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ABSTRACT: Over-extended Kac-Moody algebras contain so-called gradient structures — a
gl(d)-covariant level decomposition of the algebra contains strings of modules at different
levels that can be interpreted as spatial gradients. We present an algebraic origin for this
phenomenon, based on the recently introduced Lie algebra extension of an over-extended
Kac-Moody algebra by its fundamental module [1], appearing in tensor hierarchy algebra
super-extensions of over-extended Kac-Moody algebras. The extensions are described in
terms of Lie algebra cohomology, vanishing for finite-dimensional simple Lie algebras, but non-
vanishing in relevant infinite-dimensional cases. The extension is described in a few different
gradings, where it is given a covariant description with respect to different subalgebras.
We expect the results to be important for the connection between extended geometry and
cosmological billiards.
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1 Introduction

Gravity (and models containing gravity) exhibit hidden symmetries on dimensional reduc-
tion to 3 or 2 dimensions, which serve as solution-generating groups for solutions with the
appropriate amount of Killing vectors. These are the famous Ehlers [2] and Geroch [3]
symmetries. The Ehlers symmetry for D-dimensional Einstein gravity reduced to 3 dimen-
sions is SL(D — 2), which may be enhanced by the presence of non-gravitational fields; for
D = 11 supergravity it is Fgg). The Geroch symmetries obtained on further reduction to 2
dimensions are (untwisted) affine Kac-Moody (KM) extensions of the Ehlers symmetry, thus
infinite-dimensional.

Further extension leads to an over-extended KM group, often hyperbolic. It does not
simply occur on reduction to 1 dimension as an extension of the Geroch symmetry, but
is realised in a different way. Close to a space-like singularity in the unreduced theory,
time-derivatives dominate over spatial gradients, and spatial separation in the limit implies
decoupling [4]. In this Belinskii-Khalatnikov-Lifshitz (BKL) limit, gravity has been conjectured
to be described by so called cosmological billiards, amounting to particle motion in a Weyl
chamber of an over-extended KM algebra [5-8]. An important and necessary observation
making this possible is the presence of gradient structures in over-extended KM algebras [9, 10].
A level expansion preserving a gl(d) subalgebra shows that the algebra is “big enough”
to contain infinite sequences of modules possible to interpret as increasing numbers of
spatial gradients.



The framework for making all these symmetries appearing in gravity (or models containing
gravity, e.g. supergravities) “unhidden” is extended geometry [11-17], a unified framework
encompassing e.g. double geometry [18-32] and exceptional geometry [33-58]. This has been
done for Ehlers [50, 59] and Geroch [17, 53, 54, 56] symmetries, but yet not completely for
BKL symmetry (see however ref. [57] for a partial construction involving a very extended
KM algebra).

A crucial ingredient in extended geometry is tensor hierarchy algebras [1, 13, 60, 61].
Gradings of such superalgebras inform us on the content of fields, ghosts and antifields
in the different models, and also provide a means of writing relevant brackets as derived
brackets [14, 60, 62], leading to a Batalin-Vilkovisky formulation of the dynamics [12, 14, 16].
In ref. [1], the complete structure of the tensor hierarchy algebra extension of an over-extended
KM algebra was conjectured, with very strong support from the counting of modules in certain
gradings in examples. As a vector space, it contains two shifted copies of the corresponding
Borcherds superalgebra! Z(gt \): S(gt,\) = B(g™,\) ® B(g™+, \)[1]. One surprising
consequence is that at level 0, the over-extended KM algebra itself gets extended by generators
in its fundamental module, and that there thus is a Lie algebra on this vector space.

The main purpose of this paper is to connect two of these phenomena: the “extra
generators” appearing in the tensor hierarchy algebras, and the gradient structures. We
will show how the gradient structures are generated by successively applying the “extra”
transformations. We expect this to become an important ingredient in establishing a
connection between BKL extended geometry and billiards.

Physically relevant over-extended KM algebras tend to be hyperbolic. A priori, we do
not see any particular réle of hyperbolicity in our construction, apart from possibly in the
tensorial decompositions of section 3.3.

In section 2, we will describe the Lie algebra extension of an over-extended KM algebra
by its fundamental module, including the identification of relevant Lie algebra cohomologies
of the unextended and extended algebras. Section 3 deals with the precise sense in which
gradients are generated by the extra module, the covariance of the extension is discussed and
examples of different gradings are given. We end by giving an outlook in section 4.

Some conventions used throughout the paper are:

e The ground field can be taken as C (although physical applications use R, typically
with split real form of the occurring KM algebras).

« g denotes a finite-dimensional simple Lie algebra, g™ its untwisted affine extension and
g™ the subsequent over-extension.

o We denote highest weight modules R()\) and lowest weight ones R(—A\), for A an integral
dominant weight. Fundamental weights dual to simple roots «; are A; labelled by the
index ¢ according to figure 1.

'For finite-dimensional g, the Borcherds superalgebra %(g, \) is a contragredient superalgebra containing
g ® C at degree 0 (in a grading with respect to the “fermionic” node), the modules R(FA) at degrees £1, and
covariant Serre relations in R(F2)\) at degrees £2. The tensor hierarchy algebra S(g, A\) contains g at degree
0, R(—)) at degree 1, and the same relations at degree 2. At degree —1, the maximal module respecting the
degree 2 relations appears, the so called embedding tensor module. We refer to ref. [13] for details. When g, is
infinite-dimensional, new modules appear in the tensor hierarchy algebra [1].
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Figure 1. Dynkin diagrams of g™+ for g = Ay, A,,, Es. The Dynkin diagrams of g* are obtained by
deleting node —1 and those of g by also deleting node 0.

e The semidirect sum of a Lie algebra a and its module R is denoted a & R. Symmetric
and antisymmetric parts of tensor products are denoted V and A, respectively.

o Level ¢ of a Z-graded vector space V' is denoted V;. Shifts are defined so that V[i]; = V1 ;.

2 Extensions of hyperbolic algebras

2.1 Virasoro extensions of affine Kac-Moody algebras

As a preamble, let us revisit derivations and extensions of affine KM algebras. Unlike finite-
dimensional (semi-)simple Lie algebras, they have outer derivations, spanning a Virasoro
algebra. Some facts concerning affine KM algebras are collected in appendix A. This is the
“first” example of infinite-dimensional KM algebras having non-trivial Lie algebra cohomologies
enabling such extensions, in this case H'(g*;g™).

For the purpose of extending over-extended KM algebras, we are interested in the
extension of affine KM algebras? by the subalgebra of the Virasoro algebra generated by Ly
and L;. We rename the former to d, since its action can be shifted. Specifying a module of
the extended algebra (d) & g* amounts to specifying a module of g* together with a number
(scaling weight) s such that d acts as Lo + s. Note that although the extension of (d) &g+
by (L1) is a semidirect sum (d, L;) & g™, it is not the extension by a (scalar) derivation of
(d) @& gt, since [d, L1] = —Ly. Rather it is a “transforming derivation” by a scalar density.
This statement can be formalised to stating that, with a = (d) & g™, the relevant cohomology
for the extension is not H'(a;a), but H'(a;a ® C[1]) = H'(a;a[l]), where the shift is in
mode number (minus eigenvalue of d). (There is also cohomology in H!(a;a[m]), m € Z,
m # 0, corresponding to extension by L,.)

This observation is important for the extension of an over-extended KM algebra, since d
becomes a Cartan generator in g™+ and L the lowest state of a fundamental F = R(—A_1).

2.2 Extending over-extended KM algebras by the fundamental

Affine subalgebras are of course subalgebras of over-extended KM algebras, but there is no
canonical embedding. Each choice also defines a Virasoro algebra, in particular a translation

2We adhere to a convention where Lo is not included in the algebra g*, see appendix A.



Figure 2. The branching of an over-extended algebra g™+ into modules of two affine g algebras,
indicated by the solid and dotted diagonal lines. Each point in the diagram contains a finite-dimensional,
completely reducible g-module. The roots § and e are light-like, and (d,¢) = —1. The extending simple
roots are ag = 0 — 6 and a_y = € — &, where 6 is the highest root of g.

Ly. As Ly is the lowest weight state in the g™ module R(—A_1), any other light-like weight
in R(—A_1), related to —A_; by a transformation in the Weyl group, is an equally good
translation. It seems natural to consider an extension by generators in the full F' = R(—A_;).

Extensions of over-extended KM algebras by its fundamental module were considered
in ref. [1]. It was observed that level 0 of a tensor hierarchy algebra extension of an over-
extended KM algebra g consists of a Lie algebra on the vector space g™ @& F, where
F generates a non-trivial action on g*+.

The property that an element in F both transforms under g*' as a representation
module and generates a transformation on g™, implies that, for basis elements T}, € g™
and Jyp; € F, one needs a Lie bracket

[To, Jnt] = —tars™ In + unie T . (2.1)

As remarked above, this is a necessary structure, reflected already in the subalgebra at k = 0.
Let us formulate the existence of such “transforming derivations” in terms of Lie al-
gebra cohomology.



Figure 3. The projection of weights (black dots) in the over-extended lowest weight fundamental
module to the de-plane. Note that —A_; = 4.

A collection of “derivations” in the fundamental F' = R(—\) acting on g*+ is a linear
map with coefficients uyr,” in Hom (gt ® F, g7+) = Hom(g*t*, g*+ ® F). Non-trivial (outer)
such maps should be characterised by H'(g*+;g*+ @ F) (note that outer derivations of a
Lie algebra a are classified by H!(a;a)). Let the coalgebra basis elements (1-forms) be c®.
The differential on elements in the complex,® w € gt+ ® F @ C*(g+™), is

0
(dw)p® = —thNcﬁwNa — fmo‘cﬁwMV + %fm‘scﬁcV@wMa . (2.2)

In index-free notation, this is

d= _A(C) + %Z[c,c] ) (23)

where A(a)v for any element a in the Lie algebra and v in a module is the action of a in
the module, i.e., A(a)v; = a®tor’vy. When a = T, we simply write A, = A(T,), so that
ie., Ayvr = tor’vy. We see that an exact 1-form is

dAr® = —A(e) A = = (e AN + f3," A7) - (2.4)

Thinking of the map as generated by Jy/, the action on g™ can be undone by a redefinition
Ju — Iy + AT, In this framework, we will have a Lie bracket in the extended algebra

3For a Lie algebra g with generators T,, C*(g) denotes the complex (freely) generated by the coalgebra

1-forms c“.



that includes

[TaaTB] = faﬁ,nyw
[T, Jnt) = —tans™ In + unie’ T - (2.5)

A closed 1-form wy® = cBuMga obeys (dw)py® = 0, which spelled out reads

f@76uM5a + 2UN[ﬂat7]MN + QUM[Béf,ﬂ(ga =0. (2.6)

This is exactly the T part of the Jacobi identity [T, 7, J], using eq. (2.5).

Finding a u € H'(g™+; g™ ® F) is a linear problem. It can also be understood as (part
of) a deformation problem for the Lie algebra g™ & F, the solutions of which are classified
by H?(gt+ & F;g™+ & F). Under the assumption that a cocycle can be found, such that
the bracket of two J’s is deformed to

[Jar, In] = gun” Jp (2.7)

(i.e., the “derivations” form a Lie subalgebra, which was argued in ref. [1]), this cohomology
also implies the identity

gun®taq” + 2tani®ano” + 2tap un” =0, (2.8)

which is the [T, J, J] Jacobi identity. A full non-linear deformation, leading to a Lie algebra
@ on the vector space g*+ @ F, with brackets (2.5) and (2.7), also demands [uyr, un]o” =
gunt ups” and the Jacobi identities for gunt. We thus have the complete set of Jacobi
identities for o:

0= flas fric’ 5

0= [tasts]n™ = fas tom™

0= fag®uns” + 2unra’ fa15” + 2unia g™

0= gun“taq” + 2tap®ono” + 2tsp unge” (2.9)
g _gMNPUPaBa

0= gpn"gpR?.

0 = [up, un]a

It should be mentioned that a strict proof, in particular of the statement that F' can
be chosen to form a subalgebra, is lacking. We refer to appendix C for more comments
on proofs vs. conjectures.

2.3 Representations and cocycles

We will sometimes use a (lower) index & for basis elements of o7, and A for the adjoint
action of these basis elements in .o7.

It was observed in ref. [1] that 7 is linearly represented on F' = R(—\). (This follows from
the occurrence of R(+)\) at certain levels in a tensor hierarchy algebra.) The corresponding

representation matrices are t, v and J unt, fulfilling
[ton tﬁ] = faﬁ'yt'y y
[taajM] = _taMNjN + UMaBtB y (210)

e, in) = gun’jp -



The fundamental now appears in two distinct ways, as a subspace (a subalgebra) of &/ and
as a module over o7, with different transformation properties. To make the distinction, when
necessary, we write the former index dotted, so & = («, M).

It is peculiar that there are two objects with the same index structure, gasn? and s N]P
They turn out to be related. Consider the cocycle identity (2.8). It can be written in terms
of the g™ transformation of g as Aqgun’ = 2t5[MPuN]a5. On the other hand, the middle
equation in (2.10) is expressed as Agjyn? = tanTune”. Thus, gyt + Qj[MN]P isag™™
tensor, Ay (gunt + 2j[MN]P) = 0. Since A2R(—)\) B R(—)), it vanishes, and

gunt = =2 (2.11)

This relation implies the existence of a certain cocycle in H'(.2Z, F), namely the projection
on the fundamental part of o/. Let us denote the structure constants of <7 (f, ¢, u and g)
collectively as f -7 and the representation matrices on F (t and j) as t43/". The differential

on F@C*)isd=—A(c) + (e, d, 80) Acting on a 1-form wM = §Mcd = M

. 1
M_a GBF
(dw)™ = ¢ M P +2 5

M o P MN)

cc +jnpcc pMercl MNPy (2.12)

cc+gN

(tar + (-t
= 3 (gnp™ + 2w M) = 0.

wM is obviously not exact, so it represents non-trivial cohomology. Note that the cocycle

projects on the fundamental part of .27 and then “reinterprets” the fundamental as an element
in the fundamental module of &7, thus converting an index M to M. This cocycle will be
used in the following section for the concrete construction of gradients.

3 Gradients from extensions

3.1 BacktogttT&F

The cocycle in H'(«/, F) of the previous section can be used to build indecomposable
representations of o/ (some of which in fact appear in the tensor hierarchy algebra).

The construction we want to use is the following. Consider the transformations under
T and J of an element X in some module R, represented by AoX and Ay X. Then after
acting with the latter, the M index is reinterpreted as a fundamental index, so A X is seen
as an element in F @ R. Then, since [AQ,AIB] = _de‘YA@,

Ay Art] = [Aa, Ayy] +unta®Bg = — fars”A B +unra”Ag = tarr™ Ay, (3.1)
[An, An] = [A g, Ayl + 209w + jiun D) AP = (gun® + 2 F)Ap =0,

which is the algebra g™ @ F'. The “flatness” property expressed by the last equation is
crucial for its interpretation in terms of translations (gradient structures). Repeated transfor-
mations Ay gives an arbitrary number of (automatically symmetric) indices, X, ...ns, =
Au Ay X,

1 k



3.2 Gradients

The semidirect sum g™+ & F is recovered in eq. (3.1), and the commutative action of A
appends fundamental indices on any object. It should be stressed that although the algebra
of the A M’s is abelian, they generate non-trivial transformations. It is now tempting to try
to interpret A M as a “derivative”, providing a gradient structure.

In extended geometry, derivatives are declared to lie in a module F' = R()) of some
structure group G with Lie algebra g. (We are here particularly interested in the case
g= g™, but g may be any Kac-Moody algebra, finite- or infinite-dimensional, not necessarily
over-extended.) They are then subject to a so called (strong) section constraint that implies
that demands that products of derivatives (momenta) only contain the leading symmetric
and antisymmetric modules in ®?R()\). Concretely [11, 53],

(—n*Pta @t +(MA) —1+0)0®d =0, (3.2)

where o is a permutation operator that interchanges the two derivatives. Solutions to the
section constraints are maximal linear subspaces of the minimal G-orbit of R(\) (“sections”).
When A is a fundamental weight, they can be found graphically by following a “gravity line”
in the Dynkin diagram, starting at the node corresponding to A\. Consequently, a choice
of section, corresponding to an anchor map in generalised geometry, breaks G to a GL(n)
subgroup, corresponding to ordinary (“non-extended”) physical momenta. The weak section
constraint is the symmetric part, obtained when derivatives act on the same object, and
components of momentum simply are multiplied. Its solutions give the minimal orbit. The
commutative ring of momenta obeying the weak section constraint — the coordinate ring
of the minimal orbit — is Koszul dual to the positive levels of a Borcherds superalgebra,
Z#(g, ) (closely related to the tensor hierarchy algebra W(g, A) and coinciding with it at
positive levels when g is finite-dimensional), see e.g. refs. [63, 64].

A question that now arises is: is the “derivative” A M, acting on some module, uncon-
strained, or does it in some sense satisfy a constraint? The strongest possible such constraint,
and also the most interesting, since it relates to extended geometry, would be the weak section
constraint. Acting in g™, the weak section constraint would amount to the identity

. ?
Nt tan? (uipug) + jpg)ur)a” = 0. (3.3)

We have not been able to find general identities (among those coming from Jacobi identities)
that would help to check this. An alternative strategy would be to perform explicit checks in
some grading. The simplest one to use is the affine grading of section 3.3.1 and appendix B,
because there the subleading symmetric module starts appearing already at level 2, while
in the other gradings it appears at higher levels. We have tried to check the weak section
constraint by inserting the subleading combination of two Au’s appearing in the first equation
of (B.6), but have so far obtained non-zero results.

If this conclusion holds, it thus seems that A contains more than gradients corresponding
to some section, but exact statements, given the module they act on, are lacking (if it is
not simply the whole module), and the precise interpretation remains unclear. However,
commutativity of course allows restricting to Am in some section to obtain gradient structures.



3.3 Covariance and decompositions of &

Cocycles are not tensors. There is no way to write the Lie algebra & in terms of gt *-invariant
tensors (structure constants and representation matrices). It is still of course desirable to
have some concrete expressions. What, then, is the maximal manifest symmetry? We have
seen that the cocycle first arises for affine KM algebras, and that the extended algebra
then can be given a formulation where the affine symmetry is manifest, due to the presence
of Virasoro generators. (The situation there is really not different, however the action of
Virasoro generators, though formally “non-tensorial”, is under control.) The Lie algebra
&/ can be constructed level by level in a grading with respect to the over-extending node,
manifesting affine covariance.

There are many other gradings. Take a grading with respect to another node, any node
if gt is hyperbolic, otherwise a node such that its removal yields a Dynkin diagram for a
finite-dimensional or affine KM algebra. That subalgebra will then not exhibit the Lie algebra
cohomology representing extensions of the kind we are dealing with, and can be kept manifest
in a level by level construction of . Different choices of grading, i.e., different manifest
subalgebras, will correspond to different representatives in the Lie algebra cohomology in
question, meaning that they differ by redefinitions of the generators Jj;. These redefinitions
should be such that they preserve the property [F,F] C F. We have not tried to show
this in general, but note that in examples this condition fixes the brackets when there are
common modules in gt and R(—A_y).

In the following subsections, & and its fundamental representation are constructed
for a few levels in some examples. We also illustrate the first instances of redefinitions
of generators (change of representative in cohomology) when switching from one grading
node to a neighbouring one.

3.3.1 g™ @ C decomposition

In order to investigate the decomposition of 2 in modules of a subalgebra g™ ® C C g™,
we use the decomposition of gt+ and R(—A_1) of appendix B. As described there, degree
1 of g™ contains a shifted affine fundamental module, with basis elements T),. The lowest
weight fundamental of gt contains the lowest weight state .J at degree 0, and an unshifted
fundamental at degree 1 with basis elements J,. Starting from the lowest basis vector J
and its identification with L;, we immediately have

[7,T"] = (€2),"T",

1T = —(00), Ty — J. (3.4)

Using these, a short calculation using the Jacobi identity [J,T),, TV yields

s T = =80T = (), K+ 3 1% Fa)n T - (3.5)
mEZ

The Jacobi identity [J, J,,T"] is then seen to necessitate
[J’ J,U«] = _(‘gl)uyJu . (36)

The level one elements span an indecomposable module.



It is straightforward to continue to level 2. The result is, as expected, unique:

[Tua T, = 2T,
[Tm Ju] = _(Cl(cﬂ - 2)71)MVH/\TH)\ + J/w ’ (3'7)
[J,Lw JV] = _2(01(00 - 2)_1)[uu]ﬁ>\‘]ﬁ)\ )

together with

[Ty, T = (Co — 2) )™ T

[JW,,TN} = (Cl)(/w)ﬁ)‘T,\ — (C(] — 14+ U)HVN/\J,\ . (3.8)

The inverses are well defined on the object they act on (the kernels are in the ideals removed
in appendix B). All Jacobi identities resulting in level 2 or lower are checked. This implies
the action of J on level 2:

[J7 T#V] = _((CO —2)(h®1+1® 61)(00 - 2)_1)HV’$>\T/€)\ - J[uu] )
[, ‘]/U/] =—(hel+1e fl)(m,)HAJH)\ (3.9)
—((Co=2) (L1 @1+ 1@ ) (Co = 2) ") ) n -

Note that the action is /1 ® 1 + 1 ® ¢ in some basis, along with the “shift term” (last
term in first equation).

We can also find the low levels of the action of & in its fundamental representation.
Along with the representation matrices of the generators in g™ given in appendix B,

J-E=0,
J - Bu=~(0),"B,.
Ju-E=0, (3.10)
J Eu=—((Co—14+0)l1@1+1®64)(Co—1+0)1)u" B,
Ju-Jy = =(C1(Co =1+ 7)) Epx,
Juw + B = (C1C5") ()™ B -
Note that the relation gyn? = —2j[MN}P is satisfied.

3.3.2 gl(2) ® g decomposition

This is the grading vertically in figures 2 and 3.
Let us introduce the notation for g-modules: adj = R(6), V2adj = R(20) © 0. Modules
over s[(2) are named by dimension. The first few levels of g™ are

(67 )0 = (1,adj) & (3,1) @ (1,1),

(671 = (2,adj), (3.11)
(677)2 = (3,adj) @ (1,09),

(671)s = (4,adj) @ (2,A%adj  03).

,10,



The highest and lowest sl(2) states in (m,adj) C (g7 ), are loop generators T, ,, in the two
affine subalgebras indicated in figure 2. The lowest weight g™+ fundamental starts as

Fl = (2’ ]') )
R = (1,adj), (3.12)
F3 = (2, adj) b (2,0‘2) .

We will only give explicit expressions up to degree 2.

We already note that the first overlap between g™ and I seen as modules over the
algebra g, which is the common subalgebra of an affine subalgebra and sl(2) @ g, occurs as an
adjoint at bidegree (2,0), where the first degree is with respect to node 0 and the second the
s[(2) weight. We therefore expect that a change of representative for the extension switching
between affine covariance and s[(2) @ g covariance will involve a redefinition J — J + T in
this module (as well as similar redefinitions in overlapping modules at higher degrees).

Obviously, all (g*),, are finitely reducible modules of (g**),. Since (unlike the affine
decomposition) F' has no part in degree 0, there will be no indecomposable structures with
respect to the degree 0 subalgebra.

Normalising the action of (g*)y = (Ta,Tij,H> on (g7); = (T'V) as

T, T} = Ju' T
[T.j T(l)] _ (5JT-( ) _ 15]7'};1)7 (3.13)

’ Tia wa

we have (modulo an overall normalisation)

[T, TCVI) = 67 T + b T — Snad)H . (3.14)

wa

Then the Jacobi identities [T(l), T, T(*l)] are consistent with the degree 2 ideals,

[T’zsml)’ jb ] fa 1]0 + Eleég)’ (315)
and
(15, TR = — fu o TS
[T(gb)vT( Die] = 62](256 51) IR e) (3.16)

(the matrix in the last equation annihilates the leading symmetric R(26)).
In the fundamental representation, we have basis elements EZ-1 at degree 1 and E(g2)
at degree 2, and

7)) B = e; EP) (3.17)
which is consistent with
TV B = el BV, (3.18)

— 11 —



level ATt R(—A_1)
0 (11) @ (00) T, N
1 (02) Tmn (10) T
2 (12) T, (01) Jm
3 (11) & (22) T, T (03) @ (11) Jmne g
4| (02) @ (10) ® (13) @ 2(21) @ (32) (02) @ (10) & (13) @ 2(21)

Table 1. Grading of A" and its lowest weight fundamental in terms of sl(3) modules, given by
Dynkin labels, and notation for generators used in section 3.3.3.

We can now begin to construct o7 in this grading, by declaring

Vi, gV = eit, (3.19)

The Jacobi identity [7(-1, 7M1 JM] then determines uniquely

(1, IP) = =T33 + e I, (3.20)
[T(_l)iaa J}S2)] = %Eijfabch(cl) + Eijnabj;l) . (321)

We would like to compare to the affine decomposition. Part of eq. (3.20) reads
1) (1 2 2
o0 Y] — 1)+ 2. 1)
sponds to the lowest state |0); in J,,. In the affine decomposition, [T, 1, J,] = —(ta,1)u"Jv-
Let us denote the J’s in the sl(2) @& g decomposition with a prime. The identification is

—Tg}l + 3 = Jéz)(: —14,1]0).7). Such redefinitions will certainly continue to appear at

i is identified with the loop generator 7, 1, while J2(1) corre-

higher levels, where T" and J contain overlapping g modules, and will be the redefinitions
(change of the cocycle by an exact term) that relate decompositions with different covariance,
defined by gradings with respect to different nodes.

3.3.3 gl(d) decomposition

This grading is particularly interesting, since the highest level in F provides a solution
to the strong section constraint. The gradient structures are then generated by level 1.
Let us for simplicity consider gl(3) C Af+, the grading is with respect to the rightmost
node in the Dynkin diagram at the top of figure 1. The end of this section contains some
comments on other cases.

The content of the adjoint and of R(—A_;) for a few levels are given in table 1. We will
give explicit expressions for brackets up to level 3. The brackets with level 0 are given by
(T, Vp] = =0y Vin + 207V, and tensor product, and [N, %] — nT. This gives

1 —1
[T, T'pg) = 5Ep Tq)n) - %5(m5

1 1 2 2 1 1
[Tmn’ qu] = EmpTTankmn)( T, = €rng [Tmn’ qu] )
1 2
[T(W”L, Trpq)] =0,

1 2 3 3 3
[T, T,P9] = ¢mPST, "4 4 mPs(nT 4 — 15T ™)

154 (3.22)

|(mn) (pg) »
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[T, Ty] = 2, (qdﬁ;”T")S

(T T = 2 (8T — 504 T, ) (mn) (pa) rs)

(T s T = — B s Ty

The relative coeffients in the first equation are determined by the ideal generated by

1 2
[T(m T,.P9] at level 3. Furthermore,

Lmn (m 2n)
" E, = §mE™,
-1

T - EP = 5%’ By, (3.23)

Tmn Ep Emnp + GPQ(mE )
3

Ty™ By = —epgy E™ + 2(60 E,™ — Lom ")

For the brackets involving J, start the cocycle by

1
[Tmrw Jp] = epq(an)q . (324)

—1 2 1

1 -1 1
Then, since necessarily [Ty, JP| = 67 J ), the Jacobi identity [T, T', J] demands

(m
=y s -

The solution of the linear cocycle up to level 3 shows an arbitrariness due to the common
module (11) in T and J and the possible redefinition of J " by Jm” — J "4 aT .
Demanding that [J J] = J fixes this arbitrariness, so that all remaining redefinitions are

rescalings. The solution to all relevant Jacobi identities is, up to level 3:

—1 1
[Trn, Jp] = €pg(mTn)?
—1

2 1
[Tmnv Jp] = 6(pm=]n) )

—1

[Tmna qur] = 5((fn%n)qr) + 57(55%57*) )
—1 3 2
[T s JpT) = =360 €mpps (3.26)
Lmn ] 2 mn (m 2n)
[T, Jp] = Tp"™™ + 6, J™.
1 2 3 3 3
[T JP) = — 2 epatm n) y gpalm g n) o jmnp.
2 1 3 3 3
[T, o] = 2T5™ + 36T, = 160 T,)
3 3
+2(58m g, — 15<mJ )) = €pgr ™"

and
1 1 2
[me Jn] = _2€manp 5
1 2 3
[Jims I = =3 T (3.27)

2 -1 3 1 2 3
We note the absence of T' in [T', J (1], which arises when [/, J] = J is demanded.
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The action of J can of course be extended to T n < 0, by using the Leibniz property

(Jacobi identity) [J,[4, B]] = [[J, A], B] + [A,[J, B]] for the generation of (g**)<o by T
For example,

! =2 q q - 1 q e
[Jma Tnp ] = 4(5anP - 56(nTp)m) ’
2 -2
[J™, Top] = 2000317 — 360, Tp)™) (3.28)

etcetera.
1
Focussing on the action of J and specifically its part mapping g™+ — g™ (the coeffi-
cients "), the following mappings are obtained in the “central” part of g™+

(20)
(

0n) (11) 11) (11) ~ 10)

— — — — 3.29
2(12)3 22 — (21) — (20) 00 (02) — (12) = (2) = 2(21) (3:29)
(31) = (13)

(23) (32)

This is the action on generators of g*+. Note that although an arrow (11) — (02) between
degrees 0 and 1 is allowed by tensor product of representations, it is absent since all appearing

modules are modules of the degree 0 subalgebra, and thus [T, j] = j . The action on
components of A = A%T, € g™ is obtained by replacing the modules with their duals and
reversing all arrows. We remind that when the transformation of Ay as the fundamental is
taken into account, all such “derivatives” commute. The left part of eq. (3.29) gives gradient
structures emanating from level 0 (identified with “constant modes”).

The corresponding picture for the fundamental module of 7 is given below. It relies on
representation matrices jprn’, the form of which have not been given explicitly above.

2(21)

(10) — (01) — (3.30)

/l/l&

(
(
(

It is interesting to note that in this example, as well as in all A and Ej9 (maybe
always?), when we restrict to Am in the section defined by level 1, the representation
matrices ji,n,)™ are vanishing. For A", levels 1 and 2 of R(—A_;) are (10...0) and
(0010...01) & (010...0), respectively. Level 2 can only be obtained as an antisymmetric

2

product of level 1, where it indeed appears as [j m, j n] = Jmn. The Ej¢ fundamental starts
at level 3 in the grading with respect to the exceptional node. Levels 3 and 6 are identical
to levels 1 and 2 in the AéH fundamental module. Then, acting in any module, successive
symmetrised action of A, is only given by symmetrised products of representation matrices
of the subalgebra F' C 7, in the case of the adjoint the matrices wu,,, without the extra
terms with j appearing e.g. in eq. (3.3).
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4 Conclusions and outlook

We have demonstrated how gradient structures in over-extended KM algebras (and their
modules) are obtained through the action of the extending generators Jys in R(—A_1). As far
as we can judge, such a construction does not imply the (weak) section constraint, although
the question deserves further investigation. Gradients are obtained by choosing a subset of
generators Jp,, spanning a section, which are vectors under a gl(d) acting on the section.

It seems plausible that this observation will be a key to the connection between an
extended geometry based on an over-extended algebra and the dynamics of cosmological
billiards. The extended geometry should then be based on the extended algebra &, in
accordance with its appearance in the relevant tensor hierarchy algebra. With gradient
structures present in the algebra, we expect that there will be possible gauge choices that
identify them with actual derivatives. In such a gauge, all space-dependence would come
through level expansions in g™, and space would in this sense be algebraically emergent.

Are there more extensions of over-extended KM algebras? We would not exclude this,
but they do not seem to occur in tensor hierarchy algebras. The ones treated here generalise
Ly for affine KM algebras. What about generalising L,,? It would fit as lowest state
in R(—mA), but other lowest weight modules may also be candidates. In the absence of
guidance from tensor hierarchy algebras, we do not know how to calculate the appropriate
Lie algebra cohomologies. In case of extensions of affine KM algebras by Virasoro generators,
the Sugawara construction provides the additional generators. Is there a similar/generalising
construction for over-extended KM algebras (even for the fundamental alone)? In refs. [65, 66],
signs of such a construction were found. We have not investigated this, and presently have
nothing to add on the issue.

Another potentially interesting issue is the role of hyperbolicity. All physically relevant
over-extended algebras are hyperbolic: this applies to A" for r < 8 as well as to E1g. In
the context of billiards, hyperbolicity implies chaotic motion [5]. In terms of constructing
representatives of the Lie algebra cohomology of the extension in different gradings in
section 3.3, we showed examples and argued in general that moving between gradings with
respect to adjacent nodes, there must be a change of representative changing the covariance.
This may fail if the algebra is not hyperbolic; if deleting a certain node does not yield a
finite-dimensional or affine KM algebra, there is no clear reason why the cocycles should
be tensorial with respect to such a subalgebra.

We would finally like to comment on the continuation to very extended KM algebras
g™t and the “Ey; proposal” [67, 68]. It is known that the module now extending g™ still
is R(—A_1), i.e., associated to the second node from the left of the very extended Dynkin
diagram (together with more modules) [52, 57]. In a chosen section, R(—A_1) starts out with
an antisymmetric bivector rather than a vector, and it already seems that the opportunity to
obtain derivatives algebraically has passed (setting one of the two indices as a time direction
of course still gives the spatial gradient structures in a g*+-covariant grading), and that
it is unique for over-extended KM algebras.
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A Untwisted affine Kac-Moody algebras and representations

Given a finite-dimensional simple Lie algebra g with a basis {7} }, its untwisted affine extension
g™ is spanned by the loop generators {Tg , }mez and the central element K, with Lie brackets

[Ta,m; Tb,n] = fabCTc,m—‘rn + m5m+n7077abK ) (A1>

where f and 7 are the structure constants and Cartan-Killing metric of g. The Cartan
matrix is degenerate, in order to cure this, one can complement the algebra with Ly (this
is what happens in the further over-extended algebra, but any L,, can be used). Affine
decompositions of hyperbolic KM algebras appear e.g. in refs. [69, 70].

At k = %1 there are highest /lowest weight modules (k is the eigenvalue of K). We focus
on the ones being R(+Ay), which are the ones relevant for the further over-extension (there
may be others, in A" there are r + 1 choices related to the Z, 1 symmetry of the Dynkin
diagram, in Egr there are three, while in Fy there is only one).

Let f be the affine module f = R(—Ag) at level 1 (k = —1). We denote basis vectors E,,,
and have representation matrices (tqm),”, and also Virasoro representation matrices (4,,),".

The Virasoro generators at definite £ may be obtained through the Sugawara construc-
tion [71] as

LK) —

m g —|—k‘ Znab Ta,nTb,m—n3 . (AQ)

nEZ

The central charge is ¢¥) = Iz%ifkg (g

At level 2, there are invariant tensors. The affine invariant tensors C,, € End(®2R()))
are defined as

Vv

is the dual Coxeter number of g).

Con =l @1+ 1® by — > 1an @ tymn - (A.3)
nez
They are g¥ + 2 times the coset Virasoro operators L£,§°S€t) =l 1l+1& 4L, — LE,’fZQ),
with central charge c(¢oset) — #M.

The tensor product ®2f contains an infinite number of irreducible lowest weight modules,
organised in a (finite) number of modules of the coset Virasoro algebra. The details of these
modules of course depend on the central charge. Irrespective of the central charge, the leading
symmetric and antisymmetric modules are annihilated by Cy and Cp — 2 respectively (these
are the symmetric and antisymmetric part of the Y tensor of extended geometry [11, 40, 53]).

B Affine decomposition of over-extended Kac-Moody algebras and
representations

The grading operator with respect to the over-extending node (number —1 in the Dynkin
diagrams) is —K. The remaining Cartan generator (not in the Cartan subalgebra of g) is
d, acting as Lo on the affine subalgebra at k = 0, [d, T4 ] = —mTem. At level £1 the
generators are in the lowest/highest weight fundamental, but with a shifted action of d,
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[d,T,,] = —(bo — 1),*T,,, [d, T"] = (bg — 1),*T", where {g is the representation matrix for Lo
at £ = £1. The remaining brackets in the local Lie algebra are

[T, T = 65d + (b0 — D)p"K = >~ 0™ (tam)n To—m - (B.1)
meZ

At level 2, there is [T,,T,]. Calculating

([T T.), T] = =2(Co — 2) ) T (B.2)

(v

tells that the leading antisymmetric module generates an ideal, leaving the generators
T, = 3[T,,T,] in all subleading antisymmetric modules at level 2.

We thus have (gt)o = (d) @g™, (g7)1 = f[1], (g7F)2 = a2[2], where shift refers to
mode number, f is the affine lowest weight fundamental and ao contains all subleading
module in A%f.

The fundamental lowest weight module of g™, R(—A_1) contains at level 0 only the
lowest vector E € C[—1] with T# - E =0, Ty, -E =0,d-E = —E. At level 1 there is
E,=T,FE € f withd-E, = —(l), E,, T"-E, = 0/E. Atlevel 2, let E,,, = T},-T,,- E. Then,

T Eu = (Co—1+0)u" Ey, (B.3)

where UW""\ = (52(55 is the permutation operator. Leading symmetric and antisymmetric
parts of (®2f)[1] are annihilated, and we are left with (s +a2)[1] at level 2, where so consists
of all subleading affine modules in V2f.

The symmetric and antisymmetric products VZF and A2F are, up to level 2,

VZE=C[-2]® f[-1]®s{® 250D as ® ...,
NF=fl-1]@s0d®20d..., (B.4)

where s5 and a are the complements to s and ag in V2f and A?f, respectively, i.e., the
leading symmetric and antisymmetric affine modules. Comparing to the leading symmetric
and antisymmetric gt modules, which are
R(—2A_1) =C[-2]® f[-1]®si@saDas ...,
R(—2A 14+ a 1) =f[-1]®s®d®ad..., (B.5)
we find subleading symmetric and antisymmetric g™ modules starting with sy and as

at level 2. These level 2 states can be constructed explicitly by using that they must be
annihilated by T#; they are

E ® E('u,y) + E(/ﬂ,) ® E - (CO)(MV)K)\EK X E)\
and E® E[PW] B E[/W] QF - (CO - 2)[uu}ﬁ)\En & E)\ . (BG)

C Conjectures vs. proofs

Over-extended KM algebras and their representations are complicated to deal with. There
are of course Weyl-Kac denominator and character formulas [72], but the sums over the Weyl
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group do not result in closed expressions in terms of known functions. We deal with structure
constants and representation matrices for over-extended KM algebras as if they are “known”.

Essential parts of the present work rely on conjectures, which have strong support in many
examples, but for which general proofs are lacking. For clarity, we would like to point them out.

One conjecture which has not been proven, and which is heavily used in the present paper,
is the structure of the tensor hierarchy algebra extension S(g™ ™, \) of an over-extended KM
algebra, referred to in section 1. The form (as a vector space) of a Borcherds superalgebra
and a shifted copy of the same Borcherds superalgebra implies the existence of the cocycles
relevant for the extension/deformation in section 2.2. The evidence for the conjecture in
ref. [1] is abundant. A strict proof is desirable.

A second property of the extended algebra which is recurringly used is the statement
that it is possible to find a representative for the Lie algebra cohomology so that the brackets
[J, J] contains no part in gt and thus forms a subalgebra. In ref. [1] we tried to sketch
a proof using the grading by g* modules of section 3.3.1 and appendix B. Again, having
a strict proof would be desirable.
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