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1 Introduction

The quest for dark matter (DM) is gradually broadening its focus, with a remarkable, global
experimental effort directed towards probing models where the DM particle is approximately
in the MeV to GeV mass range [1–3]. The experimental search for DM particles lighter than a
GeV is motivated by the lack of discovery of WIMPs at direct detection experiments, and by
the possibility of producing a DM candidate in this mass window with the correct cosmological
abundance via the freeze-out mechanism (if the Lee-Weinberg bound [4] is circumvented
by introducing the exchange of a new particle mediator in the relevant number-changing
processes).

The search for DM-induced electronic transitions in germanium [5] and silicon [6–8], as
well as liquid argon [9] and xenon [10], has so far played a major role in the exploration of
the MeV to GeV mass window in direct detection experiments. The formalism for describing
the scattering of Milky Way, sub-GeV DM particles on the electrons bound to a detector
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material has been put forward in [11–13], and subsequently extended to account for in-
medium screening in models where DM couples to the electron density in the target [14, 15].
More recently, linear response theory has been used to further extend the formalism for
DM-electron scattering in materials to effective theories where DM couples to all the electron
densities and currents that arise at leading order in the non-relativistic expansion of the
DM-electron scattering amplitude [16]. Effective theories for DM-electron interactions have
been formulated in [17, 18], as well as in [19, 20].

Focusing on models where fermionic DM couples to the electron density, it has been
pointed out that there exists a theoretical upper bound on the rate of DM-induced electronic
transitions in a detector [21]. This bound arises from the so-called Kramers-Kronig relations,
which follow from the analytic properties of the dielectric function, upon which the DM-
induced electronic transition rate depends. This is an interesting observation, because it
provides a systematic framework to identify optimal detector materials to probe the DM
coupling to the electron density.

In this work, we show that a theoretical upper bound on the rate of spin-1/2 DM-induced
electronic transitions exists not only in models where DM couples to the electron density,
but also in models where it couples to the paramagnetic current, the spin current, the scalar
product of spin and paramagnetic current, and the Rashba spin-orbit current. This extends
the results of [21] to the leading currents and densities arising from the non-relativistic
expansion of the DM-electron scattering amplitude, or, equivalently, from the non-relativistic
expansion of the Dirac Hamiltonian [16]. Analogously to [21], the existence of the upper
bound we find here follows from an application of the Kramers-Kronig relations. However,
we do not apply the Kramers-Kronig relations to the dielectric function only, but also to
the generalized susceptibilities that describe the linear response of materials to the leading,
non-relativistic DM-electron couplings. For each given DM coupling, the ratio between the
actual DM-induced electronic transition rate and our theoretical upper bound only depends
on the assumed detector material and DM mass. For all currents and densities listed above,
we evaluate this ratio focusing on Si, Ge, Ar, and Xe as detector materials. In general, we
find that Si and Ge are closer to saturate our theoretical upper bound, but still far from
saturation in all models where DM couples to densities or currents which are different from
the electron number density. This points towards the need for a different class of materials
to effectively probe such coupling forms.

Our work is organized as follows. In section 2 we review the use of the Kramers-Kronig
relations in the context of DM direct detection, and show why they imply a theoretical upper
bound on the rate of DM-induced electronic transitions in models where DM couples to the
electron density in the detector. In section 3, we review the application of linear response
theory to DM direct detection, and show that, for general DM-material couplings, the rate of
DM-induced electronic transitions can be expressed in terms of generalized susceptibilities
which, under general conditions, also obey the Kramers-Kronig relations. In section 4.1, we
use our generalized susceptibility formalism to obtain a theoretical upper bound on the rate of
DM-induced electronic transitions in models where DM couples to the leading, non-relativistic
electron densities and currents. In section 4.2, we provide expressions for the interaction
rate calculated in some specific effective models of DM-electron interactions. We evaluate
our theoretical upper bound in section 4.3, and conclude in section 5. Additional results
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and useful identities, as well as a short discussion of some assumptions, are collected in
the appendices A to D.

2 Electronic transitions induced by a DM-electron density coupling

As already mentioned in the introduction, throughout the whole paper we assume the
electrons to be non-relativistic, so that their kinetic energies are much smaller than me.
Nevertheless, some electrons in the material, namely, those at the innermost atomic shells,
may be predominantly relativistic, as their expected kinetic energies are comparable to me.
Those electrons, however, are tightly bounded to the nucleus and, therefore, difficult to
excite. Therefore, they do not significantly contribute to the total excitation rate. The
valence electrons, whose excitations would be the main source of the DM-induced signal, are
not subject to any significant relativistic corrections [22], so the non-relativistic treatment
is justified.

2.1 Fermi’s golden rule

The rate of transitions from an electronic state |i⟩ to an electronic state |f⟩, induced by
an incoming DM particle of momentum p and a spin configuration s scattering to a final
state momentum between p′ and p′ + dp′ and with a spin configuration s′, is given by
Fermi’s golden rule,

dΓss′
i→f (p) = (2π)δ(Ef + Ep′ − Ei − Ep)

∣∣∣⟨f ; p′, s′| V̂ |p, s; i⟩
∣∣∣2 V dp′

(2π)3 , (2.1)

where V̂ is the DM-electron interaction potential, Ei (Ef ) the energy of the initial (final)
electronic state, and Ep (Ep′) the energy of the initial (final) DM particle. Here, single particle
states are normalized to one, while V ≡

∫
dx is a normalization volume such that the number

of DM particle states with momenta between p′ and p′ + dp′ in a volume V is V dp′/(2π)3.
In position space, the matrix element of the interaction potential V̂ can be written

as follows,

⟨f ; p′, s′|V̂ |p, s; i⟩ = 1
V

∫
dre

∫
drχ ψ

∗
f (re) e−ip′·rχ ξs′†

χ V̂x(re, rχ, . . . )ξs
χ e

ip·rχ ψi(re) , (2.2)

where we have assumed spin-1/2 DM and ξs
χ (ξs

χ) is a two-component spinor describing
the spin configuration of the initial (final) DM particle (i.e., up or down for spin-1/2 DM),
ψi (ψf ) is the initial (final) electronic wave function, while V̂x denotes the position space
interaction potential. The dots in eq. (2.2) denote gradient and spin operators which V̂x

can in general depend on. In eq. (2.2), we integrate over the electron and DM particle
position vectors, re and rχ.

By assuming V̂x(re, rχ, . . . ) = 1e1χV̂x(re − rχ) (which applies to the case of velocity-
and spin-independent interactions), where 1e (1χ) is the 2× 2 identity in the electron (DM
particle) spin space, the matrix element in eq. (2.2) can now be rewritten as follows,

⟨f ; p′, s′|V̂ |p, s; i⟩ =
∫

dre ψ
∗
f (re)V ss′

eff (re, q)ψi(re)

= ⟨f |V ss′
eff |i⟩ ,

(2.3)
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where

V ss′
eff (re, q) ≡ 1

V
eiq·re 1e δ

ss′
Ṽx(q) , (2.4)

is the effective transition potential,

Ṽx(q) ≡
∫

d (re − rχ) e−iq·(re−rχ) V̂x(re − rχ) , (2.5)

and q = p− p′ is the momentum transfer. Recalling that the number density of an electron
at re and its Fourier transform at q are given by

n0(r) = δ(3)(r − re) , ñ0(q) = e−iq·re , (2.6)

we find that

V ss′
eff (re, q) ≡ 1

V
ñ0(−q)1e δ

ss′
Ṽx(q) . (2.7)

Independently of the specific form of Ṽx(q), whenever V̂x(re, rχ, . . . ) = 1e1χV̂x(re − rχ)
the transition potential V ss′

eff (re, q) depends on the properties of the electrons bound to
the target material through the electron density solely. One can summarize this property
of the underlying DM-electron interaction by saying that the DM couples to the electron
density in the material.

As an example, let us consider the following amplitude for DM scattering by free electrons,

M = c1 δ
ss′
δrr′

, (2.8)

where c1 is a dimensionless constant, while r (r′) labels the initial (final) state electron spin.
In the Born approximation, the relation between M and the associated scattering potential is

⟨k′, r′; p′, s′|V̂ |p, s; k, r⟩ = −(2π)3δ(3)(p′ + k′ − k − p) M

4memχV 2 , (2.9)

where k (k′) is the initial (final) free electron momentum. By inserting eq. (2.2) with free
electron wave functions ψi(re) = ξr

ee
ik·re/

√
V and ψf (re) = ξr′

e e
ik′·re/

√
V into eq. (2.9),

we obtain

V̂x(re − rχ) = − c1
4memχ

δ(3)(re − rχ) , (2.10)

and, using eq. (2.7),

V ss′
eff (re, q) = − c1

4memχV
δss′

1e ñ0(−q) . (2.11)

2.2 Dielectric function formalism

By inserting eq. (2.3), with V ss′
eff (re, q) given in eq. (2.7), into eq. (2.1), we find the rate formula

dΓss′
i→f (p) = (2π)

V
δ(Ef + Ep′ − Ei − Ep) δss′ |Ṽx(q)|2 |⟨f | ñ0(−q) |i⟩|2 dp′

(2π)3 . (2.12)
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Summing (averaging) over the final (initial) electronic configurations and DM particle spins,
and averaging over the initial DM particle velocities v = p/mχ (defined in the laboratory
frame), we can now calculate the total electronic transition rate induced by a galactic
DM particle whose initial velocity in the laboratory frame is distributed according to the
probability density f(v), and whose final momentum lies between p′ and p′ + dp′. In
addition, by integrating over the final DM momenta p′ or, equivalently, over the momentum
transfer q, we find

Γ = 1
2
∑
ss′

∑
if

e−βEi

Z

∫
dv f(v)

∫
dq

dΓss′
i→f (p)
dq

, (2.13)

where Z is the partition function, β = 1/T , and T denotes the temperature (in DM direct
detection applications, T → 0; see appendix D.2 for a short discussion). Introducing
Kn0n0(q, ω), the density-density correlation function,

Kn0n0(q, ω) = 2π
V

∑
if

e−βEi

Z
⟨f |ñ0(−q)|i⟩ ⟨i|ñ0(q)|f⟩ δ(Ef − Ei − ω) , (2.14)

we can rewrite Γ as

Γ =
∫ dq

(2π)3 |Ṽx(q)|2
∫

dv f(v)Kn0n0(q, ωv,q) , (2.15)

where

ωv,q = Ep − Ep−q = q · v − q2

2mχ
. (2.16)

Finally, by using [16]1

Kn0n0(q, ω) = 2
1− e−βω

Im
[
−εr(q, ω)−1

]
U(q)−1 , (2.17)

where U(q) = 4πα/q2 is the Fourier transform of the Coulomb potential and α the fine
structure constant, we obtain

Γ =
∫ dq

(2π)3 |Ṽx(q)|2
∫

dv f(v) 2
1− e−βωv,q

Im
[
−εr(q, ωv,q)−1

]
U(q)−1 , (2.18)

which gives a formula for the DM-induced electronic transition rate in terms of the dielectric
function εr(q, ω) (defined as in [23]). Eq. (2.18) applies to models where DM couples to
the electron density in materials.

2.3 Kramers-Kronig relations

By combining the dielectric function formalism reviewed above with the Kramers-Kronig
relations, one can derive a theoretical upper bound on Γ in models where DM couples to the
electron density in materials [21]. To show this, let us first introduce the Kramers-Kronig
relations.

1The local field effects, discussed in [16], are neglected here.
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Let function g : C→ C be analytic in the upper half plane,2 and g(z)→ 0 for |z| → ∞.
Then, g must satisfy the following Kramers-Kronig relations [23]:

Re g(z0) = 1
π
P
∫ +∞

−∞

dz
z − z0

Im g(z) , (2.19a)

Im g(z0) = − 1
π
P
∫ +∞

−∞

dz
z − z0

Re g(z) , (2.19b)

where P denotes the principal value. In particular, for z0 = 0, we obtain

Re g(0) = 1
π
P
∫ +∞

−∞

dz
z

Im g(z) , (2.20a)

Im g(0) = − 1
π
P
∫ +∞

−∞

dz
z

Re g(z) . (2.20b)

If, in addition, g satisfies a third property — namely, that its Fourier transform is real3 —
its real part Re g(z) is even and its imaginary part Im g(z) is odd as a function of z ∈ R.
Then, eq. (2.20a) becomes ∫ +∞

0

dz
z

Im g(z) = π

2 g(0) . (2.21)

Since 1−εr(q, ω)−1 as a function of ω obeys the above three conditions for each q, one can write∫ +∞

0

dω
ω

Im
[
1− εr(q, ω)−1

]
= π

2
[
1− εr(q, 0)−1

]
. (2.22)

This identity implies a theoretical upper bound on the rate of DM-induced electronic tran-
sitions Γ [21]. Indeed, in eq. (2.18), the change of integration variables introduced in
appendix B leads to

Γ =
∫ ∞

0
dq q

2 U(q)−1

2π2 |Ṽx(q)|2
∫ ∞

0
dω ρ(0)(ω, q) 2

1− e−βω
Im
[
−εr(q, ω)−1

]
, (2.23)

where

ρ(0)(ω, q) = π

q

∫ ∞

vq

dv v
∫ 1

−1
d cosα f(v) . (2.24)

Here, we assume

f(v) = f(v, cosα)

= N exp
[
−(v + v⊕)2

v2
0

]
θ(vesc − |v + v⊕|) ,

(2.25)

where v · v⊕ = vv⊕ cosα, v⊕ is Earth’s velocity relative to the galactic centre, vesc is the
galactic escape velocity, v0 is the most probable DM speed (in the galactic reference frame,

2This is satisfied if the Fourier transform of g is proportional to the step function. Physically, it means
that if z denotes frequency, the Fourier transform of g is causal as a function of time.

3For example, if z is frequency, then this third condition requires the function g to be real in the time
domain.
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in which the mean DM velocity is zero), while N is a normalization constant. The assumed
values of v⊕ ≡ |v⊕|, vesc, v0, and N are listed in appendix A. We also introduce the minimum
DM speed required to deposit an energy ω,

vq ≡ v · q

q

= ω

q
+ q

2mχ
,

(2.26)

and assume an isotropic target (equivalently: average over detector’s orientations, see
appendix D.1 for a short discussion), so that we can ignore the dependence of εr on the
direction of q,4

εr(q, ω) ≃ εr(q, ω) . (2.27)

Eqs. (2.22) and (2.23) can now be combined to obtain a theoretical upper bound, Γopt,
on Γ [21]:

Γ ≤ Γopt =
∫ ∞

0
dq q

2 U(q)−1

2π |Ṽx(q)|2 max
ω

[
ωρ(0)(ω, q)

]
, (2.28)

where we took into account that for T → 0, 1 − e−βω → 1, and, following [21], assumed
1 − εr(q, 0)−1 ≤ 1 and Im[−εr(q, ω)−1] ≥ 0.

3 Electronic transitions induced by general DM-electron couplings

3.1 Fermi’s golden rule

In general, DM can couple to electron densities and currents in materials that are different from
the electron number density n0. Specifically, the most general form for the transition potential
V ss′

eff at leading order in the electron velocity and in the momentum transfer is given by [16]

V ss′
eff (re, q) = − 1

4memχV

{
F ss′

n0 e
iq·re 1e

+ F ss′
nA

i

2me

[←−
∇re · σe e

iq·re − eiq·re σe ·
−→
∇re

]
+ F ss′

j5
· σe e

iq·re

+ F ss′
jM
· i

2me

[←−
∇ree

iq·re − eiq·re
−→
∇re

]
1e

+ F ss′
jE
· 1

2me

[←−
∇re × σe e

iq·re + eiq·re σe ×
−→
∇re

]}
,

(3.1)

where an arrow on the gradient operator indicates whether it acts on the initial (−→∇re) or
final (←−∇re) electron wave function, while the pre-factors F ss′

n0 , F ss′
nA

, F ss′
j5

, F ss′
jM

, and F ss′
jE

are model dependent. These pre-factors are listed in appendix C for the effective theory of
4If DM couples to the electron density solely, invariance under three-dimensional rotations implies

Ṽx(q) = Ṽx(q).
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DM-electron interactions of [17, 18] and in sections 4.2.1 to 4.2.3 for specific models where
DM has as an anapole, electric dipole, or magnetic dipole moment.

The first line in eq. (3.1) corresponds to the already discussed case of models where DM
couples to the electron number density in materials. The third and fourth lines describe a
coupling between DM and the electron spin or paramagnetic current, respectively. The second
line can be identified with the spin-paramagnetic current coupling, and the last line with the
Rashba term arising at second order in the 1/c expansion of the Dirac Hamiltonian [16].

Inserting eq. (3.1) into eq. (2.3), and then the latter into Fermi’s golden rule, eq. (2.1), we
obtain the following expression for the rate of DM-induced electronic transitions in materials,

Γ = 1
16m2

em
2
χ

∑
ab

∫ dq

(2π)3

∫
dv f(v)Fab(q,v)Kb†a(q, ωv,q) , (3.2)

where

Fab(q,v) = 1
2
∑
ss′

F ss′
a (q,v)F ss′∗

b (q,v) , (3.3)

and Kb†a(q, ω) is the correlation function,

Kb†a(q, ω) = 2π
V

∑
if

e−βEi

Z
⟨f |ã(−q)|i⟩ ⟨i|b̃†(q)|f⟩ δ(Ef − Ei − ω) , (3.4)

while a and b could be any of the densities, or components of currents, contributing to
eq. (3.1), namely

(ñ0, ñA, j̃51 , j̃52 , j̃53 , j̃M1 , . . . j̃E1 , . . . ) , (3.5)

where

ñ0(q) ≡ e−iq·re , (3.6a)

ñA(q) ≡ i

2me

[←−
∇re · σe e

−iq·re − e−iq·re σe ·
−→
∇re

]
, (3.6b)

j̃5(q) ≡ σe e
−iq·re , (3.6c)

j̃M (q) ≡ i

2me

[←−
∇ree

−iq·re − e−iq·re
−→
∇re

]
, (3.6d)

j̃E(q) ≡ 1
2me

[←−
∇re × σe e

−iq·re + e−iq·re σe ×
−→
∇re

]
. (3.6e)

We denote by σe = (σ1, σ2, σ3) the three-dimensional vector whose components are the Pauli
matrices. For increased readability, in the remaining part of this work, we omit the tildes
(e.g., we write n0 instead of ñ0). In other words, all the densities and currents are hereafter
meant to be expressed in momentum space.

3.2 Generalized susceptibility formalism

As the density-density correlation function Kn0n0 in eq. (2.17) is related to the dielectric
function, so is the correlation function Kb†a related to generalized susceptibilities describing the
linear response of materials to a perturbation induced by general DM-electron couplings [16].
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Indeed, in the interaction picture, V ss′
eff can be written as a time dependent pertur-

bation [16]:

V ss′
eff (t) = −

∑
a

∫
drBa(r)Sss′

a (r, t) , (3.7)

with

Ba(r) =
∫ dq′

(2π)3 e
iq′·r a(q′) , (3.8)

and

Sss′
a (r, t) = 1

4memχV
F ss′

a eiq·r e−iωv,qt . (3.9)

Notice that at t = 0 eqs. (3.1) and (3.7) coincide. In linear response theory, the fluctuation,
⟨∆a(r, t)⟩, induced on the generic electron density or component a by the potential V ss′

eff (t)
is given by

⟨∆a(r, t)⟩ =
∑

b

∫ t

−∞
dt′
∫

dr′ χab(r − r′, t− t′)Sss′
b (r′, t′) , (3.10)

where

χab(r − r′, t− t′) ≡ iθ(t− t′)
〈 [
a(r, t), b(r′, t′)

] 〉
(3.11)

is the generalized susceptibility associated with a and b. The double Fourier transform
of χab obeys [16]

χab(q, ω)− χ∗
b†a†(q, ω) = iKab(q, ω)

(
1− e−βω

)
. (3.12)

In the T → 0 limit (see a short discussion in appendix D.2), when 1 − e−βω → 1, we can
use eq. (3.12) to rewrite the transition rate Γ, given by eq. (3.2), as

Γ = −i
16m2

em
2
χ

∑
ab

∫ dq

(2π)3

∫
dv f(v)Fab(q,v)

(
χa†b − χ∗

b†a

)
(q, ωv,q) , (3.13)

with the DM velocity distribution function f defined by eq. (2.25) and Fab given by eq. (3.3).

3.3 Kramers-Kronig relations

In the time domain, the generalized susceptibilities χa†b(q, t− t′) are causal, as one can see
from their definition, eq. (3.11). In particular, this implies χa†b(q, t− t′) = 0 for t− t′ < 0.
Consequently, in the (complex) frequency domain χa†b(q, ω) is analytic in the upper-half plane,
that is, for Imω ≥ 0. Apart of that, χa†b(q, ω) → 0 for |ω| → ∞. Moreover, χa†b(q, t− t′)
is real in the time domain, which implies that, as a function of ω ∈ R, Reχa†b(q, ω) is
even while Imχa†b(q, ω) is odd.

Since χa†b(q, ω) meets the above three conditions for every q, it also obeys [23]

Reχa†b(q, ω) = 1
π
P
∫ +∞

−∞

dω′

ω′ − ω
Imχa†b(q, ω′) , (3.14a)

Imχa†b(q, ω) = − 1
π
P
∫ +∞

−∞

dω′

ω′ − ω
Reχa†b(q, ω′) , (3.14b)
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as well as ∫ +∞

0

dω
ω

Imχa†b(q, ω) = π

2χa†b(q, 0) . (3.15)

The identities in eq. (3.14) are the Kramers-Kronig relations for the generalized susceptibilities
χa†b(q, ω), while eq. (3.15) extends the relation in eq. (2.22) to the case of general DM
couplings.

4 Upper bound on the transition rate for general DM-electron couplings

In this section, we first analytically derive a general upper bound on the DM-induced
electronic transition rate (section 4.1) and provide expressions for the interaction rate in
specific effective models of DM (section 4.2). We then numerically evaluate the transition rate
to associated upper bound ratio focusing on germanium, silicon, argon and xenon detectors,
and on models where DM exhibits an anapole, magnetic dipole or electric dipole moment
(section 4.3). This numerical analysis will allow us to assess which material is closest to
saturate our general upper bound on Γ.

4.1 Derivation from the Kramers-Kronig relations

We start from an analytic derivation of a general upper bound on Γ based on the generalized
Kramers-Kronig relations that apply to material responses beyond the familiar dielectric
function.

Using eq. (3.15), we now show that the sum of eq. (3.13) is bounded from above. Let
us recall eq. (3.13):

Γ = −i
16m2

em
2
χ

∑
ab

∫ dq

(2π)3

∫
dv f(v)Fab(q,v)

(
χa†b − χ∗

b†a

)
(q, ωv,q) . (4.1)

First, let us notice that the sum ∑
abFab(χa†b − χ∗

b†a
) consists of contributions of the fol-

lowing types:

Fnn′ (χn†n′ − χ∗
n′†n) , where n, n′ = n0, nA , (4.2a)

∑
k

[
Fjkn (χ

j†
k

n
− χ∗

n†jk
) + Fnjk

(χn†jk
− χ∗

j†
k

n
)
]
, where

n = n0, nA

j = j5, jM , jE ,
(4.2b)

∑
kℓ

Fjkj′
ℓ
(χ

j†
k

j′
ℓ
− χ∗

j′†
ℓ

jk
) , where j, j′ = j5, jM , jE . (4.2c)

Investigating the explicit forms of Fab coefficients provided in appendix C, one can realize
that Fn0n0 , the only non-vanishing coefficient of the type Fnn′ appearing in eq. (4.2a), is
a scalar quantity depending on q ≡ |q|, v ≡ |v|, and vq defined by eq. (2.26). In the
contribution of type (4.2b), the relevant5 coefficients Fjkn(q,v) depend on the components
of q and v in the following way:

Fjkn(q,v) ≡ Ajn(q, v, vq) qk

q
+Bjn(q, v, vq) vk . (4.3)

5In the explicit form of FjMk
n0 and FnAj5k

, there appear linear terms of the third type, namely, those
proportional to εkij (qi/q) vj . However, they vanish in the models considered by us (cf. sections 4.2.1 to 4.2.3).

– 10 –



J
C
A
P
0
8
(
2
0
2
5
)
0
8
8

When deriving our results, we assume that the target material is isotropic (see appendix D.1).
Consequently, when contracting the Fjkn with the corresponding susceptibility, only the
component of v parallel to q is relevant. Therefore, instead of vk we can equivalently use
vq qk/q [18] and obtain

Fjkn(q,v) = F q
jn(q, v, vq) qk

q
, (4.4)

where

F q
jn(q, v, vq) ≡ Ajn(q, v, vq) + vq Bjn(q, v, vq) . (4.5)

An analogous statement holds for Fnjk
as well. Similarly, for the contributions of type (4.2c),

the relevant6 coefficients Fjkj′
ℓ
(q,v) can be expressed as

Fjkj′
ℓ
(q,v) ≡ F δ

jj′(q, v, vq) δkℓ + F qq
jj′(q, v, vq) qkqℓ

q2 . (4.6)

Consequently, the contributions given by eq. (4.2), which always are scalar functions of
(q, v, vq), can be expressed using

• the Fn0n0 coefficient and the new scalar coefficients F q
jn, F q

nj , F δ
jj′ , F qq

jj′ ,

• the χn0n0 susceptibility and the contracted susceptibilities χq

j†n
, χq

n†j
, χδ

j†j′ , χqq

j†j′

given by

χq

j†n
(q, vq) ≡

∑
k

qk

q
χ

j†
k

n
(q,v) , χq

n†j
(q, vq) ≡

∑
k

qk

q
χn†jk

(q,v) , (4.7a)

χδ
j†j′(q, vq) ≡

∑
kℓ

δkℓ χj†
k

j′
ℓ
(q,v) , χqq

j†j′(q, vq) ≡
∑
kℓ

qkqℓ

q2 χ
j†

k
j′

ℓ
(q,v) . (4.7b)

Since the above contracted susceptibilities are just linear combinations of the susceptibili-
ties χa†b, they also possess the analytic properties required to satisfy the Kramers-Kronig
relations (3.14) and (3.15). For convenience, we also introduce the primed contracted sus-
ceptibilities, defined with the indices reversed:

χ′
n0n0 ≡ χn0n0 , χq ′

j†n
≡ χq

n†j
, χq ′

n†j
≡ χq

j†n
, χx ′

j†j′ ≡ χx
j′†j

, (4.8a)

where x = δ, qq.
In the following derivation of the theoretical upper bound, each Fi denotes either the

Fn0n0 coefficient or one7 of the scalar coefficients F(q, v, vq) introduced on the right-hand
sides of eqs. (4.4) and (4.6). Then, χi denotes, respectively, either χn0n0 or the contracted

6Again, the term proportional to εkℓm qm/me present in the explicit form of FjMk
jMℓ

vanishes in the
considered models. Moreover, the antisymmetric part of Fj5ℓ

j5m
, which is in principle non-zero, is irrelevant

since it vanishes when contracted with Im ∆χ
j

†
5k

j5ℓ
which is proportional to δkℓ, cf. eq. (4.42).

7Strictly speaking, for the j5j5 contribution we consider a combination
∑

kℓ
δkℓFj5k

j5ℓ
= 3F δ

j5j5
+ F qq

j5j5
.

This is because χ
j

†
5k

j5ℓ
is proportional to δkℓ, as can bee observed from eq. (4.42).
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susceptibility given by eq. (4.7) corresponding to Fi. Using this notation, eq. (4.1) can
be rewritten as

Γ = −i
16m2

em
2
χ

∑
i

∫ dq

(2π)3

∫
dv f(v)Fi(q, v, vq)

(
χi − χ′∗

i

)
(q, vq) . (4.9)

We begin by performing the change of integration variables introduced in appendix B
to obtain

Γ = −i
32π2m2

em
2
χ

∑
i

∫ ∞

0
dq q2

∫ ∞

0
dω

[
ρ(0)(ω, q)F (0)

i (q, ω, v)

+ ρ(2)(ω, q)F (2)
i (q, ω, v)

] (
χi − χ′∗

i

)
(q, ω) ,

(4.10)

where

ρ(0)(ω, q) = π

q

∫ ∞

vq

dv v
∫ 1

−1
d cosα f(v, cosα) , (4.11a)

ρ(2)(ω, q) = π

q

∫ ∞

vq

dv v3
∫ 1

−1
d cosα f(v, cosα) . (4.11b)

Note that, though formally the integration in eq. (4.10) is performed over 0 < q < ∞ and
0 < ω < ∞, its range is effectively limited by the DM velocity distribution f to

0 < q < qmax , qmax ≡ 2mχ (v⊕ + vesc) , (4.12a)

0 < ω < ωmax(q) , ωmax(q) ≡ q (v⊕ + vesc)−
q2

2mχ
, (4.12b)

corresponding to vq < v < v⊕ + vesc. Moreover, the energy transfer ω is required to exceed
the 1-electron ionization threshold, which subsequently imposes a threshold on the DM mass,
as explained in results discussion in section 4.3.

Inspection of the explicit form of the functions Fab given in appendix C shows that
in general one has

Fi(q, ω, v) = F (0)
i (q, ω) + v2F (2)

i (q, ω) , (4.13)

where we made explicit that Fi(q, ω, v) is either independent of v, or it depends on v

quadratically, cf. eq. (B.14). For readability, let us now keep only the F (0)
i term. Calculation

for the other term, which will be restored at the very end, follows analogously.
The final result for Γ must be real, and since all F (0)

i ’s are real in the considered models
(as can be explicitly checked basing on appendix C), the part of the integral containing the
real part of (χi − χ′∗

i ) must vanish. We thus obtain

Γ = 1
32π2m2

em
2
χ

∑
i

∫ qmax

0
dq q2

∫ ωmax(q)

0
dω ρ(0)(ω, q)F (0)

i (q, ω, v) Im ∆χi(q, ω) , (4.14)

where

∆χi ≡ χi + χ′
i , (4.15)
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such that Im ∆χi = Im(χi−χ′∗
i ). Note that, in the definition of ∆χi, none of the susceptibilities

is complex-conjugated, so that, similarly to each χa†b, every ∆χi(q, ω) (treated as a function of
ω) is analytic on the complex upper half-plane. Therefore, it also obeys the Kramers-Kronig
relations.

To obtain the theoretical upper bound, we perform two consecutive estimations. Firstly,
after dividing and multiply the integrand by 1 = ω/ω for further convenience, we replace
the value of ω ρ(0)(ω, q)F (0)

i (q, ω) by its maximum for a given q:

Γ ≤ 1
32π2m2

em
2
χ

∑
i

∫ qmax

0
dq q2 max

ω

[
ω ρ(0)(ω, q)F (0)

i (q, ω)
]

×
∫ ωmax(q)

0

dω
ω

Im ∆χi(q, ω) .
(4.16)

If, for a given value of i, Im ∆χi(q, ω) is non-negative for each ω, the above estimation (4.16)
is (for this particular i) a trivial consequence of the fact that

ω ρ(0)(ω, q)F (0)
i (q, ω) Im ∆χi(q, ω) ≤ max

ω

[
ω ρ(0)(ω, q)F (0)

i (q, ω)
]

Im ∆χi(q, ω) . (4.17)

This is not always the case; for instance, for q = 15 keV the value of the Im ∆χδ
j†

M jM

(q, ω)
coupling (relevant for the anapole model) calculated for Si is negative for each ω. However,
as we checked numerically, for each considered coupling and material, the integral over
momenta is dominated by those values of q for which Im ∆χi is predominantly positive,
so that (4.16) is satisfied.

The second step makes use of the following inequality:∫ ωmax(q)

0

dω
ω

Im ∆χi(q, ω) ≤ π U(q)−1 . (4.18)

To justify the above estimation for positive Im ∆χi, we first extend the integration range:∫ ωmax(q)

0

dω
ω

Im ∆χi(q, ω) ≤
∫ ∞

0

dω
ω

Im ∆χi(q, ω) , (4.19)

and then, using the Kramers-Kronig relation (3.15), replace the integral on the right-hand
side by the value at ω = 0:∫ ωmax(q)

0

dω
ω

Im ∆χi(q, ω) ≤ π

2 ∆χi(q, 0) . (4.20)

Eventually, inequality (4.18) is obtained by using the estimation

∆χi(q, 0) ≤ 2U(q)−1 , (4.21)

corresponding for χi = χn0n0 to ε−1
r > 0, which should be the case for most materials relevant

for DM detection (see an extended discussion of this issue in [21]).
Neither condition (4.19) nor (4.21) is always satisfied; for example, (4.19) does not hold

in the aforementioned case of Im ∆χδ
j†

M jM

(q = 15 keV, ω) for Si, and (4.21) is broken by
a factor of ca. 20 for the ∆χδ

j†
5j5

coupling (relevant in the anapole and the magnetic dipole
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model) calculated for the same material at q = 500 eV. However, numerical tests confirm that,
for all considered materials and couplings, inequality (4.18) is always fulfilled. The reason is
that, for any coupling and material, at most one of inequalities (4.19) and (4.21) is broken at
a time. If the first of them is fulfilled, the estimation (4.19) is very conservative for positive
Im ∆χi’s, so that the final conclusion holds even though (4.21) is incorrect. Conversely, if
eq. (4.19) does not hold, it means that Im ∆χi is predominantly negative, so the integral in
eq. (4.18) can be limited from above by any positive value and one does not have to use (4.19)
and the Kramers-Kronig relations to draw the final conclusion.

Using estimation (4.18) we obtain the following theoretical upper bound on the inter-
action rate:

Γ ≤ 1
32πm2

em
2
χ

∑
i

∫ qmax

0
dq q2 max

ω

[
ω ρ(0)(ω, q)F (0)

i (q, ω)
]
U(q)−1 . (4.22)

In the general case of Fi(q, ω, v) = F (0)
i (q, ω) + v2F (2)

i (q, ω) (cf. eq. (4.13)), we apply
the same procedure and find:

Γ ≤ Γopt ≡
1

32πm2
em

2
χ

∑
i

∫ qmax

0
dq q2 max

ω

[
ω ρ(0)(ω, q)F (0)

i (q, ω)

+ ω ρ(2)(ω, q)F (2)
i (q, ω)

]
U−1(q) .

(4.23)

Eq. (4.23) gives the theoretical upper bound on Γ we find from the Kramers-Kronig relations.
It is worth noting that due to the absence of χ in the final result, this bound is independent
of the choice of the detector material. Thus, a comparison of the actual interaction rate (4.14)
with the result of eq. (4.23) provides a way to evaluate the given material as a potential
target in direct detection experiments. Below, we apply this general bound to the specific
case of anapole, magnetic dipole, and electric dipole DM.

4.1.1 DM of spins different than 1/2

In our analysis, we assume the dark particles to have spin 1/2. Effective theory of interactions
of DM of spin up to 1 with nucleons or electrons has been the topic of numerous works,
including [24–26]. As can be observed from table 1 of [26], to describe interactions between
spin-1 DM and electrons one must employ more types of effective operators than in the
fermion DM case. This would affect our calculations in two ways:

1. coefficients Fab for a, b = n0, nA, j5, jM , jE , given by eqs. (C.1), (C.4) and (C.6), would
contain more terms coming from the new operators depending on the generalized
densities and currents analysed by us;

2. some of the effective operators relevant for spin-1 DM cannot be expressed in the form
of our eq. (3.1), so that including them would require indices a and b to cover a broader
range of generalized densities and currents. For instance, operator O21 defined in [26]
requires introducing in eq. (3.1) a term proportional to

i

2me

[←−
∇re · S

sym
X · σe e

iq·re − eiq·re σe · Ssym
X ·

−→
∇re

]
, (4.24)
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with (Ssym
X )ij ≡ 1

2(Si
XS

j
X + Sj

XS
i
X), where SX denotes a vector formed by the spin

operators of the vector DM particle. As can be observed, such a term cannot be
decomposed into a DM-related and an e−-related part in any other way than by
introducing a generalized “electronic coupling tensor” J given by

J ij ≡ i

2me

[←−
∂ i

re
σj

e e
iq·re − eiq·re

−→
∂ j

re
σi

e

]
. (4.25)

Consequently, analysis of the vector DM case requires adding new contributions to the Fi

terms both in eq. (4.14), which expresses the actual DM-e− interaction rate, and in eq. (4.23),
which provides the theoretical upper bound. The ratio Γopt/Γ would depend on the new
terms in a non-trivial way, so that it is difficult to predict to which extent our results would
apply to the general vector DM case. Note that all the new contributions to the matrix
element squared would be expressible in terms of the generalized susceptibilities employed
in this work; no new generalized susceptibilities would be needed [26].

On the contrary, effective operators required to describe interactions of scalar DM with
electrons form a subset of those employed in the fermion DM case. Therefore, adjusting our
calculations to the spin-0 case would be straightforward, as it only requires dropping terms
specific to the spin-1/2 case. However, precise values of the final ratio between the theoretical
optimum and the actual interaction rate cannot be predicted prior to an actual calculation.

Regardless of the aforementioned differences in detailed forms of expressions and numerical
results, the methodology we have used remains valid for any spin of DM particles, so that
it can be straightforwardly extended and used to generalize our approach to the cases of
DM of spins other than 1/2.

4.2 Interaction rate in specific effective models

4.2.1 Anapole

DM has an anapole moment if it couples to the photon via the higher order electromagnetic
coupling,

L = 1
2
g

Λ2χγ
µγ5χ∂νFµν , (4.26)

where Fµν is the electromagnetic field strength tensor, χ is a Majorana four-component
spinor describing the DM particle, g is a coupling constant while Λ is an energy scale. In
the non-relativistic limit, eq. (4.26) implies the following amplitude for DM scattering by
a free electron [17],

M = 4eg
Λ2 mχme

[
2
(
v⊥

el · ξ†s′
Sχξ

s
)
δr′r + ge

(
ξ†s′

Sχξ
s
)
·
(
i

q

me
× ξ†r′

Seξ
r
)]

, (4.27)

where Sχ ≡ σχ/2 (Se ≡ σe/2) denotes the spin matrix corresponding to the dark particle
(electron), ge = 2, and v⊥

el is the so-called transverse relative velocity, which is the component
of the relative DM-e− velocity transverse to the momentum transfer in the case of elastic
scattering. The associated transition potential depends on the electron density, paramagnetic
current, and spin current [16]:

V ss′
eff = − 1

4memχV

[
F ss′

0 n0(−q) + F ss′
5 · j5(−q) + F ss′

M · jM (−q)
]
. (4.28)
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where the functions F ss′
0 , F ss′

5 and F ss′
M are listed in eq. (C.1) with c8 and c9 explicitly given by

c8 = 8ememχ
g

Λ2 , (4.29a)

c9 = −8ememχ
g

Λ2 , (4.29b)

and all other coupling constants set to zero. By combining eqs. (4.14), (4.29) and (C.4), we find

Γ = 1
32π2m2

em
2
χ

∑
i

∫ qmax

0
dq q2

∫ ωmax(q)

0
dω Im ∆χi(q, ω)

[
ρ(0)(ω, q)F (0)

i (q, ω) (4.30)

+ ρ(2)(ω, q)F (2)
i (q, ω)

]
,

with F (0)
i , F (2)

i defined in eq. (4.13), and the non-zero Fi coefficients being

Fn0n0(q, ω, v) = 1
4

(
v2 − ω

2mχ
− q2

4m2
χ

)
c2

8 , (4.31a)

3F δ
j5j5

(q, ω, v) + F qq
j5j5

(q, ω, v) =
∑

k

Fj5k
j5k

(q, ω, v) (4.31b)

= 1
8
q2

m2
e

c2
9 ,

F δ
jM jM

(q, ω, v) = 1
4 c

2
8 , (4.31c)

F q
jM n0

(q, ω, v) = F q
n0jM

(q, ω, v) = −1
4
ω

q
c2

8 . (4.31d)

4.2.2 Magnetic dipole

The Lagrangian for the magnetic dipole coupling between a Dirac DM field ψ and the
photon field Aµ is

L = g

Λ ψσµνψ Fµν , (4.32)

where Fµν = ∂µAν − ∂νAµ, and σµν = i[γµ, γν ]/2. The associated amplitude for DM-electron
scattering is

M = eg

Λ

{
4meδ

s′sδr′r + 16mχme

q2 iq ·
(
v⊥

el × ξ†s′
Sχξ

s
)
δr′r

− 8gemχ

q2

[(
q · ξ†s′

Sχξ
s
) (

q · ξ†r′
Seξ

r
)
− q2

(
ξ†s′

Sχξ
s
)
·
(
ξ†r′

Seξ
r
)]}

,

(4.33)

with Sχ,e and v⊥
el defined as in eq. (4.27). This amplitude implies an effective transition

potential of the same form as in eq. (4.28), but the only coupling constants that are now
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different from zero are

c1 = 4eme
g

Λ , (4.34a)

c4 = 16emχ
g

Λ , (4.34b)

c5 = 16em2
emχ

q2
g

Λ , (4.34c)

c6 = −16em2
emχ

q2
g

Λ . (4.34d)

By combining eqs. (4.14), (4.34) and (C.4), we obtain a transition rate formula with the same
structure as in eq. (4.30), but the non-vanishing Fi coefficients are now given by

Fn0n0(q, ω, v) = c2
1 +

q2 v2 −
(
ω + q2

2 mχ

)2

4m2
e

c2
5 , (4.35a)

3F δ
j5j5

(q, ω, v) + F qq
j5j5

(q, ω, v) =
∑

k

Fj5k
j5k

(q, ω, v) (4.35b)

= 3
16c

2
4 + q4

16m4
e

c2
6 + q2

8m2
e

c4c6 ,

F δ
jM jM

(q, ω, v) = q2

4m2
e

c2
5 , (4.35c)

F qq
jM jM

(q, ω, v) = − q2

4m2
e

c2
5 . (4.35d)

4.2.3 Electric dipole

The case of electric dipole DM is characterized by the Lagrangian

Lelectric = g

Λ iψσµνγ5ψ Fµν . (4.36)

The associated amplitude for DM-electron scattering takes the form

M = eg

Λ
16mχme

q2 iq ·
(
ξ†s′

Sχξ
s
)
δr′r . (4.37)

This implies that the total transition rate Γ can be written as

Γ = 1
16π2m2

em
2
χ

∫ qmax

0
dq q2

∫ ωmax(q)

0
dω ρ(0)(ω, q)Fn0n0(q, ω) Imχn0n0(q, ω) , (4.38)

with

Fn0n0(q, ω) = q2

4m2
e

c2
11 , (4.39)

where

c11 = 16emχm
2
e

q2
g

Λ . (4.40)
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4.3 Numerical results

In order to numerically evaluate the transition rate formulae in eqs. (4.30) and (4.38), and
the associated theoretical upper bound in eq. (4.23), we use the relations between the
relevant generalized susceptibilities of [16], χa†b, and the atomic and crystal responses (i.e.,
W functions) derived in [17], to express the contracted susceptibilities defined in eq. (4.7) as

Imχn0n0(q, ω) = Im Σn0n0(q, ω)
|1 + U(q) [1−G(q)] Σn0n0(q, ω)|2

, (4.41a)

Im ∆χqq

j†
5j5

(q, ω) = 1
3 Im ∆χδ

j†
5j5

(q, ω) = 2 Im Σn0n0(q, ω) , (4.41b)

Im ∆χδ
j†

M jM
(q, ω) =

∑
kℓ

δkℓ Im ∆χ
j†

Mk
jMℓ

(q, ω)

= 2π2Ω̃
ω

[
q2

4m2
e

W1(q, ω) +W3(q, ω) + ReW2(q, ω)
]

(4.41c)

− 2 ω
2

q2 [Im Σn0n0(q, ω)− Imχn0n0(q, ω)] ,

Im ∆χqq

j†
M jM

(q, ω) =
∑
kℓ

qkqℓ

q2 Im ∆χ
j†

Mk
jMℓ

(q, ω)

= 2π2Ω̃
ω

[
q2

4m2
e

W1(q, ω) + m2
e

q2 W4(q, ω) + ReW2(q, ω)
]

(4.41d)

− 2 ω
2

q2 [Im Σn0n0(q, ω)− Imχn0n0(q, ω)] ,

Im ∆χq

j†
M n0

(q, ω) =
∑

k

qk

q
Im ∆χ

j†
Mk

n0
(q, ω)

= me

q

π2Ω̃
ω

[
q2

m2
e

W1(q, ω) + 2 ReW2(q, ω)
]

(4.41e)

− 2 ω
q

[Im Σn0n0(q, ω)− Imχn0n0(q, ω)] .

The result for Im ∆χq
n0jM

is the same as the one obtained for Im ∆χq

j†
M n0

, given by eq. (4.41e).
Let us also notice that before contraction, the Im ∆χ

j†
5k

j5l

susceptibility is proportional to
the delta function [16]:

Im ∆χ
j†

5k
j5ℓ

(q, ω) = 2 δkℓ Im Σn0n0(q, ω) , (4.42)

which was important for the reasoning of footnotes 6 and 7. In eqs. (4.41) and (4.42), we
express the in-medium corrections via the density-density response function Σn0n0 and the
local-field factor G [16]. Our derivation assumes that the material is non-spin-polarized, which
allows for simplifications in the electron spin sums, resulting in the presented relation between
the susceptibilities and the electron number density. For non-spin-polarized materials, Σjαn0

and Σn0jβ
are different from zero only for jα, jβ ∈ {jM , n0} [16]. The relation between Σn0n0

and the numerical data is explained below. Ω̃ is defined so that Ω̃V/M = 1/m̃, where M is
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the detector mass and m̃ is the unit cell mass in the case of crystals, and the argon or xenon
atom mass in the case of noble liquids [16].8 This implies that the total electronic transition
rate per unit detector mass induced by nχV DM particles, i.e., nχV Γ/M , is independent
of V . Here, nχ is the local DM number density.

For the functions ReW2, W3, and W4, we use values that were tabulated in [17] with
DarkART [27]9 for argon and xenon detectors, and in [18] with QEdark-EFT [29] for germanium
and silicon targets. The W1 function is related to the imaginary part of the density-density
response function, Σn0n0 , in the following way:

Im Σn0n0(q, ω) = π2 Ω̃
ω

W1(q, ω) . (4.43)

For crystal detectors, we extract the density-density response function Σn0n0 from the equation

Σn0n0(q, ω) = U(q)−1
[
εGPAW

r (q, ω)− 1
]
, (4.44)

where the dielectric function εGPAW
r was calculated in [15] using GPAW [30], and implemented

in DarkELF [31]. The W1 function is then obtained from eq. (4.43). Conversely, in the case
of argon and xenon, we use the values of W1 tabulated in [18] to calculate the imaginary
part of Σn0n0 . The real part of Σn0n0 can be obtained from the imaginary one by applying
the general Kramers-Kronig relation given by eq. (3.14).10 For G we use the expressions in
eq. (94) of [16] for germanium and silicon, while we set G = 0 for argon and xenon.

Figures 1 to 3 show the ratio between the optimal total interaction rate Γopt, given
by eq. (4.23), and the actual total interaction rate Γ, obtained for a given material from
eq. (4.14). The results presented in figure 1 have been obtained in the electric dipole model,
described briefly in section 4.2.3, while figures 2 and 3 correspond to the magnetic dipole
(section 4.2.2) and anapole (section 4.2.1) models, respectively. In each plot, the thick green
line represents the values obtained for silicon, the thin black line corresponds to germanium,
the dotted blue line denotes the results for xenon and the dashed orange line has been
obtained for argon. The horizontal red line marks the reference value of 1, for which the
actual interaction rate Γ would saturate the theoretical upper bound Γopt. Note that Γopt
does not depend on the chosen material, so the plotted ratio can serve as an evaluation of a
given material’s quality with respect to its usefulness in direct searches for DM.

8In the case of crystals, Ω̃ = V −1
cell .

9The ReW2 function computed by DarkART has to be multiplied by a factor of minus 1 to account for a
missing minus sign in the definition of the vectorial form factor f i→f in [17]. The correct definition for f i→f is

f i→f (q) = − i

me

∫
dr ψ∗

f (r)eiq·r∇rψi(r) ,

where ψi and ψf are the initial and final electronic wave functions. Notice also that DarkART computes all
W ’s as a function of q and k′, where k′ is the asymptotic momentum of the final state electron. Following [28],
we use

Wj(q, ω) ≡ ω

2π
∑
nℓ

∫
dk′

k′ Wnℓ
j (k′, q) δ(ω − Ek′ℓ′m′ + Enℓm) , j = 1, 2, 3, 4 ,

to convert the Wnℓ
j (q, k′)i functions of [17] to functions of q and ω, i.e., Wj(q, ω). Here, Ef = Ek′ℓ′m′

and Ei = Enℓm.
10Σn0n0 satisfies all assumptions of eq. (3.14) as well as χn0n0 .
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Figure 1. Ratio between the theoretical upper bound Γopt and the actual value of the interaction
rate Γ, obtained within the electric dipole model, as a function of DM mass. The lines correspond to
different materials: silicon (thick green), germanium (thin black), xenon (dotted blue), and argon
(dashed orange). The horizontal red line marks the value of 1, for which the actual interaction rate
would saturate the bound.

Figure 2. As in figure 1, but for the magnetic dipole model.

Figure 3. As in figures 1 and 2, but for the anapole model.
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The maximal energy transfer from a dark particle of mass mχ, which corresponds to a
total absorption of its energy, is mχ (v⊕ + vesc)2 / 2, where v⊕ + vesc ≈ 800 m/s is the maximal
velocity of the dark particle according to the standard halo model (see appendix A). For
the materials considered in our manuscript, excitations caused by DM particles of masses
lower than 0.1 MeV would fail to exceed the 1-electron ionization threshold. In such a case,
the detection method should be focused on different channels, such as phononic excitations.
This can clearly be observed in our plots, where the ratio between the optimum and the
actual rate tends to infinity as DM mass approaches the value corresponding to the 1-electron
ionization threshold: mχ = 0.19 MeV for Ge, mχ = 0.32 MeV for Si, mχ = 4.6 MeV for
Ar, mχ = 3.6 MeV for Xe.

It can be observed that, for Si and Ge detectors, the ratio approaches values around
102 in the electric dipole model, while in the anapole and the magnetic dipole model, the
ratio is always very large, i.e., above 104. This is correlated with the fact that the response
to the density-density coupling (the only one relevant for the electric dipole) is close to the
maximal possible, while the response to the ∆χδ

j†
M jM

, ∆χqq

j†
M jM

couplings which dominate
for the anapole and the magnetic dipole, is far from optimal. In contrast, for Ar and Xe
detectors, our theoretical upper bound is at least four orders of magnitude larger than the
actual rate, regardless of the model. For all materials and models considered in this work,
the ratio reported in figures 1 to 3 is minimal for a value of the DM particle mass in the
range between 0.5 and 15 MeV.

5 Summary and conclusions

We investigated the analytic properties of the rate of DM-induced electronic transitions in
materials within a framework that combines an effective theory description of DM-electron
interactions with linear response theory. Within this framework, the rate of DM scattering
events in materials can be expressed in terms of generalized susceptibilities describing the
response of detectors to an external DM perturbation. We found that the rate of DM-
induced electronic transitions in materials admits a theoretical upper bound under general
assumptions on the underlying DM-electron coupling. This bound applies to models where
DM couples to the electron density as well as the electron spin, paramagnetic and Rashba
currents. We obtained this result by applying a set of the Kramers-Kronig relations to
the generalized susceptibilities used in [16] to express the rate of DM-induced electronic
transitions in materials.

We evaluated our theoretical upper bound numerically for Ar, Xe, Ge and Si targets
and found that, while Ge and Si detectors are generically closer to saturate this theoretical
upper bound, they are still far from saturation, unless DM couples to the electron density.
This motivates the exploration of different classes of materials to effectively probe such
coupling forms.
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A DM velocity distribution

We assume that the distribution of DM velocities in the laboratory frame, f(v), has the
form of truncated Maxwell-Boltzmann distribution,

f(v) = N exp
[
−(v + v⊕)2

v2
0

]
θ(vesc − |v + v⊕|) , (A.1)

where v⊕ is Earth’s velocity relative to the galactic centre, vesc is the galactic escape velocity,
and v0 is the most probable DM speed (in the galactic reference frame, in which the mean
DM velocity is zero). The normalization constant N is given by

N = 1
2π v3

0

(√
π

2 erf
[
vesc
v0

]
− vesc

v0
exp

[
−v

2
esc
v2

0

])−1

. (A.2)

The values of v⊕ ≡ v⊕, vesc and v0 adopted in this work after [32] are

v⊕ = 250.5 km
s , vesc = 544 km

s , v0 = 238 km
s . (A.3)

B Integration over velocities: from dv to dω

In general, the electronic transition rate in eq. (3.13) can be written as

Γ =
∫

dq dv f(v)B(v, q) , (B.1)

where f(v) describes the distribution of DM velocities in the laboratory frame (see appendix A),
and B(v, q) is a model dependent function we do not need to specify here. If we assume
that the target material is isotropic (see appendix D.1), then

Γ =
∫

dq dv f(v)B(ω, q, v) , (B.2)

where11

ω ≡ q · v − q2

2mχ
. (B.3)

Let us work in a coordinate system where Earth’s velocity with respect to the galactic centre
(denoted by v⊕), DM velocity in the laboratory frame (v), and momentum transfer (q) are
related by the following relations:

v⊕ = v⊕ ez , (B.4a)
v = v R(α, β) ez , (B.4b)
q = q R(α, β)R(θ, ϕ) ez , (B.4c)

11To simplify the notation, we write ω instead of ωv,q, cf. eq. (2.16).
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where

R(θ, ϕ) ≡

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1


 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 (B.5)

is a rotation matrix, so that

v · v⊕ = vv⊕ cosα , v · q = vq cos θ . (B.6)

Next, we perform the change of integration variables (q,v)→ (q, ω, v, α, β, ϕ), such that

dq dv = q dq dω v dv d cosα dβ dϕ , (B.7)

which, after integrating over the irrelevant angles β and ϕ (Γ does not depend on them),
turns to

dq dv = 4π2 q dq dω v dv d cosα. (B.8)

The integration range is

0 < q <∞ , 0 < ω <∞ , vq < v <∞ , −1 < cosα < 1 , (B.9)

where

vq ≡
ω

q
+ q

2mχ
, (B.10)

and the ω > 0 requirement has been introduced for physical reasons. Note that the velocity v
is bounded from above by the cut-off value vesc + v⊕, which is imposed via the step function
in f(v) (see appendix A) and affects the actual range of integration over dq and dω.

B.1 Velocity-independent B

When the function B introduced in eq. (B.1) is independent of v, the rate Γ can be written
as follows:

Γ = 4π
∫ ∞

0
q2dq

∫ ∞

0
dω ρ(0)(ω, q)B(ω, q) , (B.11)

where

ρ(0)(ω, q) ≡ π

q

∫ ∞

vq

v dv
∫ 1

−1
d cosα f(v) . (B.12)

By analytically evaluating the angular and velocity integrals in the above equation, we find

ρ(0)(ω, q) = N π v2
0

2 q

×


√

π
2

v0
v⊕

[erf (x+) + erf (x−)]− 2 e−z2 for vq < vesc − v⊕
√

π
2

v0
v⊕

[erf (z) + erf (x−)]− (1 + x−) e−z2 for vesc − v⊕ < vq < vesc + v⊕

0 for vesc + v⊕ < vq,

(B.13)

where x+ ≡ (v⊕ + vq)/v0, x− ≡ (v⊕ − vq)/v0, z ≡ vesc/v⊕, and the normalization constant
N is provided in appendix A.
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B.2 Velocity-dependent B

For the models studied in this work, the DM-electron scattering amplitude M is at most
linear in v. Consequently, the function B can be at most quadratic in v:

B(ω, q, v) = B(0)(ω, q) +B(2)(ω, q) v2 . (B.14)

The absence of terms linear in v follows from the fact that to contribute to a scalar function
B, they must be contracted with q. This product can be then expressed in terms of ω
and q, see eq. (B.3). The contribution to Γ from B(0) has been discussed in the previous
subsection. In general,

Γ =
∫

dq dv f(v)B(ω, q, v)

=
∫

dq dv f(v) [B(0)(ω, q) +B(2)(ω, q) v2]

= 4π
∫ ∞

0
q2dq

∫ ∞

0
dω

[
ρ(0)(ω, q)B(0)(ω, q) + ρ(2)(ω, q)B(2)(ω, q)

]
,

(B.15)

where ρ(2) is defined analogously to ρ(0), but with an additional v2 factor:

ρ(2)(ω, q) = π

q

∫ ∞

vq

v3 dv
∫ 1

−1
d cosα f(v) . (B.16)

By performing the above integral analytically, we obtain

ρ(2)(ω, q) = Nπ
q

∫ ∞

vq

v3 dv
∫ 1

−1
d cosα exp

[
−(v + v⊕)2

v2
0

]
θ(vesc − |v + v⊕|)

= Nπv
4
0

4q



√
π

2
v0
v⊕

(
1 + 2v2

⊕
v2

0

)
[erf (x+) + erf (x−)]

+
(
1− vq

v⊕

)
e−x2

+ +
(
1 + vq

v⊕

)
e−x2

−

−4
(

1 + v2
esc
v2

0
+ 1

3
v2

⊕
v2

0

)
e

− v2
esc
v2

0

for vq < vesc − v⊕

√
π

2
v0
v⊕

(
1 + 2v2

⊕
v2

0

) [
erf
(

vesc
v0

)
+ erf (x−)

]
+
(
1 + vq

v⊕

)
e−x2

−

−2
[
1 + 1

2 z + 1
3

(vesc+v⊕)3−v3
q

v2
0 v⊕

]
e

− v2
esc
v2

0

for vesc − v⊕ < vq < vesc + v⊕

0 for vesc + v⊕ < vq,

(B.17)

where, again, x+ ≡ (v⊕ + vq)/v0, x− ≡ (v⊕ − vq)/v0, z ≡ vesc/v⊕, and N is defined in
appendix A.
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C F -functions

Below, we list explicit expressions for the functions F ss′
n0 , F ss′

nA
, F ss′

j5 , F ss′
jM

, and F ss′
jE

. They
are given by

F ss′
n0 = ξs′†

χ

[
c1 + i

(
q

me
× v⊥

χ

)
· Sχc5 + v⊥

χ · Sχc8 + i
q

me
· Sχc11

]
ξs , (C.1a)

F ss′
nA

= −1
2ξ

s′†
χ

[
c7 + i

q

me
· Sχ c14

]
ξs

χ , (C.1b)

F ss′
j5 = 1

2ξ
s′†
χ

[
i

q

me
× v⊥

χ c3 + Sχc4 + q

me

q

me
· Sχc6

+ v⊥
χ c7 + i

q

me
× Sχc9 + i

q

me
c10 (C.1c)

+ v⊥
χ × Sχc12 + iv⊥

χ

q

me
· Sχ c14 + q

me
× v⊥

χ

q

me
· Sχ c15

]
ξs

χ ,

F ss′
jM

= ξs′†
χ

[
i

q

me
× Sχc5 − Sχc8

]
ξs

χ , (C.1d)

F ss′
jE

= 1
2ξ

s′†
χ

[
q

me
c3 + iSχc12 − i

q

me

q

me
· Sχc15

]
ξs

χ , (C.1e)

where

v⊥
χ =

(
p + p′

2mχ

)
= v − q

2mχ
, (C.2)

v = p/mχ, q = p − p′ is the momentum transferred to the electron and Sχ ≡ σχ/2
(Se ≡ σe/2) denotes the spin matrix corresponding to the dark particle (electron). Elements
of Fab are defined as

Fab ≡
1
2
∑
ss′

F ss′∗
a F ss′

b . (C.3)

The elements relevant for the anapole, electric dipole and magnetic dipole models investigated
in this work can be explicitly expressed as

Fn0n0 = c2
1 + 1

4

∣∣∣∣ q

me
× v⊥

χ

∣∣∣∣2 c2
5 + 1

4v
⊥2
χ c2

8 + 1
4
q2

m2
e

c2
11 , (C.4a)

∑
k

Fj5k
j5k

= 1
4

[∣∣∣∣ q

me
× v⊥

χ

∣∣∣∣2 c2
3 + 3

4c
2
4 + q4

4m4
e

c2
6 + v⊥2

χ c2
7 + q2

2m2
e

c2
9

+ q2

m2
e

c2
10 +

v⊥2
χ

2 c2
12 + q2

4m2
e

v⊥2
χ c2

14 +
∣∣∣∣ q

me
× v⊥

χ

∣∣∣∣2 q2

4m2
e

c2
15 (C.4b)

+ q2

2m2
e

c4c6 −
1
2

∣∣∣∣ q

me
× v⊥

χ

∣∣∣∣2 c12c15

]
,

FjMk
jMℓ

= q2δkℓ − qkqℓ

4m2
e

c2
5 + 1

4c
2
8δkℓ −

i

2εkℓm
qm

me
c5c8 , (C.4c)

FjMk
n0 = −1

4v
⊥
χkc

2
8 −

i

2

(
q

me
× v⊥

χ

)
k
c5c8 −

i

4
qk

me
c8c11 . (C.4d)
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Note that the expressions (v⊥
χ )2 and

∣∣∣ q
me
× v⊥

χ

∣∣∣2 can be expressed in terms of v ≡ |v|, q ≡ |q|
and vq ≡ v · q

q as

(v⊥
χ )2 = v2 − vq

q

mχ
+ q2

4m2
χ

,

∣∣∣∣ q

me
× v⊥

χ

∣∣∣∣2 = q2

m2
e

(v2 − v2
q ) . (C.5)

For completeness, we also list the other elements:

FnAnA = 1
4

(
c2

7 + 1
4
q2

m2
e

c2
14

)
, (C.6a)

FjEk
jEℓ

= 1
4

(
qkqℓ

m2
e

c2
3 + 1

4δkℓc
2
12 + q2

4m2
e

qkqℓ

m2
e

c2
15−

qkqℓ

2m2
e

c12c15

)
, (C.6b)

FjEk
nA = 1

4

[
− qk

me
c3c7−

qk

4me
c12c14 + qk

4me

q2

m2
e

c14c15

]
, (C.6c)

FnAj5k
=−1

4v
⊥
χkc

2
7−

q2

16m2
e

v⊥
χkc

2
14−

i

4

(
q

me
×v⊥

χ

)
k
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i

4
qk

me
c7c10 (C.6d)

+ i

16
qk
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c4c14 + i

16
q2
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e
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c6c14 + i
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(
q
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×v⊥

χ

)
k
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4

[
i
qkq ·v⊥

χ −q2v⊥
χk

m2
e

c2
3−

i

2v
⊥
χkc

2
12 + i

4
q ·v⊥

χ qk−q2v⊥
χk

m2
e

q2

m2
e

c2
15

−
(

q

me
×v⊥

χ

)
k
c3c7−

qk

2me
c9c12−

5i
4

q ·v⊥
χ qk−q2v⊥

χk

m2
e

c12c15 (C.6e)

−
(

q

me
×v⊥

χ

)
k
c12c14 + q2

4m2
e

(
q

me
×v⊥

χ

)
k
c14c15

]
.

D On the isotropy and T → 0 assumptions

D.1 Isotropy of the material

Following [16], in our derivation we assume isotropy of the detector material. This assumption
allows us to:

• integrate out most of the angular variables in appendix B,

• neglect the screening corrections to the transverse responses [16].

Although the assumption of isotropy is not always strictly satisfied, it is often satisfied
approximately, to the extent that allows us to neglect the local-field [15] and the screening [18]
corrections.

For isotropic and non-spin-polarized materials, the results provided in this work are
exact. As we point out above eq. (2.27), below eq. (4.3), and above eq. (B.2), the assumption
of isotropy is mathematically equivalent to averaging over detector’s orientation. Thus, for
non-isotropic materials, the results correspond to an expected value given the detector’s
orientation is chosen randomly, or to a situation in which the orientation changes cyclically
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(e.g., the detector is rotating). This standard approach has been also used and extensively
discussed in, e.g., [13, 18, 21].

D.2 Temperature dependence of the results

In our results, the thermal corrections are encoded in the exponential term e−βω in eq. (3.12).
The detectors of interest are assumed to operate in temperatures not exceeding the room
temperature, equivalent to ca. 0.025 eV. This value is very small in comparison to the
smallest energies considered in our manuscript, e.g., the one-electron ionization threshold
of germanium is 0.67 eV. Hence, the exponential term in eq. (3.12) is completely negligible
in comparison with 1, which justifies using the limit T → 0.

For metals, not considered in our manuscript, those effects could be of some relevance
because of the absence of the band gap whose energy would have to be exceeded to induce a
signal. For instance, for energy transfer equal to 1 meV, the value of the (1− e−βω) term in
eq. (3.12) becomes 0.04≪ 1. Nevertheless, to obtain the total interaction rate we integrate
over the whole range of allowed ω’s, so that the higher values, with negligible thermal term,
should dominate the result and the thermal correction should not significantly affect the ratio
between the actual interaction rate and the theoretical optimum.

One should definitely take into account the thermal effects described by the e−βω term
when considering phononic detection channel, for which even the smallest energies may be
relevant and could provide a measurable signal. This case is, however, beyond the scope
of this work.
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