify the unhindered simulations.

Fig. 9. The change in the particle velocity in the 𝑧 direction is plotted against 
the particle position along the same direction. A force equivalent to either 𝑚𝑝𝑔
or 5𝑚𝑝𝑔 is used in each of the reactor geometries. The label UH is used here 
to identify the unhindered simulations.

to lower values as the particle approaches the wall and hindrance 
effects start to manifest. The particles seem to approach a new terminal 
velocity close to the wall at the end of their trajectory. However, this 
is because, for every position after the final sampling position used to 
create the memory kernel library (cf. Table  1), the particle uses the 
memory kernel associated with the final sampling point to simulate 
the particle motion (no extrapolation). This induces some inaccuracies 
in the final approach towards the wall, which can be avoided by 
increasing the frequency of kernel sampling close to the wall or by 
opening up for extrapolation of the memory kernel values outside the 
library domain. As seen from the settling simulations used to verify 
the validity of the model in Section 3.1, the errors due to this lack of 
extrapolation beyond the final kernel sampling are quite small.

The most important measure of the degree of control attainable 
for a given microfluidic system design, the impact position in the 𝑥𝑦-
plane, is recorded for each particle trajectory completed. The radius 
of impact is calculated as 𝑅 =

√

𝑥2𝑖𝑝 + 𝑦2𝑖𝑝, where 𝑥𝑖𝑝 and 𝑦𝑖𝑝 are the 
final impact positions in the 𝑥 and 𝑦 directions respectively. The impact 
radius is then normalized to 𝑅∗ = 𝑅∕

√

4𝐷𝜏𝑃 , where 𝐷 = 𝑘𝑏𝑇 ∕𝛾 is the 
diffusion coefficient for an unhindered spherical particle and √4𝐷𝜏𝑝
is a measure of the distance that an unhindered particle would diffuse 
over in a plane during the time 𝜏𝑝. The normalized impact radius is 
thus a measure of how far the particle has diffused in the 𝑥𝑦-plane by 
the time that the particle approaches the wall. Diffusion realistically 
depends on the time available for diffusion as well as the hydrodynamic 
hindrance experienced by the particle. As can be seen from the formula 
for the diffusion coefficient, the diffusion is inversely proportional to 
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Fig. 10. The normalized impact radius (𝑅∗) for the domains at two magni-
tudes of the attracting force. The bars represent the average impact radius and 
the error bars represent the variance in the impact radius, as obtained from 
ensemble-averaging over repeated particle trajectory evolutions. The value of 
the average impact radius in each case is indicated on top of the bars.

the hydrodynamic hindrance, and thus, the larger the hindrance, the 
lower the corresponding diffusion (Felderhof, 2005).

In Fig.  10, the average impact radius for each domain and force 
combination is shown for the hindered as well as unhindered scenario. 
The impact radii were grouped by domain and labeled according to 
the forces used in each case. While the bars indicate the average 
impact radii, the error bars illustrate the variance of the impact radius. 
The green bars indicate the impact radii when the force is 𝑚𝑝𝑔 and 
the orange bars indicate the same when the force is 5𝑚𝑝𝑔 in the 
hindered cases. It can be seen that the impact radius, as well as its 
variance, reduces as the force applied to the particle increases in the 
same domain. Since the particle spends less time in the domain in the 
higher-force scenario (it reaches the target wall sooner), it has less 
time to diffuse, and this is observed as the reduced impact radius. For 
the same conservative force, when the domain size is increased, the 
impact radius also increases as the particle spends more time diffusing 
parallel to the wall in a larger domain. As was seen from the evolution 
of particle positions and velocities, the hindrance to particle motion 
increases drastically only as the particle enters the near-wall region. 
Therefore, in larger domains, where the Brownian particle spends more 
time in the low-hindrance area away from the wall, it is to be expected 
that the particle will show a larger impact radius when it eventually 
arrives at the wall.

It can be seen from Fig.  10 that, within the parameter space investi-
gated in the current work, the largest impact radius (55) is observed in 
the 30𝑟𝑝 domain at the force of 𝑚𝑝𝑔, while the smallest impact radius 
(11.1) is observed in the 5𝑟𝑝 domain at the force of 5𝑚𝑝𝑔. Based on 
the difference between these values, it can be seen that the optimal 
design of a microfluidic device can reduce the impact radius by almost 
80%. More specifically, this is achieved by amplifying the hindrance 
(making the device smaller or confining the geometry along the path 
to the focus point on the target wall) while increasing the magnitude of 
the attracting force (increasing the strength of interaction between the 
external field and the particle or modulating the particle response to the 
same field). These observations illustrate how insights from simulations 
can help untangle the confounded effect of parameters through which 
the process may be optimally designed and controlled.

3.4. The role of hindrance in the deposition process of particles

To better understand the effects of the wall on the approach of the 
particle to the target area in the microfluidic reactor, and also the role 
of the hindrance arising from the presence of the wall on the possibili-
ties to focus the impact radius, a comparison between unhindered and 
hindered Brownian motion is performed. In the unhindered simulation, 
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the Brownian particle is pulled using a steady force towards the wall, 
but here the wall is considered to be far enough to not have an influence 
on the particle motion. The forces and domains used are the same 
as those described in the previous section. Here, the main difference 
from the hindered scenario described in the previous section is that 
only the hydrodynamic kernel associated with a particle located at the 
center of the largest fluid domain is used to move the particle. This is 
implemented by using the kernel associated with the center of the 30𝑟𝑝
domain. Since the particle is at a significant distance from the wall, the 
hydrodynamic force, as well as the random Brownian force modeled 
using the memory kernel associated with this position, are considered 
equal to those of an unhindered particle (i.e. the influence of the wall 
is considered negligible). Similarly to the previous cases, 10 different 
random number seeds have been used in the unhindered settling cases 
to create enough data to elucidate the statistical tendencies.

In Fig.  8, the dashed blue and magenta lines indicate the trajectory 
of the settling Brownian particle in the 𝑧 direction in the unhindered 
case for one realization of the simulation at the forces of 𝑚𝑝𝑔 and 5𝑚𝑝𝑔, 
respectively. The trajectories collapse onto the same line irrespective 
of the domain size traversed by the particle due to the lack of any 
wall effects. Similarly, in Fig.  9, the corresponding velocity of the same 
migrating particle in the 𝑧 direction is depicted in the two domains 
against its position with the unhindered cases again represented by the 
blue and magenta lines. Again, the velocity graphs for the same force 
overlap with each other due to the lack of any wall effects. It can be 
seen here that, in the unhindered case, the particle steadily approaches 
the wall with no change in velocity after it reaches its terminal veloc-
ity. After having attained the terminal velocity, the particle velocity 
oscillates about this terminal value because of the Brownian impulses 
experienced by the particle. The magnitude of the attracting force ap-
plied determines the magnitude of the terminal velocity attained, with 
the higher force producing a terminal velocity of higher magnitude.

On the other hand, as previously seen in the hindered cases, the 
approach of the particle toward the wall is influenced by the distance 
to the wall. It can be seen from both the position and velocity graphs 
that the initial approach, especially in the 10𝑟𝑝 and 30𝑟𝑝 domains, is 
similar to that in the unhindered case, since the influence of the wall 
is minimal in the center of these domains. However, as the wall gets 
closer, the hydrodynamic hindrance to the particle motion increases, 
causing the particle velocity to decrease continuously. The particle 
attains a new terminal velocity close to the wall once it crosses the final 
sampling point for the memory kernel close to the wall. As discussed 
previously, this depicts a lack of information close to the wall due 
to insufficient sampling of memory kernels close to the wall, which 
may be alleviated by extending the methodology. The hindrance is 
expected to keep increasing until the particle collides with the wall 
and, therefore, the particle velocity should ideally keep decreasing as 
the particle approaches. Nevertheless, at sufficiently small particle–wall 
separations, the continuum hypothesis breaks down and the hydrody-
namic description is no longer valid. For the purpose of the present 
work, we refrain from further probing the exact limits of the hydrody-
namic description of the closest approach to the wall. In the developed 
method, the increased hindrance effects due to the presence of the wall 
are effectively conveyed to the particle motion through the changes 
in the memory kernel as the particle position changes. The increase 
in the peaks of the memory kernel, as seen in Figs.  5 and 6, causes 
an increase in the hydrodynamic friction or hindrance experienced 
by the particle as the particle approaches the wall. Analytical force 
models, conventionally used in LPT, require elaborate expressions for 
how all the different components of the total hydrodynamic force (drag, 
added mass, history force, etc.) change with approach to the wall. 
Neglecting the hindrance effect altogether leads to significant errors in 
the predictions of the particle deposition timing, as well as consecutive 
errors in the predicted particle diffusion in the plane parallel to the 
wall, and thus to incorrect impact radii predictions.
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Fig. 11. Illustration of the memory kernel sampling locations. The blue lines 
indicate the main direction of motion of the Brownian particle during the 
deposition process. The particle starts at the center of the domain and then 
gradually approaches the wall under the influence of the steady force. The red 
marker along the path indicates the positions at which the memory kernel has 
been sampled to create the kernel library used to simulate the particle motion. 
The sampling position close to the wall has been used as the first sampling 
point in all the cases and the remaining sampling positions have been spaced 
out appropriately to get the required number of kernels. Here, ℎ is the distance 
from the bottom wall to the various positions in the domain.

In Fig.  10, the average normalized radii of impact in the hindered 
and unhindered cases are compared for the different domains. The 
unhindered cases are represented by the blue bar for the force of 𝑚𝑝𝑔, 
while the red bar represents the same for the force of 5𝑚𝑝𝑔. In the 
5𝑟𝑝 and 10𝑟𝑝 domains, regardless of the attracting force, the impact 
radius in the unhindered case is smaller than that in the corresponding 
hindered case. In the 30𝑟𝑝 domain, when the attracting force is set to 
𝑚𝑝𝑔, the impact radius in the unhindered case is lower than that in the 
hindered case. When the attracting force is increased to 5𝑚𝑝𝑔 in the 
largest domain, the impact radius is approximately the same, regardless 
of the hindrance experienced.

The apparent lack of a clear pattern in the dependence of the impact 
radius on the chosen combination of domain size and conservative force 
magnitude can be understood by looking at the factors influencing the 
impact radius. More specifically, the impact radius depends on the hin-
drance experienced by the particle, with a lower hindrance allowing the 
particle to diffuse further away from its initial position, thus effectively 
leading to a less focused impact region. On the other hand, the impact 
radius increases with the time it takes for the particle to reach the 
wall. The longer the migration time inside the microfluidic system, 
the longer the particle has to diffuse away from its deterministic (non-
Brownian) position in the 𝑥𝑦 plane. In the unhindered case, hindrance 
is low, and there is thus less resistance to parallel diffusion but also a 
faster approach to the wall, which reduces the time available for the 
particle to undergo wall-parallel diffusion. In contrast, in the hindered 
simulations, the particle experiences more resistance to motion, which 
reduces the diffusion of the particle while increasing the time needed 
to arrive at the wall, allowing the particle to spend more time diffusing. 
In conclusion, while one factor tends to increase the impact radius, 
the other tends to reduce it. The balance between these two opposing 
effects (the particle diffusion time in the system and the effective 
parallel diffusion coefficient) in each of the cases determines how close 
the impact radius in the unhindered case is to the same in the hindered 
case.

3.5. Trade-off between accuracy and computational cost in the resolution 
of the memory kernel

The memory kernels used to create the Brownian motion simula-
tions have been strategically determined as described in Section 2.3, 
based on the theoretical expectation of how the distance to the wall will 
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influence the added mass effect. A total of 12 kernels are determined 
using IB-FSI simulations to create the memory kernel library for the 
nonlocal multiscale simulations of the separation of Brownian particles 
in a microfluidic device. In this section, the number of kernels (𝑛𝐾 ) used 
to run the particle migration simulations is reduced from 12 to 6 and 3, 
respectively, to study the effect of the number of kernels on the particle 
motion. These simulations were run in the domain corresponding to 
a wall distance of 30𝑟𝑝, with the attracting force maintained at 𝑚𝑝𝑔
to allow for the maximum amount of time for the particle to diffuse 
during motion in the 𝑧 direction. The memory kernels required for the 
simulations corresponding to 𝑛𝐾 = 6 and 𝑛𝐾 = 3 are taken as shown in 
Fig.  11. Here, the memory kernel corresponding to the position closest 
to the wall is kept constant while the remaining kernels are taken with 
the appropriate even spacing while moving towards the center to get 
the required number of kernels.

In Figs.  12(a) and 12(b), the changes in the position and velocity of 
the particle in the 𝑧 direction are depicted, as the number of kernels 
used to simulate the particle motion is varied. Here, the simulation 
consisting of 12 memory kernels is considered to be the most accurate, 
since it contains more sampling points to accurately represent the 
hydrodynamic effect. From Fig.  12(a), it can be seen that the particle 
position begins to deviate in the 6-kernel and 3-kernel version of the 
simulations from that seen in the 12-kernel version of the simulation 
in the near-wall region. The most drastic deviation is seen in the 3-
kernel version of the simulation, since the wall-adjacent kernel begins 
to influence the behavior of the particle much earlier in the domain 
than in the other cases. Similarly, in the velocity plot shown in Fig. 
12(b), the particle initially attains the same terminal velocity and 
then gradually shifts towards the final terminal velocity with which it 
strikes the wall (the same in all three cases). The shift in the particle 
velocities, however, depends on the number of kernels used. While the 
12-kernel and 6-kernel versions show quite smooth transitions from 
the initial velocity to the final one, the 3-kernel version exhibits a 
sharp shift as it approaches close to the wall, indicating a sudden 
strong influence from the wall-adjacent kernel from that point forward. 
The 12-kernel version shows a slightly smoother approach to the final 
terminal velocity compared to the 6-kernel version, but the differences 
are minor compared to the drastic shift observed in the 3-kernel case.

Since the 12-kernel simulation run is considered the most accurate, 
the trajectory of the particle obtained from the 3-kernel and 6-kernel 
simulations are compared with the 12-kernel simulation to estimate 
the error that builds up in these simulations due to the lower number 
of kernels available. The error is calculated as shown in Eq.  (21). 
Here, 𝑥𝑛𝐾 ,𝑖 refers to the position of the particle in the simulation using 
𝑛𝐾 kernels to simulate the particle motion. The numerator in this 
equation estimates the distance by which the particle deviates from the 
corresponding 12-kernel simulation, while the denominator is the total 
distance that the particle travels in the 12-kernel simulation. 

𝐸𝑟𝑟𝑜𝑟(𝑛𝐾 ) =
∑𝑛

𝑖=0 |(𝑥𝑛𝐾 ,𝑖+1 − 𝑥𝑛𝐾 ,𝑖) − (𝑥12,𝑖+1 − 𝑥12,𝑖)|
∑𝑛

𝑖=0 |𝑥12,𝑖+1 − 𝑥12,𝑖|
(21)

The error estimated in this manner for each direction is converted to 
a corresponding percentage reading as shown in Table  2. It can be seen 
that the simulation using 6 kernels shows a minimal error (less than 
1%) in all three directions. On the other hand, for the simulation using 
3 kernels, the error in the 𝑧 direction is more than 4%, indicating a 
larger deviation. Naturally, the error in a general scenario will depend 
on the system size, with more confined geometries leading to larger 
errors as the memory kernel resolution is decreased.

The simulation using 6 kernels shows less error than the same 
simulation using 3 kernels in all three directions. In general, the error is 
more pronounced in the wall-normal direction where the steady force 
is applied. While the steady push in this direction probably contributes 
to the increased error, it is also good to note that this is the direction 
in which the memory kernel shape and the associated hydrodynamic 
hindrance show the highest change.
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Fig. 12. (a) The position of a particle in the 𝑧 direction as it undergoes 
Brownian motion while moving towards a wall under the influence of a steady 
force is plotted against time. (b) The velocity of the same particle in the 𝑧
direction is plotted against its position. A force equivalent to 𝑚𝑝𝑔 is used to 
move the particle, while the number of memory kernels used to create the 
library is varied, 𝑛𝐾 ∈ [12, 6, 3].

Table 2
Error in position for different numbers of memory kernels used to create the 
simulations. The error has been estimated by comparing against the simulation 
that is run using 12 memory kernels.
 Number of Kernels Error in position (%)
 x y z  
 6 0.12 0.11 0.92  
 3 0.38 0.38 4.45  

3.6. Proof of computational efficiency

The computational cost required to run the complete settling parti-
cle simulation involving Brownian motion is discussed in this section. 
The simulation in the domain with a wall distance of 30𝑟𝑝 with a force 
of 𝑚𝑝𝑔 is studied using different computational setups to understand the 
cost in terms of core hours used to complete the simulations. Here, the 
multiscale simulation cost also includes the cost required to optimize 
and generate all the memory kernels required to run the simulations.

The costs for the different types of simulations are normalized using 
the total cost for the pure IB-FSI framework simulation. These are 
displayed in Fig.  13, where each bar represents the cost of a different 
simulation process. The yellow parts represent the cost of running 
the DNS using IB-FSI framework, either for the settling process or for 
determining the memory kernels. The blue parts represent the cost 
associated with running the LPT part of the multiscale model, using 
the memory kernels developed from the IB-FSI framework. It can be 
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Fig. 13. Comparison between computational costs associated with running 
a pure DNS based on IB-FSI framework and the corresponding multiscale 
simulation using the memory kernel-based LPT framework. Here, 𝑛𝐾 refers to 
the number of memory kernels used to characterize the hydrodynamic effects 
the fluid in this particular domain has on the particle.

seen here that the cost of running the simulation purely using the IB-
FSI framework is more than two orders of magnitude higher than that 
associated with the multiscale models, highlighting how much cheaper 
the currently proposed method is in comparison. Within the multi-
scale method, the computational cost required to prepare the kernels 
required for the simulations changes proportional to the number of 
kernels used to run the simulations, with the 12-kernel simulations 
requiring the largest preparatory cost and the 3-kernel simulations 
needing the smallest. The LPT components of the multiscale runs 
themselves do not show a significant difference between themselves, 
indicating that this cost depends more on the number of time steps 
required to reach the wall than on the number of kernels used.

The multiscale model using memory kernels thus provides a sig-
nificant computational improvement over the pure IB-FSI simulations 
involving Brownian motion. Within the multiscale model, the number 
of times the IB-FSI simulations are used to determine the memory 
kernel becomes a differentiating factor. However, as discussed in the 
previous section, more kernels also provide more accurate hydrody-
namic information about the flow field around the particle. In more 
generic flow scenarios, it might be useful to determine the memory 
kernels on-the-fly instead of pre-determining a kernel library for the 
whole particle flow path (as the flow path may be difficult to as-
sess a priori). This scenario could be handled by interlinking the LPT 
simulation with the IB-FSI simulation, so that the multiscale model 
jumps from the LPT simulation to the IB-FSI simulation whenever 
it requires the determination of a new memory kernel. An adaptive 
determination of the kernel in this manner could be based on the rate 
of change of just the peak of the kernels as the particle moves through 
the domain. This type of kernel peak determination is relatively less 
computationally expensive as it involves just a single term compared to 
the determination of multiple values in the extended kernel. In such a 
scenario, it becomes important to strike a balance between the number 
of kernels utilized for the particle motion and the cost of determining 
all the kernels. An alternative approach would be to create a machine-
learning model that can predict the memory kernel associated with 
a particle based on a limited dataset of sampled memory kernels. In 
such a case, the total cost of the multiscale model would also include 
the training time required to develop the machine-learning model. An 
exploratory study in this direction is presented in the next section.

3.7. Towards a machine learning approach

The memory kernels obtained from the 5𝑟𝑝 domain are used to 
create a machine learning approach for predicting unknown memory 
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kernels. Two Neural Network (NN) models are trained to predict the 
peaks and tails of the memory kernel in the chosen domain. The two 
models take the distance of the particle from the wall (ℎ) as input and 
then produce the corresponding peaks or tails of the memory kernels, 
in both wall-normal and parallel directions. In the 5𝑟𝑝 domain, the 
memory kernel contains information up to a lag time of 10𝜏𝑝 and with 
a time step of 𝛥𝑡 = 𝜏𝑝∕50, producing time-discretized memory kernels 
consisting of 𝑀 = 500 values. The peak of the kernel then refers to 
the first four values of the time-discretized memory kernel. While the 
tail refers to the remaining values. The models are created using the
PyTorch and the scikit-learn modules in python (Paszke et al., 
2017). The 5𝑟𝑝 domain is chosen since it has the highest variance in 
terms of kernel values compared to the other two domains, where the 
kernels are relatively constant in the center of the domain. This higher 
variety of kernels allows the models to learn more from the low number 
of kernels available.

Two NN models are chosen to predict the kernel, since a single 
model was observed to have difficulties in accurately predicting the 
whole kernel as the kernel values span multiple orders of magnitude be-
tween the peaks and the tails (as can be seen in Figs.  6 and 7). The Mean 
Square Error (MSE) is chosen as the loss function between the training 
data and the predicted data. The Adam optimization routine is used to 
tune the parameters of the models based on the loss function (Kingma 
and Ba, 2014). Both NN models consist of three layers of neurons 
connecting the input and output layers. The major difference between 
the models comes in the pre-processing employed on the training data. 
In the case of the model used to train the peaks, the training data is 
rescaled around the mean of all the values and normalized by their 
standard deviation. The training routine is then run for 1000 iterations 
until the parameters are tuned such that the MSE is less than 10−3, 
when rescaled back to the original data range. In the case of the NN 
model used for predicting the tails, the kernel tails used for training 
are converted to their logarithmic equivalents instead, to reduce the 
range over which the data spans. The model is then trained using these 
logarithmic values, and the final output is inversely transformed to 
obtain the actual predicted kernel tails. The training routine in this case 
is also run for 1000 iterations, until the MSE in the original data range 
is less than 10−4.

A simulation of a particle migrating in the 5𝑟𝑝 domain under the 
influence of a force equal to 5𝑚𝑝𝑔 is run using the NN models to supply 
the required memory kernels. The two trained models generate the 
peaks and tails of memory kernels based on the distance of the particle 
from the bottom wall. Combining the peak and tail gives the complete 
kernel required to run simulations in the 5𝑟𝑝 domain. The position and 
velocity graphs corresponding to this simulation are compared with 
those obtained from the simulations run using the linear interpolation 
between known kernels in Fig.  14. Both the position and velocity 
graphs from utilizing the machine learning approach can be seen to 
closely follow the graphs of the same data from the simulations based 
on linear interpolation . An estimation of the error in the trajectory 
was done using Eq.  (21). Along the 𝑥 and 𝑦 directions, the machine 
learning approach shows a deviation of less than 0.5% while in the 𝑧
direction, it shows a deviation of approximately 1.3%. These small devi-
ations indicate that memory kernels predicted using machine learning 
methods can be used to produce accurate hydrodynamic simulations. 
The machine learning model is also able to predict the kernels that 
produce higher hydrodynamic hindrance, as seen from the decrease in 
the particle velocity beyond the final kernel sampling point. Thus, this 
approach allows for some extrapolation that was previously avoided 
in the linear interpolation approach towards kernel prediction. From 
running a pure settling simulation and comparing to its DNS equivalent 
as done in the validation cases, the deviation beyond the final kernel 
sampling point in this case is found to reduce to 1.65% compared to the 
2.3% in the linear interpolation case where the kernel is held constant.

While this investigation confirms the possibility for such an ap-
proach, various factors such as the pre-processing method, the neural 
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Fig. 14. The position and velocity graphs for the particle migration simula-
tions utilizing the NN models are depicted here. The simulations take place in 
the 5𝑟𝑝 domain under the influence of a steady force of 5𝑚𝑝𝑔. Figure (a) shows 
the position plotted against the time while figure (b) shows the velocity plotted 
against the position, all along the 𝑧 direction.

architecture, optimization routine, loss function etc., used while train-
ing the models can be altered to get better predictions of the kernels. In 
the case of more complex particle and domain geometries (such as non-
spherical particles or branched configurations in microfluidic devices), 
the input parameters can be increased from just the particle position 
to include factors such as the particle size, orientation, domain size 
and so on. Multiparticle systems could include relative positions and 
orientations between particles as possible input parameters. If the fluid 
used in the simulations is altered, then parameters such as the fluid–
particle density ratio and fluid viscosity can also be included as input 
parameters for the models. The output parameters in this case are the 
wall-normal and parallel kernels but these can be altered to include 
three different directions to incorporate varying hydrodynamic effects 
in each direction. The model could also be extended to include off-
diagonal components of the memory kernel in asymmetric particle or 
domain shapes, where such terms can become significant. Rotational 
Brownian motion might also be relevant in the case of such non-
spherical particles, in which case, similar memory kernels will need 
to be derived for the rotational motion of the particle as well. Here, 
the angular velocity history of the particle and hydrodynamic torque 
experienced by the particle can be used to optimize rotational memory 
kernels in a manner similar to that detailed in this work for the trans-
lational motion. These models will, of course, require initial training 
data that spans a wide range of these input and output parameters so 
that the models can be as generic as possible. A possible future avenue 
for this modeling approach thus involves the generation of this data 
and training of such models for either case-specific needs or general 
application.
15 
4. Conclusions

In this work, a novel nonlocal multiscale model has been developed 
and applied for simulations of Brownian microfluidic systems. The 
model is based on the generation of hydrodynamic memory kernels us-
ing a multiphase Direct Numerical Simulation (DNS) framework, which 
are subsequently used in a Lagrangian Particle Tracking (LPT) routine 
to evolve particle trajectories. The model is based on the Generalized 
Langevin Equation (GLE) and generates the complete hydrodynamic 
force, as well as the corresponding random colored Brownian force, 
using the hydrodynamically optimized memory kernels. In this way, 
the model does not require any analytical models for the various force 
contributions or their dependence on the vicinity of nearby walls or 
surfaces, thereby allowing for its utilization in complicated geometric 
configurations where such analytical models for the hydrodynamic 
model are hard to derive. The method can simultaneously generate 
random colored forces to incorporate Brownian motion into the particle 
dynamics, thus making it especially suited to study particulate flows at 
the micro- and nano-scales. The model is validated for canonical cases 
involving acceleration from a steady force and unhindered Brownian 
motion. Particle settling simulations are also used to validate that linear 
interpolation between known values of the memory kernels is sufficient 
to capture the hydrodynamic behavior in intermediate positions.

The validated model is thereafter used to study particle migration 
and deposition in microfluidic systems, where a conservative force 
attracts particles to a target wall while the particle undergoes Brownian 
motion. The impact radius is determined as a measure to quantify the 
capability of a given system design (combination of geometrical factors 
and magnitude of the attracting force) to focus particles into a narrow 
region. It is shown that both hindrance effects and nonlocal effects 
are significant in microfluidic systems for neutrally buoyant particles. 
Moreover, it is shown how balancing the choice of system size and 
the magnitude of the attracting force can be leveraged to optimally 
focus particle deposition locations on the target wall. These effects 
arise as the hindering force experienced by the particles influences 
the approach of the particle towards the wall (and the duration of 
the approach), as well as the diffusion the particle undergoes in the 
direction perpendicular to the wall. The dependence of the simulations 
on the number of known kernels is demonstrated by varying the 
number of kernels used to simulate the particle migration, with more 
known kernels providing more accurate results. Finally, a machine 
learning model trained on the known kernels is shown to be capable 
of predicting accurate memory kernels necessary for running similar 
particle migration simulations.

The memory-kernel-based LPT method proposed here is thus 
demonstrated to be a suitable low-cost tool to assist in the study 
of flow phenomena involving Brownian motion in confined systems. 
The method can be further extended to incorporate various particle 
shapes and rotation, since the memory kernel inherently carries such 
information, and is also well suited for combination with machine-
learning approaches to memory-kernel prediction on the basis of 
limited DNS data. 
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