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Abstract

Personalizing treatments for patients often requires sequentially trying different
options from a set of available therapies until the most effective one is identified
for the patient’s characteristics. In chronic diseases such as Alzheimer’s Disease,
where interventions mainly have short-term effects, this search process can be
formulated as a multi-armed bandit (MAB) problem. Reducing the length of
the search is essential to limit patient burden and other associated costs, while
practical constraints, such as limiting switches between therapies, introduce
additional complexity to exploration. This thesis advances the foundational
understanding and applications of MAB algorithms in the context of treatment
personalization, focusing on improving sample efficiency by leveraging latent
structure revealed from historical data, and accommodating practical treatment
switching constraints. Key contributions include: (i) latent bandit algorithms
for fixed-confidence pure exploration, providing new insights into exploration
dynamics; (ii) the Identifiable Latent Bandit framework, which learns reward
models from observational data under identifiability assumptions; and (iii)
Latent Preference Bandits, which relax structural requirements by modeling
preference orderings instead of full reward vectors. The work addresses the
challenge of switching constraints through batched exploration approaches.
Furthermore, the Alzheimer’s Disease Causal estimation Benchmark (ADCB),
a semi-synthetic simulator integrating real-world Alzheimer’s data with domain
expertise is designed and employed as a causally sound evaluation platform
for bandit algorithms in personalized medicine. Together, these contributions
connect theoretical MAB developments with clinically motivated constraints,
offering methodologies for more efficient and practical treatment personaliza-
tion.
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Summary






Chapter 1

Introduction

Recent advances in machine learning have fueled growing interest its potential
to revolutionize personalized medicine, which seeks to tailor treatments to the
unique needs of individual patients. In chronic conditions such as Alzheimer’s
Disease (AD) (Blennow, de Leon & Zetterberg, 2006; Alzheimer’s Association,
2024), Rheumatoid arthritis (RA) (Aletaha & Smolen, 2018; Fraenkel et al.,
2021), or Psoriasis (Raharja, Mahil & Barker, 2021; Kim, Jerome & Yeung,
2017) care is an ongoing process that often spans many years. For example, RA
presents dozens of therapeutic options following diagnosis (Singh et al., 2016;
Murphy, Collins & Rush, 2007), with efficacy varying unpredictably across
patients, requiring sequential trials to identify the most effective match. This
highlights the critical need for effective treatment personalization strategies. To
illustrate the interactive and sequential nature of the treatment personalization
process, consider the example of AD treatment outlined in Example 1.

e 7
Example 1: Personalized treatment in Alzheimer’s Disease
(AD): A patient with AD visits a medical clinic seeking treatment.
A physician takes diagnostic tests to evaluate patient characteristics
related to the disease progression. It is known that AD cannot be
cured, but there exist treatments that manage the symptomatic effects
manifested with cognitive function (Farlow, Miller & Pejovic, 2008;
Livingston et al., 2017; Grossberg et al., 2019). After taking tests, the
physician recommends treatments to improve cognitive function, from
an available set of treatments, given the patient characteristics. This
process is interactive because the utility of the recommended treatment
(improvement of cognitive function) can only be observed if the patient
takes it. Furthermore, since treatments only alleviate symptoms short-
term (here cognitive function), this process will have to be repeated
sequentially at multiple visits, with the physician adjusting treatment,
aiming for the patient to achieve the best cognitive function in the long
term.

J

A sequential and interactive framework for exploring alternative options is
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multi-armed bandits (MABs) originally motivated by medical applications
in drug testing (Thompson, 1933) and studied historically in experiment
design (Chernoff, 1959, 1967; Gittens & Dempster, 1979; Lai & Robbins,
1985). MABs have a recent history of personalization applications, with both
academic and commercial success (Li et al., 2010; Chapelle & Li, 2011; Bounef-
fouf, Rish & Aggarwal, 2020a; Yancey & Settles, 2020; O’Brien et al., 2022). In
MABS, an agent aims to select actions (e.g. chronic AD treatments) sequentially
according to a policy (e.g., a treatment strategy) over multiple rounds, with
the goal of maximizing cumulative rewards (e.g. patient cognitive function)
from the actions selected. Contextual bandits (Li et al., 2010; Chu et al., 2011;
Agrawal & Goyal, 2013; Zhou, 2015; Abbasi-Yadkori, P4l & Szepesvéri, 2011)
are a well suited bandit formulation for personalization, that extends MABs
by incorporating instance-specific covariates (contexts) to tailor decisions, en-
abling generalization across similar instances and decision points. However,
key challenges persist in applying MABs to personalized medicine.

A primary issue is sample efficiency: traditional algorithms require extensive
interaction steps with an instance to identify optimal actions. This level of per-
patient exploration is impractical in healthcare, where the number of treatment
opportunities for an individual is limited and the stakes of suboptimal treatment
can be high (Dulac-Arnold, Mankowitz & Hester, 2019; Riachi et al., 2021).
Efforts to improve sample efficiency in multi-armed bandit algorithms include
leveraging historical data for warm-starting learning (Zhang et al., 2019; Oetomo
et al., 2023) or learning structures like clusters (Bui, Johari & Mannor, 2012;
Bouneffouf et al., 2019; Maillard & Mannor, 2014; Hong et al., 2020a). Latent
bandits (Maillard & Mannor, 2014; Hong et al., 2020a; Zhou & Brunskill, 2016;
Hong et al., 2020b; Galozy & Nowaczyk, 2023), which assume that each bandit
instance belong to unobserved discrete cluster types, have shown theoretical
and empirical sample efficiency gains. However, gaps remain in understanding
how they reduce exploration time, particularly in pure exploration settings
where the goal is to identify the optimal action with high confidence in minimal
trials (Garivier & Kaufmann, 2016; Kaufmann, 2020), practical learning from
historical data (Agrawal et al., 2023), and adaptability to looser information
structures.

Another challenge with MABs in personalized medicine is incorporating
practical constraints, such as minimizing treatment switches to reduce patient
burden or adhering to clinical guidelines. In MAB literature, switching has
been addressed extensively in regret minimization. For example Arora, Dekel
and Tewari (2012) studied switching in regret minimization against adaptive
adversaries and showed how mini-batching can control switches while keeping
regret low. Similar approaches appear in Dekel et al. (2014), Rouyer, Seldin
and Cesa-Bianchi (2021), Amir et al. (2022) and Li et al. (2023). However,
controlling for switching is under-explored in the pure exploration setting, where
the goal is not to maximize cumulative reward but to identify the optimal arm
efficiently.

Moreover, evaluating MAB algorithms in personalized medicine is chal-
lenging. Live testing of MAB algorithms in clinical settings is rarely feasible
due to ethical risks, patient safety concerns, regulatory constraints, and more.



Simulators provide a safe and controlled environment to explore algorithm
performance without endangering patients or violating regulatory protocols.
For such simulators to be useful, preserving causal relationships between clin-
ical variables is critical. Without causal fidelity, algorithm evaluations may
be misleading, particularly in sequential treatment settings where decision
outcomes depend on dynamic, interrelated factors. Yet, realistic benchmarks
that combine causal realism with healthcare complexity remain scarce. While
simulators like THDP (Hill, 2011) and ACIC (Dorie et al., 2019) have been
valuable for causal effect estimation, they rely on simplified, static mathemat-
ical response surfaces and are not designed for sequential decision-making as in
bandit settings. More data-driven approaches (Chan et al., 2021; Neal, Huang
& Raghupathi, 2020; Kuo et al., 2022) increase realism but often overlook un-
derlying causal mechanisms. This underscores the need for hybrid benchmarks
that integrate real clinical data with domain-expert causal knowledge (Herndn,
2019), enabling both realism and validity in evaluating bandit algorithms in
personalized medicine.

This thesis addresses the mentioned gaps by studying and developing novel
MAB-based strategies motivated by applications in personalized medicine,
particularly in chronic diseases. MABs are reviewed in Chapter 2, and later
chapters introduce results and approaches in:

i. Formulating latent bandits in fixed-confidence pure exploration, revealing
how latent structures reduce sample complexity by shrinking alternative
parameter sets, and proposing asymptotically optimal algorithms (Chapter
3).

ii. Introducing the Identifiable Latent Bandit framework, proving identifiable
latent variable models from historical data under causal assumptions enable
optimal online decision-making (Chapter 3).

iii. Proposing Latent Preference Bandits (LPB), which use preference orderings
for looser latent structures, and demonstrating characteristics and utility
of LPB empirically (Chapter 3).

iv. Reformulating pure exploration with switching constraints using batched
plays, developing optimal algorithms that minimize batches while limiting
switches and presenting optimality guarantees (Chapter 4).

v. Designing the ADCB simulator, a semi-synthetic benchmark for Alzheimer’s
disease that integrates real Alzheimer’s disease (AD) data with causal
domain knowledge and treatments from AD literature, for robust evaluation
of MABs in the AD setting (Chapter 5).



CHAPTER 1. INTRODUCTION




Chapter 2

Multi-armed Bandits

Multi-armed bandits (MABs or bandits) were introduced as a framework for
exploring alternative options, originally motivated by reducing suffering in
drug testing (Thompson, 1933) and subsequently studied in various settings
in experiment design and stochastic adaptive allocation (Chernoff, 1959, 1967;
Gittens & Dempster, 1979; Lai & Robbins, 1985). The name is inspired by
a casino game where a gambler aims to find the best slot machine of “one-
armed bandit” casino machines through repeated trials. Bandits are a precise
and efficient toolbox for a large class of problems in the standard model of
reinforcement learning (Bouneffouf & Féraud, 2024) and they’ve seen a renewed
research interest since the demonstration of their application in personalized
news recommendation (Li et al., 2010) with successful study and application
in varied domains from healthcare to finance, and more (Bouneffouf, Rish &
Aggarwal, 2020Db).

A multi-armed bandit problem is defined as follows (Lattimore & Szepesvdri,
2020): An agent (e.g., a treatment personalization strategy) and an environ-
ment (e.g., a patient) interact in sequence over T rounds. For each round ¢,
the agent takes an action Ay € A={1,..., K} (e.g., a treatment) and receives
a reward R; € R (e.g., a treatment outcome). Formally, a stochastic bandit
setting comprises a set of K actions, A = {1,..., K}, and the environment
specifies K reward probability distributions v, ...,vk with their respective
parameters (e.g. for Gaussian distributions with the same variance o?: the
means ¢ € RX). An agent seeks to learn the reward distributions of these arms
by interacting with the environment, as illustrated in Algorithm 1.

Algorithm 1 Multi-Armed Bandit Problem

1: for each round t =1,...,7T do

2:  a; < Agent chooses an arm a; € A using an exploration-exploitation
strategy (algorithm) 7 () based on current parameter estimates fi

3:  r(a) < A new independent, stochastic reward r; is realized, drawn from

Va,
4:  Update estimated parameters [
5: end for
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The key challenge in the MAB problem is the exploration—exploitation
dilemma: deciding when to explore (select actions whose rewards are not yet
well-estimated) versus when to exploit (select the action currently believed
to yield the highest reward). The difficulty arises because the true reward
distributions v,, a € A are unknown to the agent (here, “agent” and “algorithm’
are used interchangeably) at the start of the interaction. The agent must
estimate the parameters ji from observed rewards, and these estimates remain
uncertain even with a large number of rounds T' (Elena, Milos & Eugene, 2021).

In estimating these distributions, there are various objectives that are
typically formulated, that are next introduced.

)

2.1 Regret Minimization in Bandits

The typical goal in MAB studies is to design algorithms 7 that select actions
a € A={1,.., K} to maximize the cumulative reward over rounds. This is
a setting referred to as regret minimization. The regret minimization goal is
defined with respect to the unknown expectations of rewards p, = E[R,], with
the optimal action a* = argmax, i, and optimal reward p* = pg~. The aim
is to select actions a; according to an algorithm 7 on times stepst=1,...,T
until a horizon T to accumulate as little regret Reg(T) as possible,

T
miniﬂmize Reg(T) with Reg(T) := ZE“ W —Ra,] . (2.1)
t=1

To evaluate the performance of a MAB algorithm, regret bounds are typically
used. A regret lower bound characterizes the inherent difficulty of a bandit
problem by stating the minimum regret that any algorithm must incur in the
worst case, given a specified class of environments and a time horizon (Lattimore
& Szepesvari, 2020; Salomon, Audibert & Alaoui, 2011). These bounds are
algorithm-agnostic, and they hold for all possible algorithms within the model
class, such as all consistent policies in the stochastic bandit setting. In contrast,
an upper bound applies to a specific algorithm (or family of algorithms) and
shows that its regret does not exceed a certain level. When an algorithm’s
upper bound matches the lower bound (up to constant or logarithmic factors),
it is considered minimax optimal.

In stochastic regret minimization, a fundamental result by Auer et al. (1995)
establishes a minimax lower bound of order Q(vKT') on the expected regret.
That is, for any bandit algorithm, there exists at least one problem instance in
which the expected regret satisfies E[R(T)] > (v KT). This bound highlights
the inherent difficulty of the problem and serves as a benchmark for evaluating
algorithms, motivating the introduction of several bandit strategies whose
performance matches this rate up to logarithmic factors.

2.1.1 Bandit Algorithms for Regret Minimization

A nalve regret minimization strategy is to always select the arm that seems
based on the current knowledge. This would be, for instance, the arm with
the highest estimated reward after the first K trials. The drawback with such
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a purely greedy strategy is the lack of exploration. While it may perform
well in the short-term, it may not necessarily find the optimal solution in the
long term (Bouneffouf, 2023). To overcome this, bandit strategies explicitly
incorporate exploration, and aim to balance the trade-off between sampling
arms with uncertain rewards (exploration) and selecting the empirically best
arm so far (exploitation). Two of the most widely used approaches in stochastic
bandits that embody this principle are the Upper Confidence Bound (UCB)
and Thompson Sampling (TS) approaches, which are introduced next.

2.1.1.1 Upper Confidence Bound (UCB)

The idea behind the Upper Confidence Bound (UCB) class of algorithms (Lai,
Robbins et al., 1985; Agrawal, 1995; Auer, Cesa-Bianchi & Fischer, 2002; Auer,
2002) is centered around the principle of optimism in the face of uncertainty,
which states that in environments with uncertainty, it is beneficial for the agent
to assume that the environment is as favorable as plausibly possible, and to
act accordingly. UCB algorithms compute an optimistic estimate of each arm’s
reward by combining the empirical mean with a confidence bonus, and then
select the arm with the highest such optimistic estimate. An example is the
UCB1 strategy (Auer, Cesa-Bianchi & Fischer, 2002), which at each time step ¢
chooses the arm a that maximizes the following value:

2log(t)

NG (2.2)

UCB.(t) = fialt — 1)+

estimate
confidence bound
Here, ji,(t — 1) represents the estimated mean reward of arm a based on the

outcomes of all previous pulls up to time t — 1. This term encourages the

selection of arms that have historically provided high rewards, thus promoting

exploitation. The second term, l\zfic(’fitl)), serves as a confidence bound that

quantifies the uncertainty in the estimate of fi,(t — 1), which is ensured to
be an upper bound for the unknown means with high probability. N, (¢t — 1)
denotes the number of times arm a has been selected up to time ¢ — 1, and
log(¢) is the natural logarithm of the total number of pulls across all arms up
to time t.

The confidence bound is larger for arms that have been selected fewer times
(i.e., when N,(t — 1) is small), thereby increasing the UCB value for those
arms and making them more likely to be chosen. This mechanism ensures
that the algorithm explores arms with greater uncertainty, as their true mean
rewards might be higher than currently estimated. By selecting the arm with
the highest UCB value at each time step, the algorithm effectively balances
the desire to exploit arms with high estimated rewards and the need to explore
arms with potential for higher rewards due to uncertainty in their estimates.

2.1.1.2 Thompson Sampling

Thompson Sampling (Thompson, 1933), also known as posterior sampling, is
a classical Bayesian method for solving multi-armed bandit (MAB) problems.
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Algorithm 2 Upper Confidence Bound (UCB1) Algorithm

Require: the number of arms K
: fort =1to K do

1

2 Play arm t

3: end for

4: fort=K+1,K+2,...T do

5. Select arm a; = arg max,¢ (g (ﬂa(t —-1)+ 1\27(11(()%91)))
6

: end for

For each arm a, the reward r,(t) at time ¢ is modeled by a distribution
P(r¢|\a), where A, represents the parameters of the reward distribution for
arm a. A prior distribution P(;\a) is specified for each arm’s parameters. After
observing a reward r; from playing an arm, the posterior P(j\a|7"t) is updated
using Bayes’ rule: P(Aa|ry) o< P(r¢|Aa)P(Aa), based on all rewards observed
for that arm up to that point. At each time step ¢, the algorithm samples
parameters A, from the current posterior distribution of each of the K arms,
computes the expected reward E[r,|\,] for each arm given these samples, and
selects the arm with the highest expected reward. The following algorithm
illustrates this process: Thompson Sampling (TS) has been shown to be a

Algorithm 3 Thompson Sampling Algorithm

Require: the number of arms K, prior distributions P(),) for each arm
a=1,....K
1: Initialize: For each arm a, set Ppost q < P(j\a)
2: fort=1,2,...7T do
3:  For each arm a, sample 5\@ ~ Byost,a
4: Select arm a; = arg maX,¢|x| E[ra|Aa]
5 Play arm a;
6:  Observe reward r;
7. Update Pyost,a, < Update(Ppost,a,:Tt)
8: end for

competitive and often high-performing approach to stochastic MAB problems,
frequently matching or outperforming algorithms such as UCB across diverse
application domains (Chapelle & Li, 2011; Graepel et al., 2010). Theoretically,
analyses (Agrawal & Goyal, 2012; Kaufmann, Korda & Munos, 2012; Russo
& Van Roy, 2014) have established that T'S achieves asymptotically optimal
regret in the stochastic setting. Moreover, variants of both UCB and TS enjoy
worst-case (minimax) guarantees of E[R(T")] < O(v/KT logT), matching the
minimax lower bound up to logarithmic factors (Lattimore & Szepesvéari, 2020).
While these results do not prove that TS is uniformly superior to UCB in
all settings, they demonstrate that both algorithm families combine strong
empirical performance with robust theoretical guarantees in both problem-
dependent and worst-case regimes.
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2.2 Pure Exploration in Bandits

While many bandit problems focus on maximizing cumulative reward by bal-
ancing exploration and exploitation, some formulations remove the incentive
to exploit altogether. These are known as pure exploration (PE) problems, in
which the agent’s objective is to gather information about the environment as
efficiently as possible, regardless of the rewards (Kaufmann, 2020). In the PE
setting, two main problem types are commonly studied: (i) the fized-confidence
setting, where the goal is to identify the best arm using the fewest possible
rounds while achieving a pre-specified probability of success; and (ii) the fized-
budget setting, where the goal is to identify the best arm with the highest
possible probability of success given a fixed number of rounds. This thesis
focuses on the fixed-confidence pure exploration setting, outlined next.

2.2.1 Fixed-confidence Pure Exploration

A fixed-confidence pure-exploration strategy ¢ comprises a sampling rule for
exploring actions A; at each step ¢, a stopping rule to decide the time 7 at
which the exploration is over, and a recommendation rule which returns the
best action G, at the stopping time 7 (Garivier & Kaufmann, 2016; Kaufmann,
2020; Shang et al., 2020). The goal is usually to design a strategy ¢ to minimize
the expected stopping time E[7] with a pre-specified confidence parameter §:

mini(lsmize Eg[7] (2.3)
subject to P(ua, < p*) <4,

For the fixed-confidence pure exploration problem, Garivier and Kaufmann,
2016 presented a general lower bound for the expected stopping time E[r] of
any 6-PAC multi-armed bandit algorithm, i.e., one that returns the best arm
with probability at least 1 — §, for some ¢ > 0,

E[r] > T" (1) k(6,1 — §) . (2.4)

here T*(u)"!:= s f .
st 7074 = g (St

Here, d(.) is the KL-divergence, and X := {w € Rf : Z(Ile w, = 1} is the
simplex of possible arm playing proportions. This lower bound is derived by
considering the optimal allocation of arm pulls w* to minimize the worst-case
stopping time specific to the instance p while ensuring that the probability of
incorrectly identifying the best arm does not exceed a pre-specified confidence
level §. The term T™*(u) is a “characteristic time” for the problem, that depends
on the parameters of the arms. It represents the inverse of the exploration
time associated by the best-case (supremum) playing proportions w and the
worst-case (infimum) alternative bandit model A\ (that differs from p in its
optimal arm), Alt(u) = {\ € R : argmax, A\, # argmax, 1o} -

T*(u)~! is the maximum achievable information acquisition rate, obtained
by choosing the arm allocation w that maximizes the smallest KL-divergence
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to any alternative model A. The characteristic time 7™ (u) is its inverse: it
expresses the minimum number of samples (up to the log(1/4) factor; using
kl(0,1 — &) ~ log(1/d) in Eq. 2.4) required to identify the optimal arm in
instance p with high confidence. The higher the information acquisition rate
T*(u)~1, the smaller the characteristic time T*(u) and thus the faster the
problem can be solved. From this definition, Garivier and Kaufmann (2016)
derive an asymptotic lower bound for any §-PAC algorithm as 6 — 0, using

kl(6,1 — §) ~ log(1/6):

e E[7] .

hgn_)l(r)lf log(1/4) 2T
Several strategies including those based on arm elimination, adaptivity, racing
and upper-confidence bounds have been proposed for the fixed-confidence pure
exploration setting by Garivier and Kaufmann (2016), Kalyanakrishnan et al.
(2012), Gabillon, Ghavamzadeh and Lazaric (2012), Jamieson and Nowak (2014),
Jun et al. (2016) and Jedra and Proutiere (2020) among others. Of particular
interest in this thesis is the adaptive “Track-and-Stop” class of algorithms
which originates from the analysis by Garivier and Kaufmann (2016). These
algorithms are designed to track the optimal arm playing proportions w*(f) of
the lower bound in (2.4),

K
“(f) = inf 0d(fia, M) | - 2.5
w (1) argmax | inf (a_lw (i )) (2.5)

based on an estimate fi of the arm parameters, continuously updated as more
data is collected. A track-and-stop algorithm plays arms following a tracking
rule aiming for an overall arm proportion as close to the optimal proportions
as possible, combined with a stopping rule for terminating exploration. The
stopping rule is a statistical test of whether the past observations indicate, with
a risk of at most §, that one arm has a higher average reward than the others.

2.3 Contextual Bandits for Personalization

Contextual bandits (Li et al., 2010; Chu et al., 2011; Agrawal & Goyal, 2013,;
Zhou, 2015) extend the classic multi-armed bandit (MAB) framework to address
decision-making under uncertainty across diverse scenarios, enabling algorithms
that effectively balance exploration and generalization. They were originally
introduced for internet news personalization by (Li et al., 2010), and they they
have seen success in numerous personalization applications since (Chapelle &
Li, 2011; Bouneffouf, Rish & Aggarwal, 2020a; Yancey & Settles, 2020; O’Brien
et al., 2022).

Unlike traditional MABs, which focus solely on identifying the best action
averaged over all situations, contextual bandits determine the optimal action
conditional on side information available at each decision point. This is achieved
by augmenting the MAB problem with a context variable X; € X (e.g., a
vector in R?) that is observed at the start of each round ¢. For example, in a
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treatment personalization application, the agent may observe patient-specific
covariates, such as lab measurements or demographic data, at the beginning of
each clinical visit. These per-round contexts allow the agent to select actions
tailored to the current situation and to generalize knowledge across similar
contexts, thereby improving long-term performance.

A central challenge in contextual bandits is designing reward models that
effectively capture the underlying distribution of rewards given contexts and
actions. To address this, various assumptions have been proposed (Zhou, 2015;
Lattimore & Szepesvari, 2020), such as linearity or Lipschitz continuity of the
reward function, enabling the development of contextual bandit strategies for
regret minimization.

For instance, in the stochastic linear contextual bandit setting (Li et al., 2010;
Chu et al., 2011; Abbasi-Yadkori, Pdl & Szepesvari, 2011; Auer, 2002; Langford
& Zhang, 2007), the expected reward for an action a € A ={1,..., K} given
a context x; is modeled as a linear function f(xy,a) = (0%, ¢(z¢, a)), where
#* is an unknown parameter vector, and ¢(x¢,a) is a known feature mapping.
The agent receives a reward r; = f(x¢,at) + €, with €; being independent
Gaussian noise with mean 0 and variance 1. The goal is to maximize the
expected cumulative reward over T rounds, or equivalently, minimize the
pseudo-regret Ry = & [ZtT:l maxge 4 f(zt,a) — Zthl fay, at)] Within this
framework, the LinUCB algorithm (Abbasi-Yadkori, P4l & Szepesvéri, 2011)
achieves an expected regret upper bound E[R(T)] < Cdv/Tlog(TL), where
C > 0 is a constant, d is the feature dimension and L is a Lipschitz constant.

The contextual bandit problem proceeds as outlined below in Algorithm 4.

Algorithm 4 Contextual Bandit Problem

1: for each round t =1,2,...,7 do

2:  Observe context x;

3:  Select action a; € A using an exploration—exploitation strategy based on
current parameter estimate 6

4:  Receive reward r; drawn from the conditional distribution P(- | 2, ay)

5. Update 0 using { (s, as, )},

6: end for

Contextual bandits are well-suited for healthcare applications, such as per-
sonalized treatment selection, because they can leverage contextual information
to adapt decisions to patient-specific characteristics. In healthcare, where
patient heterogeneity and limited intervention opportunities make efficient
learning critical, this ability to generalize across similar contexts is particularly
valuable. However, personalization is only as complete as the information
captured in the context: in classical contextual bandits, each instance (patient)
is treated independently, and model parameters are typically learned from
scratch for each new context. This leads to long exploration periods, which is
undesirable in realistic clinical settings, motivating the work in this thesis on
sample-efficient treatment personalization algorithms.
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CHAPTER 2. MULTI-ARMED BANDITS




Chapter 3

Leveraging Latent Bandits
to improve Sample
Efficiency using Historical
Data

A pragmatic solution to minimize the sample complexity in personalized
decision-making is to leverage (offline) observational logs of previous decisions
and outcomes for to speed up the online decision process. Logs of decision
processes collected over past periods are plentiful in many sequential decision
making environments. In healthcare, they are typically collected as electronic
health records (EHRs) and abound in many healthcare systems, often covering
past records of treatment procedures of multiple patients over long periods (Am-
binder, 2005).

There is extensive literature on learning and evaluating policies from logged
bandit feedback, often referred to as off-policy learning (when the goal is to
learn a new policy) or off-policy evaluation (OPE) (when the goal is to estimate
the value of a given policy) (Strehl et al., 2010; Dudik, Langford & Li, 2011;
Swaminathan & Joachims, 2015a, 2015b). In this setting, agents must operate
entirely on an offline dataset collected under a potentially unknown logging
policy. A key challenge in policy evaluation from logged data is that the logging
policy may be non-uniformly stochastic, which can introduce bias in action
selection and high variance in value estimates when some action propensities
are small (Joachims et al., 2021). Common approaches for addressing these
challenges include the Inverse Propensity Score (IPS) method (Horvitz &
Thompson, 1952; Swaminathan et al., 2017), Direct Methods (Beygelzimer &
Langford, 2009), and Doubly Robust estimators (Dudik, Langford & Li, 2011;
Robins & Rotnitzky, 1995). However, these methods generally require strong
overlap assumptions on the logging policy’s action probabilities, which limits
their applicability in practice (Yin & Wang, 2021). Due to these challenges,
this thesis focuses on blending online and offline learning by using historical

15
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data to reveal latent structure, rather than learning policies purely from offline
data.

In MABs, the main approaches for blending online and offline learning to
shorten exploration are either: i) Warm-starting model parameters for online
learning, with historical data in an offline phase (Zhang et al., 2019; Oetomo
et al., 2023, 2024), or ii) Leveraging historical data to reveal structure about
the data through clustering (Bui, Johari & Mannor, 2012; Bouneffouf et al.,
2019; Maillard & Mannor, 2014; Hong et al., 2020a; Huch et al., 2024), matrix
decomposition (Sen et al., 2017), or spectral methods (Kocdk et al., 2020).

Latent bandits (Maillard & Mannor, 2014; Hong et al., 2020a; Zhou &
Brunskill, 2016; Hong et al., 2020b), studied in this thesis, assume that each
bandit instance belong to unobserved discrete types, and they have proved
theoretically and empirically more sample efficient than unstructured bandits.
However, they come with unexplored challenges that have been a focus.

3.1 Latent Bandits

Latent bandits (Maillard & Mannor, 2014; Hong et al., 2020a; Zhou & Brunskill,
2016; Hong et al., 2020b) are an extension of contextual bandits where the
reward R; at time ¢ depends on context X;, action A;, and a latent state s € S,
where s is fixed but unknown for new instances at the start of interaction.
The reward is sampled from a conditional reward distribution, P(- | A, X, s,0),
which is parameterized by a vector 8 € O, where © is the space of feasible
reward models. The model parameters 6 are typically assumed to be available
to the learner in advance in previous works. However, these works do not
address the problem of recovering such parameters from data. In this thesis, 6
is either assumed to be known, as in the prior literature, or estimated from
historical data. When estimated, this is done using an offline interaction log
H, = (X1,A1, Ry, ..., Xy, Ay, Ry) of contexts, actions, and rewards up to time
t, with h; denoting its observed realization. Under a Gaussian assumption,
the mean reward for arm a is p(a,,s,0) = Erop(ja,z,s6) [R], Where s is
the latent state and 6 is the parameter vector, either known in advance or
estimated offline from the logged data. Latent bandits have largely been studied
assuming discrete latent states, therefore with |S||.A| probability distributions
Vs1,...,Vs,k With respective parameters jis 1, ..., ts, kx, which are specified a
priori. A latent bandit problem proceeds as follows:

Algorithm 5 Latent Bandit Problem

1: for each round t =1,2,...,7 do

Algorithm observes a context

Algorithm estimates latent state s;

a; € A is chosen using an exploration—exploitation strategy

A new independent, stochastic reward r; is realized, drawn from the
distribution vg, 4, (%)

6:  Updates are made for estimated latent state parameters 0 in p(s | hy, )
7: end for
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Hong et al. (2020a) provide algorithms and propose regret upper bounds
E[R(T)] < O(y/MTlog(T)) which depend on the latent state dimension M.
The informativeness of this bound will be brought into question in this thesis
in Section 3.4.

3.2 Challenge 1: Latent bandits in fixed-confidence
pure exploration

While latent bandits have been shown to be empirically more sample efficient
than other traditional bandits, key questions arise relating to: i) How they
leverage the latent structure to achieve sample efficiency during exploration,
and ii) what the fundamental limits of exploration are, if the goal is to obtain an
optimal arm. These questions can be answered precisely in the fixed-confidence
pure exploration problem formulation, where the goal is to identify the optimal
action a* = argmaxy fiq 5 s with confidence 1—¢ in minimal expected time E[7].
However, while regret minimization (RM) in latent bandits is well-studied,
latent bandits have not been explored in the fixed-confidence pure-exploration
(FC-PE) setting.

In Paper I (Kinyanjui, Carlsson & Johansson, 2023), we formulate the fixed-
confidence pure-exploration latent bandit problem, where an agent observes a
context z, takes actions A, observes rewards Ry ~ N (fia, z.5,02), and stops
at time 7 to recommend a,. The objective is to design a search strategy ¢ to
minimize E[7] subject to P(ua, s # ty s | X = 2,5 = s) < 6. We assume
a finite number of latent states S € § = {1, ..., M}, and stationarity in the
latent states, as in previous work (Hong et al., 2020a). Given that our scope is
only in understanding exploration with latent structure, we assume that the
conditional reward models are known. In the context of this work, we define a
latent variable model (LVM) as Mg = {pg(s),po(x | 5),pa(r | a,x, s)}, which
we assume is available, implying conditional reward models are available. The
LVM informs the posterior p(s | h;) that guides the estimation of the unknown
latent state in the latent bandit problem. This is illustrated in Figure 3.1.

By the change of distribution argument (Lai, Robbins et al., 1985) with the
alternate set Alt,(s) := {s’ € S : argmax, E[r|s, z, a] # arg max, E[r|s', z, a|},
and with the help of the information-processing lemma (Garivier & Kaufmann,
2016; Thomas M. Cover, 2005), we derive a lower bound on the expected
stopping time for any 6-PAC algorithm (Proposition 1):
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Figure 3.1: Illustration of the pure-exploration latent bandit problem and the
example of treatment personalization. A population of patients have been
observed in historical data to learn the distribution of latent states P(S),
P(X]S) and the conditional reward the distribution P(R|X,S,A). A new
patient, represented by the instance v = (z,s) is treated with actions a,
observing rewards r; until the stopping time 7. The goal is to understand how
latent bandits leverage the latent structure to achieve sample efficiency during
exploration, and what the fundamental limits of exploration are.

Proposition 1 For any §-PAC learner ¢ with § € (0,1/2) and any
latent state s and context x, the expected stopping time satisfies

1
E > —Kkl(4|[1 -9
oI 19,22 eosla(@]1 =)
where 1/C5(s,x) = >, Vs o(s) with vy ,(s) the minimizers of the fol-
lowing linear program,

'Yz,aZO

minimize Z Vo (3.1)

> 1, Vs’ € Alt,(s)

. /
subject to Z%,aKLg’;’ﬁ + %
a

where C§ (s, z) = >, Vs (5) is a sample complexity term (“characteristic
time”), and v; ,(s) are solutions to a linear program (LP) minimizing ex-
ploration under KL-divergence constraints connecting the optimal worst-case
solution to our exploration objective with hardness of separation of latent states
s,8". A bound for the population (marginal) search time follows as

1
Ep.x,slr] 2 Z-KI(0]]L —9),
[

assuming that C%); =Ex s[>, Vs .a(s)] exists, with v} , the minimizers as before.

Because RM and FC-PE objectives are different, algorithms are not directly
transferrable between these settings. We therefore propose FC-PE latent bandit
algorithms, i) the Latent LP-based Track and Stop (LLPT) Explorer, which
tracks optimal arm proportions, wj ,(s) = 7 .(5)/ (32, Var.a(8)), from the lower
bound linear program, and ii) the Divergence Explorer, which selects actions
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maximizing expected KL-divergence between latent states. The LLPT Explorer
matches this bound asymptotically in the high-confidence limit (§ — 0), proving
optimality (Proposition 2).

Proposition 2 Let 7 be the stopping time of LLPT Explorer ¢. With s
the true state and C*(s, z) the optimum in (3.1) with the p-term removed,
there is a constant o > 0 such that

Ey[7 | s, 2] < «

gi—rf(l) log(1/6) — C*(s,z) (32)

Empirical validation on an Alzheimer’s disease simulator (ADCB) (Kinyan-
jui & Johansson, 2022) shows that both algorithms have a significantly reduced
sample complexity compared to baselines oblivious of latent structure like
Top-Two Thompson Sampling (TTTS) (Russo, 2016) as seen in Figure 3.2.

B LLPT (With latent structure)
200] mmm TTTS (No latent structure)

150

E[T]

100

50

0.7 0.8 0.9 0.95 0.99

Figure 3.2: Using latent state structural information significantly reduces the
expected number of trials E[7] required to identify an optimal treatment with
confidence at least 1 — ¢ in a simulator of Alzheimer’s disease progression.

Looking into this challenge reveals fundamental insights on exploration
in latent bandits. Our key result is demonstrating that the optimal worst-
case solution to the exploration objective relates to hardness of separation of
latent states s, s’ (i.e similarity of latent states) theoretically and empirically
(See Figure 3.3). Another insight explaining sample efficiency with latent
structure is that the sample complexity term C*(s,x) shrinks when we have
knowledge of the latent state structure because the set of plausible alternative
parameters Alt,(s) is smaller compared to the case with no structure in, for
example, Garivier and Kaufmann (2016). In latent bandits, Alt, (s) comprises
a finite set of parameters, whereas the case where parameters are estimated
online without latent structure corresponds to an infinite set of alternative
parameters. As a result, the worst-case (supremum) over alternative parameter
sets shrinks, as do the lower and upper bounds on the stopping time. In RM,
despite a different objective, it is reasonable to assume that exploration is
similarly characterized, and the insights transferrable.
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Figure 3.3: Density of stopping times under LLPT showing worst-case latent
states revealing that higher stopping times can be attributed to the worst-case
latent states, i.e, exploration difficulty depends on the distinguishability of
latent states.

3.3 Challenge 2: Learning identifiable reward
models for latent bandits

Another challenge relates to the limitation of assuming known conditional
reward models. The key components of latent bandit algorithms are a latent
variable model (LVM) approximating p(Z; | H; ¢, X;) and a reward model ji,(2)
for each value of z. The reward model is used to select the next action according
to a selection criterion based on an inferred value of Z. Here, Z denotes the
random variable representing the latent state; ¢ € [I] indexes previous problem
instances, each with a sequence length T;, and ¢ € [T;] indexes rounds within
an instance. For example, the mTS algorithm (Hong et al., 2020a) samples
2, ~ p(Z; | Hiy, X)) and selects the action a; = argmax, p1,(2;). However,
this and related works assume that both state and reward models are known a
priori, but give little guidance for how to learn or acquire them. To make real-
world application plausible, algorithms must learn the LVM from observational
historical data D = {(x1,, a1,t7T1,t)tT;17 vy (®r s ar g, rLt)tTél}. This presents a
new problem: not all LVMs are identifiable, as they may fail to recover the
true underlying process that generated D (Hyvarinen & Morioka, 2016). So a
question that arises is: How can identifiable LVMs be learned from historical
data and can identifiable LVMs be shown to provably yield optimal decision
making in latent bandits?

In Paper II (Balcioglu et al., 2025), we propose the Identifiable Latent
Bandit (ILB) framework, which combines offline learning of a latent variable
model with online decision-making to minimize regret. The focus is in learning
an identifiable LVM, but we also contextualize the problem in a latent bandit
(with a continuous latent state) regret minimization setting, and investigate
identifiability of decision-making in ILB within a causality framework (Pearl,
2009). We learn the LVM offline, by starting with an assumed structural causal
model illustrated in Figure 3.4, and identifiably learn the inverse emission func-
tion ¢g~' and reward model § from the observational data D, using contrastive
learning with multinomial logistic regression (Hyvarinen & Morioka, 2016), to
support inferring the latent state Z; and the best possible action for a new
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Figure 3.4: The structural causal model assumed in the ILB framework for an
example instance 3.

instance i. We provide two greedy algorithms, CPG and FPG for action selection.
We theoretically demonstrate causal identifiability of the decision-making cri-
teria under identifiable LVMs, and also provide empirical supporting results in
a semi-synthetic decision-making environment e.g in (Figure 3.5), confirming
that identifiable latent bandits are feasible to learn from data, albeit under
specific assumptions.

w
o

—— MAB
CPG
—-—- FPG
—— FPG-TS
MAB Prior
— LinUCB
—— CPG (VAE)
FPG (VAE)

N
o

w
o

N
o

—— Regression 1

Regr (Cum. Regret)

=
o

o

0 250 500 750 1000 1250 1500 1750 2000
Rounds (T)

Figure 3.5: Cumulative regret results for ADCB (Kinyanjui & Johansson,
2022) comparing CPG and FPG in the identifiable latent bandit framework to
baselines. Our results demonstrate the identifiability of the decision-making
criteria under identifiable LVMs which can be learned from data albeit under
specific assumptions.
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This exploration of identifiable latent bandits reveals several critical insights
into the challenges and possibilities of learning latent variable models (LVMs) for
optimal decision-making. A primary challenge lies in the inherent difficulty of
learning identifiable LVMs, which necessitates specific identifying assumptions
to ensure that the true underlying process can be recovered from observational
data. When these assumptions are satisfied, it becomes feasible to learn the
LVM, thereby enabling simple decision-making strategies to yield optimal
results, as demonstrated in the identifiable latent bandit framework with with
greedy strategies. However, these assumptions are not trivial to make; they
impose specific conditions on the data-generating process, such as the structure
of the latent state and the nature of the reward models, which may not always
hold in real-world scenarios.

3.4 Challenge 3: Generalizing latent bandits to
use looser latent structures of latent prefer-
ence orderings

Another challenge that arises with latent bandits is that assuming availability
of the full LVM can be too restrictive. This is because estimating a full LVM
requires nontrivial assumptions as we illustrate with the previous challenge,
it may not be identifiable from historical data, and may require a very large
dataset even if it is. Moreover, requiring that all instances with state Z = z
follow the same reward distribution p(R, | Z = z) prevents instances from
having individual reward scales: for example, two patients with a chronic
condition could have the same subtype of disease z, which determines what
therapies a € A are preferred over which other therapies, but the two patients
could have different tolerance for pain and give different ratings R, for their
symptoms under the same treatment a even if their relative preferences are the
same. How would requiring a looser information structure of reward preference
help to distinguish the true latent state from alternatives, and how could this
benefit latent bandit decision making? To this end, Paper III (Mwai, Carlsson
& Johansson, 2025) introduces latent bandits with latent state structure defined
by preference orderings of actions.

Latent Preference Bandits (LPB) are a new latent bandit setting where each
latent state z € Z = [M] defines a preference ordering O, = (0;1,...,0: k)
over actions, with rewards R, ~ N (pq,0?) satisfying po_, > -+ > po, -
The LPB problem is illustrated in Figure 3.6 for the special case of reward
means in the 2-dimensional simplex, compared to the standard multi-armed
bandit (MAB) and the latent bandit problem from Hong et al. (2020a). Unlike
traditional latent bandits, in LPB, two problem instances (z, i), (2/, ') with
the same latent state z = 2’ are guaranteed to have the same preference
orderings but may not have the same distributions of rewards, which allows for
modeling individual rating scales.

Towards an algorithm for the LPB problem, we propose the IpbTS regret
minimization algorithm based on sampling from the posterior of the latent
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Figure 3.6: Illustration of the latent preference bandit and related problems for
reward means on the 2-simplex g € AK~1, In the MAB problem, no structure
is known. In latent bandits, the full vector of reward means p, is known
for each latent state z. In latent preference bandits, only the set of possible
orderings is known (shown as colored segments), but two problem instances
with the same latent state z may differ in their means as long as the orderings
of their reward means are equal.

state and selecting the optimal arm for that state. With a history Dp =
((a1,71), ..., (ar,r7)) of the first T observations collected during exploration
for a problem instance (z,pu), the likelihood of Dy under a state z with
preference ordering O, is

T

£(Dr | 2 =2) =[] plre | a0, 2) = /EH p(n | 2) [[pre | aes %) dp.

t=1 t=1

This can be used to construct the posterior probability p(Z = z | Dr), provided
that a well-specified parameter prior p(p | z) is known for each latent state
z. In general, the constraint g € H, means that no closed-form expression
exists, and computing it exactly is intractable. As we aim to minimize the
information needed about the latent variable, we assume that no parameter
prior is available.

Without a parameter prior, the likelihood p(r; | at, z) is not fully defined,
but we construct an upper bound on the likelihood by considering the mean
configuration with the highest likelihood for the data restricted to the available
orderings implied by Z. For all states z,

T

L(Dr|Z=z) < sup [[p(re | ar, pa,)-
HEH: 4y

With Gaussian rewards, maximizing this upper bound corresponds to minimiz-
ing the mean squared error of p in predicting the observed reward, constrained
to the set H,. Thus, under the assumption that z is the correct latent state,
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we may estimate the mean parameters as follows:

T

f, = argmin —¢(Dr | u), where LDy | p) x Z ua‘ . (3.3)
HEH . t=1

With {ft,} the minimizers of (3.3) for all z, we construct an optimistic posterior

estimate,

Ve plz | D) = 2p(Dy | ) (3.4)

where « is the normalization constant.

The IpbTS algorithm selects the optimal arm for a state sampled from the
approximate posterior (3.4). The constrained maximum-likelihood estimation
(MLE) problem in (3.3), solved for each state, is a quadratic program with
linear inequality constraints that, as we show with Proposition 3, can be solved
using off-the-shelf solvers for isotonic regression (Barlow & Brunk, 1972).

Proposition 3 Let n, = Zle 1[a; = a] and define w, = Z—g Next,
let O, = (01, ...,0K) be the preference ordering of latent state z. Then,

the solution to the isotonic regression problem with outcomes y, =
,% th:a r¢ and sample weights wg

K

minimize Wa (e — Ya)?  subject to  fior < flog_; < v+ < fhoy
MHER
a=1

solves the constrained MLE problem in (3.3).

Empirically, we demonstrate (Figure 3.7) that the LPB problem is solvable,
and that IpbTS is comparable in performance to mTS (Hong et al., 2020a)
when instance reward means have a fixed reward scale in the latent states,
and that adding the ordering constraints O is vastly beneficial compared
to no structure. We also demonstrate the benefit of using a more general
latent structure O compared to a latent mean vector of rewards, where 1pbTS
outperforms mTS with differing individual reward scales — because a latent
model comprising mean vectors is misspecified when absolute reward scales can
vary for different latent state instances. This is also demonstrated on real-world
datasets, the MovieLens (Harper & Konstan, 2015) datasets where actions
represent movie choices, rewards are ratings of movies, and latent states are
groups of users (Figure 3.8).

Beyond algorithm design to leverage the LPB structure, we are also able to
understand latent bandits more foundationally via empirical investigation, and
connect our understanding to why the latent preference ordering O is beneficial
for sample complexity. We realize that the O(v/MT logT) upper bound for
latent bandit algorithms like mTS (Hong et al., 2020a) does not really explain
the latent structure, and it can be achieved simply by restricting the action set
(Proposition 4).
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Figure 3.7: 1pbTS is comparable to latent bandit baselines when instance
rewards lie in the same scale (Left) and outperforms baselines when instance
rewards lie in different reward scales (Right).
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Figure 3.8: MovieLens Experiment, 20M Dataset. Results match theory:
IpbTS is comparable to mTS in (a), outperforms in (b), and the two-stage
recovery of O is empirically validated.
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Figure 3.9: Varying the number of arms K, and M = K (N = 50,7 =
200, K € [5,10,20,30,40,50]). Left: Observed average regret at T = 200.
Right: Observed average active constraints.

Proposition 4 Consider the following algorithm. Whenever K < M,
restrict the action set to the subset A% of optimal uw < M arms of which
each is optimal in at least one latent state, A% = {a € [K] : 3z €
Z such that a = a}, and run a standard MAB algorithm restricted to
A%L. When K > M, run a standard MAB algorithm on A = [K]. This
procedure achieves O(y/min(K, M)T) regret in the worst case on the
latent bandit and latent preference bandit problems.

AN J

By investigating how the active constraints (in isotonic regression) in lpbTS
change when K and M vary, we are able to understand the latent preference
bandit problem better and generalize this for the latent bandit problem. For
example, when M = K and K increases, we observe that (Figure 3.9) the
number of active constraints grows. This is because M = O(K), but the
number of possible permutations grows like K!, so the probability of having
large differences between states grows when M = K and K grows. This is not
predicted by an O(y/min(K, M)T') bound since M = K. It is explained by the
fact that the true latent state stands out more with high probability, and the
empirical isotonic means i, become less likely to align with the neighboring
states (the most confusable states) relative to the true state, resulting in a
higher number of active constraints.



Chapter 4

Understanding Bandits
with Switching Constraints
in Fixed-confidence Pure
Exploration

In real-world treatment personalisation settings, such as in chronic disease
treatment, bandit algorithms must often contend with practical constraints
beyond sample efficiency. A critical constraint is the cost or limitation on
switching between treatments. Switching treatments has costs for the patient
because every time a treatment is changed, the patient has to weave off their
current therapy and get used to the new treatment and its potential side
effects. This chapter explores how exploration in bandit problems adapts to
switching constraints, where the number of action switches is restricted,
while exploring towards an optimal action, and how structuring exploration can
help to yield solutions. The focus is on the fixed-confidence pure exploration
(FC-PE) setting, continuing the theme of understanding exploration from the
previous chapter (Section 3.2).

With the total number of arm switches S, as the number of successive plays
where the arms differ, S, = >";_, [a; # a¢—1], the goal is to design a search
strategy ¢ to:

e N\
Minimize the expected number of arm plays T required to identify an
optimal arm with confidence at least 1 — & for a given § > 0, while
limiting the expected rate of switching arms to a € [0, 1].

minid)mize Ey[7]

subject to  P(ua, < p*) <0 (4.1)
E,[S,] < aFyl7]
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Figure 4.1: Illustration of batched arm plays used to limit the arm switching
frequency in a 5-arm problem. The number of plays of each arm is the same.

This formulation, however, poses a challenge: the switching rate constraint
depends on the expected stopping time E,[7], which is unknown during execu-
tion.

Paper IV (Mwai, Malekipirbazari & Johansson, 2025) resolves the challenge
in objective 4.1 as a reformulation with a batched variant of the problem (Figure
4.1) that provides a practical and well-defined alternative to the original
constraint. With batched exploration using batches of size B assumed fixed
and known, the number of switches in exploration are attributed either to:
switching between arms within the batches when changing from one successive
arm play segment to the next, or to changing arms between batches. The goal
is re-formulated to be to:

Minimize the expected number of batches B required to identify an optimal
arm, with confidence at least 1 —4§, while limiting the arm switches within
the batch to be at most s € {0, ...,min(K —1,B — 1)},

mini(bmize E4 (8]

subject to P (M&g < u*) <d (4.2)
St <s, WbeN

where S? is the number of switches in batch b, and ag is the recommended
arm after § batches.

Given that the batch size is assumed fixed and known, we can index all
possible sparse batch configurations c¢ of integer arm plays in a batch that
satisfy the desired switching limit. For a given number of arms K, batch size
B and switching limit s, we denote this set Cgs,

K
Cgs = {CENK:ZCG:B, |c||0§8+1} . (4.3)

a=1

where |[|-||, denotes the fp-norm, which counts the number of nonzero elements
in the vector, ||z||o == Zfil 1[x; # 0]. Each element ¢ = [c1,...,ck]" € Cf
represents a configuration that can be executed in a single batch and each
coordinate ¢, represents the number of times arm a will be played in the batch.
c is sparse if there are arms a such that ¢, = 0. Through Cg’s, we state a lower
bound for batch-playing bandits that obey the switching constraint:
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Theorem 1 Let ¥¢ = XI5.1=1 pe the simplex over batch configura-
tions of size B that use fewer than s switches. Given a confidence level
0 € (0,1), for any algorithm that returns the best arm with probability
at least 1 — &, and for any bandit problem pu € RE | the following holds:

E,[8] > Ty,(n) - KI(5,1 - ), (4.4)

where the characteristic time Ty (p) is given by

K
Ty, .= sup inf PeCad(fla, Ag)- 4.5
= e )55 3 i) (49)

In (4.5), the supremum is computed over the possible probability distribu-
tions over sparse configurations, thereby incorporating the in-batch switching
limit into the batch play optimization.

Towards algorithms for this setting, we take inspiration from Garivier and
Kaufmann (2016) track-and-stop algorithm design strategy, which aims to track
the optimal arm playing proportions w*(ji) of the lower bound in (2.4),

K
“(f1) = inf wd(fla, Xa) | 4.6
w* (1) argmax | iuf <a_1w (fu )) (4.6)

However, applying the track-and-stop framework in our setting requires
imposing a switching constraint in the tracking rule. We cannot impose sparsity
in the tracked proportions w* without destroying the solution to (4.6). If an
arm a is never played, w, = 0, the adversary A can exploit this and differ
arbitrarily for that arm, rendering the lower bound infinite. This is also
evident from Lemma 4 in Garivier and Kaufmann (2016) which would be
violated if Ja : w) = 0. Neither is it a good idea to play configurations
to track the proportions p* that solve (4.5). The solution is not necessarily
unique and, even if it is, the number of possible configurations is exponential,
making exploring (tracking) all of them infeasible. Moreover, the number of
batches where a configuration is played is not itself of interest, only that the
resulting distribution of arm plays is optimal. Instead, we track the optimal
arm proportions with suitably chosen batches after making an observation
(Observation 1):

Observation 1 If the optimal arm allocation w* in (4.6) is “realizable”
under C (with C = Cf ,), i.e., Ip* € X€ such that Y o pic = w*(f1),
then p* are minimizers of (4.5).

With this, we present a batch selection objective (selection rule) for this
setting to find a feasible batch ¢:
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1, B = 32 vs BatchRacing (Baseline). plays.

Figure 4.2: SBC and SPB stop quicker even with a restrictive switching limit
and match well to the optimal, unbatched Track-and-Stop C-tracking baseline
in tracking proportions.

¢ € arg min i (da(b) = ca) . (4.7)

where ¢, are the number of plays of arm a in the batch configuration c,
da(b) ;7 e (b) — Ny(b) is the deficit for arm a in batch b. Here, w(b) =
BZZ o W (f1;) are the C-tracking (Garivier & Kaufmann, 2016), goal pro-
portions with w®(fi) the L..-projection of w*(f1) in (4.6) onto L& = {w €
Ry >, we =1, min, w, > €}. We aim to minimize the total positive deficit
D(b) = Zle(da(b))Jr, where (2); = 1[xz > 0]z. Unlike the lower bound
problem (4.5), (4.7) can actually be solved in polynomial time through a greedy
algorithm. However, the solution is not unique. For example, if more than
s + 1 arms have positive deficit, there are cases where the allocations to the
selected arms in the batch can be decided partially arbitrarily. Once the deficit
of selected arms has been removed, the choice of how to distribute remaining
plays between them won’t alter (4.7).

We present two algorithms: i) Sparse Batch Configurations (SBC) C-
Tracking SBC a greedy batch configuration construction algorithm that puts
the remaining allocation on the arm with the largest remaining fractional deficit.
ii) Sparse-Projected Batch (SPB) C-tracking algorithm where the allocations
in the batch are distributed proportionally to the deficits of the selected arms.
The idea in SPB is to project the normalized positive deficits between expected

and actual plays (d(b)); = % onto an (s+1)-sparse simplex and the
a€ a

batch configuration is constructed according to the resulting sparse proportions.
By proving that batch configurations selected according to (4.7) track the
optimal arm proportions in (4.6), we also show that both SBC and SPB
C-Tracking match the lower bound in (2.4) in the high-certainty limit.
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(a) Comparison of stopping times over (b) Effect of batch size on the stop-
switching limits s € {0,1,2,3,5,7} in SBC ping times for SBC and SPB C-Tracking
and SPB C-Tracking, and BatchRacing, (s € {0,7}), and BatchRacing, with B €
with batch sizes B € {8,1024}. Track- {8,16,32, 64,128, 256,512, 1024}.
and-stop C-Tracking is not batched.

Figure 4.3: To balance generality of the abstraction through C& B.s» and practical
insight, we provide simulation results showing that SBC and SPB C-Tracking
perform well except under extreme conditions, specifically when the batch size
is large and the switching constraint is stringent, due to wasted plays.
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Chapter 5

Semi-synthetic Causal
Benchmark for Evaluating
Treatment Personalization
algorithms

The success of reinforcement learning as a sequential decision-making paradigm
has been greatly facilitated by the availability of standard benchmark problems
which enable researchers to develop, test, and compare reinforcement learning
algorithms (Kuo et al., 2022). In many healthcare systems, there is plenty of
data collected in electronic health records (EHRs) (Ambinder, 2005) that could
be valuable if leveraged to design sequential decision-making systems to improve
healthcare. However, evaluating algorithms in an online setting, where actions
directly affect patients, is often infeasible due to ethical and safety constraints,
even when extensive real-world data is available. We cannot experimentally
manipulate treatments or run exploratory policies on patients to gather data,
which makes simulators essential for iterative algorithm development and
benchmarking.

In addition to the online treatment setting constraints, challenges of ac-
cessibility attributable to justifiable privacy concerns regarding disclosure of
private patient information, accessibility remains a challenge. In spite of this
challenge, several databases containing longitudinal data are publicly available,
for example the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database,
containing longitudinal data on Alzheimer’s disease (AD) patients and cognit-
ively normal controls. Another, the MIMIC-IIT (“Medical Information Mart
for Intensive Care”) (Johnson et al., 2016) is a large, single-center database
comprising information relating to patients admitted to critical care units at a
large tertiary care hospital. When applicable, researchers have widely used such
datasets in their empirical studies. However, even when available, the datasets
are small, whereas sequential decision-making techniques usually require a large
number of training samples (Yu et al., 2021).
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Researchers have therefore resorted to building synthetic benchmark simu-
lators which have many advantages but often lack the intricacies observed in
reality (Herndn, 2019). For simulators to be useful, preserving causal relation-
ships between clinical variables is critical. Without causal fidelity, algorithm
evaluations may be misleading, particularly in sequential treatment settings
where decision outcomes depend on dynamic, interrelated factors. Yet, realistic
benchmarks that combine causal realism with healthcare complexity remain
scarce. While simulators like IHDP (Hill, 2011) and ACIC (Dorie et al., 2019)
have been valuable for causal effect estimation, they rely on simplified, static
mathematical response surfaces and are not designed for sequential decision-
making as in bandit settings. More data-driven approaches (Chan et al., 2021;
Neal, Huang & Raghupathi, 2020; Kuo et al., 2022) increase realism but often
overlook underlying causal mechanisms. This underscores the need for hybrid
benchmarks that integrate real clinical data with domain-expert causal know-
ledge (Herndn, 2019), enabling both realism and validity in evaluating bandit
algorithms in personalized medicine. This poses a challenge: Is it possible to
design an environment for evaluating sequential decision-making algorithms
with realistic healthcare data that matches clinical statistics in EHRs and a
causal structure of the generating process from domain knowledge?

Paper V (Kinyanjui & Johansson, 2022), introduced a method for designing
a semi-synthetic benchmark simulator for longitudinal Alzheimer’s disease
data that incorporates verifiable causal domain knowledge. The Alzheimer’s
Disease Causal estimation Benchmark (ADCB) was designed. The simulator
was fit to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and
ground-crafted components incorporating results from comparative treatment
trials and observational treatment patterns. Tuning parameters were also
incorporated, which causally alter the nature and difficulty of the learning
tasks, such as latent variables, effect heterogeneity, length of observed subject
history, behaviour policy and sample size. Moreover, ADCB also generates
longitudinal data that includes potential outcomes for all treatments at each
step in the longitudinal axis.

The design started by positing a causal graph for the variables of interest at
the baseline time point of observation based either on models fit to the ADNI
data, on hand-crafted functions or on results from AD literature. This causal
graph is shown in Figure 5.1.

A usage example of using the ADCB simulator to compare standard estim-
ators of causal effects was outlined in the work, where a) a single time point
is used to estimate average and personalized treatment effects, and b) a time
series of patient history is used (Figure 5.2(a) and Figure5.2(b)).

To make the ADCB simulator a more robust environment for studying
latent bandits, the latent states have since been further expanded from two
latent states to six, and also continuous latent states have been incorporated.
In addition a gym environment has since been developed with logged data from
the ADCB simulator, where bandit algorithms can be compared.

For bandit algorithms, ADCB provides a powerful testing ground by simulat-
ing longitudinal, high-dimensional data with verifiable causal relationships, and
it was used for the experimental study in Paper I and Paper II. For example, in
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determined. Blue dependencies were completely estimated from data, green
were fit once the subtype Z was inferred, and red were designed based on the
Alzheimer’s disease literature.
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Figure 5.2: A usage example of using the ADCB simulator to compare standard
estimators of causal effects

Paper I, latent bandit algorithms were evaluated on ADCB data in the ADCB
bandit gym environment with K = 8 actions and Z = 6 latent states, where the
simulator generated outcomes Y; as Y (A, X, Z) = ®(X, Z)+A(Ay, Z)+E, where
® models untreated cognitive function (fit to real ADNI data), A reflects treat-
ment effects moderated by latent state Z, and £ ~ N(0,0?) adds noise. Bandit
algorithms aimed to identify the optimal action a* = argmax, E[Y; | A = a, Z],
requiring exploration of latent states inferred from observed contexts X.
ADCB?’s flexibility such as ability to tweak assumptions like introducing con-
founding or varying effect heterogeneity further enhances its utility. The
flexibility is also in it’s system design, as demonstrated in Paper II, where
the simulator environment was further adapted to include mixed latent states
(categorical and continuous), while still being causally grounded.
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Ultimately, the work on ADCB demonstrates that simulators grounded in
domain knowledge and real data are essential for advancing sequential decision-
making (e.g. with bandit algorithms) in healthcare. By providing access to
counterfactual outcomes and tunable parameters, it bridges the gap between
theoretical benchmarks and practical challenges, ensuring practical design of
algorithms that are clinically relevant.



Chapter 6

Conclusion

This thesis has advanced the understanding and application of multi-armed
bandits (MABs) to the domain of personalized medicine, with a particular
emphasis on chronic diseases such as Alzheimer’s Disease (AD). By addressing
the critical challenge of optimizing the exploration-exploitation trade-off in
treatment personalization, the work in this thesis has developed novel strategies
that enhance sample efficiency and accommodate practical clinical constraints,
complemented with foundational insights. These contributions are pertinent in
personalized medicine where long exploration is impractical due to the high
costs associated with patient well-being and medical resources. The primary
contributions of this research are threefold, each addressing distinct challenges
in applying MABs to personalized medicine.

In Chapter 3, results from studying the Latent Bandit framework in the
fixed-confidence pure exploration (FC-PE) setting were presented, providing
foundational insights into how latent structures enhance efficiency to signi-
ficantly reduce the number of trials required to identify optimal treatments.
The Identifiable Latent Bandit (ILB) framework, also presented in Chapter 3,
tackled the challenge of learning reward models from observational historical
data, proving that identifiable LVMs can be learned offline with historical
data, and that integrating offline LVM learning with online decision-making
provably leads to optimal decision-making, though this relies on stringent as-
sumptions about the data-generating process. Moreover, the Latent Preference
Bandits (LPB) framework also presented in Chapter 3 extended latent ban-
dits to incorporate preference orderings rather than fixed reward distribution
vectors, allowing for individual variations in reward scales. The proposed
IpbTS algorithm for LPB demonstrated comparable or superior performance
to traditional latent bandits, particularly when reward scales differ across in-
stances. This generalization highlights the potential of looser structural priors
to improve adaptability in personalized medicine.

Chapter 4 reformulated the FC-PE problem to address the practical con-
straint of limiting treatment switches, crucial for reducing patient burden.
By structuring exploration with a batched approach, the Sparse Batch Con-
figurations (SBC) and Sparse-Projected Batch (SPB) C-Tracking algorithms
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effectively minimized the expected number of batches while respecting switching
limits. Theoretical and empirical analyses showed that these algorithms are
optimal in performance, except under extreme conditions of large batch sizes
and stringent constraints.

Chapter 5 presented the ADCB simulator, a semi-synthetic benchmark that
combines real-world ADNI data with domain-informed causal structures, and
AD therapies and treatment policies from literature. The simulator provides a
robust platform for evaluating bandit algorithms, offering tunable parameters
and counterfactual outcomes that mirror clinical complexities. Its utility was
demonstrated across multiple chapters, underscoring its value as a tool for
bridging theoretical and practical research.

While specific limitations are detailed in the appended papers, several
limitations in the approaches merit highlighting. In the latent bandits work,
the assumption of stationary latent states, where patient subtypes remain
fixed over time overlooks dynamic disease progression. This could potentially
lead to suboptimal long-term personalization, and it therefore necessitates
non-stationary extensions. Also, the Identifiable Latent Bandit framework
relies on strong identifiability and learnability assumptions, which may not hold
in noisy, confounded real-world electronic health records (EHRs), risking biases
in the presence of unmeasured confounders. For batched bandits with switch-
ing constraints, the fixed, known batch size overlooks variable clinical cycles
(e.g., influenced by adherence or side effects), which could lead to inefficient
exploration if batches do not align with real horizons, so adaptive batching
could enhance robustness. These limitations highlight a broader tension: while
structured assumptions enable tractable solutions, they may trade off gener-
alizability in complex, non-stationary healthcare environments, necessitating
hybrid approaches that balance methodological rigor with flexibility.

As directions for future work, the LPB framework stands out as fertile
ground, given the flexibility promised with preference orderings. Extending it to
a contextual bandit version could yield more refined personalization, especially
in high-dimensional settings like genomics-based treatment personalization.
Furthermore, with the rise of large language models (LLMs) and preference-
based learning such as in reinforcement learning from human feedback (RLHF),
exploring dueling bandits with latent structures could be interesting to invest-
igate if leveraging latent structures could yield faster convergence in dueling
bandits. More broadly, the insights from this thesis, particularly on lever-
aging historical data and exploration under constraints transfer naturally to
standard reinforcement learning (RL) in clinical contexts, starting with best
policy identification in Markov decision processes, which is inspired by best
arm identification studied in this thesis.

Ultimately, beyond refining methods, fostering interdisciplinary collabor-
ations with clinicians promises the greatest leap for personalized medicine
research in creating ethical frameworks to blend algorithmic tools with clinical
expertise. This synergy will yield trustworthy, adaptive, interactive systems
prioritizing patient-centered outcomes, in an era of data-driven medicine.
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