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ABSTRACT

Since its discovery, superconductivity has received significant attention, with
renewed interest following the discovery of high-temperature superconductors
(HTSCs) such as cuprates. The t—J model, combined with the Gutzwiller ap-
proximation, has been used to study HT'SCs. While much research has focused
on homogeneous systems, less attention has been given inhomogeneous ones —
especially the possible coexistence of superconductivity and antiferromagnetism
in them. The coexistence could be of interest for applications within supercon-
ducting spintronics.

The focus of the present thesis is [110] edges of HT'SCs. It is shown that
these edges attract quasiparticles, increasing the local occupation and thereby
strengthening local correlation, which in turn reduces the weight of the zero-
energy Andreev bound states typically present at [110] edges. Furthermore, the
s-wave order parameter, predicted in some models to form at the edge, is here
seen to vanish or be suppressed. Finally, it is demonstrated that the charging of
the edges enables antiferromagnetic order to emerge at the edges at higher average
dopings than in homogeneous systems.

Keywords: inhomogenous superconductors, cuprates, strong electron-electron
interactions, Gutzwiller approximation, mean-field theory, [110] edges, t—J model
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1 Introduction

Essential concepts of the present thesis are high-temperature superconductors
(HTSCs), strong electron-electron interactions, and inhomogeneous systems. The
introduction is therefore aimed at introducing the, for the thesis, most crucial
aspects of these concepts. The first section presents some basics of superconduc-
tivity, and some short facts about the HT'SC cuprates. In the following section,
previous studies of inhomogeneous superconductors (SCs) with strong electron-
electron interactions using the ¢ — J model are mentioned. The introduction is
concluded by an outline of the thesis.

1.1 Superconductivity

When superconductors (SCs) are cooled below their transition temperature 7,
they enter the superconducting phase [1]. The phase is characterised by zero
resistivity as a result of an attractive interaction between electrons |2]. The inter-
action makes the electrons pair [3]. Pairing reduces the combined energy of the
electrons and makes pairs less susceptible to scattering. The latter, since break-
ing a pair is related to an energy cost of two times the superconducting order
parameter 2A.

Mercury was the first material reported to be superconducting in 1911 by
Kamerlingh Onnes [4]. The metal has a low transition temperature of about
T. = 4.15 K dependent on phase [5] and the attractive interaction is believed
to be mediated by phonons. Thus, mercury has an isotropic order parameter [2]
which has s-wave symmetry, see Figure [I.1[(a) for a representation of the symme-
try in reciprocal space. The labelling agrees with that of atomic orbitals. Mercury
and other conventional SCs are well described by the original Bardeen-Cooper-
Schrieffer (BCS) theory, see Section [2.1]

Later superconductivity in heavy-fermion systems [6, 7], organic SCs [8] and
high-temperature superconductors (HTSCs) was found, they exhibit strong electron-
electron interactions, these are called strongly correlated SCs [2]. The mechanism
behind the superconductivity in these materials is not established. Some of these
are having an order parameter with d-wave symmetry, see Figure (b) A d-wave
order parameter is zero for some directions, the nodes. The lower symmetry of
the order parameter, means these materials break space-symmetry entering the
superconducting phase. These superconductors are referred to as unconventional.
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a) ky b) ky
k. ky

Figure 1.1: Order parameters in reciprocal space. (a) The uniform s-wave order
parameter independent of momentum direction (b) the momentum dependent d-wave

order parameter, zero at the nodes.

Noteworthy, when it comes to unconventional pairing, is also the superfluid He?

19, 110].

As the electrons in the superconductors pair, a gap is
opened around the Fermi energy. Inside the gap there are
no electronic states. The shape of the gap depends on the
symmetry of the order parameter. In Figure[l.3[the density
of states (DOS) N(F) normalised by the DOS in a normal
metal Np, is plotted. For an s-wave the gap in the DOS
is uniform, see Figure [1.3|a) while for a d-wave it will have
a v-shape, see Figure (b) The gap has a v-shape, since
the order parameter varies between a maximum and 0O at
the nodes where there is no order parameter or gap for that
momentum.

1.1.1 Cuprates

One group of HTSCs are the copper oxides, cuprates, dis-
covered in 1986 , since then they have attracted immense
interest. The cuprate superconductors are layered materi-
als, alternating layers of copper oxides with other metal
oxides. In the case of well-known yttrium barium copper
oxide (YBCO) those are yttrium and barium. In Fig-
ure the structure of YBCO is shown, cupper in green
form a square lattice sandwiched between yttrium in pur-
ple and barium in orange. In all layers there are oxygen

Figure 1.2: Structure
of YBCO with cop-
per in green, oxygen
in grey, barium in or-
ange, and yttrium in
purple. From with
relabelled azes.

in grey. Upon hole
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Figure 1.3: Generic examples of the gap in the density states of superconductor with
(a) s-wave and (b) d-wave symmetry. The DOS is on the y-axis normalised by the
DOS in a normal metal Nr and the energy, expressed in the units of the Boltzmann
factor times transition temperature, is on the x-axis.

doping the material transition from an antiferromagnetic Mott-insulating state
into a superconducting [2]. The superconductivity is believed to take place in the
copper-oxide layers and be of d-wave symmetry |14} [15].

As mentioned the low temperature part of the phase diagram of cuprates dis-
plays an antiferromagnetic region close to half-filling and a dome-shaped super-
conducting region when doped. These qualitative features have been possible to
model using the ¢ — J model [16-20], see also Sections and |3 and Figures

4.3(c)-(d).

1.2 Inhomogeneous Cuprates With Strong
Electron-Electron Interactions

While, homogeneous properties of cuprates have been quite extensively investi-
gated with the ¢ — J model using the Gutzwiller approximation see for example
[16, |18, [2022] , less has been done for inhomogeneous systems, especially so for
systems where superconductivity coexists with antiferromagnetism. Disorder can
be introduced into the system via defects [23-26], grain boundaries [27], inter-
faces [28], vortices [29-31], and edges [32-36]. Of which edges are the focus of the
present thesis and especially so the [110] edge, see Figure [5.1] In Reference [30]
edges are studied assuming a uniform distribution of electrons. In Reference [34]
the edges are studied in a grain system at a doping where antiferromagnetic order



4 Chapter 1. Introduction

is not expected allowing for redistribution of charge. The results presented in the
thesis complement these studies by exploring a larger doping region, including the
antiferromagnetic one, and allowing for redistribution of electrons.

1.3 Outline of Thesis

In Chapter 2 the BSC theory is introduced and compared with a weak-coupling
mean-field approach to the t — J model. The meaning of the possible symmetries
of order parameters on a square lattice is also discussed. In Chapter 3 the Statis-
tically Consistent Gutzwiller approach to the strongly correlated ¢ — J model is
presented. Included is a derivation of Gutzwiller factors using counting arguments
and fugacity factors. In Chapter 4 the self-consistent equations in a homogeneous
system are derived and solved. The phase diagrams and density of states are
plotted. The same is done in Chapter 5, but for an inhomogeneous slab includ-
ing the [110] edge. Finally, in Chapter 6 the reader finds a short summary and
suggestions for some possible further aspects to investigate.



2 Modelling Superconductors

Since the discovery of superconductivity many theoretical theories have been de-
veloped to describe it. One of these is the Bardeen-Cooper-Schrieffer (BSC) theory
which well explains and accurately predicts many properties of conventional su-
perconductors [1]. One model which has been successful in qualitatively capturing
aspects of cuprates is the t—J model. In its most strongly correlated formulation,
thet—J model includes restriction of doubly occupied states. Two strategies to
handle the t—J model with these restrictions are Variational Monte Carlo simu-
lations and the Gutzwiller approximation. The focus of the present thesis is the
latter.

In Chapter [2] the BSC theory is first introduced followed by a comparison with
the t—J model. In Chapter[3]is the Gutzwiller approach more thoroughly outlined.
In addition to the microscopic models presented, there are also other theories at
longer length scales. Among them the Ginzburg-Landau theory and the quasi-
classical theory.

2.1 BCS Theory

The following section is based on [1]. Within the BSC theory, an attractive
interaction between electrons, mediated by phonons, is assumed. The interaction
makes the electrons form pairs. Forming these pairs lowers the energy and depletes
the region around the Fermi energy of electron states, opening up a gap. The
physics can be described, in the language of second-quantisation, by

Hpcs = Y. Eklhytho + 3 Viwekae! e witir, (2.1)
ko kk’

where the first term is the kinetic energy measured relative to the chemical po-
tential u and the second term gives rise to the pairing. Carrying out at mean-field
approximation,

A A A

Cio’éiUé;JéjU' ~ éjo’éj‘a <éi06j0'> + <Cia’é;[a>éwéj0' o <Cia’é;[a> <éi06j¢7'> (22>

where the last term is scalar. The Hamiltonian is rewritten in weak-coupling
theory, as the mean-field BSC pairing Hamiltonian

HYEs =Y Gelotno — 3 Ak™Copytur — O Aclyel ) = Chl Hy G, (2.3)
ko k k
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where Ap = — Y Vi (C_g  Crry) 1s @ measure of the strength of the interaction
and thereby the gap,
R e
= (AT T) (2.4)
C*ki
and A
Ek k )
Hy = . : 2.5
(R 29
Performing a Bogoliubov rotation the operators may be expressed as
A Cht ug v\ (G 2
Ce=1{. = " ]| =UA 2.6
=)= G o) () = v 20
where Uy is chosen such that it diagonalises Hy, giving
1
U, = (Ek + &k Ag ) (2.7)
\/QEk(Ek —fk) —Ag Ey + &k

where Ey = +/&k? + |Ag|? are the eigenvalues of Hy and the columns are the
corresponding eigenvectors. Equipped with this expression of Uy, the annihilation
operators can be expressed using the operators

Ay = <a’f> (2.8)

which diagonalise the Hamiltonian, are free fermions, and therefore their distri-
bution follow the Fermi-Dirac-distribution function

1

(2.9)

where § = 1/kgT with T the temperature. After the rotation, the Hamiltonian
can be written
HME, = 3" Eralag + constant. (2.10)
k

Continuing by expressing the operators C in Ay, the gap equation follows as

Ak/
A =Y Vi
k' 2E

tanh Ey 3 (2.11)
k/

However, remember that E depends on A why Equation (2.11)) needs to be solved
self-consistently using iterative methods.
Finally the Density of States (DOS) at an energy w is given by [37]

N(w) =Y (lur*6(w — Ew) + |vel*6(w + Eu)) . (2.12)



An alternative way to arrive at the same results as above is to assume that the
system is described by the variational BSC ground state

|Upsc) = Hg(ux + UkézTéT_mHO), (2.13)

where |0) is the vacuum state, ug the amplitude for the pair state k is be-
ing empty and vg the amplitude for it being filled. By expressing the energy
(Upsc| HYES|Upsc) and minimising it ug and vy can be found. [Bruus Flensberg]

2.2 t—J model

The t—J model was originally derived to explain antiferromagnetism in Mott in-
sulators [38]. The model pictures the atomic orbitals of a material as lattice sites
which can be occupied by electrons [17]. Thus, the lattice geometry corresponds
to the arrangement of atoms in the material. Between the sites electrons may
jump, with hopping amplitude ¢, and spins interact via exchange interaction with
amplitude J. In Figure [2.1| a 2D square lattice with lattice constant d and sym-
metry axes x and y is shown. The blue arrows represent the spin of electrons
occupying the sites, as there are fewer electrons than sites, the example is hole-
doped. The pink arrow gives an example of exchange coupling and the black
of possible hopping processes. Both take place on links indicated by black lines
between sites. Only nearest-neighbour interactions are depicted. The processes
may be described by the Hamiltonian

Hy=tY Po( éjo+hc)Po+JY. S-S, (2.14)

(ij)o (i)

which may be derived through a Schrieffer-Wolf transformation from the Hubbard
model [39] and where S; = >, ST with 7 € {z,y, z} and the spin component along

T at site ¢ is given by
5 A A &
ST = (ehel,) o <62> (2.15)

where o, is the relevant Pauli matrix. So, S’Z is bilinear in operators and S’Z . S'j
consists of four-operator terms. The ¢—J model may be expanded by considering
interactions between more sites, for example including next-nearest neighbours
etc. Also completely different terms, such as intersite Coulomb interaction

> Vi (2.16)
ij

may be added [17]. In this chapter a weak-coupling approach to the ¢t—J Hamil-
tonian will be taken, so at the moment the projection correlators Po excluding
doubly occupied states are not considered, but will be in Chapter [3|
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»—E—4

Figure 2.1: Square lattice where blue arrows at green sites indicate the spins of
electrons, t is the hopping amplitude and J the exchange coupling. The black lines
indicate links and there are fewer electrons than sites, indicating a hole-doped system.
The lattice axes x and y are marked as well as the lattice constant d.

It is the second term of the ¢t—J Hamiltonian, Equation (2.14)), which give rise
to the richness of the ¢t—J phase diagram. If J is positive superconductivity and
antiferromagnetism (AFM) is preferred, while if negative ferromagnetic order is
favoured. Finding the ground state, the same mean-field approximation as before,
see Equation , is once more applied to deal with the four-operator, J, term.
Further, for simple expressions, a homogenous lattice with periodic boundary
conditions is used and consequently the operators are transformed into reciprocal
space according to

N —ikr; A
P . 2.17
thr = e e 2.1)

where r; is the position vector of site j and IV the total number of sites in the
lattice. The mean-field Hamiltonian is in reciprocal space

A A 1 A A
HM = ka(CLUCIw +H.c.) — N (Avs k + Dso k) C};(}CT_IM +H.e  (218)
k,U U7k7a
where
Aao’,k = Z J<ék’aé—k’a/>ei(k/_k).a (219)
a,k’

with a as the vector between neighbour sites ¢ and j. To find the order param-
eter and DOS the Hamiltonian is once more diagonalised and the self-consistent
equation solved as in Section



2.2.1 Symmetries on a Square Lattice

The possible space symmetries of the superconducting order parameter depend
on the lattice. On a square lattice the vectors connecting nearest neighbours
are @ = {£dZ,+dy} where the directions & and § are as indicated in Figure
. Carrying out the sum over vectors gives the factor Yy cos [d(k} — kf)] where
f € {x,y} which expanded using the formula for cosine is

Yi(k)Vs(k') + Va(k) Va(K') + Vpa (k) Vpu (k') + Vpy (k) Vpy (K') (2.20)
with

YVs(k) = cosdk, + cosdk,
Yi(k) = cosdk, — cosdk, (2.21)
Vor(k) =sindky

where the subscript indicate s-, d- and p-wave symmetry, respectively. It should
be pointed out that the s-wave here is more precisely an extended s-wave, but
will however in the rest of the thesis be referred to as only s-wave. In real space
these symmetries give the relation between the order parameter, or mean-field, on
different links see Figure 2.2] In Figure 2.2(a) s-wave symmetry is shown, same
sign of the order parameter on all links, in (b) d-wave, the order parameter on
y-links have the opposite sign of the order parameter on z-links, in (c) p,-wave
and in (d) p,~wave the, sign flips between neighbouring links along the z- and
y-directions respectively.

s-wave d-wave

Figure 2.2: Possible symmetries of the superconductivity on a square lattice in real
space. In (a) the s-wave, same order parameter A in all directions, is shown, in (b)
the d-wave where there is a sign difference between links in the x- and y-direction, in
(¢) the py-wave and in (d) the p,-wave, the sign of the order parameter is opposite of
that on the previous link in the two latter cases.

The wavefunction of a pair of electron can be viewed as a combination of the
space part Y(r) and a spin-part x, o [2]

\If(’l“, 'r’, o, g’) _ y(r — ’l"/)XU,U" (2'22)
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Which in reciprocal space corresponds to
U(k,k' o,0') =Yk —K)xoo- (2.23)

From the Pauli exclusion principle follows that the wavefunction should be anti-
symmetric under exchange of particles, so

U(r, r. o, O'/) = —\If(r', r,o, o). (2.24)

By which it follows that either the space-part or the spin-part has to change sign.
For s- and d-wave symmetry the space-part has the same sign, thus the spin part
needs to change sign which require spin singlet symmetry

1
V2

On the contrary for p-wave symmetry, here the spatial part changes sign and this
the spin part cannot, giving triplet symmetry, any or a combination of

(1) = [41). (2.25)

1),
(1) + 1 4), (2.26)
1),

It is possible to also consider symmetries in time (frequency). In the current thesis
even time symmetry is assumed.



3 Gutzwiller Approaches

Here, the restriction of no doubly occupied states is reintroduced in Equation
. The restrictions makes it no longer possible to directly solve this strongly
correlated model by directly applying a mean-field approximation and a Bougliobov
rotation as in Chapter [2] Instead the Gutzwiller variational ansatz

|\Ifg> = pg|\110> = HipG,i|\IjO> = Hl(l — Oéﬁnﬁw)l\lfo% (31)

originally proposed in 1962 by Gutzwiller to treat ferromagnetism in metals [40],
can be employed. In the ansatz the projected wavefunction |W¢) is related to a
single particle wavefunction |Wy) through projection operators sz The projec-
tion operators project out, wholly or partly, doubly occupied states, depending
on choice of parameter a € [0, 1], through this thesis the projection will be chosen
to be full (« = 1). Expectation values obtained using |¥)q can, for example,
be numerically calculated using variational Monte Carlo simulations [16] or by
invoking the Gutzwiller approximation [41].

In this Chapter the Gutzwiller approximation will be introduced and the related
so called Gutzwiller factors derived. Then it will be shown how the Gutzwiller
approximation may be combined with a mean-field approximation to solve the
t—J model in the restricted system through a Gutzwiller approach.

3.1 Gutzwiller Factors

Using one variety of the Gutzwiller approximation the expectation value of an op-
erator O in the correlated system is related to the uncorrelated system, subscript
0, via a statistical weight (Gutzwiller factor) ¢g¢ [19]

WO _ (Wl POP|) o (0O} _
e 7 R TR 7 M I R

where the projection operators have been replaced by Gutzwiller correlators,
Po = Hipc,i = Hf%pg,i, including fugacity factors 7, which are chosen such
that the projection conserves electron densities [42]. The conservation can re-
quire either the local spin density (7;,) = (fjs)0 to be conserved, denoted case
I or local electron density conservation (7n;) = (7;)o denoted case II. Physically,
the processes can be seen as either splitting doubly occupied states keeping the
occupation and magnetisation, or removing doubly occupied states requiring a

11
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rescaling of all occupations [43]. As will be shown, Gutzwiller factors are different
between I and II in a spin-dependent system.

3.1.1 Fugacity Factors

Choosing local spin conservation, case I, corresponding to the grand canonical
ensemble [42], the Guztwiller correlator is written

A

Po = P41 Py, (3.3)

2

where v is found from the constraint (n;,) = (n;y)o = N4y, giving the condition

(g P PG )0 (o io(1 — Rig) i Pég)o .
<H1P621z>0 <Pé,iHl#iPc%,z>0 v

where, since the expectation value is non-zero only if io is occupied, j& is unoc-
cupied, and because (1 — 7;5)2 = (1 — 7;5), the squared correlator at site i has
been simplified as Pgw’i = 72”7?&(1 — Airfiy)? = Yo (1 — Ay5). Keeping only on-
site contractions the ITj.; P terms cancel [Fukushima, Debmalya Theses], which
yields

<ﬁi0> =

(3.4)

<A, > _ <ﬁi07i0(1 - ﬁi5>>0 _ 7i0(1 — nia)nia
v (PZ.)o (PZi)o

(3.5)

where

(P20 = (1= nap)(1 = nap) +yonar(1 = nay) +yina (1 —ngp). (3.6)

Combining these expressions for both spins an equation system is obtained

V'T — <P5,i>0
{ oAl (3.7)
Til = (T=ny)
with the solution
= (39
10 1 . ni *
wnd (1= n)(1 = ny)
-y — Ny
<P(%,z'>0 = 1T_ - L (3.9)

Instead choosing conserved local occupation, the fugacity factors are spin inde-
pendent

Po =TI" " Py, (3.10)
Putting (7;) = (Ni)o = n; = nir + nyy gives, after similar calculations as for local
spin conservation,

ni(1 —nip)(1 —nyy)
1— nl)(nl — QTLZ'T’RQ)’

vii=~ll=9f = ( (3.11)

and unchanged (P ;)o.
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3.1.2 Gutzwiller Factors for Pair of Operators

Starting with finding the Gutzwiller factor for hopping, Equation (3.2)) is rewrit-
ten, taking O = é}aéja, as

: (Wl 50| 0) (Wo|Wo)

gi is — ) AT A
! <\I]|\Il> <\IJO|CIUC]U|\II0> (3 12)
(W](L = gl o (1 — o) [T) (1 = niz) (1 — nys)
(V]w) (Wol(1 — fiz) el ej0 (1 — Rjs) [ T)

where (1 — 7j5)(1 — 75) has been introduced in both expectation values to en-
sure agreement with the infinite dimensions approach [19]. Multiplication by the
operator term does not change the expectation value in the correlated state, but
does change the uncorrelated with a factor (1 — n5)(1 — nj5). To compensate,
the same factor has been multiplied, and appears in the numerator. Further, the
uncorrelated state is constructed such that (Ug|Wg) = 1.

The first factor in Equation (3.12) is then written out including the Gutzwiller
correlators, A%oquation (3.3)). Keeping only on-site contractions, which will not
be stated explicitly in the rest of the chapter, it is seen the correlators cancel for
all sites but ¢ and 5. Then remain

(Wl Vi v Y (L = g ) (1 = Rigiis)elyio (1 — Rja) (1 — ftjaitys )| Wo)
(P&,P? ;)0

The ket-part is non zero when jo is occupied, fj, = 1, and 70 empty, gives con-

tribution \/(1 — N )Nje(1 — niz) (1 — njz)7Vjo, the bra-part is non zero when io is

occupied and jo empty, contributes \/(1 — Njo )Nio (1 — nig) (1 — njs)Vie the square
root coming from the contributions being amplitudes [Edegger|. Considering the
same expectation value in the uncorrelated state

(U|(1 = 71iz) e, 250 (1 — Rjs) [ T)g

the ket-part contributes \/(1 —n5)(1 — njo)nie(1 — njz) and the bra-part
\/(1 —n5)(1 — nig)njs(1 — njz). Put into Equation (3.12) it gives

gy‘f' _ (1 - ni&)(l - nJ'&)\/%U’ij (3 13)
w7 (PZ.:)o(PZ ;)0

Consequently with spin conservation the final factor is

T 1—n; | 1—n;
git =J —— (3.14)

1— Nio - nja
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and with occupation conservation

tI1 _ J : ni(1 —ni)(1 — nig) $ (L = ny)(1 = njo) : (3.15)

1o L —nig)(ni — 2npniy) \ (1 = njo)(ny — 2nj4m; )

In the non-antiferromagnetic case, n;; = n;; = n/2, there is no difference between
the Gutzwiller factors and they reduce to

1—m; |1—n; 1—n
t i j
=2 =2 ) 3.16
Jij 2—n;\1—-ny 2—n ( )

where the last equality holds for homogeneous systems n; = n.

Similar calculations can be carried out for other relevant expectation values.
For superconductivity, O = é%éjg

1— 10 1— o3 10 [jo
. (1= 1j0)FioTTie. (3.17)
(PE.)ol(PE )0

which differs from ¢ due to the operator-pair having opposite spin and not the
same as for hopping. The two cases written out are

1—n; | 1—n;
AT i J
A5 ) 3.18
Jige =1 —niz \ 1 —nj, (3.18)

g | il —ng)(1 —nio) ni(1—n;)(1 —nys)
A”—Ju J(l . (3.19)

wo — Niz) (N — 2nipn;)) = njo) (1 = 2njin;)

and

In the non-antiferromagnetic case, they are the same as for hopping gz-% = gfj.
By definition, there is no Gutzwiller factor for magnetisation in the case of local
spin conservation since

(mi) = (nip) — (nay) = nag — nyy, = (ma)o, (3.20)
but when relaxed into occupation conservation there is, and it is given by

g;n,II_ Yo 1y (3_21)

a <P(21,z'>0 oy = 2ngng)

3.1.3 Gutzwiller Factor for Four-Operator Terms

The Gutzwiller factors related to the four-operator terms arising from the ex-
change coupling term are treated similarly with some slight adjustments. The
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exchange coupling term is expanded as, see Equation ([2.15|)
(8i- 8j) = (S757) + w%%<§?>
1

j
=3 > (else )+ - Z EoZor( cwcwcja,cjg ). (3.22)

The first two terms, first term in the last row, are related to spin along the z-
and y-spin axes also labelled in-plane. The last term is related to spin along the
z-axis, out-of-plane.

The Gutzwiller factor for the first term, xy-term, is

J <\Ij|é;‘r&éiaé}aéj5|qj> 1
Iy (T]0) (Wolehsintl 25| W)

(3.23)

Note, that the factors (1 —n;5) do not need to be explicitly introduced since they
automatically follow from the operators. The ket-part is non-zero if jo and io
are occupied and jo and ig are empty. The bra-part is non-zero if the opposite
is true, giving contributions: \/nwni&njgnjg(l — nig) (1 —nig) (1 — njo) (1 — njs)

and \/’Yia%ar’Yja%&nwﬂi&njanj&(1 — ) (1 —nig) (1 — njo)(1 — njz) so
v/ YicYicVjoVjo
Gy = (3.24)
Yo (PE(PE)

which in the case of local spin conservation is

1
JI
Gy = (3.25)
=) (1 =) (1= ng) (1= nyy)
and in the case of local occupation conservation
JIT nin;
g, = , (3.26)
Yo (= 20y ) (ng — 2n4im;)
which both reduce to A
J
Gay = (3.27)
Y2 =) (2 ny)
in a spin independent case.
The second term, z-term, comes with the Gutzwiller factor
g = (W2lyio (1 = nig) &l jor (1 = mjor) | W)
) (P ) (3.28)

(1 —niz)(1 — nj)
<\Ij| Cw( ni&)é}g/é\ja’(l - njﬁ’)|\Ij>
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the ket-part is non-zero if ic and jo' are occupied and io and jo' empty. The
same holds for the bra-part, leaving contributions n;,n;. (1 — n5)(1 — njs) and
YieVio'MioNjo (1 — 1z ) (1 — njgr) so

J _ %‘a’Yja’(l - nz’&)(l - nj&’)

9 (3.29)
(P2)(PE ;)
which with local spin conservations is
g =1 (3.30)
and with local occupation conservation
J nin;
9: = . (3.31)
(ni = 2namniy) (nj — 2njm;)

For the used derivation scheme the Gutzwiller approximation is thus not always
preserving rotational symmetry. In case I it can be understood from the fact that
only taking on-site contractions into considerations the z-term can be written

(5755 = (mi)(my) (3.32)

which is by the construction of the fugacity factors said to be conserved. The
assumption of local spin conservation demands the selection of a spin axis, which
inherently breaks rotational symmetry. Sometimes the same factor is however
taken for (§f§;> as (S’fﬁf} and (5Y ﬁ;’)to avoid breaking the symmetry due to
form of the Gutzwiller factors, see also [44, 45]. Finally, it should be noted
that the Gutzwiller factors will be different if more contractions are kept in the
derivation, see for exampled [18|, 42].

3.2 Mean-Field Guztwiller Approaches

The Gutzwiller wavefunction can also be used to approach the strongly correlated
t—J model. Within the subgroup of mean-field approaches the aim is to minimise
the energy [16, 18, |20} 25, 34]. In early works [16] this was done by renormalising
the t—J Hamiltonian, Equation , giving an effective Hamiltonian

Ho =1 Y (ghehéso +hc) + T3 6550 S5, (3.33)
(ij)o (i)
and subsequently solve it with a mean-field decoupling and Bougoliobov rotation
as in Section 2.2l Over time more involved approaches have developed, which
instead of working directly with the effective Hamiltonian Equation form
a Hamiltonian using the expectation value of the energy

A

W = (Hest)o, (3.34)
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which is explicitly calculated for the homogenous case in Equation and
inhomogeneous in . In one approach, sometimes called Renormalised Mean
Field Theory (RMFT) [46], constraints are added to the energy to ensure fixed
total occupation > ; n; = N and normalisation of the wavefunction (Vy|Wy) = 1
[25] giving )

W =W — A1 = (¥o|Wo)) — p)_(n; — N). (3.35)

The Hamiltonian is then formed taking the derivatives of the energy with added
constraints with respect to the considered mean-fields

+He+Y SZ/ ¢l &, (3.36)

————=,CigCi
oliocCjo
aAUU o

Ajjo = (CizCjo)o, (3.37)

The Hamiltonian is then solved using a Bouglibov transformation. See also for
example [34] where a slightly different W is employed.

In this thesis the Statistical Consistent Gutzwiller Approach (SGA) will be
used [20-22, [47]. The RMFT and SGA approaches have been shown to agree in
a superconducting state [48]. Using the SGA constraints for all mean-fields are
added to the expectation values of the effective Hamiltonian to ensure that the
mean-fields obtained by a self-consistent approach are the same as for variational
minimisation [20]. This condition might otherwise be spoiled by the dependence of
the Gutzwiller factors on the mean-fields. The constraints are added via Lagrange
multipliers A\ one for each mean-field, whose symmetry they follow. The mean-field
Hamiltonian with added constraints is

Hsaa =W = Y (N0 (@hotio = Xigs) + Ao (Piolio — Aijo) + Hoc]

e 33
- Z[)\?a(ﬁicf - nia) + /fbﬁz’g] = W + )\ + \IITH\IJ,

where the scalar terms containing the Lagrange multipliers are collected in A and
the operators have been written in matrix form UTHWU. The Hamiltonian H can
be diagonalised by which the eigenvalues E; and the eigenvectors forming a new
basis are calculated. The grand potential functional follows as

Q- _; In Te(e PHs00) = W 4 A = Sl (1 + e 7F) (3.39)
l
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at inverse temperature 5 = 1/kgT > 0. The potential is minimised putting the
derivatives with respect to mean-fields (A) and Lagrange multipliers (B), to zero.
This approach results in equations of the form

o _ow  or_
OA ~ 0A ' 0A
o0 O\ OE, (3.40)

@=@+;f(Ez)£:0-

Note that A is linear in both mean-fields and Lagrange multipliers, see Equation
(3.38) which for example contains )\%Uxija . The first equation thus gives ex-
pressions for Lagrange multipliers and the second self-consistent equations for the
mean-fields.

It should be pointed out that the mean-fields are evaluated in the uncorrelated
state. The corresponding field in the correlated state is given by multiplication
by the appropriate Gutzwiller factor, see Section [3.1} In the case of superconduc-
tivity, the superconducting order parameter is given by

A, = g5, 0o (3.41)
The correlated mean-fields for hopping and antiferromagnetisation are given in
the same way, while the fugacity factors ensure that the occupations are the same
in the correlated as uncorrelated system.



4 Homogenous Case

To better understand results of inhomogeneous systems, the Statistical Consistent
Gutzwiller Approach (SGA) [20-22, 43] is first studied in the homogeneous case.
Then the lattice is infinite and without edges, which allows for a study in reciprocal
space. First, general equations are derived in a similar fashion as for cases with
edges, to make comparisons easier. Second, appropriate simplifications are applied
and the phase diagram and the density of states are calculated and presented.

4.1 Evaluation of Mean-Field Hamiltonian

The aim of this section is to compute the grand potential functional Equation
(3.39), in doing so the expectation value of the Hamiltonian W = (ﬁeff>0 must
be calculated and the Hamiltonian H in Equation diagonalised. For the
evaluation the magnetic unit cell, see Figure 4.1 with two sublattices A and
B, thus allowing for antiferromagnetism, is used. Further, the following spin

dependent mean-fields are considered

X{ja = <éjaéj0>0 = (X;‘cig)*7
Azfjg = (CisCjo)o = —Afwa (4.1)

Nig = <62'Lgéia>07

where f € {z,y} dependent on which direction the link lies in. In every unit
cell (UC), there are one A site and one B site, each with four neighbours, so
consequently there are totally four links in the UC. On the links lie the hopping
mean-field, sometimes called bond order, X{jg and pairing mean-fields Af; The
links can be in either z- or y-direction, in the case of pairing mean-fields these
need to be differentiated to allow for both s- and d-wave symmetry of the order
parameter. Computing the occupation densities for spins separately, allows for
magnetism m = ni — n.

To evaluate the sums, all nearest neighbours are summed over. Note that in
the sum Y5 in Equation (3.38), each link should be counted only once. One

unit cell thus leaves the contribution to the hopping term

S tijo 0o (Elhtio + HCYo = 23" tro0h 5o X so + (Ciss) ], (4.2)
UC of

g

19
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Figure 4.1: A homogeneous lattice with the magnetic unit cell marked with red lines.
The cell contains one A-site in the center and one B-site. The latter in the form
of four quarters of neighbouring B-sites, placed in the corners of the unit cell. The
lattice constant d, and the x- and y-axes are marked as well as the symmetry azes in
reciprocal space x' and y'.

where f € {x,y}. In a lattice of N sites there are are N/2 unit cells, giving a total
energy contribution of

N> tiedhpo [XQBJ + (XQBU)*]- (4.3)
of

In the rest of the chapter, the sum over unit cells and lattice will be calculated in
one step.

The exchange term is less straightforward to evaluate, since it consists of four-
operator terms, see Equation (2.15). Applying Wicks theorem and the mean-field
approximation the terms can be expanded

(@l o Cjorho A i )0 geion)o

L o . L (4.4)
— (el )0 (Ciotjor)o — (litioro(Cintly o,

note that more terms are kept compared to the previous mean-field approximation
Equation (2.2). The exchange term gives, with m; = n; — n,, after summing
over the lattice the energy contribution

1 ES
> Jijgl(Si - Sj)o =N 19;713 S Jr2mamp + 3 (2(A 5s) A,
f o

(i5) (4.5)

- Q(XQB&)*XQBU - |Xicha|2 - ’AQBO’IQ)]'
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Equations [4.3| and ([4.5)) form W.

Evaluating the sums over mean-fields times Lagrange multipliers, resulting in
scalars, gives

~ N
A= E Z (QAABO‘XABO‘ + H.C. + 2/\ABUA£BJ +H.C. + /\AGnAU + /\BanBcr) .
of
(4.6)
Further, the operators are transformed according to
C]a \/_ Z Ckaezkrj
(4.7)

zkr]

jO’ \/_ Z Cro€

where, using the magnetic unit cell, k € (—1/(dv/2),1/dv/2]. The operator terms
after transformation are written

S ULH T, = — Y (Vo tare + NpehioCoko)
k

ko
d(ky + Zrky) . R
- Z )‘ABcr /\ABcr) ] cos —= ¥ \/5 Iy (CLUMCBk'J + CTBkaCAka)
kof

d(ky + Z sk
— 2% A4y, cos (T@fi")éAk(,éB_k(, +H.C,

ko
(4.8)
where 2, = —1 and =, = 1,
CAk?
I éT Akl
Ue=1] "1, 4.9
k CBkt (4.9)
C gLy
and
— Ny — 0 —CABtE NABE
H, = 0 )\%*Jr e TTIAB K CABlk | (4.10)
—CABtk  —Mapk —ABp — H 0
NaBtk  GABlk 0 L+
with
- d(k, — k y d(k, + k
CaBok = 2Re[N 5, ] cos dike — ky) + 2Re[ N ,] cos M’
d(k /;/? d(ky + k) v (4.11)
o = 2\A, cos WL 4 9N\ cos ot L
NABok ABo \/§ ABo C \/§
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Note that the order of the pair of operators with spin down have been inter-
changed, giving the additional term, (Aa; + Ap})/2 + p, why

~ )\A¢+)\B¢+

A=A S (4.12)

Focus is then turned to the diagonalisation of the Hamiltonian in Equation
(4.10). The diagonalisation is made by a Bogoliubov transformation [37] writing

H,, = U} DUy (4.13)
where Dy, is a matrix with the eigenvalues Ej, of Hj on the diagonal, and

UAlkT UA2Kt VAlkt VA2t
v v U U
U = Alk] VA2k] UAlk] UA2k| (4‘14)
UB1kt UB2kt VB1kt VUB2kt
UB1k| VB2k] UB1k|, UB2k|

where the columns are formed by normalised eigenvectors of Hy, and the annihi-
lation and creation operators are given by

Uy = Up Ay, (4.15)

where

Av=1.511|. (4.16)

In conclusion, the SGA Hamiltonian in the homogeneous case is

Hgga =W+ X+ Epdly i, (4.17)
Ik

where

N 1
W =N tiodip, [XQBU + (XQBU) ]+ Nig}]&B > Jr[2mamp
of f

(4.18)
+ Z(Q(AQBa')*AQBU - 2(X£B5)*X£BU - |X£Ba|2 - ‘A‘ZBUF)L

is the sum of Equations (4.3) and (4.5). At this point, the grand potential func-
tional at inverse temperature 5 = 1/kgT > 0 can be evaluated [49] giving

1 A
f1=-5h Tr(e PHsoa) = W 4 A — 3 In (1 4 e PFw), (4.19)
I,k

where A is defined in Equation (4.12)).
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4.2 Self-Consistent Equations and Equations for
Lagrange Multipliers

The expressions for the Lagrange multipliers and self-consistent equations for
the mean-fields are obtained by minimising the energy. This is done by taking
derivatives with respect to the Lagrange multipliers and mean-fields. Note that
the derivatives should be taken separately with respect to the real and imaginary
parts. The Lagrange multipliers are given by,

J S

AABO‘ =—- tfogqua + ngAB@X,{&B& + X,];Ba),

J
>‘ABJ 4ngB(2AABa Aig,),

89A o’ * J 9184 mBEU
tha . XQBO-/ + (hpy )] = 3 S (4.20)
f
J 6gAB *
Z 4fa na m mp +Z ABU) AABU (XiB&’) XQBO"

o’

- |XABU'|2 |AABU'| )]

where 24 = 1 and £ = —1. Note that in the homogeneous case mamp = —m%
and thus come with a factor 2 upon derivation. The mean-fields are further
calculated using

1 8Elk 1 8Elk
Re[xip,] = —= Eu , Im[yp,] = = ,
1 8Elk f 1 8Elk
Re[A/, = —— E Im[A = -
1 6Elk
= Zf E) -
T 6?>\”
(4.21)

Where Ej; are eigenvalues of the Hamiltonian in Equation (4.10]).

4.3 Density of States

Based on the expression of the operators Equation (4.15)), the spin dependent
density of states (DOS) at energy w can be calculated by

Nag(w ZQAJ ko |*6(w — Ei) + [vaike]*0(w + En)). (4.22)
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where the d-functions are approximated by Lorentzians

r 1
5(OJ B Enk) ~ T (w - Enk)z + 12

(4.23)

with width I'. See for example [37]. Further, note the Gutzwiller factors that
enter into the expression for the DOS. These can be understood as related to
hopping in time, probing the DOS by inserting and later removing electrons [24,
25]. Thus it is given by, case II,

nz(l — nz)(l — nig)
1-— nia)(ni — annu)'

gz{\]f = gfia - ( (424)

4.4 Results

In the homogenous case it is naturally to present the superconducting mean-field
somewhat different to in inhomogeneous space. To do so, the superconducting
singlet and triplet mean-fields are expressed

1
S A A A A
A = §<CA¢CBT —emepy) = Mg — Alp,,

1
T A A N A
Al = 3 (CaiCpt + Carlpy) = AQBT + A£B¢7

as well as the s- and d-wave components

s o Sx Sy
ap = Ap + A%g

d _ ASz Sy
AAB = AAB - AAB-

In this section the possibility of an s-wave mean-field will be excluded by assump-
tion, therefore the superconducting order is described by its d-wave part A% and
triplet part A!, which are the quantities plotted. The same follows for the La-
grange multipliers. Note that the used Hamiltonian and mean-field approximation
do not give rise to any triplet pairing of the same spin, that is on form ¢,¢4,-.

Further, it is assumed that the hopping is real and homogeneous in space,
XiBo = (X4Bos)" = X%p,- The same assumptions follow for the Lagrange multi-
pliers. Further, the hopping integral and exchange coupling have been taken to
be direction and spin independent ¢;, = t and Jy = J. The hopping integral is
taken as unit of energy t = —1. The chosen Gutzwiller factors are those referred
to as case II in Section B.1l

Using these assumptions the self-consistent equations in Section have been
solved for two different exchange couplings J, to facilitate comparisons with the
results of the inhomogeneous case in Sections [5.3.1] and [5.4]
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4.4.1 Phase Diagrams

The pairing, hopping and antiferromagnetic mean-fields in both the uncorrelated
and correlated systems are presented in Figure [1.2] In (a)-(b) for J = 0.25 and
J = 1in (c)-(d). The x-axis show the entire studied doping region for J = 1 which
means that the graphs for J = 0.25 are cut when the superconductivity approach
zero. To better see the coexistence of antiferromagnetism and superconductivity
Figure [4.3|focuses on this region. As in Figure|4.2| (a)-(b) show the mean-fields for
J =0.25 and (c)-(d) for J = 1. In the right column the mean-fields are multiplied
by the appropriate Gutzwiller factor.

Without the Gutzwiller factors, all mean-fields increase towards lower dopings,
a behaviour similar to results in Refs. [16, 18 20]. However, in the correlated
state, with Guztwiller factors, the hopping and superconducting mean-fields are
reduced for lower dopings, the latter reproducing the known dome shape of su-
perconductivity in cuprates [50]. The opposite is true for the antiferromagnetic
order, which actually increases in the correlated state.

Further, increasing J shifts the endpoints of the antiferromagnetic and super-
conducting regions to the right, that is to higher levels of hole doping. Giving
larger regions of superconductivity and antiferromagnetisation coexisting with
superconductivity. How far into the hole-doped region the antiferromagnetic phase
reaches varies between models [18, 20, 25, 43| one reason can be the choice of
Gutzwiller factors, see Section [3.1]

It should be pointed out that the Lagrange multipliers are the values entering
into the Hamiltonian Equation (4.10) which gouverns the spectrum and the DOS,
and not the mean-fields. The Lagrange multipliers connected with the mean-fields
in Figure are presented in Figure 1.4 In (a)-(b) for J = 0.25 and (c)-(d) for
J =1, as before the right column shows the entire considered doping region while
the right focus on the antiferromagnetic one.

4.4.2 Density of States

The DOS is studied at two different levels of hole doping, 6 = 0.05 and 6 = 0.005.
The higher with J = 0.25 and the lower with both J = 0.25 and J = 1, the latter
to allow for comparisons between the antiferromagnetic and non-antiferromagnetic
region keeping the same doping. The quantity plotted is always the DOS, given
in Equation (4.22)), multiplied by I'. The multiplication is done since the ap-
proximation of Dirac delta functions as Lorentzians, see Equation (4.23)), gives
them height 1/I' and N(w) dimension 1/energy. The DOS of up spins at sites
A is plotted on the y-axis in Figure [4.5] with energy on the z-axis. Since this is
the non-antiferromagnetic region, the DOS of down spins looks the same and is
therefore not plotted. There is neither any difference between A- and B-sites and
the DOS of sites A and B are identical.
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Figure 4.2: First row, mean-fields for J = 0.25 in (a) and multiplied by the appropri-
ate Gutzwiller factor in (b), second row, mean-fields for J =1 in (c) and multiplied by
the appropriate Gutzwiller factor in (d), according to legends. The entire considered
doping region is plotted, as specified on the x-axes.
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Figure 4.3: Focus on the region with coexistence of superconductivity and antiferro-
magnetism. First row, mean-fields for J = 0.25 in (a) and multiplied by the appropri-
ate Gutzwiller factor in (b), second row, mean-fields for J =1 in (c) and multiplied
by the appropriate Gutzwiller factor in (d), according to legends. Dopings are specified
at the x-azes.
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Figure 4.4: Lagrange multipliers for J=0.25 in (a)-(b) and J=1 in (c)-(d). The left
column shows the entire studied doping interval while the right focuses on the region
with coexsistence.
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Figure 4.5: DOS of up spins at sites A at hole doping 6 = 0.05 and with J = 0.25,
at the y-axis, see Equation (4.22), and energy on the x-axis. The system is in the
non-antiferromagnetic region and therefore spin down will look the same.

The lower hole doping § = 0.005, is first studied for J = 0.25 see Figure [4.6|a),
where the DOS of up spins is plotted on the y-axis and energy on the z-axis.
The system is in the non-antiferromagnetic region, and thus the spin down is
equivalent. Increasing the exchange coupling, the system is moved into the an-
tiferromagnetic region and the DOS becomes spin dependent. The DOS for up
spins at J=1 can be seen in Figure [4.6[b) and for down spins in Figure [1.6(c) -
and y-axes as in (a). Since there is a majority spin at sites A the DOS will be
spin dependent, so is also the Gutzwiller factor, see Equation , scaling up
and down differently.

As long as there is no net ferromagnetisation it follows that B have the opposite
majority spin with the same amplitude. Thus ng, = nss and my = —mgp.
Consequently the DOS will also be site symmetric, Ngz = Ny,.
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Figure 4.6: Results for 6 = 0.005 in (a) DOS of spin up using J=0.25 (b) DOS of
spin up using J=1 and (c) DOS of spin down using J=1. In all, the x-azis gives
energy and the DOS, see Fquation , is on the y-azis. In (a) the system is in
the non-antiferromagnetic region and therefore spin down will look the same. In (b)
and (c) the system is in the region with coexistence so the DOS of both spin up and
down are plotted since they are different.



5 Inhomogenous Case

Now focus is shifted to inhomogeneous systems. Inhomogeneities can be realised
in multiple ways, for example by introducing defects or edges. Here, the latter is
studied using a slab where the boundaries are cut as [110] edges. At the [110] edges
zero-energy Andreev bound states (ABS) arise and mean-fields change compared
to in the bulk.

As these systems are not homogeneous and mean-fields vary with distance from
the edge, a new unit cell is required and consequently new equations are derived as
described in Sections[5.I]and [5.2] The equations are spin dependent and allow for
spatially dependent exchange couplings and hopping integrals, the latter is also
spin dependent. These equations will be solved at different average hole-dopings

1—5:]\2;%, (5.1)

not to be confused with the local electron density n,. In the chapter local occu-
pation densities will always be discussed in terms of n, rather than hole doping
0a = 1 — ng, hole doping thus always refer to the global value §. Further, the
Guztwiller factors of Case II in Section will be used. In addition, the systems
consist of NV, = 100 sites, which can be assumed to be the case in the remainder
of the chapter. The hopping integral and exchange coupling will be assumed to
be uniform and spin independent ¢;;, = t, J;; = J and the hopping x real. Fur-
ther, the absolute value of the hopping integral will be taken as the unit of energy
t=—1.

Using those parameters, results have been generated for J = 0.25 getting a
superconducting order parameter with pure d-wave symmetry at the edge and
at the studied dopings 6. Details of the results can be found in Paper I and
are summarised in Section [5.3.1] Increasing the exchange coupling to J = 0.3 a
subdominant s-wave component of the order parameter was found, see Section
5.3.2 Increasing J even further to J = 1 makes it possible to converge the
equations at the lower doping 6 = 0.03 and thereby study antiferromagnetism
(AFM) in slab systems, see Section . The latter results should provide principle
indications of what to expect at sufficiently low average dopings for lower, more
realistic, exchange couplings J.

In the chapter, the mean-field Hamiltonian is first evaluated and the self-
consistent equations derived. After, results for different exchange couplings .J
are presented and discussed.

31
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5.1 Evaluation of Mean-Field Hamiltonian

To evaluate the Hamiltonian in Equation (3.38]) an appropriate unit cell must be
chosen. The unit cell reasonably uses the symmetry of the system and is, for
computational reasons, as small as possible. The unit cell (UC) that will be used
is shown in Figure 5.1} It is different from the one in the homogenous case, see
Figure [4.1], owing to spatial variation along the z’-axis. The unit cell is N, sites
deep, the width of the slab, and the sites are labelled 1,2,...,N, starting from the
right edge. Thus, N, /2 and N, /2 + 1 are the farthest away from the edge.

Evaluating the Hamiltonian in Equation , the contribution of the new
unit cell to the hopping is

N;—1

Z tijUgfja <CZCTC]U + H. C > Z Z ta a+1aga a+lo [X(J: a+1lo + (X(J;,aJrla)* ) (52)
UucC f,o a=

g

standing at site 1, hopping is possible to site 2 in z- or y-direction. At site 2,
hopping is possible to sites 1 and 3, but the former has already been accounted
for, etc. The spin term is evaluated as in Section |4] and is given by

1 N,—1
Z JZ]glj S S 1 Z Z Ja a+1ga a+1 2mama+1 + Z( a a+10A£,a+1a
f a=1
- 2X£*a+laX£ a+lo — |A a+10|2 |X£,a+10|2>1 ’
(5.3)
where f € {z,y}. The expectation value of the energy per unit cell is then
& f f
WHO = Z Z Z ta a—l—la’ga at+1o | Xa ,a+1lo + (Xa,a—&—la)ﬂ
f a=1
‘]afa+1 J f 5.4
+ 4 Ya,a+1 2mama+1 + Z( aa+10Aa7a+1U ( : )

- 2X£,*a+16X£,a+1a - |A£,a+la|2 - |X£,a+1a|2>‘| }

The same calculations for the scalar terms of mean-fields times Lagrange multi-
pliers give per unit cell

Ny—1 ¥ .
)\110 - Z Z |:Xa a+1o)‘a a+lo + (Xg;a—&—la)‘i;a—&—la) +
Joo o=l (5.5)

N,
Aa a—l—la)‘a a—|—la (A£ a—l—la)‘a a+lo } + Z Z )‘Zanag
o a=1
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Figure 5.1: (a) The studied slab with sites, as grey disks, arranged into a square
lattice with lattice constant d. The edges are cut in the [110]-direction. Red lines
mark the unit cell and translational invariance along the edge tangent is assumed.
The x- and y-azes are the crystal azes, corresponding to the x- and y-axes in Figure
[1.3. Between sites the lines represents links which can be in either x- or y-direction.
In (b) enlarged view of the area surrounded by dotted blue lines in (a), including the
right [110] edge. The symmetry azes ' and y' of the unit cell are marked. The axes
are chosen so that y' is aligned with the edge tangent and ' with the edge normal.
The sites in the unit cell are labelled a = 1, 2, 3, etc. after their distance to the right
edge measured along x’. Note that it is important to differentiate between the pairing
amplitudes A%, and A} .y if both d-wave and extended s-wave symmetries should
be considered. There is one link in the y-direction and one in the x-direction between
each pair of sites a and a + 1. Same Figure as Figure 1 in Paper I.
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As the lattice is only translationally invariant along the y’-axis, the Fourier
transformation is done in only one dimension according to

1 .
éaba = T Z éakaemby
F (5.6)
- \/7 Z Cako© _Zkb

where the site index ¢ is expressed by its coordinates a and b along the 2'- and
y'-axes respectively and N, are the number of sites in the y-direction. So i — ab,
and k € (—1/(dv/2),1/(dv/2)]. For each site, a vector of operators

Yak = ((ﬁ“) (5.7)

is introduced. These vectors form the full vector

Using the full vector, the operator part can be written as

aba

SO0 H b, (5.9)
k

where the Hamiltonian matrix Hj consists of blocks on the diagonal, coupling
neighbouring sites a and a + 1,

—Aar — 0 —2X5 ay1p €O % Naat1t (k)"
(H) 0 o) T H _77;L,a+1¢(k) 2)\;‘:';1Jrli cos %
]C a, 1 — * n bl
a+ 2)\Xa+1T cos \k/% _nza-l—li(k) _/\a-HT — U 0
"7a,a+1¢(k) 2/\§,a+1¢ cos % 0 Aoy 1
(5.10)
where N .
N (k) = Moy ™VE + AT V2. (5.11)

The commutation of ¢ k| C—k| gives as in the homogenous case, Section , an extra
term — Y07, (Agy + 1), s0

~ Ne
A0 = Ao — D (Aay + 1), (5.12)

a=1

is defined.

To arrive at a scalar expression of the grand potential functional Equation (3.39)
the Hamiltonian Hj needs to be diagonalised. As in Section a Bougliobov
transformation may be applied writing the Hamiltonian

H,, = U.D,U], (5.13)
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where D, is diagonal with the eigenvalues Ej; on the diagonal, and

U1kt -+ UINk? V11kt .-+ UVINEt
21—k} .- U2N—k| U21—k] --- U2NEK|
U, — ’ (5.14)
UN1Et -~ UNNEkt  UN1kt -+ UNNEt
UN1-k| .- UNN—-k] UN1-k| --- UNNEK|

where the columns are made up of eiegenvectors of Hj. The operators are also
transformed using Uy as
Uy = U Ag, (5.15)

where
a1

A=Y (5.16)

aj

aly
and FEjj is the most negative eigenvalue, Fsi. the second most negative, and so on.
In conclusion, the SGA Hamiltonian is for the slab system

chig] = NyWiio 4+ NyAio + > Elkdgkdzk (5.17)
Lk

and the grand potential functional at inverse temperature § = 1/kgT > 0 becomes
after diagonalisation

1 N
0= ~3 In Tr(e PHsEA) = NyWiio + NyAiig — Y In (1 + e PPy, (5.18)
Lk

where IV, is the number of sites in the y-direction and Wijg, and 119 are defined

in Equations (5.4]), and (5.12)).

5.2 Self-Consistent Equations and Equations for
Lagrange Multipliers

The site dependent Lagrange multipliers and self-consistent equations for the
mean-fields are obtained by minimising the grand potential functional with re-
spect to the mean-fields and Lagrange multipliers respectively. Note that for
values which may be complex, the derivatives of the real and imaginary parts
should be considered separately. The Lagrange multipliers are given by

!
f J7 +1 *
)\g,aJrla = _tg:,a+lagé,a+la + gia—&—l GZ 2Xc]:,a+1c_r + <X£,a+la) ) (519)
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f
f Ja7a 1 * *
Whto = a2 20 0o - Olan)|. G20
)‘Za’ = 72&0’ + Macr’ + jaa’; (521)
where
05,0110 .
7;0’ = - Z{ti,aJrla 87; +/1 Xg,a+10' + (Xg,aJrla) 1
Jo (5.22)
agt 1
+ tg—l,aa 8(;1 fw [Xﬁ—l,aa + (X£—17aa)* }7
Il _ 993,
Mao" —— 72+1 <gia+1:(j/ma+1 -+ aTJr/lmama—l—l
5 @ (5.23)
+ J = ,m + aga—l,a,'n m
Ja—1,0=c"Ma-1 8”@0’/ a—11tg |,
where 24 =1 and 2| = —1, and
1 99 441 «
Jao' = — 4 ;{Jiaﬂa;mt [2(A£,a—l—1a) Ag,aﬂ& - |A£,a+10|2
99314
- 2X£,a+1aX£,a—|—16 - ’lezc,a+1a|2] + J({—l,a on 1: (524)
[2(A£—1,aa)*A£—l7aa - |A£—1,a0|2 - 2X£—1,aaX£—1,a6 - |Xc}:—1,aa|2] }
The self-consistent equations read
1 8Elk
Re[X}at10] = = S f(B)—— 17—, (5.25)
o 2Ny 0% ORe[AS,11,]
1 8Elk
(X} o110] = o 3 F(Bp)— 57— (5.26)
ot 2Ny 1% (‘9Im[)\§,fa+1o]
1 aElk
Re[A] 4i10] = =5 2 F(Ew) so—rar—— (5.27)
o 2N, Lk aRe[AéZL+1(J’]
1 8Elk
Im[A 1] > f(B) —ar (5.28)
o 2N, Lk mm[)\aA,éﬂa]
and
1 8Elk
ic = 0g | — — Ep)——.
n TN, - f( uc)a)\zna (5.29)
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Where Ej;. are the eigenvalues of Hy.
The local density of states (LDOS) is given by

Nis(w) = Zgg{|Uk[2z‘—1,n]|25(w—Enk)+|Uk[2z—1, n+N]]2(5(w+Enk)}, (5.30)
n,k

where the d-functions are approximated as Lorentzians, see Equation (4.23), and

the Gutzwiller factor ¢l is as in Equation (4.24)).

5.3 Superconductivity Without Antiferromagnetism

All results presented in the section and in the rest of the chapter are generated
assuming a real hopping X;jr = X;j, and the same for the corresponding Lagrange
multiplier. Further, the hopping integral and exchange coupling are assumed to
be site, direction, and spin independent J({ atr1 = J and tf;a 410 = t. The value of
t = —1 sets the magnitude of the energy scale. In this section the studied average
hole doping range is ¢ € [0.05,0.2]

As can be seen in Figure 4.3 antiferromagnetism is arising in the systems at
rather low hole doping. By keeping away from that region, the system is in a
non-antiferromagnetic phase, effectively making the system independent of spin.
Parts of the non-antiferromagnetic region for the slab system with [110] edges
was studied in Paper 1. Adding the novelty, compared to previous works [36], of
allowing the electrons to redistribute in the sample. In this section Paper I with
results using J = 025 is shortly summarised and results for higher J = 0.33 where
an s-wave occur discussed.

5.3.1 Summary of Paper | - J =0.25

In Paper I it was found that the edge attracts charges and the local occupation
increases, decreasing the local hole doping. The increased occupation reduces the
hopping Gutzwiller factor ¢', see Equation (3.16]), locally - a sign of increased
correlation. It can be understood as when more sites are occupied, the electrons
are less free to move. The redistribution of charges causes the d-wave pairing
mean-field to be less suppressed at the edge and that there is no room for an
s-wave part to arise as a difference to uniform electron density n, =1 — 9 as in
[36].

It is important to note that the mean-fields are computed in the uncorrelated
state. Considering the correlated state, the mean-fields are multiplied by the
appropriate Guztwiller factor. As the Gutzwiller factor is decreased at the edge,
this actually means the superconducting order parameter is reduced at the edge
even when the superconducting mean-field is not.

It should be noted that no AFM was found in Paper I, why expressions and
derivations in the paper are spin independent. Meaning, for example n;; = ny
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and g@a = gfj. However, the results were obtained using the equations in Section

5.2l

5.3.2 Higher Exchange Coupling - J = 0.33

As discussed in Section the phase diagram is dependent on the exchange
coupling J. Adjusting J it is also possible to change the symmetry of the order
parameter. When increasing J to 0.33, keeping all other parameters, a combined
d + is symmetry at the edge for has been found, see Figure [5.2] In Figure [5.2
the local occupation and hopping are plotted in (a) and (b), the d-wave and s-
wave combinations of the pairing amplitudes in (¢) and (d) respectively and the
corresponding expressions for the superconducting order parameter in (e) and (f).
In all cases with the site or link number on the z-axis measured from the edge.
There is no qualitative difference in the occupation profile compared to when
J = 0.25. The edge attracts electrons and the d-wave superconducting mean-
field and order parameter are suppressed close to the edge. The hopping is also
qualitatively behaving as for J = 0.25. The difference lies in there being an s-wave
in both the uncorrelated and correlated state. This is consistent with Reference
[34] where a subdominant s-wave was found in a two-dimensional system using
the Gutzwiller approximation.

The presence of the subdominant s-wave means a uniform gap opens at the
edge. The gap results in the Andreev bound states being moved away from zero
energy and the Andreev peak splits. The effect can be seen in Figure[5.3|(b) where
the LDOS in the gap is plotted with energy on the y-axis, site number on the z-
axis and values indicated by the colourbar. In Figure [5.3|(a) the entire LDOS is
plotted. Note that in contrast to the case of 6 = 0.05, see Paper I, there is some
weight of ABS on even sites. But it is still considerably lower than on odd sites.
That is also the case for 6 = 0.2 and J = 0.25. The increased localisation of
ABS to every second site, when doping is reduced, may thus be an effect of the
increased correlation.

5.4 Coexistence of Antiferromagnetism and d-Wave
Superconductivity - J =1

The inhomogeneous case has also been studied for lower dopings. As the occupa-
tion is still increasing and approaching 1, converging these systems are challenging.
By using J = 1 it is possible to reach antiferromagnetic (AFM) order already at
higher average hole dopings, see Figure [4.3] Doing so AFM, have been found
already at 0 = 0.03, higher than in the homogenous case, where it is present
from approximately 6 = 0.014, see Figure [£.3|c)-(d). Results were generated with
the same assumptions as specified in Section with the addition of the d-wave
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Figure 5.2: (a) Spatially dependent electron densities ng, (b) hopping amplitude
Xaa+1, (¢) combination of pairing amplitudes corresponding to d-wave character
(AF o1 — AY 411)/2, (d) combination of pairing amplitudes corresponding to s-wave
character (A% v + Al ,11)/2 multiplied by the negative imaginary unit —i, (c)
combination of superconducting order parameters corresponding to d-wave character

(Aﬁg’il — ASE’L)Q and (f) combination of superconducting order parameters corre-

sponding to s-wave character (ASEL + AS%’L)Q once more multiplied by —i. All

quantities are for 6 = 0.80 given in the legend. The slab width is N, = 100, but only
the first a € [1,30] sites/links are shown.
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Figure 5.3: Local density of states T/N,(w) for N, =100, 6 = 0.8 and J = 0.3. In
(a) the full spectrum as function of coordinate a is shown using I' = 0.015. (b) Focus
on the low-energy part of the spectrum, where the zero-energy Andreev bound states

are clearly seen as well as the split of them due to the s-wave component, generated
with a smaller I' = 0.001.
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component being forced to be real and s-wave imaginary. With a converged so-
lution the constraint have been relaxed at the converged solution found to be
stable. In the section will first the calculated mean-fields be discussed and then
the associated LDOS.

5.4.1 Mean-Fields

In Figure mean-fields and Guztwiller factors of the inhomogenous case in the
antiferromagnetic region, with J=1 and 6 = 0.03, is shown. As for the non-
antiferromagnetic case electrons are attracted to the edge see Figure [5.4)(a) where
the occupation as function of site is shown. The relative difference in local oc-
cupation is smaller than, for example § = 0.8 see Figure 2 in Paper I, probably
since n=1 constitutes an upper limit and therefore limits the possible range of
occupations. In (b) the antiferromagnetisation, mq = ne — ngy is plotted. Closer
to the edge m has a magnitude and changes sign in between sites, indicating
antiferromagnetism, towards the middle the amplitude decreases though some os-
cillations remain. It remains to conclude whether the antiferromagnetisation is
simply a result of the higher edge occupation, putting the region locally in the
antiferromagentic region see again Figure4.3], or some more intricate edge physics.

Further, Figures [5.4] c) and d) show the singlet, A, a1+ — Agat1,), and triplet,
Agat+14 + Agat1,y, combinations of the superconducting mean-fields. Note that
due to the presence of antiferromagnetisation there is also a triplet supercon-
ducting mean-field close to the edge, which dies towards the middle of the slab.
Also note that the singlet has a pure d-wave symmetry. In (e) and (f) the cor-
responding superconducting order parameters are shown, calculated by multi-
plying by the appropriate Gutzwiller factor, as Aa,a—kl,TgaA@ 1t — Aaar, J,gﬁa 1l
Aa,aﬂﬁgﬁa 1t Agat, igaAﬂ +11- The singlet superconductivity is, as in the non-
antiferromagnetic region, decreased by the Gutzwiller factors, especially so close
to the edge where it is almost vanishing. Interestingly, that is not the case for
triplet superconductivity, which amplitude is actually increased and shifted into
becoming more symmetric around zero. Mathematically, this is the result of
the Guztwiller factors being spin dependent and therefore changing the relation
between A, 4414 and A, 441 . Since the Gutzwiller factor for magnetism, see
Equation [3.21] is larger than 1 the magnetism is strengthened. As the triplet
superconductivity is related to the AFM, it is perhaps not surprising that the
Gutzwiller factors also increase the triplet superconducting order parameter.

For completeness the hopping is plotted in Figure (g) and the Gutzwiller
factors for hopping and superconductivity in (h). Towards the middle as the
system tends to be spin-independent the Gutzwiller factors are the same. While
closer to the edge especially gﬁa 410 depends on spin and oscillates, the cause of
the strengthening of the triplet superconductivity. The tendency towards AFM
Nao & Ngi1s Strives to reduce the spin dependence of the Gutzwiller factor for
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Figure 5.4: Results for average hole doping § = 0.03 using J=1. In (a) the oc-
cupation is plotted and in (b) the magnetisation. The singlet superconductivity,

vat1r — D ay1ys i (c) and the triplet, AL 11+ +AF 11, i (d). In (e) and (f)

the superconducting order parameter is shown, singlet, A(Slgffm — Aiiflﬁ and triplet,

Aiiim + Aigfm, respectively. In (g) the hopping mean-field is plotted. In (a)-(g)
the legend in (a) indicates the occupations. In (h) the spin dependent Gutzwiller fac-
tors for hopping and superconductivity are plotted as stated by the legend. All plots
are having site number on the x-axis.

hopping ¢.

5.4.2 Density of States

The LDOS for the entire spectrum is shown in Figure [5.5(a) and for the low
energy region in Figure [5.5(b). Site on the z-axis and energy on the y-axis. The
peaks due to the Andreev zero-energy states can be seen as well as the spin-split
of them because of the AFM. Cuts of the same DOS are presented in Figure [5.0],
the entire spectrum in the left colon and the low energy part in the right. Sites
and spins are indicated by the legends. The spin splitting is seen in (a)-(d) and
the splitting of the ABS in (f) and (h)-(j). Especially in (j) there is almost no
overlap of the peaks. Due to the combination of the Gutzwiller factors being site-
dependent and the ABS only living at odd sites, the ABS of spins up constantly
have higher weight than the ABS of spins down.
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Figure 5.5: The full DOS in (a) as a function of coordinate a generated using I' =
0.015, J =1 and d = 0.03. (b) Focuses on the region of the energy gap of the spectrum,
where the zero-energy Andreev bound states and their split are seen, generated using
I' =0.001.
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Figure 5.6: Cuts of the LDOS for sites and spins indicated by the legends. The left
colon shows a wider energy spectrum while the right is focused on the gap region. Note
that the sites in (d) and (e) are different to (i) and (j). All generated at 6 = 0.03 and
using J = 1.



6 Conclusion and Outstanding
Questions

In Chapter [2], the t—J model was introduced and the solution process in a weak-
coupling regime outlined in relation to the BCS theory. In Chapter[3] the Gutzwiller
approach to the strongly correlated t—J model was presented with special empha-
sis on the statistically consistent Gutzwiller approach (SGA). A derivation of
spin-dependent Gutzwiller factors using counting arguments and fugacity factors
was also included in the same chapter. In Chapter [4] the ¢—J model was analysed
in the homogeneous case using the SGA. Phase diagram and density of states
(DOS) are presented for the superconducting region and the region with super-
conductivity coexisting with antiferromagnetism (AFM). In Chapter 5 the SGA
was used to solve the t—J model for a slab system with [110] edges. This was done
for three different strengths of the exchange-coupling J and different average hole-
dopings 6. For all studied cases, the edges were found to attract charge leading
to strengthened correlations locally. For the lowest exchange-coupling J = 0.25
no s-wave at the edge emerged for 6 € [0.05,0.2], but when it was increased to
J = 0.33 an s-wave started to appear, though much smaller than the s-wave found
without charge distribution, see Paper I. By increasing the exchange-coupling fur-
ther to J = 1 and lowering the average hole-doping to 6 = 0.03, a solution with
coexisting superconductivity and antiferromagnetism at the edge was converged.
The average hole doping ¢ = 0.03 is above the required in bulk for AFM.

The results on superconductivity at the edge raise some further questions about
the s-wave. By relaxing the assumption of pure d-wave in the homogeneous case,
see Chapter [4], it would be possible to determine if an s-wave is at all present in
a bulk system for any J or . Together with extended studies on the possible
presence of s-wave ordering at higher hole-doping, J = 0.25 and J = 1, and by
determining the doping interval for which the s-wave is present using J = 0.33,
it could be possible to gain more insights into the influence of the edge on the
S-wave.

Further, the importance of the zero-energy Andreev bound states is not con-
cluded. They could in full, partially, or not at all, be responsible for the charging
of the edges as they offer low energy states. In that case, the results at [100] edges
could be significantly different from those presented in the thesis.

At the studied hole-dopings no AFM is expected in bulk. As charges are drawn
to the edges, the occupation in the bulk decreases. It is therefore possible to
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imagine, dependent on the size of the system, a situation where the average hole-
doping indicates bulk AFM, but the charging of the edges pushes the bulk out of
the AFM region.

i
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