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A B S T R A C T

Cement and concrete, while traditionally recognized as one of the main contributors to anthropogenic CO2 
emissions, also have untapped capacity to serve as substantial carbon sinks. This paper provides a comprehensive 
perspective on how engineered mineral carbonation can transform cement-based materials into carbon storage 
systems. We briefly review the fundamental mechanisms of CO2 storage in cementitious systems and highlight 
current limitations in understanding of reaction kinetics, end-phase regulation and performance control. The 
effect of CO2 uptake on material performance is critically evaluated with respect to the fresh performance, 
mechanical properties and long-term durability. Emphasis is placed on the valorization of alkaline industrial 
residues and emerging carbonatable binders, which offer sequestration capacity and sustainable resource use. A 
strategic roadmap is proposed with integration of scientific innovation, regulatory alignment, and carbon ac
counting in the life cycle, to accelerate the adoption of carbon-storing concrete. This perspective provides a 
framework to advance cement and concrete as engineered carbon sinks and supports the transition to a climate- 
positive construction industry.

1. Introduction

Concrete is the most extensively used artificial material on Earth. 
The high demand for cement in making concrete has driven a significant 
increase in the production since its invention. The latest data from the 
United States Geological Survey (USGS) (Hatfield, 2025) indicated a 
mild decrease since 2018, but the amount remained approximately 4.15 
billion tonnes (Gt) in 2023. Cement clinker production is an 
emissions-intensive process with an average emission of 0.58 tonnes 
CO2 per tonne of Portland cement in general (International Energy 
Agency, 2024). Therefore, the increase in cement production was 
deemed to cause a rise in emissions, peaking at approximately 7.1 % and 
now stabilizing at about 6.4 % within fossil emissions excluding 
carbonation (Fig. 1a). Due to the alkalinity of cement and hydration 
products, CO2 can be stored in these materials through a series of 
carbonation reactions that occur under CO2 exposure with sufficient 
moisture. Unreacted clinker minerals, such as alite (C3S) and belite 
(C2S), can react with CO2 to produce calcium carbonate (CaCO3) and 
silica-alumina gel (Zajac et al., 2022). Furthermore, hydration products 

such as calcium hydroxide and calcium silicate hydrate (C–S–H) un
dergo carbonation; calcium hydroxide reacts readily to form CaCO3, 
while C-S-H gradually decalcifies under CO2 exposure, forming CaCO3 
and amorphous silica (Šavija and Luković, 2016). Additionally, alumi
nate phases such as monosulfate (AFm) and ettringite (AFt) can 
decompose and transform into carbonate-containing phases or second
ary gels (Zajac et al., 2023).

The large volume of cement-based materials presents a unique op
portunity for climate solutions. Natural carbonation of cement during its 
production and service life under ambient conditions showed an annual 
CO2 uptake of 0.5 to 0.9 Gt since 2015 as estimated by some studies (Cao 
et al., 2020; Friedlingstein et al., 2025; Z. Huang et al., 2023), but this 
amount is far less than the emissions generated from its production 
(Fig. 1b). A recent study suggested that cement and filler materials could 
store >2.6 Gt of CO2 every year, almost equivalent to the annual global 
CO2 emissions from cement production (Van Roijen et al., 2025), and if 
aggregates and other major building materials are taken into account, 
the theoretical storage capacity reaches 16 Gt (Fig. 1c). The storage 
potential of aggregates stems from the carbonatable nature of rocks 
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(Stillings et al., 2023) and the carbonation treatment of recycled 
aggregate adhered with paste (Villagran-Zaccardi et al., 2025).

Traditionally, the carbonation of cement and concrete was viewed as 
a slow passive process in nature and detrimental to the durability (Ho 
and Lewis, 1987). However, the emerging vision is clear that carbon
ation of cement concrete materials can become part of the solution to 
industrial emissions. It can be accelerated by enforced curing and 
engineered treatment. Emerging technologies, including accelerated 
carbonation curing, indirect mineral carbonation, and carbonate reac
tive binder systems, allow the capture of CO2 in precast elements 
(Zhang, 2024), recycled aggregates, and construction waste (Poon et al., 
2023). In addition to carbon storage in traditional Portland cement 
concrete, attention is also increasing to exploring the use of novel car
bonatable binders from alkaline wastes like steel slag and magnesium 
slag whose processing status has been systematically evaluated by re
views (Liu et al., 2023; Lv et al., 2025). Moreover, magnesium based 
cements also show promising CO2 adsorption capacity (Badjatya et al., 
2022; Tan et al., 2024).

Despite this huge potential, most current studies have focused on 
optimizing adsorption efficiency and testing concrete performance at 
the early ages on a laboratory scale. Real-world implementation has 
reached <10 % of the theoretical value (Driver et al., 2024) due to 
technical and economic barriers in three aspects: (1) the complexity of 
controlling the carbonation efficiency and end-phases from minerali
zation of cement-based materials, and alkaline waste due to their 

heterogeneity in composition and microstructure (Zajac et al., 2023); (2) 
the high cost of the enforced carbonation curing and chemical processes 
(Huijgen et al., 2007; Kajaste and Hurme, 2016; Van Roijen et al., 2025) 
or the production of novel carbonatable binders such as magnesia ce
ments (Walling and Provis, 2016); and (3) unaddressed durability con
cerns of reinforced concrete after carbonation or when using carbonated 
binders (Angst et al., 2019; Blackshaw et al., 2024; Li et al., 2018; 
Sharmilan et al., 2024).

Therefore, the successful shift from the climate challenge to a carbon 
storage opportunity demands deeper studies on carbonation of cement 
and concrete with novel cost- and eco-efficient techniques, achieved 
through better reaction control of its reaction and circular use of waste 
for value-added products after CO2 storage. Here, we provide an over
view of the carbon mineralization mechanism in cement-based materials 
to address the knowledge gaps in reaction control. A critical summary of 
the performance and cost of carbonatable cement will be followed, and 
the major concerns about durability will be clarified. In the last section, 
we offer our overall prospects for prioritized research needs to unlock 
the potential for carbon storage in cement and concrete.

Fig. 1. Global CO2 emissions from cement production and theoretical storage capacity of building materials. (a) Global fossil emissions with data sourced from 
(Friedlingstein et al., 2025) and the estimated percentage of emissions from cement production, (b) value estimated in this work with emission factor for clinker 
production of 0.58 g/g adopted from (International Energy Agency, 2024) and global cement production data sourced from USGS in comparison to data ranging 2015 
to 2023 from (International Energy Agency, 2024) and carbon sink in cement data from Global Carbon Budget (GCB) (Friedlingstein et al., 2025), Cao et al. (Cao 
et al., 2020) and Huang et al.(Z. Huang et al., 2023), (c) Global production of major building materials and their theoretical CO2 storage capacities (Van Roijen 
et al., 2025).
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2. Scientific and technical gaps in cement-based carbon storage

2.1. Incomplete understanding of carbonation mechanisms in a complex 
cement system

The mineral carbonation of a cement-related system is fundamen
tally similar to the water-rock interactions during the natural weath
ering process, which involves the dissolution of minerals, precipitation 
of calcium carbonates along with gels, and subsequent mass diffusion to 
the intact inner surface (Lasaga, 1984; Coogan et al., 2016; Kelemen 
et al., 2019). As illustrated in Fig. 2a, these chemical processes are 
coupled during the carbonation of cement-based materials, so any of 
them could be the rate-limiting step that determines the efficiency of 
CO2 storage. The controlling process could be governed by either ther
modynamics or kinetics, depending on environmental conditions, the 
type of cementitious materials and microstructural properties. The ki
netics of reaction and phase assemblage in end-products would in-turn 
alter the microstructure and determine the performance of 
carbon-stored concretes (Zajac et al., 2020a; Van Roijen et al., 2024).

Calcium carbonate, as the major precipitated products, is one of the 
materials found to have more than one amorphous state (Cartwright 
et al., 2012) and exhibits polymorphism of crystalline structures (calcite, 
aragonite, and vaterite), a phenomenon that has been largely studied in 
the realm of biomineralization (Gower, 2008). The revolution of calcium 
carbonates is a complex process that typically follows a non-classical 
nucleation and growth pathway, as highlighted by a recent study (Jin 
et al., 2025). The presence of multiple elements in cementitious mate
rials (Si, Al, Fe, and S) affects the kinetics and polymorphs of calcium 
carbonates. Kellermeier et al. (2010) demonstrated that in solutions 
containing silicate ions over 1000 ppm, the formation of amorphous 
calcium carbonate (ACC) particles causes spontaneous silica polymeri
zation at their vicinity, triggered by a pH drop near the surface of the 
ACC. This process causes the deposition of hydrated amorphous silica 
layers on the ACC grains, effectively suppressing further crystal growth 
and modifying the final particle size and morphology. Korchef (2019)
demonstrated that iron ions exhibit concentration-dependent effects on 

calcium carbonate crystallization: At high supersaturation, they have 
negligible inhibitory effects, while at low supersaturation, which may 
induce retarding effect on the nucleation. Sulfate stabilizes the vaterite 
polymorph of calcium carbonate by preferentially incorporating into its 
structure at low concentrations (<3 mol %), which delays the trans
formation to calcite, while such a substitution is energetically unfavored 
in calcite and highly unfavorable in aragonite, thus changing the crys
tallization pathway of vaterite (Fernández-Díaz et al., 2010; Chong and 
Sheikholeslami, 2001).

The storage capacity of cementitious materials remains broadly 
similar, irrespective of the specific polymorph of the resulting calcium 
carbonate. However, the kinetics of carbonation can differ markedly to 
influence the efficiency of CO2 capture. The stability of ACC and crys
talline carbonates show large difference (Gebauer et al., 2008), which 
will, in turn, affect the long-term reliability and soundness of permanent 
storage. The effect of other elements on these storage aspects of 
real-world concrete mixes remains poorly understood, and there is a 
clear need for comprehensive, in-depth studies in this area.

The carbonation kinetics and reaction degree of compositions in 
hydration products determine the carbon storage efficiency, stability, 
and capacity. The major hydration product of Portland cement is C-S-H, 
whose structure is an amorphous state with variable Ca/Si ratios 
depending on the amounts of alternative siliceous binders (Lothenbach 
et al., 2011; L. Huang et al., 2025b), portlandite, and aluminate phases 
such as monosulfate and ettringite. The carbonation kinetics and storage 
capacity of these phases have been proven to be very different and 
moisture-dependent in studies using synthetic materials (Steiner et al., 
2020). As summarized in Fig. 2b, while portlandite reacts readily with 
CO2, C-S-H carbonation is slower with the reaction rate and adsorption 
capacity showing an increasing trend as the Ca/Si ratio increases; 
ettringite has the lowest storage capacity. However, the carbonation 
reaction in real cement and concrete materials is much more complex 
than in synthetic powdered materials because of the multiscale pore 
structure formed after hydration reaction. The degree of cement hy
dration will determine not only the microstructure but also the end 
products whose carbonation capacity may become weaker as the Ca/Si 

Fig. 2. Mechanisms and factors that influence CO2 mineralization in cement-based materials. (a) Major chemical reaction processes, (b) carbonation rate and ca
pacity of the main phases of cement products (Steiner et al., 2020), (c) Nucleation rate depending on the size of nano pores in the hydrated cement (L. Huang et al., 
2025b), d– Optimum relative humidity for carbonation depending on the pore size distribution (Li et al., 2024).
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ratio decreases. The sophisticated microstructure makes impact on the 
moisture state and distribution, especially for blended system where the 
nanoscale pore will be refined to change transport properties (L. Huang 
et al., 2023). The nanoscale confinement alters the water dynamics so it 
will somehow accelerate the dissolution but strongly suppress the ki
netics of precipitation process during reactions (see Fig. 2c) (L. Huang 
et al., 2025b), finally determining the efficiency and capacity of CO2 
storage.

The knowledge to control optimal relative humidity (RH) is crucial 
for fast engineered CO2 mineralization, as the kinetics of carbonation of 
cementitious materials are strongly governed by the water layer on 
surface and in pores. RH regulates the degree of water saturation within 
mesopores and surface water film, which in turn plays a pivotal role in 
determining CO2 adsorption capacity. Notably, the most significant CO2 
uptake is observed at the onset of capillary condensation when meso
pores begin to fill with metastable, density-fluctuating water (Li et al., 
2024). As demonstrated in Fig. 2d, the optimum RH for CO2 uptake 
increases as the pore size goes larger, which follows a Kelvin relationship 
for water vapor to liquid condensation transition. The surface hydro
philicity of minerals significantly influences the critical RH required for 
optimal CO2 docking. Specifically, minerals with lower hydrophilicity 
tend to exhibit higher optimal carbonation RH. In the case of C–S–H, a 
reduction in the Ca/Si ratio enhances surface hydrophilicity, hence it 
lowers the RH threshold at which CO2 uptake most effective (Li et al., 
2025). Moreover, carbonation products such as calcium carbonates 
continuously alter the pore size distribution and therefore affect gas 
transport and reactivity (Morandeau et al., 2014). The relative high 
water content may also cause clogging effect on pore structure, so some 
work (Isgor and Razaqpur, 2004) proposed to a bilinear decay function 
to account for the influence of carbonation on both moisture and CO2 
transport. However, the dynamic structural change in response to the 
moisture content really depends on the water to binder ratio, which is 
yet to be clearly understood.

Further studies are required to establish adaptive control strategies 

for RH and CO2 concentration in practical applications to match the 
dynamical change of microstructure and composition toward optimi
zation of long-term CO2 storage capacity. The enforced carbonation 
treatment under aqueous state shows promising efficiency advantage 
(Jiang et al., 2024), but the kinetic control for large-volume imple
mentation lacks a thorough understanding especially for fluid dynamics 
at stirring, thermal effect from the large volume reaction and these ef
fects on the end-phases. Alternative techniques to tailor the structure of 
cement-based materials and to address kinetic and diffusion limits are 
also emerging as an effective method (Yu et al., 2025) but further work is 
needed to realize the application.

2.2. Performance concern after CO2 uptake in cement

As cement and concrete systems are explored to store CO2 through 
mineralization, a primary barrier to widespread adoption remains in 
preservation or improvement of engineering performance, particularly 
mechanical performance and durability. The ability of cementitious 
materials to act as CO2 sinks arises from carbonation reaction. However, 
this reaction changes the physical, chemical, and microstructural 
properties of the material, leading to complex trade-offs between carbon 
sequestration and long-term performance.

In general, carbonation of cement-based materials will densify the 
microstructure and increase the compressive strength of the matrix. As 
illustrated in Fig. 3a, the enhanced CO2 uptake shows a positive effect on 
the strength supported by available data from previous studies 
(Chinzorigt et al., 2020; Liu et al., 2020, 2022, 2021; Mahoutian et al., 
2015; Salman et al., 2015; Wang et al., 2019). However, the uptake of 
CO2 in the fresh state raises concerns regarding both workability and 
mechanical performance. Liu et al. (2021) found that increasing CO2 
absorption amount could cause a large loss of fluidity in fresh cement 
paste, mainly due to the formation of calcium carbonate and the 
reduction in the free water content, which also showed a mild negative 
effect on early strength development, especially flexural strength. When 

Fig. 3. Effects of CO2 uptake on concrete mechanical performance and durability. (a) Influence on the compressive strength of Portland cement (square) and steel 
slag as the binder (circle) with data adopted from (Chinzorigt et al., 2020; Liu et al., 2020, 2022, 2021; Mahoutian et al., 2015; Salman et al., 2015; Wang et al., 
2019), (b) Influence of CO2 uptake on reinforcement corrosion rate under highly humid environment with data adopted from (Hren et al., 2021).
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alkaline waste is valorized as cementitious by mineralization, the per
formance of concrete is highly dependent on the type and origin of the 
raw materials. For example, steel slag, a highly reactive carbonatable 
binder, responds favorably to CO2 curing by achieving rapid hardening 
and significant strength gains, making it a promising alternative binder 
with CO2 sequestration potential (Hu et al., 2024). However, the ap
proaches reported in studies were mainly based on lab-scale experi
ments. It is challenging to implement at upscale due to the special curing 
requirement compared to traditional construction processes, so its cur
rent applications are very limited (Liu et al., 2023).

Another way is to use CO2-cured recycled waste as aggregate or 
supplementary cementitious materials (SCMs) to replace natural stones 
and Portland cement, respectively (Mo et al., 2017). The uptake of CO2 
in recycled aggregates causes a reduction in porosity and a densification 
of the microstructure at the interfacial transition zones (Huang et al., 
2019; Wu et al., 2022; Zhan et al., 2019). Therefore, the performance of 
concrete with carbonated recycled aggregates is normally better than 
that with noncarbonated aggregates, but the performance is still 
compromised when replacing natural aggregates with even carbonated 
recycled aggregates (Russo and Lollini, 2022). In addition, the use of 
carbonated recycled concrete powders (RCPs) markedly decreased the 
workability of fresh concrete. A 30 % dose of RCPs was reported to cause 
a maximum of ~50 % decrease in slump (Mehdizadeh et al., 2021). The 
use of RCPs substituting 38.25 % of cement clinker showed much better 
performance than those replaced with limestone, but its compressive 
strength at 28 days is only about 80 % of the designed strength of clinker 
(Ca. 52.5 MPa) (Zajac et al., 2020b). The CO2 uptake in RCPs will 
transform the hydration products into different mineral phases such as 
polymorphs of calcium carbonates, silica gel, alumina gel, and gypsum, 
among which calcite mainly work as filler and the others can be reactive 
to work as SCMs (Poon et al., 2023). The portion of gels and carbonates 
decides the pozzolanic reactivity of RCPs for reliable mechanical 
performance.

Beyond strength, durability is critically important for the role of 
concrete as a CO2 storage medium because the stability of stored CO2 
depends on the structural integrity and resistance of the material to 
degrade over time. Any deterioration could lead to the release of bound 
CO2 or the loss of functional service life, affecting its environmental 
benefit. Therefore, durability concerns cannot be decoupled from life
cycle emissions evaluation, particularly for applications requiring long 
service life and exposure to aggressive environments. Although 
carbonation reduces total porosity and permeability, thus potentially 
lowering the ingress of deleterious agents, it also alters phase assem
blage and pore solution chemistry, especially pH (Steffens et al., 2002). 
Furthermore, the consumption of portlandite and the decomposition of 
Friedel salts can reduce the capacity to bind chloride, as observed in 
both experimental studies (Chang, 2017) and simulation (L. Huang 
et al., 2025a). This reduction in binding capacity lowers the resistance of 
concrete to chloride ingress, which may accelerate reinforcement 
corrosion and overall deterioration.

The impact of carbonation is also influenced by the type of binder. 
SCM-rich systems, such as those containing slag or fly ash, show 
different pore structures and lower portlandite contents, often leading to 
accelerated carbonation rates and potentially more severe reductions in 
chloride-binding capacity (Papadakis, 2000). Hren et al. (2021) inves
tigated a direct evaluation of the influence of carbonation on steel bars, 
which was evaluated by the galvanostatic pulse method. As shown in 
Fig. 3b, they found that the uptake of CO2 by accelerated carbonation 
strongly increases the corrosion rate of steel in blended cements with 
SCMs; the increasing level stays in a range of 5 to 30 times based on the 
exposure time and cement types. As highlighted by Van et al. (2024) that 
while carbonation can account for up to 30 % of cement-derived CO2 
emissions over the lifecycle, if durability is not considered, the unstable 
uptake may limit its climate benefit. Therefore, comprehensive work is 
needed to address performance concerns regarding the application of 
CO2-stored cement and concrete materials, especially for their 

durability.

2.3. Cost and efficiency of emerging carbon-storing binders

Besides the traditional Portland cement and alkali wastes, 
magnesium-rich materials are abundant in nature with a potential to 
produce cementitious materials while storing CO2. Olivine materials 
have been extensively explored in geological carbon storage (Zhang 
et al., 2022) but its production for cementitious materials remains large 
unexplored due to their low carbonation reactivity. Instead, magnesia 
cement produced from magnesite is emerging as a promising alternative 
to Portland cement due to its high CO2 store capacity (Bernard et al., 
2023). As summarized in Fig. 4a, the CO2 storage capacity in magnesia 
cement ranges from 0.75 to 1.1 g/g raw materials, depending on the 
hydration state of the raw materials (Morrison et al., 2016).

However, the challenges in scaling up magnesium cements for CO2 
storage include economic feasibility, resource availability, and the 
relatively low pH that may cause corrosion concerns for steel rein
forcement. The global production of magnesite is around 22 million 
tonnes according to USGS data (Fig. 4b) (Hatfield, 2025), which is 
substantially less than the cement demand level of cement (~4 Gt). More 
sources of magnesium need to be explored, such as use of desalination 
brines or seawater directly (Shahmansouri et al., 2015). Due to the 
expensive nature of the magnesium source, most MgO-based cements 
have a much higher production cost than that of Portland cement 
(Walling and Provis, 2016). Even if magnesium is extracted from 
seawater or brines, the use of chemicals would further increase the cost 
of the production process and the cost can reach up to a thousand dollars 
per ton or even higher (Özkan et al., 2016; Shahmansouri et al., 2015). 
As shown in Fig. 4c, the production cost of magnesia cement is at least 2 
and up to 10 times higher than that of PC.

The most mature way to produce magnesia is through the calcination 
of magnesite (X. Huang et al., 2025). However, concerns over energy 
intensity and emissions from this technique remain the same as those of 
PC production. Life cycle assessment (LCA) for the comparison of PC and 
magnesia production showed that although most of the environmental 
impacts of magnesia cement are lower than those of PC, its effects on 
climate change and land use are higher than that of PC (Fig. 4d) (Ruan 
and Unluer, 2016). A recent study reported the possibility of converting 
Mg-rich silicates to dicalcium silicates and magnesia through a thermal 
exchange reaction (Chen and Kanan, 2025), but the energy demand and 
especially the cost of such a process have not been adequately evaluated. 
Although the wet route Mg(OH)2 production process showed the po
tential to valorize the rejected brine into a carbon storing cement (Singh 
et al., 2022; Ventimiglia et al., 2025), and electrochemical routes show 
promise because they rely primarily on low-cost renewable electricity 
for powering (Badjatya et al., 2022), rigorous techno-economic analysis 
is required to assess the scalability of these techniques to match the 
current cement market.

Belite-rich cements have gained renewed attention for their synergy 
with carbonation curing, offering both reduced CO2 emissions (due to 
lower CaO content) and enhanced mechanical performance through the 
precipitation of stable carbonate phases. Carbonation hardening of 
belite clinker phases proceeds via dissolution–precipitation, where 
portlandite and C–S–H partially decalcify, leading to the formation of 
calcite, aragonite, or vaterite, which densify the microstructure and 
improve early strength (Jang and Lee, 2016). Other formulations, such 
as ternesite–belite blends, have demonstrated accelerated strength gain 
under CO2 curing while maintaining long-term stability (Zhang et al., 
2025). These systems also display reduced autogenous shrinkage and 
potentially lower lifecycle CO2 footprints compared with alite-rich ce
ments (Wang et al., 2025). Despite promising laboratory results, scaling 
challenges include the need for controlled CO2 supply, curing chamber 
infrastructure, and optimization for varying ambient conditions, 
addressing these factors that will influence both cost and industrial 
adoption potential. The capital expenditure required for producing 
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carbonatable belite cement is generally expected to align closely with 
that of ordinary Portland cement, as the raw materials is similar and it 
can be manufactured using conventional cement kilns and infrastructure 
(Gartner and Sui, 2018). Due to a lower CaO in belite cement, the CO2 
uptake capacity of them is a bit weaker than OPC with a range of 
approximately 0.15–0.4 g/g binder (Fig. 4a) depending on the water to 
binder ration of mix (Siddique et al., 2020). To the date of this writing 
work, there is no systematic LCA and economic analysis of belite cement 
production, however, its emissions would be lower than OPC due to the 
lower temperature requirement and the less use of limestone.

2.4. Effective LCA models

It is of great significance to accurately account for CO2 uptake in 
various types of cement-based materials so that we can correctly 
determine their carbon storage capacity and evaluate their economic 
viability, particularly in the context of carbon taxation and monetization 
of environmental benefits for large-scale implementation. A compre
hensive LCA of carbon storage concrete must consider CO2 uptake in all 
component components, such as cement paste, aggregates, and recycled 
fines, and account for all hydration products with different uptake ca
pacities (Steiner et al., 2020), throughout the material’s whole service 
life. To ensure accurate predictions, this requires the integration of 
chemical corrosion models that simulate deterioration under various 
environmental exposures, along with a model for the carbonation ki
netics of hydrated cement phases. Only with such detailed modeling and 
quantification can the true carbon offset potential of carbon-stored 
concrete systems be realized and optimized for climate-positive con
struction practices.

Most current estimations of storage capacity have overlooked or 
underestimated carbonation efficiency. Some overestimated the capac
ity by ideally assuming a full carbonation without considering 

carbonation kinetics, such as in the currently published work by Van 
et al. (2025). Xi et al. (2016) established a comprehensive analytical 
model describing carbonation chemistry with up-to-date data in 2013 to 
estimate regional and global CO2 uptake in cement materials during 
their service life, demolition and recycling of concrete waste. At that 
time, it was a very comprehensive and novel consideration for this data, 
but current concrete mixes have evolved significantly with the use of 
SCMs and carbon storing binders cured via accelerated carbonation 
curing. Therefore, this model will apparently underestimate CO2 uptake 
in emerging cement and concrete materials. Moreover, the previous 
models did not account for dynamic carbonation over decades, regional 
climate variations, or the evolvingcomposition of blended cement. 
Concrete with carbon-stored binders and aggregates still absorbs CO2 
during its service life (Gluth and Bernal, 2025). Since incorporating 
re-carbonation into such inventories necessitates estimating the 
carbonation potential, emerging methodologies are being developed to 
enable cradle-to-gate LCA of these products (Kumar et al., 2024). To 
assess the net impact of climate, next-generation LCA models must 
integrate CO2 uptake over time, concrete durability, dynamic carbon
ation kinetics related to building typology, and evolving compositions 
during carbonation reaction.

The current analysis of the potential for CO2 mineralization in 
cement has been focused primarily on global-scale storage capacities 
and the quantification of theoretical maximum values, without consid
ering critical demand-side factors such as the market size of CO2 
mineralization products, their applications (i.e., the properties of the 
material after CO2 adsorption) and the economic viability of these 
production processes. These factors are crucial because they can 
significantly constrain commercial feasibility, deployment scale, and 
overall decarbonization potential. In many cases, the CO2 uptake po
tential of commercial CO2 mineralization and utilization technologies 
has been overstated due to the inappropriate assessment framework 

Fig. 4. A comparison of Portland cement (PC), belite and magnesia cement: CO2 adsorption capacity (Li et al., 2021; Morrison et al., 2016; Wang et al., 2011) (a), the 
mining amount of raw materials like magnesite (Hatfield, 2025) (b), general production cost (McLellan et al., 2011; Nguyen et al., 2018; zkan et al., 2016; Shah
mansouri et al., 2015) (c), and life cycle analysis of environmental influence for production (Ruan and Unluer, 2016) (d).
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(Driver et al., 2024). Effective LCA models must move beyond the 
idealized assumption of complete carbonation by explicitly accounting 
for carbonation kinetics, transport processes, and chemical corrosion 
models, so that it yields more realistic predictions of CO2 storage ca
pacity and service-life performance. The actual CO2 uptake capacity of 
in-service buildings is influenced by environmental conditions and cli
matic history. However, such data remain largely undocumented, and 
related investigations are currently being advanced within some tech
nical committees in RILEM.

3. A scalable pathway for the future of concrete carbon storage

The Intergovernmental Panel on Climate Change (IPCC) has identi
fied cement-based materials within the built environment as significant 
potential carbon sinks (IPCC, 2023). However, a large part of the storage 
potential remained unexplored, so the realistic CO2 storage in concrete 
materials using an economically competitive technology was about 0.39 
Gt CO2-eq globally (Driver et al., 2024), which is <10 % of the potential 
in alkaline wastes without consideration of aggregates and fillers (Pan 
et al., 2020). Therefore, in this section, a bottom-up technological 
roadmap is proposed to unlock the potential carbon storage in cement 
and concrete materials at an economically scalable level, prioritizing 
fundamental techniques to create value-added mineralization and up
scale carbon storage in buildings.

3.1. Affordable techniques for tailor-made carbonation products

As illustrated in Fig. 5, the first phase in realizing a carbon-storing 
concrete future lies in the development of affordable carbonation 
curing and CO2 mineralization technologies capable of producing end- 
products with value-added properties. When these processes are opti
mized to produce cementitious materials with targeted performance 
characteristics, the value of carbonated calcium and magnesium rich 
feedstocks can be significantly enhanced, potentially making them 
economically competitive with conventional construction materials. 
However, achieving this goal is technically complex, as the thermody
namics and kinetics of CO2 mineralization are governed by multiple 
interdependent variables, including impurity levels, temperature, pH, 
CO2 pressure, and the aqueous chemistry of the system. These factors 
collectively influence the formation of carbonate polymorphs, which 
often result in a mixture of calcite, aragonite, and vaterite, rather than a 
targeted phase (La Plante et al., 2021; Romanov et al., 2015; Rostami 

et al., 2012).
The mineralogical outcome of the carbonation reaction is not merely 

a scientific knowledge interest; it critically determines the practical 
performance of the product in cement and concrete applications. For 
example, calcite only works as filler, and excessive use will significantly 
undermine concrete performance of the concrete (Hay et al., 2023), 
while aragonite or amorphous phases may offer higher reactivity that 
modifies the phase assemblage of the hydration products and the 
microstructure (Zhao et al., 2023). Controlling the selectivity and 
morphology of these mineral phases within complex impure matrices 
remains a formidable challenge, particularly when dealing with 
real-world industrial residues.

Current approaches for tailoring carbonates precipitation include 
chelation control, pH adjust, seed crystallization, and templating tech
niques to precisely engineer mineral nucleation, crystal size, and poly
morph stability. Chelating agents, such as polyacrylic acid or EDTA, can 
accelerate the sequestering of calcium or magnesium ions and promote 
controlled carbonation pathways (Kulak et al., 2007; Niu et al., 2022). 
pH modulation strategies, either through acid/base additives or micro
bial metabolism to alter supersaturation dynamics, enable selective 
precipitation of metastable or thermodynamically preferred carbonates 
(Hoffmann et al., 2021). Seed crystallization, using preformed carbonate 
or hydroxide nanocrystals, offers a powerful means to accelerate hy
dration and carbonation kinetics, reduce induction periods and enhance 
phase purity (Meldrum, 2003). Finally, templating techniques, 
employing either organic macromolecules, biopolymers, or nano
structured inorganic frameworks, provide spatial and chemical guidance 
for crystal growth, often mimicking biomineralization pathways to 
achieve hierarchical morphologies (Gower, 2008a). However, these 
methods are neither technically nor economically viable to be adopted 
in the instrial scale production of cement materials.

Moreover, researchers have explored the use of chemical additives, 
such as amines and bio enzymes, to enhance CO2 uptake and guide the 
precipitation pathway toward desirable carbonate morphologies(Sanna 
et al., 2014; Niu et al., 2022). These additives can significantly improve 
the dissolution kinetics Ca or Mg silicates and promote the nucleation of 
specific polymorphs. However, their efficiency is highly composition 
dependent. The chemical composition of the source material (e.g., the 
presence of Si, Fe, or Al), along with process parameters such as flow 
rate, mixing intensity, and reactor design, alters the interaction between 
additive and substrate. While additives may accelerate dissolution, they 
can also inhibit crystallization. For example, ligands adsorbed on 

Fig. 5. Technological pathways to unlock value-added CO2 storage in cement and concrete materials.
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mineral surfaces, such as magnesite, can block active sites, suppressing 
the nucleation and growth of carbonate phases (Gautier et al., 2016).

Therefore, it is essential to develop affordable techniques that enable 
the fundamental control of carbonate formation and precipitation of 
reactive gels, such as silica or alumina-based hydrates, which contribute 
to the strength and durability of concrete. Fundamental work on 
establishing phase diagram among carbonates, gel and impure elements 
system will be very useful for tailor-made design. To navigate this highly 
multivariate design space, emerging tools from artificial intelligence, 
such as deep learning, offer efficiency boosting potential. When exper
imental data are integrated with predictive modelling, it becomes 
feasible to simulate and optimize carbonation reactions allowing for the 
targeted synthesis of polymorphs and gels tailored to specific perfor
mance goals. Besides the technological challenges, tailored carbonate 
formation strategies face cost–efficiency barriers in low-value cement 
markets. High additive costs, specialized templates, or engineered seeds 
often exceed the price tolerance for mass applications in residential 
building and infrastructure. Efficiency is also hindered by the need for 
precise pH, ion balance, and curing gas control, which are difficult to 
maintain outside precast settings. Field variability induces different 
carbonation, reducing performance and sequestration benefits. Future 
adoption will rely on how to bridge the gap between niche high- 
performance concretes and large scale, low-margin applications where 
the climate benefit could be very significant.

3.2. Integrating carbon storage with recycling alkaline waste

Building on the need for precision-controlled carbonation processes, 
the next strategic step involves integrating CO2 mineralization with the 
recycling of alkaline industrial waste. While the natural carbonation of 
concrete in service contributes incrementally to CO2 uptake, a much 
greater opportunity lies in the engineered carbonation of fine demolition 
waste and industrial residues. Among these, recycled concrete powders, 
along with alkaline by-products such as steel slag, mine tailings and coal 
fly ash, offer tremendous potential not only for CO2 sequestration but 
also for valorization as alternative concrete materials in building sys
tems. One key advantage of these technologies is their ability to inte
grate CO2 mineralization into existing industrial processes, facilitating 
rapid industrial upgrading with relatively low barriers to adoption. In 
this context, incorporating the recycling of alkaline industrial wastes 
into carbon storage strategies represents a promising way to further 
improve process efficiency and sustainability while using current in
dustrial infrastructures (Li and Unluer, 2025).

Globally, approximately two billion tonnes of alkaline residues are 
generated annually from heavy industries like steel and mining 
(Renforth, 2019). These wastes are commonly stored or dumped, which 
poses environmental risks due to their high alkalinity and the potential 
leaching of heavy metals into soil and water (Gomes et al., 2016). 
However, the same alkaline nature that makes these materials hazard
ous also gives them high reactivity to CO2, allowing mineral carbonation 
that can sequester an estimated 4.02 Gt of CO2 per year, which corre
sponds to 12.5 % of global anthropogenic CO2 emissions (Pan et al., 
2020). Beyond their CO₂ uptake potential, these residues often share 
chemical similarities with Portland cement, including high contents of 
Ca, Mg, Si, and Al. Once carbonated, they can produce carbonate phases 
and gels that exhibit promising properties for reuse as cement or con
crete constituents (Bobicki et al., 2012; Galvez-Martos et al., 2016). This 
dual functionality of waste recycling and carbon storage represents a 
powerful pathway to both decarbonizing construction and creating 
value through circular resource flows.

However, to fully realize this opportunity, economical carbonation 
systems must be developed to enhance the mineralization efficiency and 
phase selectivity from these complex materials. Several key areas 
require focused attention: 

• Low-energy processing methods should be prioritized, including 
strategies for pretreatment, particle size reduction, and selective 
metal ion extraction, all of which aim to increase reactivity and 
control the formation of desired end-products.

• A robust LCA and life cycle cost (LCC) analysis of engineered 
carbonation systems is essential to quantify their environmental and 
economic value, particularly compared to conventional waste 
disposal practices.

• The performance of carbonated waste-derived materials must be 
thoroughly characterized, from fresh state behavior (e.g., work
ability and setting time) to mechanical strength, durability, and long- 
term leaching risk of heavy metals.

• In addition, its performance after carbonation, including any 
changes due to additional exposure to CO2 during service life, should 
be rigorously evaluated.

By integrating waste recycling with carbon mineralization, this path 
represents a grounded and scalable strategy to simultaneously mitigate 
industrial CO2 emissions, reduce hazardous waste streams, and generate 
value-added, low-carbon construction materials. Given its potential to 
lower material costs and offset carbon liabilities, it may also prove 
economically feasible and attractive to industry, policymakers, and the 
scientific community.

3.3. Addressing durability concern

While adopting a new generation of carbon-stored building mate
rials, the durability of the infrastructure should always be a critical 
factor to be counted for safety and sustainability. Carbonation has long 
been considered a threat to the durability of reinforced concrete due to 
the risk of steel depassivation (Hren et al., 2021). Whether stored CO2 
will significantly impact corrosion resistance depends in some way on 
the scenario considered. As demonstrated in Fig. 6a, the chloride 
migration coefficient as one of the most important properties deter
mining steel bar corrosion under an aggressive exposure environment, 
its value was reduced by adsorption of CO2 in recycled aggregates 
compared to untreated recycled aggregates (Blackshaw et al., 2024; Li 
et al., 2018; Liang et al., 2020). However, the coefficient for concrete 
with carbonated cement showed significant increases, which means a 
faster ingress of corrosive ions. As highlighted in Section 2.2, the 
corrosion rate of the steel bar would be greatly increased with a similar 
chloride level.

One of the solutions is to use carbon-stored concrete in unreinforced 
structures, but this kind of application is very limited, since most of 
concrete infostructures require reinforcement in its design. The corro
sion chemistry of steel bars (without chloride) can be demonstrated by 
the Pourbaix diagram (Angst et al., 2020) shown in Fig. 6b Reinforce
ment in atmospheric structures typically maintains a thermodynami
cally stable passive state, even at relatively low pH levels around 8. 
However, the presence of chlorides, even at modest concentrations, 
poses a significant threat to this passivity. Chlorides are well known to 
destabilize the protective passive film, with the chloride-to‑hydroxyl ion 
ratio (Cl–/OH–) recognized as a crucial factor in this process (Hausmann, 
1967). A drop in pH markedly increases the Cl–/OH– ratio, so the 
carbonation induced a strong concern of reinforcement corrosion.

Previous work reveals that moisture availability on the steel surface, 
not carbonation alone, is the dominant driver of corrosion (exampled in 
Fig. 6c). Studies in diverse climates show that corrosion damage is often 
weak in carbonated structures unless persistent moisture reaches the 
rebar (Angst et al., 2019). Moisture is also one of the key factors con
trolling the mineralization kinetics and capacity of CO2. Therefore, to 
address the durability concern of carbon-stored concrete, more work can 
be focused on developing frameworks for controlling moisture trans
port, accounting for cover depth, microstructure, and exposure condi
tions, developing models accounting for the complex interaction 
between water and microstructure (Huang et al., 2022) that accurately 

L. Huang et al.                                                                                                                                                                                                                                  Carbon Capture Science & Technology 16 (2025) 100490 

8 



simulate moisture transport and retention in carbonated concrete. 
Further systematic work is required on exploring mitigation strategies 
such as optimizing carbonation conditions to limit excessive pH reduc
tion, engineering SCM blends that balance reactivity with alkalinity 
retention, and adopting protective measures such as surface sealants, 
corrosion inhibitors, or hybrid reinforcement approaches to reduce the 
moisture at interface. Continued integration of durability modelling and 
long-term field exposure studies will be essential to establish reliable 
pathways for deploying carbon-storing concretes without sacrificing 
structural performance.

3.4. Scaling up adoption of carbon-storing building materials

The final and equally critical phase in the path to carbon storage 
concrete is the large-scale adoption and implementation of carbon- 
stored building materials in new construction (Fig. 5). This transition 
should begin with the validation of mineralization technologies on a 
pilot scale, as demonstrated in earlier studies (Reddy et al., 2010), to 
produce a range of carbon-storing products, including cementitious 
binders, aggregates, fillers, and hybrid composite systems.

Parallel to pilot validation, efforts must be focused on developing 
industrial-scale applications, where the direct use of flue gas offers a 
practical and cost-effective pathway to CO2 supply (Ostovari et al., 
2021). Using flue gas not only allows access to concentrated CO2 
streams, but also provides residual heat, which can be harnessed to 
improve reaction kinetics and reduce the overall energy demand of the 
carbonation process (Naraharisetti et al., 2019). CO2 is commonly 
emitted by high-energy-demand industries, such as power plants, which 
are frequently situated at considerable distances from key markets. This 

geographical disconnect may require the location of facilities for pro
ducing carbonated materials at emission sources. Otherwise, trans
porting CO2 to production and consumption centers would entail 
additional costs and pose challenges related to safety and risk manage
ment (Li et al., 2022). Further optimization of the process at scale will 
require investigating the relationship between feedstock particle size, 
grinding energy, and carbonation efficiency to minimize energy input 
while maximizing CO2 uptake.

To better bridge the gap between laboratory-scale findings and 
industrial-scale implementation, a data-driven machine learning 
modelling approach, integrated with targeted experimental validation, 
could systematically address the complexity of controlling carbonation 
efficiency in heterogeneous alkali wastes. Laboratory experiments pro
vide essential insights into reaction mechanisms and compositional 
variability; however, large-volume processes introduce additional ki
netic control factors that remain insufficiently understood, including the 
influence on the final mineral phases and mix design of carbon stored 
concretes. By training machine learning models on detailed laboratory- 
scale kinetic and compositional datasets with iteratively refining 
through pilot-scale trials, it becomes possible to capture the interplay 
between material heterogeneity and scale-dependent physical phe
nomena. Such hybrid modelling–validation frameworks have demon
strated improved predictive accuracy and process stability in analogous 
mineral processing and CO2 sequestration systems (He et al., 2023; 
Sharma and Liu, 2022), which offers a promising pathway towards 
reliable and efficient carbonation performance at the industrial scale.

Beyond technological considerations, regulatory frameworks and 
standardization will play a decisive role in enabling widespread market 
adoption. At present, building codes and material standards vary 

Fig. 6. Key factors in assessing the corrosion resistance of reinforced concrete with CO2 stored. (a) Effect of CO2 adsorption on the chloride migration coefficient of 
concrete having recycled aggregates, with data adopted from (Blackshaw et al., 2024; Li et al., 2018; Liang et al., 2020); (b) Pourbaix diagram for corrosion chemistry 
of steel bar after subjected to carbonation (Angst et al., 2020), and (c) effect of moisture state on reinforcement corrosion with data from (Alonso et al., 1988; Alonso 
and Andrade, 1987; Gonzalez et al., 1980; Stefanoni et al., 2018).
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significantly between regions, and many do not yet recognize the unique 
performance characteristics or environmental value of carbon-storing 
concretes. The absence of harmonized standards can create barriers to 
approval, introduce inconsistencies in performance, and delay the 
integration of these materials into mainstream construction practices 
(Barbhuiya et al., 2025). To address this, it is essential to consider the 
following points: 

• Develop and implement clear technical standards and certification 
criteria for carbon-storing cement and concrete products.

• Integrate durability and performance assessments into existing con
crete codes, ensuring that these materials meet structural safety re
quirements and long-term reliability benchmarks.

• Encourage the creation of green building certification programs and 
provide financial support for innovation and demonstration projects, 
helping to derisk investment and build stakeholder confidence (Erten 
and Kılkış, 2022).

Successful scaling will depend on a coordinated approach that aligns 
technical efficiency, regulatory readiness, and economic viability. 
Achieving this will allow carbon storage concrete to transition from 
research and demonstration to practical deployment, so that it con
tributes to global sustainable construction goals.

4. Concluding remarks

Cement and concrete, once viewed primarily as emissions-intensive 
materials, can be reimagined as useful enablers of climate mitigation 
through mineral carbonation. As this perspective highlights, substantial 
progress has been made in understanding the mechanisms, materials, 
and process technologies that underpin carbon storage in cementitious 
systems. However, the path to widespread implementation requires 
overcoming key barriers: improving the control of carbonation reactions 
in complex materials, ensuring mechanical and durability performance, 
reducing production costs, and aligning with standards and regulatory 
frameworks.

Scalable transition requires coordinated efforts across scientific dis
ciplines, industrial sectors, and policy domains. Researchers must refine 
carbonation kinetics, design adaptive material systems, and explore 
novel routes to integrate CO2 capture with waste valorization. AI can 
play a significant role in optimizing carbonation efficiency of the 
controlled chemical process and the LCA assessment. Industry must 
validate these solutions in real-world applications, leveraging pilot-scale 
demonstrations and advancing life-cycle assessments. Policymakers and 
regulators must establish technical criteria, carbon accounting pro
tocols, and incentive mechanisms that recognize and reward the envi
ronmental value of carbon storage concretes.

As urbanization accelerates, the incorporation of carbon sequestra
tion within the built environment represents a rare opportunity to 
transform infrastructure from a carbon liability into a climate asset. By 
combining materials science, engineering innovation and policy fore
sight, the next generation of cement and concrete can play a central role 
in achieving net zero ambitions and fostering long-term environmental 
resilience.
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