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H I G H L I G H T S

∙ Utilizing realistically accessible pre-trip data rather than assuming unrealistic inputs prior to departure.

∙ Introduction of a sequence-aware methodology for electric vehicle energy consumption prediction.

∙ Comprehensive comparison of sequence-aware and non-sequence-aware models across three diverse datasets.

∙ Quantification of the relationship between segment-level features and energy consumption.
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A B S T R A C T

Energy consumption (EC) prediction plays a crucial role in reducing range anxiety and operation scheduling as 

well as optimization of electric vehicles. Current methods predominantly treat a trip as a singular entity or assume 

unrealistic inputs (e.g., driving trajectories or speed profiles of a trip) that are not accessible prior to departure 

for EC prediction. This study proposes a sequence-dependence aware deep learning methodology for EC predic-

tion using pre-trip realistically accessible data. Sequence modeling architectures are employed to capture the 

nuanced variations and dependencies among adjacent segments rather than relying on coarse-grained average 

features. This study highly emphasizes pre-trip accessible data in reality for trip EC prediction, improving upon 

unrealistic assumptions that presuppose access to future speed profiles per second throughout a trip. Large-scale 

field datasets are utilized for model development, covering 2.2 million kilometers of driving from eight cities 

and four different vehicle models. The results demonstrate that the proposed sequence-dependence aware deep 

learning methodologies outperform existing methods in both prediction accuracy and interpretability, highlight-

ing the efficacy of incorporating sequence dependencies in EC prediction. This study also quantifies the influence 

of various factors on EC at the segment level, providing a more granular analysis and understanding of energy 

efficiency. The results provide accurate and realistic EC predictions and understanding for electric vehicles that 

are applicable in real practice.

1. Introduction

The global energy and transportation sectors remain critically depen-

dent on fossil fuels, creating cascading challenges ranging from urban air 

pollution to climate change mitigation [24,35]. While electric vehicles 

(EVs) present a promising decarbonization pathway, the adoption of EVs 

faces a substantial hurdle in the form of range anxiety [19]. Range anx-

iety refers to the psychological barrier stemming from uncertainties in 

battery endurance during trips [45]. Automobile manufacturers attempt 

to mitigate this concern through trip-specific energy consumption (EC)

predictions, creating significant demand for robust predictive models 

that balance accuracy with practical implementability [37]. This dual 

requirement has fueled growing interest in data-driven approaches that 

leverage real-world operational data while maintaining computational 

feasibility [1].

Current EC prediction methodologies exhibit two fundamental lim-

itations that constrain their practical utility. First, certain approaches 

[4,15,36] achieve impressive precision through theoretical assumptions 

requiring predictive or clairvoyant access to second-resolution speed
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Fig. 1. Speed profiles and the EC on two real trips.

profiles. While these models demonstrate technical sophistication, the 

inherent complexity of real-world traffic conditions and the compu-

tational impracticality of forecasting high-resolution velocity–acceler-

ation sequences render them infeasible for practical implementation. 

Conversely, alternative implementations [6,28,40] employ oversimpli-

fied trip-level averaging data that fundamentally disregard sequential 

speed dynamics along the pathway, thereby introducing systematic er-

rors in energy prediction. This fundamental limitation underscores a 

critical knowledge gap in modeling approaches that fail to account 

for sequential dependencies – a crucial factor substantially influenc-

ing EC. Our analysis reveals compelling evidence through comparative 

case studies: As demonstrated in Fig. 1, two comparable trips exhibit a 

12.7 % divergence in total EC (7.1 kWh vs. 6.3 kWh) despite nearly iden-

tical average speeds (30.4 vs. 30.8 km/h) and external environmental 

factors. This empirical evidence quantitatively establishes that conven-

tional average-speed-based models inherently neglect the critical impact 

of sequence patterns on EC.

Addressing this knowledge gap, this study endeavors to propose a 

sequence-aware deep learning framework for EC prediction using ex-

clusively and realistically pre-trip accessible data. It is imperative to 

underscore that the primary distinction of our study from previous re-

search lies in the grounding of relaxing the unrealistic assumptions of 

presupposing access to future speed profiles (specifically, speed per sec-

ond over the course of a future trip) in real traffic environments. Instead, 

this study takes the pre-trip and practically obtainable data from map 

navigation applications (e.g., Google Maps) as inputs to predict EC, in-

cluding the road-segment average speed in the planned route for a trip. 

Additionally, in contrast to prior studies [22,32], our methodology is 

built upon a more extensive and diverse dataset, encompassing envi-

ronmental factors and electric vehicle data of eight cities. The dataset is 

compiled from four different vehicle models and over 2.2 million kilome-

ters of driving, thereby enhancing its applicability and generalizability. 

The main contributions of this study can be summarized as follows:

1. This study eschews the unrealistic assumptions of presupposing

access to future speed profiles per second over the course of a fu-

ture trip-in real traffic environments. Instead, our model leverages 

realistically obtainable data from map navigation applications to 

predict EC.

2. This study introduces a sequence-aware methodology for EC pre-

diction. By discretizing trips into ordered segments, EC prediction 

is conceptualized as a sequential prediction task. Sequence mod-

eling architectures can capture the nuanced variations among 

adjacent segments rather than relying on coarse-grained average 

features.

3. This study conducts a comprehensive comparative analysis of

the efficacy between sequence-aware models and non-sequence-

aware models across three diverse datasets, aiming to validate

the significance of sequence dependence considerations and the 

generalizability of the methodologies.

4. This study provides empirical insights into the nuanced impact of

various features on EC at the segment level rather than a coarse 

trip-level analysis, providing a more granular analysis that en-

hances the understanding of energy efficiency and facilitates the 

development of advanced eco-driving strategies.

The remainder of this paper is organized as follows. Section 2 re-

views the literature and analyzes the research gaps in previous studies. 

Section 3 describes the data preprocessing and clarifies methodologies. 

Section 4 presents the analysis results. Finally, Section 5 discusses and 

concludes the paper.

2. Literature review

The development of precise and widely applicable EC prediction ap-

proaches is paramount in alleviating driver range anxiety. Consequently, 

considerable effort has been directed towards devising approaches for 

predicting trip EC. These approaches can be broadly classified into two 

categories: model-based and data-driven approaches.

Model-based approaches involve the establishment of simulation 

models grounded in vehicle dynamics and kinematics, aiming at dis-

cerning the impact of external and transmission system parameters on 

EC across diverse conditions [20,41,42]. [44] proposed a simulation-

based quasi-statistical method to predict electric vehicle energy usage in 

a large-scale network under various road vehicle operating conditions. 

[16] used a transient simulation model to calculate and quantify the 

electrical energy demand of a vehicle for a given change in travel pe-

riod, direction, altitude, and ambient temperature during a trip. [29] 

proposed a combination of a physically based model and a machine 

learning model, where the mechanical power is calculated using phys-

ical formulas and the machine learning model is used to estimate the 

mapping relationship between mechanical power and electrical power. 

[25] discussed the influence of lateral dynamics on the EC of electric 

vehicles, which improved the accuracy and reliability of EC prediction. 

[47] proposed a minimum equivalent fuel consumption model that pro-

vided longitudinal force distribution control outcomes for predicting 

EC in hybrid electric vehicles. However, model-based approaches rely 

on high-fidelity parameter configuration, resulting in a lack of broad 

applicability [50] and pose challenges in large-scale and real-world 

assessments [49].

Data-driven approaches have piqued the interest of service providers 

due to their applicability and potential for large-scale deployment 

[14,18]. These approaches involve constructing predictive models for 

EC based on influential factors, utilizing extensive real-world driving 

data from EVs [36]. Many innovative models have been proposed and 

have demonstrated the effectiveness of data-driven approaches. [46] 

introduced a machine learning-based EC prediction framework that
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incorporated driving condition prediction, achieving a 30 % higher 

prediction accuracy than traditional methods. [39] compared the advan-

tages and disadvantages of four state-of-the-art machine learning models 

for EC prediction and explored the relative impact of influential factors 

on the EC. [7] devised an enhanced density-based clustering multivari-

ate linear regression model for EC prediction. This model automatically 

captures training features in real-world driving scenarios, showcasing 

superior prediction accuracy. Despite the commendable prediction ac-

curacy achieved by these methods, they share a limitation in treating a 

trip as a singular entity and disregarding feature variations throughout 

the trip.

Some researchers have acknowledged the limitations of current 

methodologies and have turned their attention to the discourse on EC 

prediction for segments. [35] formulated a segment-level EC estimation 

model through decomposition analysis. [34] introduced a probabilistic 

deep model for predicting segment-level EC. [33] presented a hybrid 

approach that integrates a short-trip segment division algorithm with 

deep neural networks to enhance the precision of segment-level EC pre-

diction. Although these studies take into account the feature variations 

throughout the trip, they treat each segment as an independent entity 

for prediction, neglecting the interdependencies between adjacent seg-

ments. The chronologically ordered segments can be viewed as the time 

series, and interdependence among the EC in adjacent segments may of-

fer valuable information about EC, potentially contributing to improved 

EC prediction.

Moreover, the EC is intricately influenced by various factors, posing 

a significant challenge to EC prediction. The first category comprises in-

trinsic vehicle-related factors, including speed [36], driver behavior [9], 

and auxiliary equipment [26]. The second category involves external 

factors, constituting traffic conditions [30], infrastructure [10,23], and 

weather [38]. Some studies analyze the impact of different factors on 

EC, providing valuable insights for more accurate EC prediction. Some 

of these studies focus on a micro-level analysis of the relationship be-

tween influencing factors and EC based on per-second data, while others 

discuss it from a macro perspective, considering the entire trip. Limited 

research directly analyzes the relationship between factors and EC from 

a meso-level (segment-level) perspective. As a result, these conclusions 

may have limitations when applied to segment-level prediction models.

3. Data and methodology 

3.1. Data description

This study utilizes EV datasets from eight cities, shown in Fig. 2. 

The dataset spans eight cities over a duration of 6 to 12 months. It in-

cludes 43 EVs representing four distinct vehicle models, accumulating 

a total mileage exceeding 2.2 million kilometers. The operational data 

were collected through in-vehicle T-box devices and transmitted via the 

Controller Area Network (CAN), adhering to the GB/T 32960.3–2016 

transmission protocol. (1) The SHEV dataset, sourced from Shanghai, 

encompasses operational data from 20 BEIJING EU5 vehicles spanning 

July 30, 2021, to January 26, 2022, accumulating a travel mileage of 

838,753 kilometers. Data are sampled at 10-second intervals, yielding 

over 15 million operating records. (2) The SZEV dataset, collected in 

Shenzhen, spans seven months from April 1, 2022, to October 30, 2022. 

It includes ten vehicles from two models, namely, 5 GAC AION S and 

5 BYD SONG, with a cumulative traveled mileage surpassing 680,000 

kilometers. The data are sampled at 20-second intervals, amassing over 

6 million operating records. (3) The CNEV dataset encompasses eight 

major cities in China, documenting operational data from 13 FAW EHS-

3 vehicles throughout the year 2022, covering a cumulative traveled 

mileage of 759,099 kilometers. Data are sampled at 10-second intervals, 

generating over 13 million operating records.

Notably, potential biases are inevitably introduced when collect-

ing data from different cities and vehicle models. Therefore, this study 

adopted two mitigation measures. First, we synchronously collected 

environmental data from https://rp5.ru/ to alleviate biases caused by

Fig. 2. Description of EV datasets.

Table 1 

Descriptive statistics of the datasets.

SHEV SZEV CNEV

Brand BEIJING EU5 GAC AION S/ BYD

SONG Plus 

FAW EHS-3

Energy consumption 

rate (kWh/100 km)

13.3 12.5/14.1 14

Rated Battery 

capacity (kWh)

50.8 60/87 52.5

Temperature range

( 

◦C)

[–2, 35] [11, 36] [–4,36]

Accumulated range 

(km)

92 137 105

Avg. travel time (min) 55 113 79

Avg. travel speed 

(km/h)

35.5 35.8 39.8

Logging frequency 

(Hz)

0.1 0.2 0.1

Number of trips 9118 4989 7471

Number of segments 838,785 683,950 759,099

driving conditions and urban climates. Additionally, we performed sep-

arate modeling on three datasets to mitigate the biases from driving 

patterns and vehicle models. However, we must acknowledge that these 

measures cannot completely eliminate the heterogeneity in the datasets. 

The performance and generalizability of the models may still be af-

fected by the inherent variations. These factors should be considered 

in real-world scenario modeling to ensure reliable predictions.

Table 1 provides the descriptive statistics for the three datasets, 

illustrating variations in vehicle models, ambient temperature, and us-

age patterns. Overall, this study encompasses 21,278 trips. Examples of 

the variable fields included in the original datasets are shown in the 

appendix.

3.2. Data preprocessing and feature formation 

3.2.1. Data preprocessing

Data preprocessing includes three key steps: anomaly handling, trip 

division, and segment division.

Anomaly handling: The data collection and transmission process in-

herently introduces anomalies, primarily in the form of missing data and 

outliers. Some outliers may potentially incorporate important data pat-

terns and should not be simply removed. Therefore, only values that are
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entirely meaningless, such as placeholder values (e.g., 0xFE or 99999), 

were considered outliers and removed. Moreover, for isolated outliers, 

we performed imputation to maintain data continuity. However, for con-

secutive outliers (e.g., exceeding one minute), we directly removed them 

to avoid unreasonable data points, as interpolation could lead to sig-

nificant errors in predicting trip energy consumption. Then, the data 

underwent imputation using Lagrange interpolation [5] along the time 

axis, resulting in a refined dataset.

Trip division: The refined dataset, presented as chronologically or-

dered continuous data, includes non-trip events such as parking and 

charging. For analysis, we extracted data when the vehicles were op-

erating. A data segment is identified as an independent trip when the 

time gap between adjacent data points in the driving data exceeds 15 

minutes [46]. Trips with distances below 1 km or durations less than 10 

minutes are excluded. Additionally, a histogram of the divided trip dis-

tances and durations after processing is included in the appendix Fig. S1 

to clarify the criteria.

Segment division: The odometer reading field within a dataset 

serves as a robust foundation for segment division. Odometer reading 

pertains to the cumulative distance covered by a vehicle, prominently 

showcased on the dashboard. This metric is derived from monitoring tire 

rotations, with each revolution incrementally adding to the overall dis-

tance traveled. Given that the minimum unit of odometer reading in the 

dataset is 1 km, the divided trips are thus segmented on a per-kilometer 

basis. For example, if a trip is 10 km, then the trip is divided into 10 

one-kilometer segments that are chronologically ordered. A maximum 

of 450 segments per trip is set, utilizing zero padding [31] to maintain 

a consistent data structure for modeling.

The targeted scenario in this study is: when the driver determines 

the destination on the navigation map, the proposed method integrates 

trip features from the map navigation, ambient features, and vehicle sta-

tus features at that moment to predict the EC for the upcoming trip. It 

is important to highlight that the segmentation thresholds may affect 

model performance greatly. The choice of a 1 km segmentation thresh-

old was necessitated by the limitations of the current dataset. However, 

with appropriate datasets, our method can also accommodate finer seg-

mentation thresholds, such as 500 m or 100 m. There are no specific 

mandates regarding the segmentation threshold within the proposed 

method. In practical application, the segmentation threshold depends on 

the map navigation platform that provides the information. For example, 

Baidu Maps (https://map.baidu.com) furnishes traffic information every 

200 m, enabling the segmentation threshold to be adjusted accordingly.

3.2.2. Feature formation

To train the proposed models based on our available data, EC can 

be calculated by integrating the voltage and current of the EV battery 

over time (measured in kWh) [48]. The methods for generating these 

features are elaborated in Table 2.

𝑒𝑐 

𝑠 = 𝑡
3600 

×
𝑛
∑ 

𝑖=1
𝑉 𝑠
𝑖 𝐼

𝑠
𝑖 × 

1
1000 

𝑖 = 1, 2, … , 𝑛 (1)

where 𝑒𝑐 

𝑠 is the energy consumption of the 𝑠-th segment, in kWh, 𝑉 𝑖 

and 𝐼 𝑖 

are the battery voltage and current measured at each time step in 

Volts and Amperes. 𝑡 is the time step with the unit in seconds, and 𝑛 is 

the number of operational records within a segment.

Although driving features are indeterminate before the trip com-

mences, once the trip origin and destination are determined, these 

features can be acquired through the Application Programming Interface 

(API) of the map navigation platform, as depicted in Fig. 3. It is one 

emphasis of the proposed method, namely grounded in realistic and 

practically attainable data instead of unrealistic high-resolution speed 

profiles (e.g., at one-second intervals). Driving features encompass char-

acteristics such as distance, duration, and speed of road segments in 

the route provided by map navigation. Duration signifies the time taken 

to traverse a segment, measured in minutes, while speed denotes the 

average speed during the segment.

Table 2 

The segment features of a trip.

Category Features Processing methods

Target Energy consumption

(kWh) 

Eq. (1)

Trip features Speed (km/h) Provided by map service

API 

Duration (min) Provided by map service

API 

Distance (km) Provided by map service

API 

Ambient features Temperature ( 

◦ C) Provided by weather

service API 

Wind speed (m/s) Provided by weather

service API

Season Spring-Winter→1–4

Period Rush hours (7:00–9:00 &

15:00–17:00) nighttime 

(22:00–6:00) the remaining 

hours→1–3 

Date Fri.-Sun.→1–7

Vehicle status 

feature

DOD (%) 𝐷𝑂𝐷 = 1 − 𝑆𝑂𝐶 𝑖𝑛𝑖𝑡

Remaining warranty 

utilization rate (%)

𝑅𝑎𝑡𝑒 𝑅𝑊 𝑈 

= 1 − 𝑀 𝑐𝑢𝑟 

∕𝑀 𝑤𝑎𝑟

Voltage inconsistency (V) 𝑉 𝑜𝑙 𝑠𝑡𝑑 =
√

1
𝑛
× 

∑𝑛
𝑖=1 

(𝑣𝑜𝑙 𝑖 

− 𝑣𝑜𝑙 𝑎𝑣𝑔.)
Temperature inconsis-

tency ( 

◦ C)

𝑇 𝑒𝑚𝑝 𝑠𝑡𝑑 =
√

1
𝑛
× 

∑𝑛
𝑖=1 

(𝑡𝑒𝑚𝑝 𝑖 − 𝑡𝑒𝑚𝑝 𝑎𝑣𝑔.)

Ambient features consist of temperature, wind speed, season, period, 

and date, exerting an indirect influence on EC. For instance, weekdays 

and rush hours may escalate energy usage due to traffic congestion. 

Temperature and wind speed data are sourced from https://rp5.ru/ and 

aligned with the original data based on timestamps, while season, pe-

riod, and date are numerically encoded. The wind data do not include 

the relationship between driving direction and wind direction, which is 

a shortcoming of the data. However, previous studies [11] have shown 

that wind speed has a positive and statistically significant effect on the 

ECR without considering the relationship between driving direction and 

wind direction. Therefore, considering wind could be helpful for energy 

consumption in the model.

Vehicle status features include Depth of Discharge (DOD), remaining 

warranty utilization rate, voltage inconsistency, and temperature incon-

sistency. Remaining warranty utilization rate is the proportion of unused 

mileage for the remaining warranty period to the maximum mileage 

guaranteed by the manufacturer, expressed as 1 minus the ratio of the 

current odometer reading to the maximum warranty mileage. All these 

factors potentially impact energy usage efficiency and thus impact the 

real EC during a trip. For instance, a vehicle with a deeper DOD may ex-

hibit distinct EC compared to a fully charged state, and ageing batteries 

may consume more energy for a trip due to higher resistance inside the 

battery. Please note that due to some features relying on API calls, an 

unstable network could adversely affect model performance, potentially 

rendering it inoperable. Therefore, the model requires a stable network 

environment to operate effectively.

Importantly, during actual prediction of EC for a trip, ambient fea-

tures and vehicle status features in the future are unknown. However, 

considering that except for DOD, other features undergo slight changes 

throughout a trip. Therefore, the prediction model utilizes the values of 

the features at the beginning of the trip in our prediction models, which 

can be obtained in real applications. It is worth noting that this is to 

avoid training models with high fitness but weak practical applicabil-

ity, on account that it is not possible to know the exact values of these 

features for a trip before departure.
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Fig. 3. Real-time speed profiles provided by map navigation platform.

Table 3 

Variance inflation factor for model features.

Features SHEV dataset SZEV dataset CNEV dataset

Speed 16.01 28.49 5.31

Duration 36.56 58.00 3.64

Distance 36.38 61.67 1.28

Temperature 12.69 50.11 14.00

Wind speed 4.06 4.21 4.99

period 10.50 9.39 6.04

Date 3.20 3.20 3.26

Season 57.93 8.71 7.34

DOD 2.31 2.46 2.96

Remaining warranty 

utilization rate

119.87 64.81 40.18

Voltage inconsistency 1.11 1.26 2.18

Temperature inconsis-

tency

1.15 12.57 3.58

To identify potential multicollinearity among features, we calculated 

the variance inflation factor (VIF) for each feature, as shown in Table 3. 

VIF values exceeding 10 typically indicate significant multicollinearity. 

Addressing multicollinearity is pivotal in regression analysis as it de-

termines the uniqueness of coefficients. However, for machine learning 

models focused on prediction, multicollinearity holds less significance 

because our primary concern is minimizing model prediction loss rather 

than estimating coefficients [43]. Although its impact on predictive per-

formance is minimal, caution is essential when interpreting machine 

learning models in the presence of multicollinearity. Multicollinearity 

can diminish the importance of features that are highly correlated with 

each other, potentially leading to misleading interpretations and rank-

ings of feature significance. To better understand the potential impact of 

multicollinearity, several features with high VIF values will be further 

analyzed in the results section.

VIF is used to diagnose multicollinearity rather than to assess feature 

importance, as high collinearity among predictors can lead to misleading 

conclusions in post-hoc analyses. While future work could explore attri-

bution techniques such as Shapley Additive Explanations (SHAP), we 

caution that these post-hoc methods may obscure the true drivers of EC. 

For example, distance, speed, and duration are mathematically interde-

pendent, making it difficult for SHAP to assign meaningful independent 

importance scores. While all three may appear important, distance more 

directly captures physical EC, whereas duration and speed may act as 

contextual modifiers (e.g., traffic or driving style). Likewise, ambient 

temperature and season are strongly correlated—temperature directly 

affects air conditioning load and battery efficiency, while season serves 

only as a temporal proxy. Given these challenges, we recommend that 

the identification of key EC drivers be guided by domain expertise or 

by decoupling frameworks [49] that explicitly account for confounding 

influences.

3.3. Modeling approaches

Generally, the segment-level EC prediction can be viewed as a super-

vised learning problem, where features 𝑓 

𝑠
𝑖 in the segment 𝑖 within a trip

are mapped to the 𝑒𝑐 𝑖 

of the segment.

𝑀 𝜃 ∶ 𝐹 ⊂ R 

𝑁 𝑠×𝐷 𝑓 → E[𝑒𝑐 1 

, 𝑒𝑐 2 

, … , 𝑒𝑐 𝑁 

] ⊂ R (2)

Another straightforward way is a mapping from features of all 

segments to the total EC on a trip.

𝑀 𝜃 ∶ 𝐹 ⊂ R 

𝑁 𝑠×𝐷 𝑓 → 𝐸 ⊂ R (3)

where 𝜃 is the learnable parameter of the model. The mapping rules 

should be learned from real trip data.

𝐷 = 

{

(𝑓 𝑠
𝑖,𝑗 , 𝑒

𝑠
𝑗 ) ∣ 1 ≤ 𝑖 ≤ 𝑁 𝑓 , 1 ≤ 𝑠 ≤ 𝑁 𝑠, 1 ≤ 𝑗 ≤ 𝑁 𝑡 

} 

(4)

where 𝑓 

𝑠 denotes𝑖,𝑗  the 𝑖-th feature in the 𝑠-th segment of the 𝑗-th trip, 

𝑒 

𝑠 is𝑗  the corresponding segment-level energy consumption, 𝑁𝑓  

is the 

number of features per segment, 𝑁 is trip,𝑠  the number of segments per  

 

and 𝑁 

 

is the number of trips. Index 𝑖 refers to𝑡   feature dimension, 𝑠 to

segment order, and 𝑗 to trip index.

This study delineates four prediction methods, with their distinctions 

visually shown in Fig. 4. Whether to consider the sequential interde-

pendencies between adjacent segments in EC prediction categorizes the 

models into sequential or non-sequential methods. Whether the model 

outputs a sequence composed of the EC of each segment or the total EC 

for the entire trip is categorized as segment-accumulation or trip-level.

3.3.1. Sequential prediction

Sequential segment accumulation (SA): For sequential prediction, the 

input necessitates a 3-D tensor comprising samples, segments, and fea-

tures. The model not only captures the interdependencies between the 

current segment and EC but also incorporates the feature information 

and interdependencies of preceding segments on EC. It sequentially gen-

erates the predicted EC for each segment. Then, these predicted segment 

EC are aggregated to provide the total EC projection for the entire trip. 

Segment accumulation is formally defined as follows.

𝐸𝐶 

𝑆𝐴
𝑗 =

𝑁 𝑠
∑ 

𝑠=1
𝑀 𝜃
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⎜

⎜

⎜

⎜

⎝
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⎢
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𝑓 1
1,𝑗 𝑓 

2
1,𝑗 ⋯ 𝑓 𝑠

1,𝑗

𝑓 1
2,𝑗 𝑓 2

2,𝑗 ⋯ 𝑓 𝑠
2,𝑗

⋮ ⋮ ⋱ ⋮

𝑓 1
𝑑,𝑗 𝑓 2

𝑑,𝑗 ⋯ 𝑓 𝑠
𝑑,𝑗

⎤ 

⎥ 

⎥ 

⎥ 

⎥ 

⎥ 

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
𝑁 𝑠
∑ 

𝑠=1

[

𝑒𝑐 

1 

𝑗 , 𝑒𝑐 

2 

𝑗 , … , 𝑒𝑐 

𝑠
𝑗

] 

⊂R 

1×𝑁 𝑠

(5)

Sequential trip-level (ST): This method holds the same mechanism 

to consider the sequence interdependencies among segments on EC of 

the trip, but directly predicts the total EC at the trip-level rather than

Applied Energy 401 (2025) 126673 

5 



H. Huang, K. Gao, Y. Wang et al.

Fig. 4. Diagrammatic interpretation of EC prediction methods.

predicting EC for each segment. The prediction process is mathemati-

cally expressed as

𝐸𝐶 

𝑆𝑇
𝑗 =

𝑁 𝑠
∑ 

𝑠=1
𝑀 𝜃

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡ 

⎢ 

⎢ 
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⎢ 
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⋮ ⋮ ⋱ ⋮ 

𝑓 

1
𝑑,𝑗 𝑓 2
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𝑑,𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎦ 

⎞ 

⎟ 

⎟ 

⎟ 

⎟

⎟

⎠

= 𝑒𝑐 𝑗 (6)

3.3.2. Non-sequential prediction

Non-sequential segment accumulation (NSA): For non-sequential pre-

diction, the input is a 2-D tensor consisting of samples and features. NSA, 

in essence, disregards the sequence interdependence between segments 

in EC predictions. Instead, it treats the EC prediction for each segment 

as an independent task. The predicted EC for each segment is computed 

and aggregated to provide the total EC projection for the entire trip. Its 

formal definition is as follows.

𝐸𝐶 

𝑁𝑆𝐴
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(7)

Non-sequential trip-level (NST): NST is exactly the traditional method 

currently deployed for predicting energy consumption based on deep 

learning methods [12,39]. For comparison purposes, this study defines 

this method as NST. It utilizes the mean values of features throughout 

the trip as input, neglecting the variations in features over the trip. The 

prediction process takes a macroscopic view of EC, and its mathematical 

expression is given by

𝐸𝐶 

𝑁𝑇
𝑗 = 𝑀 

1
𝜃

⎛

⎜

⎜

⎜

⎜
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⎡ 

⎢ 
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𝑓 𝑎𝑣𝑔.
1,𝑗

𝑓 𝑎𝑣𝑔.
2,𝑗

⋮
𝑓 𝑎𝑣𝑔.
𝑑,𝑗

⎤

⎥

⎥

⎥

⎥

⎦ 

⎞ 

⎟ 

⎟ 

⎟

⎟

⎠ 

= 𝑒𝑐 𝑗 (8)

3.4. Deep learning models for sequential predictions

From a supervised learning perspective, EC prediction can be further 

conceptualized as a sequential regression problem akin to time series 

prediction, warranting the application of sequential deep learning meth-

ods. For sequential models, we denote F as the feature space and E as the

𝑁target space. Here, 𝑓 𝑠 ∈𝑖,𝑗  𝐹 ⊂ R  

 

𝑠 

×𝐷𝑓 is an observed 𝑖-th feature of 𝑗-th
trip at 𝑠-th segment, and 𝑒𝑐 is𝑖,𝑗 ∈ 𝐸 ⊂ R  the corresponding EC. Finally, 

the prediction model aims to learn parameters by minimizing the Mean 

Square Error (MSE) loss

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑙𝑜𝑠𝑠𝑟𝑒𝑔𝜃 ) = 𝑎𝑟𝑔𝑚𝑖𝑛 

(

1
𝑗
∑

(𝑒𝑗 

− 𝑀 𝜃(𝑓 )))
2)

(9)

where 𝜃 is the parameters to be learned and 𝑗 is the number of trips. We 

have explored the performance of four different sequence deep learning 

approaches based on field data to select the best prediction model.

3.4.1. Long short-term memory and gate recurrent unit

Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) 

emerge as frequently employed sequential prediction models, character-

ized by gating mechanisms designed for the comprehension of sequential 

data. The bidirectional structure further enhances the model’s ability to 

extract inter-segment interdependencies. The structural diagram of an 

LSTM with a bidirectional structure is shown in Fig. 5.

The learning process of LSTM is expressed as Eq. (10). While this 

paper elucidates LSTM, the learning process of GRU can be cross-

referenced in [8].

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

i 𝑡 

= 𝜎(W 𝑥 𝑡 

,𝑖 

X 𝑡 

+ Wℎ𝑡−1 ,𝑖 

H 𝑡−1 

+ W 𝐶𝑡 ,𝑖 

C 𝑡−1 

+ b 𝑖 

)

f 𝑡 

= 𝜎(W 𝑥 𝑡 

,𝑓 

X 𝑡 + Wℎ𝑡−1 ,𝑓 

H 𝑡−1 + W 𝐶 𝑡 ,𝑓 

C 𝑡−1 

+ b 𝑓 

)

c 𝑡 

= t 𝑡 

c 𝑡−1 

+ i 𝑡 

tan(W 𝑥 𝑡 

,𝑜 

X 𝑡 

+ W ℎ𝑡 ,𝑜 

H 𝑡−1 

+ b 𝑐 

) 

o 𝑡 

= 𝜎(W 𝑥 𝑡 

,𝑜 

X 𝑡 

+ W ℎ𝑡 ,𝑜 

H 𝑡−1 

+ W 𝐶 𝑡 ,𝑜 

C 𝑡−1 

+ b 𝑜)

H 𝑡 

= o 𝑡 

tan(C 𝑡 

) 

(10)

where i 𝑡 

,f ,c ,o are the outputs of input gates , forget gates , output𝑡  

 𝑡  

 𝑡       𝑖    𝑓   

gates 𝑜 and cell state 𝑐 at time 𝑡, respectively. W𝑥     

  

,W
𝑡 𝑥 𝑡 

,𝑓 

,W
 

𝑥 

,W are,𝑖 𝑡 

,𝑜 𝑥 𝑡 

,𝑐 

the weights of input X𝑡 and input gates 𝑖, forget gates 𝑓 , output gates 𝑜 

and cell state 𝑐, respectively. Wℎ ,W𝑡 ,𝑖 ℎ ,W  weights
𝑡 ,𝑓 ℎ are

𝑡 ,𝑜  the   

  

of hidden

layer output H and corresponding𝑡   gated units. W ,W ,W𝑐𝑡 ,𝑖  𝑐𝑡 ,𝑓   

     

  

𝑐𝑡 ,𝑜 

are the 

weights of cell state output C𝑡 and corresponding gated units.  

 

b𝑖 

,b𝑓  

,b𝑜  

,b 𝑐
are the bias vectors, and 𝜎 is the activation function.

3.4.2. Temporal convolutional network

Temporal Convolutional Network (TCN) [3] represents a sequence 

model relying entirely on convolution. Unlike traditional convolutional 

neural networks, TCN operates without visibility into future data, adher-

ing to strict temporal constraints. Empirical evidence attests to TCN’s 

superiority over recurrent neural networks in specific sequence tasks
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Fig. 5. LSTM structure with bidirectional learning.

Fig. 6. The structure of TCN.

such as natural language processing and audio processing. The TCN 

structure is shown in Fig. 6.
𝑁Formally, for a sequential feature 𝐹 ⊂ R  

 

𝑠×𝐷𝑓 and a filter F ⊂ R 

𝑘 ,

the temporal convolution with dilated factor is defined as,

⎧

⎪

⎨

⎪

⎩

𝑇𝐶(𝐹 ) = (𝐹 ∶,𝑗 

⊗ 𝑑 

F )(𝑓 ) =
𝑁 𝑠
∑ 

𝑠=1
F 𝑘 

𝐹 𝑠−𝑑⋅𝑖,𝑗

𝑂 𝑟𝑒𝑠 = 𝜎(𝐹 ∶,𝑗 

+ 𝑇𝐶(𝐹 ∶,𝑗 ))

(11)

where 𝑇 𝐶 is the operation of temporal convolution, 𝑑 is the dilation 

factor, 𝑘 is the filter size and 𝑠−𝑑 ⋅ 𝑖 is the index of the historical segment 

feature. 𝑂 𝑟𝑒𝑠 

is the output of residual connections.

Fig. 7. The structure of Transformer.

3.4.3. Transformer

The Transformer stands as the current state-of-the-art technology in

natural language processing and long-term sequence prediction, employ-

ing a seq2seq framework for handling sequential inputs and outputs. 

Deploying positional encodings ensures that the attention mechanism 

captures the positional information of sequences. The structure of the 

Transformer is depicted in Fig. 7.

The learning process of the Transformer is defined as follows.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 

(

𝑄𝐾 

𝑇
√

𝑑 𝑘

) 

𝑉

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑 1 

, … , ℎ𝑒𝑎𝑑 𝑛 

)𝑊 

𝑜

ℎ𝑒𝑎𝑑 𝑖 

= 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 

𝑉
𝑖 )

(12)

where 𝑄,𝐾,𝑉 indicate the query, key, and value vectors, respectively.

𝑑 𝑊 𝑂 ∈ Rℎ𝑑𝑣  

            

×is the scaling factor for a stable gradient, 𝑑𝑚𝑜𝑑𝑘
 𝑒𝑙 ,𝑊 𝑄 ∈𝑖

R 

𝑑𝑚𝑜𝑑 𝑒𝑙×𝑑𝑞 
 𝑊 

𝐾 ∈ R 

𝑑𝑚𝑜𝑑 𝑒𝑙× ×, 𝑑𝑘 and𝑖  𝑊 

𝑉 ∈𝑖  R 

𝑑𝑚𝑜𝑑 𝑒𝑙 𝑑 𝑣 are learnable weight

matrices. 

3.4.4. Model settings

The model training was conducted using Python 3.9 with the deep 

learning framework PyTorch version 1.12, and computations were per-

formed on a computer equipped with an RTX 3070 Ti. This study initially
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Table 4 

Hyperparameter settings for SA prediction.

LSTM GRU TCN Transformer

Hyper parameters Structure [300,300] Structure [64,64] Structure [32,300] Encoder structure [16,64]

Kernel size 20 Decoded structure [64,16] 

Dilation factor 2 Number of heads 4 

Epoch 300 Epoch 500 Epoch 100 Epoch 100 

LR 0.0001 LR 0.0001 LR 0.0001 LR 0.0005 

dropout =0.1 dropout =0.1 dropout =0.1 dropout =0.5 

Parameters 2.9 M 0.4 M 18.2 K 10.9 K

Table 5 

The performance of SA and NSA prediction.

Prediction method Model SHEV dataset SZEV dataset CNEV dataset Avg.

MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2

NSA SVM 3.14/3.34/0.91 3.118/3.224/0.9 2.989/3.12/0.92 3.082/3.228/0.91

MLR 2.037/2.86/0.94 2.303/2.979/0.94 2.211/3.079/0.94 2.184/2.973/0.94

DNN 2.268/3.262/0.91 2.225/2.944/0.95 1.955/2.722/0.96 2.149/2.976/0.94

XGBoost 2.019/2.963/0.94 2.002/5.462/0.83 1.497/2.171/0.97 1.84/3.532/0.91

SA Tnn 6.391/7.639/0.59 6.153/7.238/0.66 5.409/6.321/0.77 5.985/7.066/0.67

TCN 1.389/1.901/0.97 1.991/2.639/0.95 1.675/2.439/0.97 1.685/2.326/0.96

LSTM 0.915/1.327/0.99 1.719/2.31/0.96 0.915/1.327/0.99 1.183/1.654/0.98

GRU 0.98/1.281/0.99 1.552/2.095/0.97 1.045/1.564/0.99 1.192/1.647/0.98

shuffled the trips in the datasets, and then divided each dataset into 

training, validation, and test sets in a ratio of 7:1:2. All models used 

the Adam optimizer and deployed the ReduceLROnPlateau technique 

to dynamically adjust the learning rate. When the model’s loss on the 

validation set did not decrease for five consecutive epochs, the learning 

rate was reduced by 10 %. It is important to note that deep learning 

models are prone to overfitting when dealing with small datasets or 

noisy data. Therefore, we recommend using a dataset scale comparable 

to the current one for similar studies. If working with smaller datasets, it 

is advisable to consider simpler models and employ robust regularization 

techniques to mitigate overfitting risks. Additionally, careful data pre-

processing and augmentation can help address the impact of noisy data 

on model performance. To ensure a fair comparison, this study searched 

for the best hyperparameter combinations of each model by grid search 

and compared the average prediction performance over three datasets. 

The hyperparameters for the SA prediction method are shown in Table 4. 

Computational complexity and scalability are common challenges for 

deep learning models. The parameters detailed in Table 4 elucidate 

the model complexity. Additionally, deploying the model in the cloud 

may address scalability concerns by optimizing computational efficiency 

through parallel computing and distributed training. In a cloud envi-

ronment, users only need to upload data and receive results, which 

simplifies the computational burden for end-users. The hyperparame-

ters for the ST prediction method are included in the appendix Table S2. 

To provide a comprehensive evaluation, we have included the Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), and R-Square 

(𝑅 

2 ) metrics. MAE offers an intuitive measure of average prediction er-

ror, while RMSE penalizes larger prediction errors. 𝑅 

2 is a dimensionless 

metric that helps avoid potential biases due to differences in driving 

distances. The definitions can be mathematically expressed as:

⎧
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⎪

⎪

⎪
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1
𝑛

𝑛
∑ 

𝑖=1
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) 2
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∑𝑛

𝑖=1
(

𝑒𝑐𝑖 − 𝑒𝑐 𝑖
) 2

∑𝑛
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(

𝑒𝑐𝑖 − 𝑒𝑐  𝑖
) 2

(13)

where 𝑒𝑐 , 𝑒𝑐 al, 
 

, 𝑒𝑐̂  are the re predicted and average𝑖 𝑖 𝑖   real energy

consumption at 𝑖-th trip, respectively.

Meanwhile, this study chooses four representative non-sequential 

prediction models for EC prediction. These models have been widely 

adopted in recent studies on EC prediction for EVs, which are (1) 

Multivariate Linear Regression Model (MLR) [21], (2) Deep Neural 

Network (DNN) [2], (3) Support Vector Machine (SVM) [17], and (4) 

XGBoost [6]. These four models do not capture the sequence dependen-

cies between segments and, therefore, serve as competing forecasting 

models against the methodology proposed in this study. Similarly, 

hyperparameters are determined through grid search. To balance effec-

tiveness and computational cost, we designed search spaces grounded in 

prior studies and validated them through preliminary tests. Grid search 

was applied to a subset of sensitive hyperparameters, as summarized in 

Appendix Table S3.

4. Results 

4.1. The comparison among prediction models

Table 5 provides a comparative evaluation between the NSA and SA 

prediction methods. The results indicate that the prediction accuracy 

of SA is higher than NSA (except Transformer), which emphasizes the 

importance of considering sequential dependencies among adjacent seg-

ments. XGBoost is the best model in the NSA prediction method, with 

an average MAE of 1.839 over the three datasets. In comparison, GRU 

is the best model in the SA prediction method, with an average MAE 

of 1.192, which is 35.1 % lower than that of XGBoost. This improve-

ment can be attributed to the fact that SA-GRU treats segments akin to 

handling sequential data, considering the sequence interdependence be-

tween EC in segments. It is worth mentioning that Transformer performs 

poorly in the SA prediction approach, and is even lower than that of the 

NSA, hinting that Transformer model may not be a good candidate the 

for segment-accumulation EC prediction task herein.

Table 6 illustrates performance of NST and ST prediction meth-

ods. The results consistently emphasize that ST predictions generally 

surpass their NST counterparts. Models considering sequence interde-

pendencies using sequential prediction provide 33 % higher accuracy 

on average. Among the ST prediction methods, GRU performs the best, 

with 35.2 % higher accuracy than Transformer. As for the NST prediction 

methods, XGBoost has the best performance, but its accuracy is 20.6 %
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Table 6 

The performance of ST and NST prediction.

Prediction method Model SHEV dataset SZEV dataset CNEV dataset Avg.

MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2

NST SVM 3.169/3.711/0.9 2.721/3.32/0.93 2.648/3.261/0.94 2.846/3.431/0.92

MLR 1.924/2.695/0.95 1.785/2.364/0.96 1.522/2.167/0.97 1.744/2.409/0.96

DNN 1.93/2.638/0.95 1.977/2.572/0.96 2.024/2.678/0.96 1.977/2.629/0.96

XGBoost 1.626/2.254/0.96 1.575/2.058/0.97 1.044/1.533/0.99 1.415/1.949/0.97

ST Tnn 1.698/2.4/0.96 1.878/2.508/0.96 1.619/2.249/0.97 1.732/2.386/0.96

TCN 1.104/1.609/0.99 1.583/2.135/0.97 1.125/1.636/0.98 1.271/1.793/0.98

LSTM 1.033/1.421/0.99 1.623/2.198/0.97 1.016/1.436/0.99 1.224/1.685/0.98

GRU 0.98/1.338/0.99 1.531/2.067/0.97 0.857/1.25/0.99 1.123/1.552/0.98

Table 7 

The computational cost and efficiency of the proposed method.

Prediction method SHEV dataset SZEV dataset CNEV dataset avg. FLOPs

Training Inference Training Inference Training Inference

SA-TNN 951.3 0.16 520.51 0.1 779.47 0.14 21.197 G

ST-TNN 938.1 0.14 513.29 0.08 768.65 0.12

SA-TCN 354.2 0.5 193.8 0.25 290.22 0.4 1.211 T

ST-TCN 423 0.55 231.45 0.3 346.59 0.45

SA-LSTM 1905.23 0.25 1042.46 0.15 1561.09 0.2 151.284 G

ST-LSTM 1373.58 0.2 751.57 0.1 1125.47 0.15

SA-GRU 2061.3 0.4 1127.86 0.2 1688.96 0.35 113.771 G

ST-GRU 2267.45 0.3 1240.66 0.15 1857.88 0.25

Note: the unit of training and inference time is seconds.

Table 8 

The MAE of conventional and proposed methods.

Prediction method Model SHEV dataset SZEV dataset CNEV dataset Avg.

MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2 MAE/RMSE/𝑅 

2

Conventional methods ECR*DIST 6.268/7.708/0.58 4.42/5.564/0.8 2.197/3.376/0.93 4.295/5.549/0.77

MLR 2.002/2.803/0.94 2.198/2.859/0.95 2.793/3.553/0.92 2.331/3.072/0.94

Proposed methods SA-LSTM 0.915/1.327/0.99 1.719/2.31/0.96 0.915/1.327/0.99 1.183/1.654/0.98

ST-GRU 0.98/1.338/0.99 1.531/2.067/0.97 0.857/1.25/0.99 1.123/1.552/0.98

lower than that of GRU. This may be attributed to the inherent limi-

tations of non-sequential models disregarding potential accuracy gains 

provided by sequence-dependent effects of adjacent segments on EC of 

a trip. In a similar context, the performance of TCN surpasses that of 

XGBoost, with prediction errors being 7.2 % lower. It is interesting that 

in the sequential trip-level prediction context, Transformer presents su-

perior performance compared to NST models (except XGBoost), which 

is different from the performance of SA and NSA models in Table 5.

Comparing the prediction methods of SA and ST (see Tables 5 and 6), 

on average, the prediction performance of ST is superior to SA. However, 

the results indicate that the methods of SA and ST have pros and cons, 

depending on the datasets. Taking LSTM as an example, the MAE of SA-

LSTM is 0.118 and 0.108 lower than that of ST-LSTM on both SHEV 

and CNEV datasets, but it is 0.096 higher than that of ST-LSTM on the 

SZEV dataset. However, the overall perspective does not disclose signif-

icant differences. Therefore, the selection of a superior solution should 

be contingent on local data.

To ensure the practical feasibility of our method in real-time, in-

vehicle deployment scenarios, we conducted a thorough evaluation 

of its computational efficiency. As summarized in Table 7, all mod-

els complete training within 40 minutes, which implies low retraining 

cost—beneficial for transfer learning applications or adaptation to dis-

tributional drift over time. In terms of inference performance, even 

the most computationally intensive model (Transformer) requires only 

0.28 s for the entire test set (i.e., less than 0.21 milliseconds per trip 

on average), confirming that our models meet the low-latency require-

ments of real-time energy consumption prediction. All experiments were

conducted on an NVIDIA RTX 3070 Ti GPU. Given that predictions are 

typically generated once per trip during pre-departure planning, this 

level of latency is well within acceptable limits even for onboard CPU-

based systems or embedded platforms. These results collectively confirm 

that our models are not only accurate but also computationally effi-

cient and deployment-ready for real-time applications in energy-aware 

intelligent vehicles.

4.2. The comparison to conventional methods and residual analysis

In this study, two widely-used conventional methods of trip energy 

prediction serve as competing forecasting models to demonstrate the 

effectiveness of the proposed methods. (1) ECR×dist: This method in-

volves multiplying the Energy Consumption Rate (ECR, measured in 

kWh/100 km) provided by the manufacturer by the expected distance 

of the trip. (2) Multiple Linear Regression (MLR): This method utilizes 

the expected distance, average speed, and temperature as indepen-

dent variables to predict energy consumption. The results are shown 

in Table 8.

The findings reveal a notable MAE when predicting trip energy con-

sumption using the manufacturer-provided ECR, which can be ascribed 

to its derivation from testing conducted in ideal operating environ-

ments. Real-world driving conditions are inherently more intricate, often 

leading to actual ECR surpassing those provided by the manufacturer. 

Additionally, MLR yields suboptimal outcomes due to its incapacity to 

capture the intricate relationship between the independent variables and
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(a) SA-LSTM (b) ST-GRU

Fig. 8. Residual analysis of the proposed model.

Table 9 

Uncertainty quantification of proposed methods.

Prediction method Model SHEV dataset SZEV dataset CNEV dataset Avg.

PICP MPIW PICP MPIW PICP MPIW PICP MPIW

SA Tnn – – – – – – – –

TCN 89.7 % 6.03 82.2 % 6.16 89.0 % 6.15 87.0 % 6.11

LSTM 96.1 % 6.15 79.7 % 6.16 89.8 % 6.17 88.6 % 6.16

GRU 94.2 % 6.05 84.4 % 6.21 91.3 % 6.23 90.0 % 6.17

ST Tnn 21.6 % 7.95 16.9 % 8.38 19.4 % 8.39 19.3 % 8.24

TCN 90.9 % 6.15 88.6 % 6.24 95.3 % 6.28 91.6 % 6.22

LSTM 91.2 % 6.21 80.4 % 6.04 85.8 % 5.92 85.8 % 6.06

GRU 92.3 % 6.01 88.0 % 6.29 94.5 % 6.30 91.6 % 6.20

Note: indicates results lacking practical significance.

EC. Moreover, MLR disregards sequence interdependencies among adja-

cent segments, thereby diminishing prediction accuracy. A comparative 

analysis of the average MAE across the three datasets underscores a sub-

stantial enhancement of 65.2 % in prediction accuracy with the proposed 

methods compared to the conventional methods.

This study investigates discrepancies between predicted and actual 

energy consumption. Fig. 8 illustrates the residual distributions of two 

representative models. The residuals of SA-LSTM are relatively evenly 

distributed around zero, whereas ST-GRU exhibits higher residuals. The 

tendency of ST-GRU to underestimate actual values is particularly con-

cerning as it may lead to overly optimistic estimates of remaining driving 

distances for drivers. Consequently, the SA method is recommended. 

Additionally, we observe significant divergences between model predic-

tions and actual values across different trips. This variation suggests 

that different models prioritize trip-specific pattern learning differ-

ently, despite using identical datasets. Interpreting deep learning model 

predictions remains a persistent challenge.

4.3. Uncertainty quantification and robustness evaluation

Compared to point estimates, probabilistic prediction intervals offer 

more informative guidance, which is especially beneficial for practical 

decision-making by EV drivers. To quantify uncertainty, we adopt Monte 

Carlo dropout [13]—a widely used Bayesian approximation technique 

that generates multiple stochastic predictions by randomly deactivat-

ing neurons during inference. Specifically, we perform 100 stochastic 

forward passes to approximate the predictive distribution, which en-

ables the construction of 95 % confidence intervals for each prediction.

The quality of uncertainty estimation is evaluated using two stan-

dard metrics: Prediction Interval Coverage Probability (PICP) and Mean 

Prediction Interval Width (MPIW).

As shown in Table 9, most models achieve PICP values above 85 %, 

indicating high reliability of the generated intervals. In particular, ST-

GRU and ST-TCN consistently deliver both high coverage and narrow 

interval widths, demonstrating a favorable trade-off between confidence 

and informativeness. In contrast, the TNN baseline under the SA set-

ting fails to produce meaningful interval estimates, and under the ST 

setting, it yields insufficient coverage, highlighting its limitations in 

uncertainty-aware predictions. Overall, ST-based methods outperform 

SA-based methods in terms of uncertainty quantification. This advan-

tage may stem from the sequential aggregation nature of SA, where 

prediction uncertainty accumulates across multiple segments, thereby 

amplifying total variance. In contrast, ST-based approaches estimate 

trip-level energy consumption directly, thus avoiding compounded un-

certainty. Based on these findings, we recommend ST-based methods for 

providing probabilistic energy consumption prediction in real-world EV 

applications.

We further visualize the prediction intervals using SA-LSTM and 

ST-GRU as representative models. For clarity, we selected 50 driving 

trips across the three datasets. As shown in Fig. 9, the vast majority of 

ground truth values lie within the corresponding 95 % confidence in-

tervals, reinforcing the reliability of the predictive distributions. These 

probabilistic predictions can help inform decisions related to charging, 

routing, or eco-driving strategies—ultimately supporting more confident 

and informed driving behavior under uncertainty.

To evaluate robustness, we conducted additional experiments by in-

jecting additive Gaussian noise into the input features, with standard
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Fig. 9. Samples on uncertainty quantification across multiple datasets.

Table 10 

Robustness validation of proposed methods.

Prediction method Noise Std SHEV dataset CNEV dataset SZEV dataset

MAE RMSE 𝑅 

2 MAE RMSE 𝑅 

2 MAE RMSE 𝑅 

2

SA-LSTM 0.03 1.152 1.656 0.98 1.745 2.342 0.96 1.036 1.413 0.99

0.06 1.673 2.364 0.94 1.814 2.404 0.96 1.358 1.758 0.98

0.09 2.177 3.05 0.9 1.871 2.466 0.96 1.658 2.074 0.97

0.12 2.895 3.965 0.81 2.024 2.65 0.95 2.119 2.566 0.95

0.15 3.297 4.556 0.75 2.169 2.783 0.95 2.558 3.105 0.92

ST-GRU 0.03 1.257 1.713 0.98 1.534 2.072 0.97 0.951 1.335 0.99

0.06 1.773 2.328 0.95 1.596 2.127 0.97 1.263 1.659 0.98

0.09 2.338 3.068 0.9 1.664 2.206 0.97 1.63 2.011 0.96

0.12 2.932 3.847 0.83 1.8 2.375 0.96 1.949 2.416 0.95

0.15 3.435 4.452 0.77 1.902 2.493 0.96 2.377 2.893 0.92

deviations ranging from 0.03 to 0.15. Table 10 summarizes the result-

ing changes in prediction performance across three datasets using MAE, 

RMSE, and 𝑅 

2 metrics. Despite the increased noise levels, both SA-LSTM 

and ST-GRU models maintain high 𝑅 

2 values (≥ 0.95) under moderate 

noise (𝜎 ≤ 0.09), and only experience gradual degradation at higher 

noise levels. Notably, ST-GRU demonstrates superior resilience, with 𝑅 

2 

remaining at 0.96 even at 𝜎 = 0.12 in most scenarios. These results 

confirm that our models are not only accurate under ideal conditions 

but also robust to input perturbations—supporting their deployment in 

real-world, noisy environments.

4.4. Influencing factors of EC

There is a clarification that should be explained before the analysis. 

In this study, the object of analysis is the segment, not the trip, and each 

segment has a standard length of 1 km. Therefore, the energy consump-

tion (kWh) for each segment is equivalent to the Energy Consumption 

Rate (ECR, kWh/km).

4.4.1. Driving speed and ECR

Fig. 10 visually illustrates discrepancies in ECR across different 

ranges of speed. The left y-axis represents the box plots of the distri-

bution of ECR at different speed ranges. The right y-axis and red dashed 

line represent the average ECR under the corresponding speed range 

with a different scale. The results show a consistent pattern across the 

three datasets where the ECR initially decreases and then increases with 

speed, aligning with prior research findings [11]. This phenomenon can

be attributed to the fact that low-speed driving in urban contexts gen-

erally involves frequent acceleration and deceleration, whereas higher 

speeds lead to a significant increase in air resistance, resulting in a higher 

ECR. For SHEV and SZEV, the EVs achieve their lowest ECR at the speed 

ranging from 70 to 80 km/h, while CNEV’s EVs reach their minimum 

ECR at the speed between 50 and 60 km/h. Differences in the optimal 

speed observed across different datasets result from the combined ef-

fects of distinct vehicle models and traffic conditions in different cities. 

It is noteworthy that, in all three datasets, the current operating speeds 

of EVs primarily fall within the 10–20 km/h range (the second box), 

constituting 23.5 %, 20.5 %, and 14.6 %, respectively. The speed range 

is significantly lower than the mentioned optimal speed range. If these 

EVs operated at optimal speeds, potential energy savings could amount 

to 6.63, 3.59, and 3.46 kWh per 100 km on average for the vehicles 

in the datasets of SHEV, SZEV, and CNEV, respectively. These find-

ings collectively emphasize the critical importance of speed on energy 

efficiency.

4.4.2. Temperature and ECR

Fig. 11 shows the impacts of temperature on ECR. Specifically, the 

results from SHEV manifest the lowest average ECR within the tem-

perature range of 15–20 

◦ C, whereas the results from SZEV and CNEV 

demonstrate the lowest average at temperatures of 20–25 

◦ C. These 

results are corroborated by prior research that indicates the optimal 

temperature of 18 

◦ C [49]. The pattern may be attributed to drivers 

commonly activating air conditioning in both low and high tempera-

tures, substantially escalating EC. Relative to the optimum temperature, 

average ECR elevates by 6.5 % and 8.4 % in the lowest and highest
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Fig. 10. Relationship between speed and ECR (The left y-axis is the ECR, and the right y-axis is the average ECR with different scales).

Fig. 11. Relationship between temperature and ECR.

temperature ranges, respectively. Variances across cities are notable. In 

Shanghai, low temperatures significantly augment ECR. In contrast, in 

Shenzhen and six other cities, high temperatures exert a more substantial

impact on increasing ECR. This divergence may arise from climate differ-

ences among cities, influencing factors such as drivers’ air conditioning 

usage habits and driving behavior.
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Fig. 12. Relationship between time-related features and ECR.

Fig. 13. ECR for different trip distance.

4.4.3. Time-related features and ECR

Fig. 12 delves into the variations in ECR concerning different time-

related features. The results of seasonal features indicate that ECR is 

lower during spring and autumn compared to summer and winter. This 

distinction may be primarily attributed to increased air conditioning us-

age in summer and winter, resulting in elevated ECR. Specifically, ECR 

in summer and winter exhibits a 4.1 % increase relative to spring and au-

tumn. Additionally, rush hours demonstrate negligible impact on ECR. 

Conversely, ECR notably increases during nighttime driving. This may 

be predominantly due to increased headlight usage and higher speeds 

during the night, leading to high EC. In comparison to other periods, 

nighttime trips demonstrate a 2.1 %–2.5 % increment in ECR on average. 

Lastly, the day of the week exerts minimal influence on ECR, implying 

that trips on different working days do not show significant differences 

in ECR.

4.4.4. Relation of driving distance and depth of discharge with ECR

In this study, a trip is divided into continuous and ordered segments 

of 1 km. Fig. 13 shows how ECR changes as the driving distance in-

creases. The outcomes underscore that as driving distance increases, the 

average ECR is pretty stable at the beginning and decreases after around 

200 km. A common finding is that there are substantial variations, im-

plying a lot of other factors affecting the ECR. The ECR of driving range 

1st-10th km, is the highest. As the trip extends to 291st-300th km, the 

ECR stabilizes at a low point, marking about a 20 % decrease compared

to the ECR in the range of 1st-10th km. The results from SHEV ex-

hibit a different trend in ECR compared to the other two datasets for 

distances exceeding 300 km. This disparity may be attributed to the 

low sample size and some extreme values of SHEV data in the range 

exceeding 300 km.

Fig. 14 provides the relationship between DOD and ECR. The re-

sults demonstrate that when DOD was at 20–80 %, ECR shows a stable 

plateau pattern. Nevertheless, if the DOD falls exceeds 80 %, the ECR ex-

periences a rapid reduction. Driving distance directly influences changes 

in DOD, and ECR typically decreases as distance increases, as depicted 

in Fig. 13, which is consistent with the decrease in ECR with increasing 

DOD. Therefore, a careful decoupling of the influences of other factors 

is necessary when analyzing the relationship between DOD and ECR. 

Although DOD is commonly used as an indicator, it is a processed metric 

provided by the Battery Management System (BMS) and may not fully 

encapsulate the actual energy use of the vehicle. This means that a 1 % 

increase in DOD at different initial DODs may correspond to different 

amounts of real EC.

4.5. Model interpretation

This study examines whether the predicted EC from trained predic-

tion models aligns with real-world patterns, which tries to validate the

Fig. 14. Relationship between DOD and ECR.
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Fig. 15. Influence of speed and DOD on predicted energy consumption.

reliability of our proposed prediction models. Taking SA-GRU as an illus-

trative case (given that SA models offer predictions for each segment), 

three trips with several segments of 1 km are randomly chosen from each 

dataset, and the relationship between predicted EC and speed/DOD is 

depicted in Fig. 15.

For the speed-EC relationship, predicted EC follows a decreasing-

then-increasing trend, aligning with real-world patterns, comparing 

Fig. 10. Regarding the DOD-EC relationship, predicted EC reaches a 

minimum at approximately 20 % DOD, exhibiting an overall decreasing 

trend within the 30–60 % DOD range, in line with actual observations,

comparing Fig. 14. These outcomes emphasize that the SA method yields 

credible predictions and can effectively capture the interdependence 

between predicted EC and influencing factors. It is important to note 

that the wide dispersion of data points results from selecting several 

case trips. The high degree of uncertainty in individual trips makes it 

challenging to align closely with statistical trends. Capturing the uncer-

tainties inherent in trips is crucial for enhancing the interpretability.

Fig. 16 delves into the impact of trip distance on the prediction 

accuracy of sequential predictions. The trips are categorized into six 

groups based on trip distance. The results indicate that the model
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Fig. 16. Prediction errors for different travel distances.

exhibits a higher prediction error for longer trips, likely due to increased 

uncertainty associated with longer distances. The average MAE across 

three datasets reveals that, in the case of SA-GRU, predicting EC during 

trips exceeding 200 km results in a 68.9 % higher MAE compared to 

predicting EC for trips within the 0–10 km range. In the context of ST-

GRU, the related MAE for predicting EC during trips exceeding 200 km 

is 71.3 % higher than that for trips within the 0–10 km range.

5. Discussion

This study presents a sequence-aware EC prediction framework using 

pre-trip accessible data. The reasoning for considering sequential depen-

dencies in energy consumption lies in the assumption that adjacent road 

segments share energy consumption information, which facilitates fore-

casting compared to predicting each segment separately. Specifically, 

EVs travel through segments sequentially over time. The features and 

energy consumption of consecutive road segments may be likened to 

a time series. Past and neighboring data points of energy consumption 

provide useful information for enhancing the prediction accuracy of the 

current energy consumption by capturing similarities among adjacent 

road segments. Similarly, the study proposes that the average speed, du-

ration, other features, and energy consumption from adjacent segments 

could be helpful in predicting the energy consumption of the current 

road segment. For instance, a vehicle accelerating in one segment will 

likely affect its energy consumption in subsequent segments due to the 

inertia and momentum carried over. There are also similarities in speed 

profiles, road slopes, and auxiliary usage of EVs in adjacent road seg-

ments. This sequential dependency leverages patterns and information 

embedded in the sequence of segments.

Despite promising results, several limitations should be acknowl-

edged. First, we acknowledge that the black-box nature of deep learning 

models presents challenges for interpreting how input features con-

tribute to prediction outcomes. While our study emphasizes predictive 

performance, we recognize the importance of model transparency in 

safety-critical and decision–support applications. Recent work has pro-

posed interpretable hybrid architectures, such as attention-augmented 

variational autoencoders with adversarial regularization [27], which 

disentangle latent representations and highlight salient temporal fea-

tures. Although our current framework does not implement such com-

ponents, we view this as a promising direction. Future extensions 

could incorporate attention-based disentanglement or generative back-

bones to enhance interpretability and uncover causal patterns in energy 

consumption across sequential driving segments.

Second, identifying key predictors and their interactions is essential 

for understanding energy efficiency. However, common explainability 

tools are tailored for 2D input formats and are not directly applicable to 

the 3D sequence inputs used in this study. Moreover, multicollinearity 

among features may impair the reliability of such attribution scores.

Future extensions may benefit from domain-informed disentanglement 

techniques or interpretable sequence-specific models.

Lastly, the ability of different models to capture long-range depen-

dencies is an important consideration. Although LSTM and GRU mitigate 

gradient issues via gating mechanisms, they still suffer from limited 

memory capacity, leading to degraded performance on longer trips. 

In contrast, Transformers offer theoretical advantages through global 

self-attention but perform poorly in our case. This may be due to the 

relatively short average sequence length, the limited dataset size, and 

the structured, low-dimensional nature of our inputs, which reduces the 

effectiveness of attention mechanisms. These findings align with previ-

ous work [34] and highlight the need for tailored architectures—such 

as memory-augmented or hybrid models—for long-sequence energy 

prediction tasks.

Despite the aforementioned limitations, our framework offers sig-

nificant real-world value. By enabling pre-trip EC predictions without 

requiring future speed profiles, it facilitates range-aware route planning 

for EV drivers, supports eco-driving behavior, and aids fleet operators 

in energy forecasting. The approach is lightweight and relies solely 

on data available before trip initiation, making it suitable for integra-

tion into onboard navigation systems, fleet management dashboards, or 

energy-aware trip planning mobile apps.

6. Conclusions

This study endeavors to propose a sequence-aware deep learning 

methodology for energy consumption prediction of electric vehicles. 

It discretizes trips into segments and conceptualizes EC prediction as 

a sequential task, considering sequence interdependencies among ad-

jacent segments. All inputs are sourced from pre-trip obtainable data

rather than unrealistic assumptions that presuppose access to future 

speed profiles per second throughout a trip. The main findings are as 

follows.

Embedding awareness of sequential dependence is advantageous for 

enhancing the accuracy of energy consumption prediction. Compared 

to traditional methods of treating the trip as a single entity, discretiz-

ing the trip into segments and sequentially capturing interdependencies 

within adjacent segments of energy consumption using deep learning 

methodology provides notable gains in prediction accuracy and inter-

pretative ability. It is important to emphasize that the inputs required 

for our proposed methodologies are based on pre-trip and practically at-

tainable data, not unrealistic high-resolution data. It offers new insights 

into methodologies for modeling more accurate and reliable energy 

consumption predictions for practical usage.

This study investigates the impact of factors on energy consumption 

from a segment-level perspective. The results show that: (1) The ECR 

gradually decreases during the trip, with the initial segment exhibiting 

the highest energy consumption rate, approximately 20 % higher than 

that of the segment just before the trip concludes; (2) The average ECR in
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both summer and winter is 4.1 % higher than that in spring and autumn 

and higher ECR (2.1–2.5 %) is observed in nighttime driving compared 

to the rush hour and other times. (3) The relationship between ECR and 

both the speed within the segment and the depth of discharge can be 

clearly identified.
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Appendix

See Tables S1–S3 and Fig. S1.

Table S1 

Dataset sample.

Field Sample1 Sample2 Sample3

collectiontime 2021–07-31 09:53:20 2021–07-31 09:53:30 2021–07-31 09:53:40

vehicledata_vehiclestatus 1 1 1

vehicledata_chargestatus 3 3 3

vehicledata_runmodel 1 1 1

vehicledata_speed 0 0 0

vehicledata_summileage 71352 71352 71352

vehicledata_sumvoltage 395 395 394.8

vehicledata_sumcurrent 0.5 2.8 3.4

vehicledata_soc 99 99 99

vehicledata_dcdcstatus 1 1 1

vehicledata_gearnum 15 15 15

vehicledata_insulationresistance 4886 4616 4587

extremevalue_maxvoltagebatterysubseq 1 1 1

extremevalue_maxvoltagebatterysingleseq 96 96 96

extremevalue_maxbatterysinglevoltageval 4.131 4.131 4.13

extremevalue_minvoltagebatterysubseq 1 1 1

extremevalue_minvoltagebatterysingleseq 5 5 5

extremevalue_minbatterysinglevoltageval 4.108 4.108 4.106

extremevalue_maxtmpsubseq 1 1 1

extremevalue_maxtmpprobesingleseq 8 2 2

extremevalue_maxtmpval 31 31 31

extremevalue_mintmpsubseq 1 1 1

extremevalue_mintmpprobesingleseq 1 1 1

extremevalue_mintmpval 30 30 30

chargedevicevoltagelist_chargedevicevoltagenum 1 1 1

chargedevicevoltagelist_voltagelist_rechargeablestoragesubseq [1] [1] [1]

chargedevicevoltagelist_voltagelist_rechargeablestoragevoltage [395.0] [395.0] [394.8]

chargedevicevoltagelist_voltagelist_rechargeablestorageelectric [0.5] [2.8] [3.4]

chargedevicevoltagelist_voltagelist_sumbatterysingle [96] [96] [96]

chargedevicevoltagelist_voltagelist_firstbatteryseq [1] [1] [1]

chargedevicevoltagelist_voltagelist_sumsinglebattery [96] [96] [96]

chargedevicetemplist_chargedevicetempnum 1 1 1

chargedevicetemplist_templist_rechargeablestoragesubseq [1] [1] [1]

chargedevicetemplist_templist_rechargeablestoragetmpnumber [24] [24] [24]

Table S2 

Hyperparameter settings for ST prediction.

LSTM GRU TCN Transformer

Hyper parameters Structure [300,300] Structure [256,256] Structure [300,300] Encoder structure [16,64]

Kernel size 20 Decoded structure [64,16] 

Dilation factor 2 Number of heads 4

Epoch 300 Epoch 500 Epoch 100 Epoch 100 

LR 0.0001 LR 0.0001 LR 0.0001 LR 0.0005 

dropout =0.1 dropout =0.1 dropout =0.1 dropout =0.5 

Parameters 2.9 M 1.5 M 0.2 M 10.9 K
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Table S3 

Search ranges for each model.

Model Hyperparameter Search Range

TNN LR 0.001,0.0005,0.0001

Heads 2,4

Dropout 0.3,0.5

TCN Hidden size 32,128,256,300

Kernel size 10,20

LSTM Hidden size 32,128,256,300

Layers 1,2

GRU Hidden size 32,128,256,300

Layers 1,2

XGB LR 0.1,0.05

n_estimators 100,200,300

SVR Kernel RBF, Linear

C 1,5,10

DNN LR 0.001,0.0001

Hidden size 64,128,256
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Fig. S1. Histogram of distances and durations after trip division.
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