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Dynamics and Reactivity of Cu-species in Cu-CHA for NH3-SCR

Joachim Dithmer Bjerregaard
Department of Physics
Chalmers University of Technology

Abstract
Ammonia assisted selective catalytic reduction (NH3-SCR) is currently the pre-
ferred method for abatement of NOx for lean burn engines. The copper exchanged
chabazite is state-of-the-art catalyst for this reaction thanks to superior hydrother-
mal stability and good low-temperature activity. One challenge, however, is the
sensitivity to sulfur compounds, present in the exhaust gas. Even small amounts of
sulfur exposure can drastically deactivate the catalyst and shorten its operational
lifetime. Therefore, it is critical to understand the mechanism behind the NH3-SCR
activity and sulfur poisoning.
During low-temperature NH3-SCR conditions, CuI ions are solvated by NH3, and
present as [Cu(NH3)2]+ complexes. A critical step in the reaction is O2 adsorption,
which requires the pairing of two [Cu(NH3)2]+ complexes and leads to the formation
of CuII ions in a peroxo complex [Cu2O2(NH3)4]2+. In this thesis, various computa-
tional techniques and experiments are used to elucidate the pairing of [Cu(NH3)2]+
and SO2-deactivation of Cu-CHA.
A machine learning force field (ML-FF) is developed including long-range inter-
actions. Trained on density functional theory (DFT) data, the ML-FF enables
molecular dynamics (MD) simulations of large systems over extended timescales
with high accuracy. The results show that the pairing of [Cu(NH3)2]+ is promoted
by increasing the Cu-loading and Al-content and that it is strongly influenced by
counter-diffusion of nearby cations such as [Cu(NH3)2]+ or NH4

+.
DFT calculations are used to study the mechanism for SO2 poisoning during low-
temperature NH3-SCR. The calculations suggest that SO2 reacts with the peroxo
complex [Cu2O2(NH3)4]2+ forming NH4HSO4 species that accumulate inside the
CHA cage. The accumulation destabilizes the pairing of [Cu(NH3)2]+ and, thus, O2
adsorption. Moreover, flow reactor experiments show that sulfation and regeneration
depend critically on the temperature. Based on experimental data, a kinetic model is
developed, which describes and rationalizes the dynamic behavior of SO2 poisoning
and regeneration.
The present work combines theoretical and experimental techniques to give a com-
prehensive understanding of the NH3-SCR reaction over Cu-CHA, and the deacti-
vation caused by SO2 which is essential for guiding the development of more active
and sulfur-resistant catalysts.

Keywords: Cu-CHA, NH3-SCR, Sulfur Deactivation, DFT, Machine Learning
Force Field, Kinetic Modelling
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1
Introduction

Since the advent of industrialization, humans have emitted large quantities of green-
house and toxic gases into the atmosphere, primarily due to the combustion of fossil
fuels such as coal, oil, and natural gas for energy production, transportation, and in-
dustrial processes. Emissions of gases such as CO2 and CH4 contribute to the green-
house effect, which, leads to rising temperatures globally.1 Simultaneously, there has
been an increase in pollutants like nitrogen oxides,NOx (NO and NO2), SO2, CO,
and particulate matter (PM), affecting the local air quality. In fact, 99 % of the
world population today, breathes air that surpasses the guidelines with respect to
pollutants set by the World Health Organization (WHO),2 which cause premature
deaths. To put it into perspective, air pollution is the second largest risk factor of
death, just after high blood pressure and before tobacco.3 Thus, there is a need to
reduce air pollution. A major contributor to air pollution is NOx , which is mainly
emitted through combustion processes from petrol or diesel-powered vehicles and
power plants. Biogenic sources also exist, such as those from lightning and volcanic
activities, although they are not as significant as anthropogenic emissions.4 In the
EU, the road transport sector is the largest source of NOx , accounting for 39 % of the
total emissions5 with the energy production and distribution sector being the second
largest, emitting 16 %.5 However, increasingly stricter legislation has contributed to
large improvements in NOx emissions during the last decades. The NOx emissions
from transport in the EU have decreased by 53 % with respect to the 1990-level,5
which is largely attributed to the development of new catalytic aftertreatment sys-
tems for NOx control.6 Despite these improvements, there is a continuous need to
improve catalytic techniques for NOx abatement, due to the increasingly stringent
regulations concerning emissions from combustion engines.

1.1 Heterogeneous Catalysis
A catalyst is a material that increases the rate of a reaction by providing a more
favorable alternative reaction path.7 In addition, a catalyst can enhance the selec-
tivity, meaning that a higher fraction of the reactants is converted into the desired
product. Catalysts are generally divided into homogeneous, enzymatic, and hetero-
geneous catalysts. In homogeneous catalysts, the reactants and products are in the
same phase as the catalyst.8 Enzymatic catalysts are enzymes used in biochemical
reactions. In heterogeneous catalysis, which is the topic of this thesis, the reactant
and products have a different phase from the catalyst. The catalyst is typically

1
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Figure 1.1: Potential energy diagram, for a catalyzed reaction and non-catalyzed
reaction.

in solid phase while the reactants and products are in gas phase. The advantage
of using heterogeneous catalysts is the ease of separating catalysts and products.
A drawback is that they typically have lower selectivity compared to homogeneous
catalysts.8 Catalysts are a fundamental part of modern society, where it is estimated
that 85 % of all chemical products are produced using catalysts.9

The influence of a catalyst on the potential energy landscape is illustrated in Figure
1.1. Two pathways from reactants to products are shown. Typically for surface
reactions, the use of a catalyst introduces additional intermediates along the reac-
tion coordinate, such as adsorption of reactants, diffusion of intermediates, surface
reactions forming products, and desorption of products. Adsorbing the reactants
on the surface brings them close together, facilitating their interaction, which is an
important function of the catalyst. The catalyzed reaction has a lower activation
barrier compared to the non-catalyzed reaction, resulting in an increased reaction
rate as described by the Arrhenius equation.

r = Ae−Ea/kBT (1.1)

Experimentally, the rate scales with the barrier, Ea. A is the pre-exponential factor,
kB is the Boltzmann constant and T is the temperature. The thermodynamics of
the reaction is not affected by the presence of a catalyst.
Even though the catalyst is not consumed during the reaction, it may lose activity
over time, due to deactivation. Examples of deactivation processes are poisoning
of the active site by contaminants in the gas-feed, thermal degradation when the
catalyst is operated at high temperature, or fouling, which is physical deposition
onto the catalyst, such as carbon or coke.10 Therefore, a catalyst should aim to
achieve both high activity, high selectivity, and good stability.

2



1. Introduction

1.2 NOx Control
NOx is formed during combustion in fuel engines and is associated with several
negative health effects. Inhalation of NOx can, for example, lead to respiratory and
lung problems2. However, a large part of the harmful effects comes from reactions
with other species in the atmosphere. Both NO and NO2 are reactive molecules
with short lifetimes of around 4 days.4 NOx is a precursor for the formation of
tropospheric O3 and can react with volatile organic compounds (VOC), which can
lead to the formation of smog and acid rain.11,12 Furthermore, NO2 can react with
OH radicals in the atmosphere, forming nitric acid13 according to:

NO2 + OH −−→ HNO3 (R1)

Nitric acid HNO3 is soluble in H2O and contributes to acid rain, causing damage to
the ecosystem.12

The use of a catalyst is the method of choice for NOx control of fuel-powered vehicles.
For gasoline cars, the three-way-catalyst (TWC) is used thanks to its ability to
efficiently remove NOx , CO, and hydrocarbon (HC) simultaneously. NOx is reduced
to N2 and H2O, while CO and HC are oxidised to CO2 and H2O. The TWC
is typically based on Pt, Pd, and Rh nanoparticles supported on a metal oxide
such as Al2O3.14 Promoters in the form of metal oxides with high oxygen storage
capacity, such as CeO2 are also added. TWC has the limitation that it must be
operating under stoichiometric conditions, which excludes the use of TWC in lean
burn engines.
Lean burn engines, which operate with excess O2, have gained increased attention
thanks to their improved fuel economy and lower CO2 emissions15. Instead of a
TWC, the aftertreatment system typically used in lean burn engines contains two
modules for the sequential removal of, on one hand, HC and CO, and on the other
hand NOx .16 I) A diesel oxidation catalyst (DOC), usually based on platinum or
palladium dispersed on a support, which oxidizes CO and HC17. II) An ammonia-
assisted selective catalytic reduction (NH3-SCR) catalyst for the removal of NOx
gases. The NH3-SCR catalyst is placed downstream of the DOC. In NH3-SCR, urea
is heated, releasing NH3, which is then dosed over the catalyst that reacts with NOx
to form N2 and H2O. The placement of a DOC in front of the NH3-SCR catalyst
increases the fraction of NO2 in the exhaust, since a considerable amount of NO is
oxidized to NO2 over the DOC. This is beneficial since the reaction between NH3,
NO and NO2 generally proceeds faster than that of NH3 and NO.

1.3 Catalyst for NH3-SCR
NH3 can react with NO in presence of O2 over the catalyst through the so-called,
standard SCR reaction.

4 NH3 + 4 NO + O2 −−→ 4 N2 + 6 H2O (R2)

3



1. Introduction

The stoichiometry between NH3 and NO is one, and the presence of O2 is required
for the abstraction of the hydrogen atoms. In the presence of NO2, the SCR reaction
can proceed according to the so-called fast SCR reaction.

2 NH3 + NO + NO2 −−→ 2 N2 + 3 H2O (R3)

N2 and H2O are the preferred products, however, side reactions can occur alongside
the desired SCR reactions such as oxidation of NH3 and NO with O2. One particular
important side reaction is the formation of N2O.

2 NH3 + 2 NO + O2 −−→ N2 + N2O + 3 H2O (R4)

N2O is a potent greenhouse gas that over a 100-year timespan, has a global warming
potential 273 times greater than CO2

18. Therefore, the formation of N2O should be
minimized.

A catalyst suitable for NH3-SCR should have redox properties to allow for O2 ad-
sorption and be able to adsorb and facilitate NO and NH3 coupling. In addition,
the catalyst must have a high stability, as it is exposed to harsh conditions in the af-
tertreatment system, including high temperatures and various exhaust contaminants
that can lead to catalyst deactivation.
The two commercially available types of NH3-SCR catalyst are vanadium-based
and zeolite-based materials.19 Vanadium is typically supported on TiO2 and is char-
acterized by a high activity in the medium temperature range and excellent SO2
resistance.20 A promoter such as WO3 is often added to prevent unwanted phase
transitions in TiO2 and to enhance the low-temperature activity.21 One drawback
of using vanadium-based catalysts is the formation of volatile VOx species, which
pose a health risk when released into the ambient environment.22

Zeolites are hydrated crystalline aluminum silicates, composed of tetrahedral TO4
sites where T is Si or Al.23 They consist of interconnected cages and channels with
dimensions as small as 1 nm, which give a high size selectivity and some of its unique
properties. Pure silicates (SiO2) do not contain any charges as silicon is tetravalent.
However, as Al is trivalent, it requires a balancing counterion, often a proton. The
proton can be ion-exchanged with a range of metals, such as Cu, Fe, Pd, and Pt,
which are crucial for catalytic activity.24 For NH3-SCR Cu or Fe exchanged zeolites
are typically used. For use in diesel-powered vehicles, Cu is preferred thanks to
a good low-temperature activity and a good hydrothermal stability.19 The different
shapes and sizes of the zeolite framework give rise to many types. To date, there have
been identified 255 zeolites as documented by the International Zeolite Association
(IZA).25 Each zeolite framework is assigned a 3-letter combination, with BEA and
CHA being two with a high activity for NH3-SCR.
BEA is classified as a large-pore-size zeolite with the largest ring consisting of 12
Si atoms. Cu-BEA has shown good tolerance against sulfur, however, it suffers
from thermal degradation and hydrocarbon poisoning, which currently makes CHA
the preferred choice for NH3 –SCR.26–28 Chabazite, which is classified as a small-
pore-size zeolite, consists of two cages, a small cage made up of four- and six-
membered rings and a large cage, consisting of four- six- and eight-membered rings,
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Figure 1.2: The two cages that make up the Chabazite structure. Atomic color
codes: Si (yellow) and O (red).

shown in Figure 1.2. Cu exchanged chabazite (Cu-CHA) zeolites are known to have
good hydrothermal stability,29 with a good low-temperature activity to the SCR-
reaction30 and is the catalyst studied in this thesis.
The low-temperature NH3-SCR mechanism over Cu-CHA has been extensively stud-
ied in recent years.31–33 The reaction proceeds over NH3 solvated copper complexes
such as [Cu(NH3)2]+. [Cu(NH3)2]+ are mobile complexes that can diffuse between
the CHA-cages and if two complexes are paired in the same cage, they can adsorb
O2 forming a peroxo complex [Cu2O2(NH3)4]2+. NH3 and NO can couple over the
complex forming HONO and H2NNO, which are decomposed to N2 and H2O. The
NO-NH3 coupling32,33 reduces CuII back to [Cu(NH3)2]+. The reaction is a redox-
cycle where Cu changes between oxidation states +1 and +2. At higher temperatures
NH3 desorbs, forming framework-bound Cu ions. This give rise to a non-monotonic
trend for the NO conversion as a function of temperature, where a minimum at
around 350 ◦C is observed. This behavior suggests that two different mechanisms
dominate at low and high temperatures.34

1.4 Catalyst Deactivation
Over time, the catalyst becomes deactivated, which impacts the activity and life-
time. The deactivation of a catalyst is closely related to the chemicals and temper-
ature to which the catalyst is exposed. Exhaust gas contains various contaminants
derived from the engine and fuel additives, that may deactivate Cu-CHA.35 Simul-
taneously the temperature can reach up to 500 ◦C, which may accelerate the rate
of deactivation. Furthermore, when exposed to H2O at high temperatures, site re-
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location, dealumination, and breakdown of the pore structure may occur, known as
hydrothermal deactivation.36

Possible contaminants include phosphorus, alkali metals, and hydrocarbons, with
sulfur being the most extensively investigated.37–40 Sulfur is mainly in the form of
SO2 in the exhaust gas. However, as the DOC is placed upstream of the NH3-SCR
catalyst in the aftertreatment system, a part of SO2 is oxidized to SO3. Both SO2
and SO3 can cause significant deactivation of the catalyst over time.37,38

Cu-CHA is generally prone to sulfur deactivation compared to large pore size zeolite28

and Fe-based zeolites.41 Even small amounts of sulfur can accumulate in the zeolite
and lead to substantial deactivation.37 The exposure of the catalyst to sulfur might
lead to the formation of sulfuric acid, ammonium (bi)sulfate, and Cu-sulfates.40 A
large part of the sulfur-induced deactivation can be regenerated by increasing the
temperature to 500 ◦C, which is done periodically during operation, extending the
lifetime of the catalyst.
However, some of the strongly bound sulfur remain in the zeolite and are not removed
during the regeneration, resulting in a loss of activity over time.38 The poisoning
mechanism with sulfur is a complex process and depends on numerous factors, such
as gas composition (O2, H2O, NO and NH3), and temperature. There are some
promising ways to limit sulfur deactivation by, for example, constructing a core-
shell structure of cerium zink oxide around the zeolite.42 However, these methods
are in the early stage of development.

1.5 Objectives
The objective of the thesis is to investigate NH3-SCR over a Cu-CHA zeolite with
a focus on sulfur deactivation. This is done using a combination of theoretical and
experimental techniques to gain a comprehensive understanding of the mechanisms
behind these processes.

Cu-CHA is a dynamic system, where the state of Cu changes depending on tempera-
ture and gas composition.43 Several experimental techniques exist that quantify the
different Cu sites, where temperature-programmed reduction with hydrogen (H2-
TPR) is one example, which is studied in Paper 1. However the assignment of the
peaks to atomic structures in Cu-CHA is ambiguous. In Paper I, a new method
is developed to interpret H2-TPR profiles, using density functional theory (DFT)
based microkinetic modelling. In this approach, H2 reactions over Cu species are
investigated by DFT, which are used to simulate H2-TPR profiles. In addition, H2-
TPR experiments are carried out to support our findings.

Paper II, Paper III and Paper IV focus on the sulfur poisoning. In Paper II, a
detailed reaction mechanism is proposed for the deactivation of the low-temperature
NH3-SCR by SO2. A thermodynamic analysis is carried out to investigate the most
stable sulfur species at reaction conditions. As sulfur is proposed to limit the mobil-
ity of NH3 solvated Cu species, constrained ab initio molecular dynamic simulation
is performed to investigate the free energy barriers. In Paper III sulfur poisoning
with both SO2 and SO3 at high temperatures and its effect on ammonium nitrate

6



1. Introduction

and N2O formation is investigated. DFT calculations for sulfur interaction with Cu
complexes are performed to facilitate the interpretation of the experimental results.
In Paper IV, a phenomenological kinetic model is constructed, which is constructed
by parameter fitting to reactor-based experiments. To achieve this, repeated cycles
of sulfation and thermal regeneration are performed to investigate the influence of
different temperatures and gas compositions, for which the model can reproduce.

In Paper V, a machine learning force-field (ML-FF) is constructed that is trained
using DFT data. The ML-FF is used to investigate the mobility and pairing of
[Cu(NH3)2]+ complexes in Cu-CHA. Molecular dynamic simulations for systems
with thousands of atoms for nanoseconds are performed to investigate the effect
of Si/Al ratio, Cu loading, counter ion, and Al distribution. MD simulation using
metadynamics is performed to investigate the diffusion between zeolite cages and
the collective effect between the ions.

In Paper VI, NH3 blocking is investigated using a combined experimental and
modeling approach. Transient response methods are performed to investigate the
effect of NH3 on the reduction of CuII species. A kinetic model including an NH3
blocking step is developed to support and rationalize the experimental findings.

The thesis, which is partly based on my licentiate thesis,44 contains seven chapters.
In Chapter one, an introduction to the topic is given. In Chapter two, the elec-
tronic energy obtained from both density functional theory and machine learning
force-fields is discussed. Chapter three introduces methods for simulating the sys-
tem at elevated pressures and temperatures, such as molecular dynamics. Chapter
four discusses how the system can be modeled using the mean-field approximation.
Chapters five and six present an overview of the results obtained and Chapter seven
presents the conclusions and outlook.

7
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2
Electronic Energy

The knowledge about the electronic energy as a function of nuclear coordinates is
fundamental to the study of chemical reactions, since it allows the identification
of stable structures and transition states along reaction pathways. The electronic
energy can be calculated by solving the Schrödinger equation using, for example,
density functional theory (DFT) calculations. However, this is computationally
expensive. An alternative approach is machine learning force-fields where the energy
is parameterized using neural networks. This allows simulations of larger systems
and extended simulation times. This chapter will introduce both of these methods.

2.1 The Schrödinger Equation
The time-independent Schrödinger equation is given by:

Ĥψ = Eψ (2.1)

Ĥ is the Hamiltonian operator, ψ is the wavefunction and E is the energy. The
Hamiltonian can be written with operators for the potential and kinetic energies
of the electrons and nuclei. It is convenient to write the Schrödinger equation in
atomic units (au), which is defined as me = e = ℏ = 1

4πϵ0
= 1.

Ĥ = −
nuclei∑

A

1
2Mn

∇2
n −

elec∑
i

1
2∇2

e −
nuclei∑

A

elec∑
i

ZA

RA − ri

(2.2)

+
elec∑

i

elec∑
j>i

1
ri − rj

+
nuclei∑

A

nuclei∑
B>A

ZaZb

|RA −RB|

The first two terms are the kinetic energy of the nuclei and electrons, respectively.
The last three terms are the Coloumb interaction between nucleus-electron, electron-
electron, and nucleus-nucleus, respectively. A first step when solving the Schrödinger
equation is generally the Born-Oppenheimer approximation, allowing us to treat the
wavefunctions of the nuclei and electrons separately. This approximation is based
on the fact that the nuclei have a high mass compared to electrons, meaning that
the nuclei can be seen as static relative to the motion of the electrons.

2.2 Hartree Fock Approximation
The Schrödinger equation (2.1) can only be solved analytically for one electron sys-
tems such as H2

+. Thus, for the majority of chemical problems, the solution needs
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2. Electronic Energy

to be approximated using numerical methods. One of the first successful approaches
developed to solve the Schrödinger equation and the starting point for many other
methods is the Hartree-Fock (HF) approximation.45,46 In HF, the one-electron or-
bitals are arranged in a Slater determinant. The Slater determinant satisfies the
Pauli principle, which states that the total electronic wavefunction must be anti-
symmetric, meaning that the wavefunction must change sign when interchanging
two electron coordinates. The HF energy is given by:

EHF =
Nelec∑
i=1

hi + 1
2

Nelec∑
i=j

Nelec∑
j=1

(Jij −Kij) + Vnn (2.3)

hi is the energy given by the one-electron kinetic energy operator.

hi = ⟨ϕi(1)| − 1
2∇2

i −
Nnuclei∑

A

ZA

|RA − ri|
|ϕi(1)⟩ (2.4)

Jij is the Coulomb integral and Kij is the exchange integral. Jij and Kij are given
by

Jij = ⟨ϕi(1)ϕj(2)| 1
|r1 − r2|

|ϕi(1)ϕj(2)⟩ (2.5)

Kij = ⟨ϕi(1)ϕj(2)| 1
|r1 − r2|

|ϕj(1)ϕi(2)⟩ (2.6)

Vnn is the nuclear repulsion. HF does not contain the full electron correlation as the
many-body wavefunction is described by a single Slater determinant. The electron-
electron repulsion is instead included in an average fashion, which can result in a
poorly described ground state. On the other hand, HF contains the exact exchange
energy, which means that electron self-interaction is absent. HF is the starting point
of quantum chemical calculations such as coupled cluster (CC) and Møller–Plesset
(MP).

2.3 Density Functional Theory Calculations
In 1964, Hohenberg and Kohn proposed two theorems that form the basis for DFT
methods used today.47 The first theorem states that the external potential Vext is a
unique functional of the electron density, ρ, which means that the ground state is
also a unique functional of the electron density. The second theorem states that the
ground state energy is a unique functional of the electron density. The clear advan-
tage of using the electron density, ρ compared to wavefunction-based approaches is
that the electron density, in principle, has the same number of variables indepen-
dent of the size of the system. However, the functional connecting the energy and
electron density is unknown.
Attempts at solving the ground state energy based only on the electron density
give poor accuracy, with one reason being the difficulty in describing the kinetic
energy. A solution is the introduction of Kohn-Sham orbitals,48 used in modern
DFT calculations. Within the Kohn–Sham formalism, the DFT total energy can be
expressed as

EDF T (ρ) = TS(ρ) + Ene(ρ) + J(ρ) + Exc(ρ) (2.7)

10



2. Electronic Energy

TS(ρ) is the kinetic energy expressed by single-electron orbitals for non-interaction
electrons, where the wavefunction is constructed from a single Slater determinant
similar to HF.

TS(ρ) =
Nelec∑
i=1

⟨ϕi| − 1
2∇2|ϕi⟩ (2.8)

Ene(ρ) is the interaction between the nucleus and electrons, J(ρ) is the electron-
electron repulsion. For the first three terms, there are exact solutions available.
However, for the exchange-correlation energy Exc(ρ), an approximation is needed.
The choice of Exc(ρ) is crucial for the accuracy of DFT calculations and has led to
the development of a wide range of exchange-correlation functionals.

2.3.1 Exchange Correlation Functionals
Exc(ρ) can be written as the sum of the exchange energy Ex(ρ) and correlation
energy Ec(ρ). A simple approximation is the local density approximation (LDA)47

where the electron density is treated locally as a uniform electron gas. Here the
exchange energy is given as

ELDA
x (ρ) = −3

4

( 3
π

)1/3 ∫
ρ4/3(r)dr (2.9)

The correlation energy, ELDA
c can be calculated with high accuracy based on quan-

tum Monte Carlo simulations.49 The approximation of a uniform electron gas fails
in cases where the electron density does not vary slowly.
Improvements to LDA are possible by making the exchange-correlation depend on
not only the electron density but also on the first derivate. One of these methods
is known as generalized gradient approximation (GGA)50 and the exchange energy
can be written as

EGGA
x (ρ, x) =

∫
ρ4/3F (x)dr (2.10)

F (x) is an enhancement factor and x is the dimensionless density gradient. One well-
known approximation within the GGA class is Perdew-Burke-Ernzerhof (PBE),51

which is used in this thesis. Here, the enhancement factor is

F (x) = 1 + κ− κ

1 + µx2/κ
(2.11)

κ and µ are constants. The correlation energy for GGA can be written as.51

EGGA
c (ρ) =

∫
d3rρ[ϵunif

C (rs, ζ) +H(rs, ζ, t)] (2.12)

rs is the local Seitz radius, ζ is the relative spin polarization, ϵunif
C is the correlation

energy per particle of a uniform gas and t is a dimensionless density gradient
A way to further improve the XC-approximation is to let the exchange-correlation
energy depend on higher-order derivatives of the electron density, which includes
the kinetic energy density and is called meta-GGA methods.52

Common for the LDA and GGA methods, is that they overdelocalise the electrons
because the exchange-correlation term Exc, does not cancel the self-interaction from
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2. Electronic Energy

the electron-electron interaction (Jij). This is especially important for the descrip-
tion of strongly correlated d- or f-electrons, which, for example, is the case for
transition-metal oxides. In HF, this electron self-interaction is removed by the HF
exchange. In hybrid methods, the self-interaction is reduced by adding a fraction of
the HF exchange to the exchange-correlation. One example of a hybrid functional
is B3LYP.53,54

EB3LY P
xc = (1 − a)ELSDA

x + aHHF
x + b∆EB88

x + (1 − c)ELSDA
c + cELY P

c (2.13)

Two different exchange energies are included, which are the exchange from HF, EHF
x

and B88, EB88
x . The correlation part is the LYP functional ELY P

c . The amount of
exchange included is determined by the parameters a, b, and c, which are fitted
to experimental data. Hybrid methods generally give more accurate results than
GGA methods, for strongly correlated systems, however, there is an increasingly
computational cost associated with the calculation of HF exchange.
Another way to reduce the issue with the self-interaction is augmenting DFT with
a Hubbard U term,55 which is computational inexpensive. Here, the strong on-site
Columb interactions of the localized electrons are treated with an additional term,
which stabilizes the localized orbitals with respect to delocalization. The choice of
the U parameter is important and is method and material dependent. Typically
different values of U are tested and compared with experiments or computational
results. The U value can also be determined from first-principles56.
Standard density functional theory does not contain dispersion forces and therefore
cannot capture the attractive 1/R6 long-distance behavior between charge distri-
butions that do not overlap. One solution is to augment GGA with a nonlocal
correlation functional. An example of this is the van der Waals density (vdW-DF)
functional proposed by Dion et al.57 Dispersion forces can also be included using
an empirical pairwise correction as suggested by Grimme58 that accounts for the
dispersion forces.

∆Edisp = −
∑

n=6(8,10)
sn

atom∑
AB

CAB
n

Rn
AB

fdamp(RAB) (2.14)

sn is a scaling factors that depends on the functional applied, CAB
n is a dispersion

coefficient, for atom pair AB and Rn
AB is the distance between A and B for the nth

order(n=6(8,10)). fdamp(RAB) is the damping factor. Early models included only
the 6th order term, but have been refined by including higher orders corrections.52

This correction is referred to as DFT-D methods, where the DFT-D3 approach is
used in this work.

2.3.2 Basis Sets and Pseudopotentials
When solving HF or DFT, they both require a basis set to represent the orbitals.
This can either be done with local basis set functions, such as, Slater and Gaussian-
type of orbitals centered at the atoms or in the form of plane waves. In this work,
plane waves are used as they are the preferred choice for periodic systems, because
they fulfill Bloch’s theorem. Another advantage of plane wave is that they are
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easier to converge.59 Bloch’s theorem states that the plane wave functions, at the
same position in two different cells can be related by the lattice vector a.

ϕ(r + a) = eik·rϕ(r) (2.15)

Plane waves are good at describing delocalized slowly varying electron densities, such
as valence and conduction bands as the potential is rather smooth. However, this is
not the case for core electrons that are localized with sharp peaks and many oscil-
lations that require too many plane waves to describe. A solution to this problem
is to treat the core electrons with an effective potential and only treat the valence
electrons explicitly, which at the same time decreases the computational cost. This
is possible since the core electrons are not involved in the formation and breaking
of chemical bonds. These methods are known as pseudopotential methods and the
Projector Augmented Wave (PAW)60 proposed by Bloch is used in this thesis. In
the PAW formalism, the all electron (AE) wave function can be obtained from the
the pseudo (PS) wavefunction by:

|Ψ⟩ = |Ψ̃⟩ +
∑

i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i|Ψ̃⟩ (2.16)

|ϕi⟩ is the AE partial waves, |ϕi⟩ is the one PS partial wave and p̃i is the projector
function. The advantages of the PAW approach is the computational efficiency of
the plane waves combined with the accuracy provided by the augmentation.59

2.4 Analysis of Electronic Structure

Analysis of atomic charges is useful as it allows for studies of, for example, the oxi-
dation state of Cu ions. A popular approach is the use of Bader charge analysis.61,62

In Bader charge analysis, the charge density is partitioned into Bader volumes corre-
sponding to each atom, which are separated by zero flux surfaces, where the charge
density is a minimum perpendicular to the surface. Each Bader volume contains a
single electron density maximum. Henkelman and co-workers, developed a method
to partition the charge density into Bader volumes.61,62 The method is grid-based
and the partition algorithm follows the steepest ascent path along the charge den-
sity gradient until the maximum electron density is found. The total charge is then
calculated by integrating over each Bader volume.

2.5 Parameterization of Energy

DFT is a powerful tool for calculating the electronic energy, however, DFT calcula-
tions have a high computational cost, which puts a limitation on what problems can
be studied. As an alternative approach, the electronic energy can be calculated by
parameterizing it as a function of nuclear coordinates, known as force-fields (FF).
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2.5.1 Classical Force-Field
The FF energy can generally be written as different bonded and non-bonded terms
contributing to the energy.63

EF F = Estr + Ebend + Etors + Evdw + Eel + Ecross (2.17)

Estr is the energy contribution from stretching of the bonds, Ebend describes the
energy as a function of bending an angle between three atoms, Etors is the torsion
between four atoms. Evdw and Eel describe the van der Waals and electrostatic
contributions to the energy. Finally, Ecross represents the coupling between the
different terms. The bonding terms (Estr +Ebend +Etors) can be described by simple
functions of distance, angle, and torsion, respectively. For the non-bonding terms,
the van der Waals forces, Evdw can be modeled using a Lennard-Jones potential
while the electrostatic energy Eel can be modeled using a Coulomb law assuming
point charge, however, higher-order forms may be included. The parameters for
each term are typically fitted to experimental data or first-principle calculations. By
parameterizing the electronic energy, and bypassing the DFT equations, it becomes
possible to study systems with thousands of atoms. However, traditional FF, can
be time-consuming to construct and require a detailed knowledge of how to model
the system.64 Furthermore, conventional force-fields such as AMBER65 and UFF,66

assume that the bonds between the atoms are predefined, and that bond formation
and breaking do not occur, which limits its application.67 More advanced bond-order
force-fields like ReaxFF,68 can model bond forming and breaking,69 however, this
adds more complexity to the force-field. In addition, they are often not sufficiently
accurate for quantitative studies or are restricted to specific types of reactions.67

2.5.2 Machine Learning Force-Fields
Two of the main limitations of FF is their relatively poor accuracy and their inability
to model chemical reactions compared to, first-principle methods such as DFT. With
the use of machine learning it is possible to combine the accuracy of DFT with the
low computational cost of FF, refereed to as machine learning force-fields (ML-FF).67

ML-FF predicts energies and forces by means of machine learning such as a neural
network, and do not consist of analytical expressions as is the case of traditional
FFs. When trained on DFT calculations, ML-FF can achieve close to DFT accuracy
at a computational cost, comparable to that of FF.
Many ML-FF algorithms rely on the assumption of chemical locality. In these cases,
the total energy is a sum of the energies of the individual atoms.

EML−F F
tot =

∑
i

Ei (2.18)

The energy of for the individual atom, Ei is determined by the local atomic envi-
ronment, within a cut-off radius rcut, as illustrated for atom A in Figure 2.1(a). The
local atomic environment is described by different descriptors. Two descriptors can
be the distance rA−C between atom A and C and the angle θB−A−C between atom
B, A and C illustrated in Figure 2.1. These are simple examples, and in practice,
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Figure 2.1: (a): The description of local atomic environment for atom A (b): A
simple neural network showing three different layers, being the input layer, hidden
layer and output layer.

more advanced descriptors such as symmetry functions or smooth overlap of atomic
positions (SOAP) are often used. In Figure 2.1 the energy of atom A depends only
on the atoms within its cut-off radius, which are atoms B and C. Atom D is outside
the cut-off radius, and thus the energy of atoms A and D does not depend explic-
itly on each other, which can cause problems. The assumption of chemical locality
reduces the computational cost as the interaction between all atoms does not have
to be calculated. Furthermore, it makes it possible to extrapolate the ML-FF to
larger systems after training. However, the drawback is the inability to describe
long-range interactions, which can be important for, especially, charged systems.70

2.5.2.1 Long-range Interactions

Long-range interaction can be incorporated into a chemical locality based ML-FF
by the use of charges in the form of spherical Gaussians. The ML-FF energy can
in this way be augmented with the electrostatic energy. In this thesis, a recently
developed method by Zhang et al71 implemented in the Deep MD kit code72 is used.
The code was originally implemented with maximally localized Wannier functions.
Here, however, atom-centered charges are used in this work instead. The energy can
then be written as:

EML−F F
tot = Esr + EGt (2.19)

Esr is the predicted energy from standard ML-FF using a radius cut-off. The in-
troduced EGt term is the Gaussian electrostatic energy. Note that the Gaussian
electrostatic energy EGt is subtracted from Esr to avoid double counting. EGt is
calculated in the Fourier space as

EGt = 1
2πV

∑
m ̸=0,|m|≤L

exp(−π2m2/β2)
m2 S(m)2 (2.20)
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V is volume of the unit cell, L is the Fourier space cutoff and β is the spread
parameter. S(m) is the structure factor given by

S(m) =
∑

i

qie
−2πimRi (2.21)

qi is the charge density of charge i, and Ri is the charged site. The particle-particle-
particle-mesh (PPPM) algorithm is used to calculate the electrostatic energy. Note
that it is not necessarily all atoms that are assigned a charge. The incorporation of
the Gaussian electrostatic energy increases the computational cost by approximately
a factor of 5 but is still superior in speed when compared to DFT calculations.71 For
the ML-FF developed in this thesis, an MD simulation can achieve a speed of 10
timesteps/s for a system consisting of ≈ 3500 atoms. In contrast, a single timestep
of an AIMD simulation takes 150 s for a Cu-CHA system of 300 atoms.

2.5.2.2 Neural Network

The next step is to go from the descriptors presented in previous section to electronic
energies and forces by the use of machine learning. Two commonly used algorithms
for ML-FF are kernel method and neural network, with the latter used in this
thesis.73 A simple neural network is illustrated in Figure 2.1b, with input, hidden,
and output as the layers. In practice, a neural network may have hundreds of
neurons with several hidden layers depending on the complexity of the problem
studied. The objective of the hidden layer is to transform the input (descriptors),
into output (energy and forces). A single hidden layer can be expressed as

f(x) =
N∑

n=0
cnσ(wnx+ bn) (2.22)

f(x) corresponds to the output and x is the input, with N being the number of
neurons, σ is the neuron activation function, which introduces non-linearity into the
network. cn, wn and bn are parameters fitted to a given set of training data.
Training the network is the process of fitting the parameters to a loss function.72

L(pϵ, pf , pξ) = pϵ∆ϵ2 + pf

3N
∑

i

|∆Fi|2 + pξ

9 ||∆ξ||2 (2.23)

∆ is the difference between the force-field prediction and the training data, N is the
number of atoms, ϵ is the energy per atom, Fi is the force on atom i, and ξ is the
viral tensor (if included). pϵ, pf and pξ are adjustable parameters, where p∈ and pf

are increasing, and pξ decreasing during training. The training is a minimization
problem of the loss function by tuning the parameters in the hidden layer(s).
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3
Towards Elevated Pressure and

Temperature

Electronic structure calculations introduced in the previous section, allows one to
identify stable structures and transitions state, both of which are needed to de-
scribe chemical reactions. The calculated electronic energy, however, corresponds
to zero kelvin and zero pressure, which does not represent experimental conditions.
With statistical mechanics and thermodynamics, it is possible to add effects of tem-
perature and pressure. An alternative approach is to solve Newton’s equations of
motion and simulate the system at finite temperatures and/or pressures via molecu-
lar dynamics (MD). When combined with ML-FF, MD simulation can be extended
to approach microsecond regime. This chapter will discuss the process of adding
the effects of temperature and pressure to the electronic energies calculated in the
previous chapter.

3.1 Optimization
The search for a stable structure is a multidimensional optimization problem, where
the nuclear coordinates are changed to minimize the energy of the system. The
objective is to find a local minimum on the potential energy surface, hence, the
gradient in all directions should be zero. Structural optimization always starts with
an initial guess of the geometry, from which a stable structure should be found. The
forces acting on the atoms, calculated using DFT or ML-FF, represent the gradient
of the potential energy surface and can be used by different algorithms to search for
a minimum.
A simple approach is to calculate the gradient and then take a step in the oppo-
site direction, known as the steepest descent (SD) method.52 Going in the opposite
direction of the gradients, ensures that the energy will decrease, thus, it is guar-
anteed that a minimum will be found. However, SD tends to oscillate around the
minimum and the convergence is slow.52 A way to improve on the SD method, is to
consider both the gradient and the gradient from the previous step in the optimiza-
tion procedure. By doing so, the step is not taken against the gradient but along a
line conjugate to the previous step, which ensures faster convergence than the SD
method. This method is called conjugate gradient52 and is the method used in this
thesis. Note that the optimization algorithms only ensure that the structure con-
verges to a local minimum, thus, it might not correspond to a stable structure. This
is especially challenging for species in Cu-CHA, as the potential energy landscape
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is flat. This issue has been tackled by using ab initio molecular dynamics (AIMD)
to sample the potential energy landscape. Structures are then extracted along the
trajectories and subsequently optimized, after which, the structure with the lowest
energy is selected.

3.2 Transition State Search
Chemical reactions typically involve some kind of energy barrier that has to be
passed to form the final products. The molecules follow the minimum energy path
between the two minima with the highest point connecting them corresponding to
the transition state, which is a first-order saddle point. Identifying first-order saddle
points is typically more difficult than finding minima. For systems with a high degree
of freedom, such as periodic systems, multi-structure interpolation methods like the
climbing image nudge elastic band (CI-NEB) are generally used to identify transition
states.52 In NEB, a series of structures, called images, are interpolated between
the initial and final state, which must be known. A spring is added that evenly
distributes the images, along the reaction coordinate, mimicking an elastic band,
hence the name. The images are optimized based on the perpendicular component of
the true force, ensuring that the spring force does not interfere with the convergence
of the images to the minimum energy path.74 To find the transition state, the spring
of the image with the highest energy is turned off, so the image experiences the
true forces.75 This image is, thereafter, converged to a first-order saddle point. A
vibrational analysis, introduced in the next section, confirms if it is a true first-order
saddle point.

3.3 Vibrational Analysis
At zero Kelvin, the molecules still vibrate and a correction to the electronic energy
is added, to give the zero point energy (ZPE) electronic energy. Furthermore, vibra-
tional analysis can be used to compute the vibrational entropy, which is necessary
for estimating the Gibbs free energy. A common way to evaluate the vibrations is
to approximate them as a harmonic oscillator. The vibrational frequencies can with
this approximation be derived by a Taylor expansion involving the energy and nu-
clear coordinates. For a diatomic molecule, the only nuclear coordinate to consider
is the bond length and the Taylor series becomes:52

E(R) = E(R0) + dE

dR
(R −R0) + 1

2
d2E

dR2 (R −R0)2 + 1
6
d3E

dR3 (R −R0)3 + ... (3.1)

The first term is the zero point of the energy, the second term vanishes since the
structure vibrates around a minimum where the first derivate with respect to the
nuclear coordinates is zero. The energy can, thus, be approximated as the lowest
non-zero term, which is the second-order derivative.

E(R −R0) ≈ 1
2
d2E

dR2 (R −R0)2 = 1
2k(R −R0)2 (3.2)
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The second derivative is defined as the force constant k, which can be used to
estimate the vibrational frequency v.

v = 1
2π

√
k

µ
(3.3)

µ is the reduced mass that for a diatomic molecule is m1m2/(m1 +m2).

3.4 Evaluation of Partition Functions
The structure and transition states discussed so far, correspond to structures at zero
Kelvin at zero pressure. Statistical mechanics provide the connection between the
properties of a single molecule and an ensemble of molecules at elevated temper-
atures and pressures. Essential for the connection is the partition function Q as
several thermodynamic properties can be derived from the partition function76 such
as enthalpy H, entropy S, Helmholtz free energy F , and Gibbs free energy G.

H = U + PV = kBT
2
(
∂ lnQ
∂T

)
V

+ kBTV

(
∂ lnQ
∂V

)
T

(3.4)

S = U − F

T
= kBT

(
∂ lnQ
∂T

)
V

+ kB lnQ (3.5)

F = −kBT lnQ (3.6)

G = H − TS = kBTV

(
∂ lnQ
∂V

)
T

− kBT lnQ (3.7)

For a system consisting of N non-interaction, indistinguishable particles, the par-
tition function Q is given by Q = 1

N !q
N . q is the partition function for a single

molecule, which is given by the sum of all possible quantum energy states, ϵi.

q =
∞∑
i

e−ϵi/kBT (3.8)

The total partition function can be written as a product of terms involving the
electronic, translation, rotation, and vibration degree of freedom.

qtot = qtransqrotqvibqelec (3.9)

The translation has three degrees of freedom, with the partition function depending
on both the volume, V , and the mass, m.

qtrans =
(

2πmkBT

h2

)3/2

V (3.10)

Using the rigid-rotor approximation the rotational partition function for a poly-
atomic molecule can be calculated using the principal axes of inertia Ix and a sym-
metry factor σ.

qrot =
√
π

σ

(
8π2kBT

h2

)3/2√
I1I2I3 (3.11)
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The vibrational partition function can be written as a product involving the vibra-
tional frequencies vi. The number of vibrations is 3N − 6 for a non-linear molecule,
with N being the number of atoms.

qvib =
3N−6∏
i=1

e−hvi/2kBT

1 − e−hvi/kBT
(3.12)

The partition function for the electronic degree of freedom is a sum of all quantum
states. However, since the energy difference between the ground and excited states
is typically large compared to kBT , only the ground state becomes important. This
means that the partition function can be approximated by only the ground state.

qelec =
∞∑

i=0
gie

−ϵi/kBT ≈ g0e
−ϵ0/kBT (3.13)

Defining the ground state energy as the zero-point energy, the partition function
becomes equal to the degeneracy gi.
For surface-bound atoms, the contribution from the translation and rotation degree
of freedom is typically assumed to be small since the movement is restricted. In
this case, the entropy is calculated from the vibrational frequencies. However, for
zeolites, this becomes challenging since the species may contain a significant amount
of translation and rotational entropy.77 The previous sections have shown how to add
temperature and pressure effects for static structures that correspond to zero kelvin.
At finite temperatures, the system becomes dynamic and the molecules move, which
can be modeled using molecular dynamics.

3.5 Molecular Dynamics
In molecular dynamics (MD), the motion of the atoms is simulated at elevated tem-
peratures and pressures. The nuclei are typically heavy enough to be approximated
as classical particles. The motion can in this case be described by Newton’s second
law.

F = ma (3.14)
F is the force, m is mass and a is acceleration. Newton’s equations of motion for a
set of atoms can be solved numerically using the Verlet algorithm.78 Here ri is the
initial position and ri+1 is the new position.

ri+1 = (2ri − ri−1) + Fi

mi

∆t2 (3.15)

∆t is the timestep. If the force is evaluated using first-principle calculations, it is
called ab initio molecular dynamics (AIMD).79 The force can also be estimated using
ML-FF from which simulation times in the range of nanoseconds can be achieved.
The choice of the timestep ∆t, depends on the application. A large timestep allows
for long simulation times, as the forces have to be evaluated less frequently. However,
a too large timestep can lead to inaccuracies in the simulation as rapid changes may
not be captured. The choice of timestep typically depends on the lightest atom
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included in the simulation, as they vibrate faster, a smaller timestep is, therefore,
needed for systems containing hydrogen atoms. If the vibration of the hydrogen
atoms is not of interest, they may be slowed down by increasing the mass or simply
freezing the bond length, allowing a higher time step.52

To mimic experimental conditions in the MD simulations, different thermodynamic
ensembles exist that are coupled to the surroundings in different ways. The simplest
one is the microcanonical ensemble (NVE), where the system has a constant number
of atoms, volume, and energy. Typically an experiment can exchange heat with the
surroundings, and in this case, an NVT ensemble is a more suitable choice, where
instead of the energy, the temperature is kept constant. A third option encountered
in MD simulation is the NPT ensemble where the pressure is kept constant, hence
the volume is allowed to change. In reality, the temperature is not fixed at all times
but fluctuates around the target temperature, controlled by a thermostat. A popular
thermostat is the Nosé-hoover thermostat,80,81 which is used in this thesis. Here a
heat bath is coupled to the physical system via the Lagrangian.

L =
N∑

i=1

mi

2 s2
(
dri

dt

)2

− U(r) + Q

2

(
s

dt

)2
− gkBT ln s (3.16)

The first two terms correspond to the kinetic and potential energy of the system,
respectively. The variable s introduces an extra degree of freedom into the system,
Q is the effective mass of s and g is the number of degrees of freedom of the system
(g = 3N , where N is the number of atoms).

The output of an MD simulation is a trajectory, which contains the evolution of the
system. Several important properties can be extracted from this trajectory. Two
common analytical properties are mean squared displacement (MSD) and radial dis-
tribution function (RDF).82 The MSD analysis can be used to estimate the mobility
of molecules. It measures the average displacement of a molecule from its reference
position over the entire simulation as a function of time. MSD can be calculated as
follows:

MSD(τ) = 1
N

N∑
i=1

1
M

M∑
j=1

∣∣∣ri(τj + τ) − ri(τj)
∣∣∣2 (3.17)

N is the number of molecules, M is the number of time intervals, ri is the position
of molecule i, and τ is the time interval. An example of an MSD plot calculated for
the diffusion of a [Cu(NH3)2]+ complex for different zeolite compositions is shown
in Figure 3.1. The initial increase in Å2 at low τ is due to the free motion of the
complex. Based on the MSD plot, it can be concluded that for a higher Cu/Al ratio
the [Cu(NH3)2]+ complexes has a increased mobility.

RDF, measures the probability of finding a given atom at a specific distance from
a reference atom. It can be used to find patterns in the interatomic distances,
which may provide insight into the physical properties of the system. Figure 3.2
illustrates the process of constructing an RDF plot for the Cu-Cu distance. Figure
3.2(a) is a histogram for the frequency of finding another Cu ion within a certain
radius interval, sampled over a 5 ns simulation. In general, the frequency increases
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Figure 3.1: Mean squared displacement (MSD) analysis for [Cu(NH3)2]+ at differ-
ent zeolite compositions with Si/Al set to 5.

with distance because the sampled volume grows with radius. The sampled region
corresponds to the volume of a spherical shell at that radius interval. The histogram
is normalized as follows.

g(r) = H(r)
(Ntotal/Vcell)Vshell(r)

(3.18)

Here, g(r) is the RDF which is now normalized and H(r) is the histogram. Ntotal is
the total number of species studied, in this case Cu atoms, and Vsphere is the volume
of the full sphere that is analyzed. This makes (Ntotal/Vsphere) the average number
density of Cu atoms. Vshell(r) is the volume that is sampled in the spherical shell
at radius r. The denominator represents the expected number of atoms within the
sampled spherical shell if they are randomly distributed. Therefore, at larger dis-
tances, when interactions between atoms are weak or absent, g(r) converges towards
1.
In Figure 3.2(c), the bin size (∆r) of the histogram is reduced and plotted as a line.
Finally, in Figure 3.2(d), the RDF of all Cu species are averaged. Here, two peaks
are observed at approximately 5.2 and 7.9 Å. The first peak corresponds to two Cu
complexes being in the same CHA cage, and the second peak corresponds to two
Cu species in two adjacent CHA cages. The increase in intensity from the first to
the second peak suggests that the two Cu ions repel each other when they are close.
Lastly, the free energy landscape can be derived from MD simulations provided
that the relevant transition happens frequently enough. This can be computed by
constructing a histogram as a function of the reaction coordinate, x and computing
the free energy, F (x) as follows.83

F (x) = −kBT lnH(x) (3.19)
kB is the Boltzmann constant, T is the temperature and H(x) is the histogram.
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Figure 3.2: Procedure for how to construct a radial distribution function (RDF).
(a): histogram for Cu-Cu distances. (b): Normalized RDF that is shown as a
histogram. (c): RDF plotted as a line. (d): RDF that is an average over all Cu
species in the simulation

In MD simulations, the atoms tend to stay around their minimum energy, and rare
events may require a very long simulation time to be observed. The use of ML-FF
to run MD simulations does improve this, but the problem still exists. To estimate
the free energy barrier of rare events, a bias can be applied that forces the transition
to happen more frequently, referred to as enhanced sampling techniques.

3.6 Enhanced Sampling Technique

Common for all enhanced sampling techniques is the need to define a collective vari-
able (CV) that represents the reaction path for which the free energy is estimated.
A simple CV could be a bond length, angle, torsion, or combinations of them. More
advanced CV’s include the Path Collective Variables,84 where the CV is adapted to
the lowest energy path connecting two structures. Furthermore, some approaches
allows more than one CV to be explored. One example of a CV used in this thesis
is shown in Figure 3.3. This CV describes the diffusion of a [Cu(NH3)2]+ complex
between two CHA cages connected by an eight-membered ring. A line is drawn
through the eight-membered ring. The CV is then the position of the Cu along the
line at which it intersects at 90◦, shown by a red dot.

Two common methods used to sample the free energy barriers are slow growth85 and
metadynamics,86 both of which are used in this thesis. In the slow-growth method,
the CV is linearly changing from an initial value to a final value thereby, estimating
the electronic energy along the reaction path. Using the blue moon approach, it is
possible to estimate the free energy profiles.87 Here, the free energy can be obtained
by integrating the free energy gradients along the CV, ξ.

∆A1→2 =
∫ ξ(2)

ξ(1)

(
∂A

∂ξ

)
ξ∗
dξ (3.20)
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Figure 3.3: Illustration of a collective variable (CV) used for the diffusion of a
[Cu(NH3)2]+ complex between two CHA cages connected by an eight-membered
ring used in Paper V. Atomic color codes: H(white), N(blue), O(red), Si(yellow)
and Cu(Bronze).

3.6.1 Metadynamics
The idea behind metadynamics is that potential energy wells are filled with Gaussian
functions, allowing for the sampling of rare events more frequently. In metadynam-
ics, Gaussian functions are added during the simulation, where the bias V can be
defined as:88

V (s, t) =
∑
kr<t

W (kτ) exp
−

d∑
i=1

(si − s
(0)
i (kτ))2

2σi

 (3.21)

The bias V (s, t), is added to the potential energy landscape, which can force the
molecule through transitions that otherwise would not happen during the timescale
of the simulation. W and σ are the width and height of the Gaussian function, s
and s0 are the values of the CV and the CV where the Gaussian function is added,
respectively. A popular version of the method is well-tempered metadynamics86,
where the height of the Gaussian W decreases over time, resulting in a smoother
convergence. In the long time limit, the bias potential should converge to the nega-
tive Helmholtz free energy F , with a constant C.

V (s, t → ∞) = −F + C (3.22)

The free energy can be estimated directly from the added Gaussian as shown in
(3.22). In cases where one is interested in studying other CVs than what has been
used in the simulations, it is possible to reweight the bias.89 Figure 3.4(a) shows the
free energy estimates at different times. As the simulation time increases the free en-
ergy profiles at different times should converge. The exploring of the CV during the
simulation is illustrated in Figure 3.4(b). The system oscillates around the reaction
path, slowly refining the free energy profiles. As the simulation is performed with
well-tempered metadynamics, the height of the Gaussians as a function of simulation
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Figure 3.4: Well-tempered metadynamics simulations. (a): Estimated free energy
profiles calculated at different simulation times. (b): Value of the CV for every
Gaussian function deposited during the simulation. (c): Height of the Gaussian
during the simulation.

time decreases, see Figure 3.4(c). The idea behind well-tempered metadynamics is
that the first Gaussian functions are used to fill up the potential energy wells and a
high Gaussian height makes the sampling faster. When the potential energy wells
are filled, smaller Gaussian functions are used to refine the free energy profile which
should lead to a smooth convergence in the long time limit.86 To speed up the meta-
dynamics simulation, it is possible to run several MD simulations simultaneously,
referred to as the multiple walker method.90 Each walker (MD simulation) deposits
Gaussian functions that are shared with the other walkers, resulting in a single free
energy landscape.
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4
Kinetic Modelling

ML-FF enables simulations close to the microsecond time scale, however, typical
catalytic turnover occur over much longer periods. Kinetic modelling can be used
to study the evolution of chemical reactions over extended timescales, which makes it
possible to compare with experiments. In this chapter, the mean field approximation
is introduced, along with its extension to reactor models and how the rate constants
can be evaluated.

4.1 Reaction Kinetics
Reaction kinetics is the study of the rates of chemical reactions and can provide
a link between the mechanism and experimental observations. The rate, r can
phenomenologically be expressed as follows.

r = kpa
Ap

b
B (4.1)

k is the rate constant. pA and pB are the gas pressures of species A and B, respec-
tively, with a and b being the reaction orders. The rate constant increases with
temperature, as highlighted, for example, in the Arrhenius equation 1.1.
A simple reaction can be A and B adsorbing as AB forming the product P.

A+B → AB → P (4.2)

Such reactions can be divided into elementary reactions and global reactions. Ele-
mentary reactions represent individual events, such as adsorption, desorption, and
surface reaction. The reaction order follows the stoichiometry of the step, and
the rate constants can be derived from first-principle calculations. First-principle
based microkinetic models make use of elementary reaction steps, as they explicitly
account for each reaction step and its associated kinetics. Global reactions lump
multiple elementary steps, simplifying them into a single overall reaction. Since
they consist of multiple reactions, the reaction order is not necessarily based on the
stoichiometry of the step and can take non-integer values. Global reactions are typ-
ically used in phenomenological models, where the kinetic parameters are derived
using experiments. The advantages of first-principle based microkinetic models are
that they provide insight into the atomistic mechanism, which can be used to ra-
tionalize different behaviors. However, they can also be computationally expensive
to construct due to expensive first-principle calculations needed to derive the rate
constant. In contrast, phenomenological models can be simpler to apply to com-
plex reactions, but they lack the atomistic insight provided by first-principle based
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microkinetic models. They are particularly advantageous when overall performance
is more important than the details of individual elementary steps. For both types,
the mean-field approximation is one of the most popular approaches for kinetic
modelling.

4.1.1 Mean-field Model
In the mean-field approximation, it is assumed that all species are distributed ran-
domly on the surface. This is strictly valid only in the absence of interactions
between the adsorbed species.91 In reality, adsorbate-adsorbate interactions are of-
ten present. The approximation especially fails for systems with strong attractive
forces, since the adsorbed species tend to cluster and form islands on the surface
rather than being randomly distributed. The advantage of the mean-field model is
its simplicity, which makes it relatively fast and straightforward to interpret and
analyse.

To simulate the system, a set of ordinary differential equations (ODE) is solved.
dθi

dt
=
∑

j

vijrj (4.3)

θi is the coverage of species i, vij is the stoichiometric coefficient for reaction j, and
species i. rj is the rate of reaction j and is given by the rate constant k and coverage
θ.

rj = kf
j

∏
f

θf − kr
j

∏
b

θb (4.4)

If a temperature ramp is applied, such as in the case of temperature-programmed
reduction analysis, a time-dependent temperature, assuming a linear heat rate, is
used for the microkinetic modelling.

T = T0 + βt (4.5)

T0 is the starting temperature, β is the heating rate and t is the time.

4.2 Reactor Model
The mean field approximation allows for simulation of the intrinsic reaction rates,
however, for simulating catalytic reactors, additional considerations are required,
such as transport, flow and heat and mass transfer effects. One example of a catalytic
reactor is a monolith, where the catalyst is supported on a structured substrate. A
monolith consists of many parallel channels, which are coated with catalytic mate-
rials. The large number of channels ensures a high surface area, combined with a
low pressure drop, making them suitable for use in automotive exhaust treatment
systems.

To model a reactor, three common assumptions are typically used to describe three
simple reactor types: the batch reactor, the plug flow reactor (PFR), and the con-
tinuous stirred-tank reactor (CSTR).92 A batch reactor is a closed, non-continuous
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chemical reactor with no flow of reactants or products. A plug flow reactor is a
continuous reactor in which the reactant moves as a plug through the reactor, with
no back mixing. As a result, the reactor will have a temperature and concentration
gradient. In a CSTR, the concentration is constant throughout the reactor, hence
the outlet has the same composition as inside the reactor. For more complicated sys-
tems, the reactor can be discretized along the reactor length, dividing it into small
segments, represented as a set of coupled ordinary differential equations (ODEs).
This approach is used in Paper IV and VI

4.3 Evaluation of Rate Constants

Two approaches are used to evaluate the rate constants in this thesis, namely fitting
to experimental data and evaluation by first-principles calculations.

In a phenomenological kinetic model, the rate constant is typically described by the
Arrhenius equation (1.1), in which the prefactor and barrier are fitted to experi-
ments. In addition, the reaction order may also be fitted if necessary. This can be
done by defining an objective (loss) function that describes the difference between
the simulated and experimental results. The result could, for example, be the outlet
concentration or the amount adsorbed of a specific gas. The fitting is then a min-
imization problem, where the parameters are tuned such that the lowest objective
function is achieved. This is typically done using global reaction steps, since it can
be difficult to resolve the kinetics in a detailed mechanistic model. For instance, if
an elementary reaction has little to no degree of rate control, fitting its rate constant
based on experiment can be challenging.

Typically, the experiments are designed to extract specific rate constants and/or
reaction orders. Take, for example, the kinetic model shown in Figure 4.1 from
Paper VI. This model is developed to describe NH3-SCR, which is a redox reaction.
It includes reduced CuI and oxidized CuII, and NH3 can adsorb onto CuII to form
CuII –NH3. The parameters for R3, which describe the oxidation of CuI to CuII,
are fitted using steady state experiments at different O2 concentrations. R4 is the
reduction of CuII to CuI and is fitted based on steady state experiments at different
NH3 concentrations. Alternatively, oxidation and reduction half-cycle experiments
could be used to fit the kinetics of these steps more directly. Finally, R5 is primarily
fitted to transient response experiments designed to investigate the adsorption of
NH3 on CuII.
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Figure 4.1: Illustration of a reaction mechanism for a phenomenological kinetic
model used in Paper VI.

In first-principles based microkinetic models, the elementary steps and their ener-
getics are calculated using methods such as DFT, which are then used to compute
the rate constant using transition state theory (TST)93.

k = kBT

h
e−∆G‡/kBT (4.6)

∆G‡ is the free Gibbs energy difference between the transition state and initial state.
The change in Gibbs free energy can be calculated from the enthalpy and entropy.

∆G = ∆H − T∆S (4.7)

The enthalpy can be approximated as the zero point corrected electronic energy E
by neglecting the pV-dependence. The entropy can be calculated using partition
functions as introduced in Section 3.4. Note that the reaction coordinate should be
excluded from the partition function of the transition state. Combining equation
4.6 and 4.7, the rate constant becomes:

k = kBT

h
e−∆H‡/kBT e∆S‡/kB ≈ kBT

h
e−∆E‡/kBT e∆S‡/kB (4.8)

For adsorption reactions, the rate constant can be calculated using collision theory.

k = pA√
2πmkBT

e−E‡/kBT (4.9)

A is the area of the active site, p is the partial pressure, and m is the mass. To
ensure thermodynamic consistency, the reverse rate constant is calculated from the
equilibrium constant

K = kf

kr

= e−∆G/kBT (4.10)

kf and kr are the forward and reverse rate constants, respectively, and ∆G is the
free Gibbs energy change between the final and initial states.
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Characterization of Cu Species

Cu-ions can in Cu-CHA have different oxidation states (CuI and CuII) and be sol-
vated by different ligands (H2O, NH3). Thus, the state of the Cu-ions depends
sensitively on the temperature and feed-gas.43 Different methods exist for quanti-
fying Cu species in Cu-CHA, including infrared (IR), Ultraviolet–visible (UV–vis)
and X-ray absorption (XAS) spectroscopy.94,95 Another method is temperature pro-
grammed reduction with hydrogen (H2-TPR), which is studied and used in Paper
I. The H2-TPR profiles are, however, often complex with overlapping peaks, making
the interpretation difficult. By comparing experimental and computed TPR pro-
files, we show that it is possible to gain new insights into the dominant Cu species
in Cu-CHA.
The chemical state of the Cu ions has implications for the catalytic performance. For
example, at low temperature, the NH3-SCR reaction proceeds over NH3 solvated Cu
ions, whereas at high temperature it proceeds over framework bound Cu ions.34 The
solvation also affects the mobility of Cu ions96. NH3 solvated CuI ions, in particular,
have a high mobility and can diffuse between cages. Because O2 adsorption in the
low-temperature mechanism requires two [Cu(NH3)2]+ complexes in the same cage,
it is critical to understand diffusion and pairing of the complexes, which is studied
in Paper V.

5.1 State of Cu during Operating Conditions
H2-TPR has mainly been used to characterize two different Cu sites, ZCuOH and
Z2Cu. Here, Z represents a one-Al environment and Z2 a two-Al environment. H2
consumption at 210 ◦C is usually attributed to ZCuOH and consumption at 320
or 480 ◦C is mainly attributed to Z2Cu. However, the interpretation is not fully
settled39,94,97–101, and the H2-TPR profiles may have different shapes and peaks
depending on the pre-treatment and zeolite composition, making the interpretation
complex.
Numerous Cu species have been identified, but only a few have been discussed
in relation to H2-TPR profiles. This includes NH3 solvated Cu species such as
[Cu(NH3)2]+ and [Cu2O2(NH3)4]2+, that are important intermediates in the NH3-
SCR reaction.31,33 Different framework-bound Cu species may also exist, such as
Z2CuOOCu, Z2CuHOOHCu, and Z2CuOCu, which have been proposed to be im-
portant for the methane-to-methanol reaction.102–104 While ZCuOH and Z2Cu pre-
viously have been studied extensively in the context of H2-TPR, there is a limited
understanding of which temperatures the alternative Cu sites consume H2.
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Figure 5.1: (a): Simulated H2-TPR profiles. (b): Cu species considered in the
simulation. Atomic color codes: H (white), N (blue), O (red), Al (purple), Si
(yellow), and Cu (bronze).

In Paper I, a new method is developed to simulate H2-TPR profiles that can aid the
interpretation of experiments. The approach is based on a first-principles microki-
netic model with rate constants calculated using DFT data. The simulated H2-TPR
profiles are shown in Figure 5.1(a) with the Cu sites shown in Figure 5.1(b). Cu
in oxidation state +1 is also considered, however, no energetical favored pathway
is found for the adsorption of H2 on CuI species, although they are reported to be
reduced at high temperatures in the literature.97 This discrepancy may be explained
by the fact that CuI is commonly assigned to TPR signatures above 800 ◦C, where
the destruction of the framework may occur, which is not taken into account in our
calculations.99. Our simulated H2-TPR profiles predict that ZCuOH reduces at 150
◦C and Z2Cu at 420 ◦C, which is consistent with literature.39,94,97–101 However, it is
also observed that the measured H2-TPR profiles potentially could be assigned to
other Cu sites such as Z2CuOCu, Z2CuHOOHCu and Z2CuOOCu, as they adsorb
H2 in similar temperature ranges. One notable finding is that only two proximate
Z2Cu sites can be reduced with H2, thus, a single isolated Z2Cu site should not be
reduced. This highlights the important role of the Al distribution in determining
reduction temperatures.

5.1.1 Influence of Al Distribution
The DFT calculations are performed at a specific Al distribution, however, many
combinations exist, which may influence the reaction landscape. To investigate this,
H2-TPR simulations are carried out for two sites, Z2Cu and Z2CuOOCu, using dif-
ferent Al configurations. The Al distributions are shown in Figure 5.2(a) and the
simulated H2-TPR profile in Figure 5.2(b). The simulated peaks are shifted 10 and
90 ◦C for Z2Cu and Z2CuOOCu, respectively. In reality, many combinations of Al
placements are possible, and the experimentally observed reduction temperatures,
represent an average over Cu sites with different local Al environments.
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Figure 5.2: (a): Paired Z2Cu and Z2CuOOCu, shown with two different Al dis-
tributions. (b): Simulated H2-TPR profiles for the species in (a), indicated with a
dashed or solid line. Atomic color codes: O (red), Al (purple), Si (yellow), and Cu
(bronze).

To further validate our findings, H2-TPR experiments are performed on samples
that are pretreated to contain well-defined Cu species. The experiments match the
trends in our simulated profiles and further support our approach. This study shows
that only considering ZCuOH and Z2Cu when deconvoluting H2-TPR profiles may
not capture the full experimental situation.

5.2 Mobility of [Cu(NH3)2]+ Complexes

The mobility of [Cu(NH3)2]+ complexes is important for the low-temperature NH3-
SCR as two [Cu(NH3)2]+ complexes in the same cage are required for the adsorption
and activation of O2. The mobility of Cu complexes is not well understood, and can
be challenging to investigate using experimental procedures. However, impedance
spectroscopy has been used to investigate diffusion by tracking the dielectric relax-
ation process105 associated with the diffusion of [Cu(NH3)n]+. Electron paramag-
netic resonance (EPR) spectroscopy has also been used to study the (super)hyperfine
features, which relate to the dynamics of Cu ions.106 The conclusions from the two
experimental studies are that a higher Cu loading leads to increasing Cu mobility,
whereas at lower Cu loadings, the diffusion of Cu species becomes rate controlling for
the NH3-SCR activity. Although the experiments provide important information,
an atomistic understanding of the mobility and dynamics of CuI species is currently
accessible only through computational studies. There have been several studies
using ab initio molecular dynamics (AIMD) to estimate free energy barriers,31,107

however, such studies are limited to small system sizes and short simulation times.
The use of machine learning force field (ML-FF) makes it possible to study prop-
erties inaccessible to conventional AIMD simulations.108 In Paper IV, an ML-FF
augmented with long-range electrostatic is constructed to investigate the diffusion
of [Cu(NH3)2]+ in Cu-CHA.
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(a) (b)
RMSE: 0.94 meV/atom RMSE: 0.092 eV/Å

Figure 5.3: Validation of the machine learning force field (ML-FF). (a): Corre-
lation between ML-FF and DFT energies (b): Correlation between predicted and
DFT forces.

The training data for the ML-FF are gathered by constructing a variety of structures
with different numbers of [Cu(NH3)2]+, NH4

+ and Al atoms, different Al distribu-
tions, and different unit cell sizes. The final ML-FF is based on approximately 52000
single-point DFT calculations covering a wide chemical space. To assess the accu-
racy of the ML-FF, a new set of data is created from new structures that are not
used in the training of the ML-FF. This ensures that the ML-FF can extrapolate
to new Al distributions and new combinations of [Cu(NH3)2]+ and NH4

+. The pre-
dicted energies and forces are compared to DFT calculations and the comparison is
shown in Figure 5.3. The calculated root mean squared error is 0.94 meV/atom for
the energies and 0.092 eV/Å for the forces, indicating that the ML-FF is robust.

5.2.1 Collective Effects

The cations ([Cu(NH3)2]+ and NH4
+) are counterbalanced by anionic Al ions. This

means that they are tethered to their Al ion and long-distance movement requires
an ion-exchange process to maintain local charge neutrality. Because of this, the
mobility of the ions can be expected to influence each other. To investigate such
effects, metadynamics simulations are performed using two collective variables (CV),
being the movement of a [Cu(NH3)2]+ complex and a NH4

+ ion. The resulting
three-dimensional landscape is shown in Figure 5.4(a) with selected minimum free
energy paths illustrated in Figure 5.4(b). The stable and metastable structures are
indicated with a letter corresponding to a specific structure in 5.4(c). A negative CV
for [Cu(NH3)2]+ complex corresponds to two isolated Cu ions, whereas a positive CV
corresponds to paired Cu complexes in the same cage. The three different minimum
free energy paths represent the pairing of two Cu complexes with different locations
of the NH4

+ ion.
If the NH4

+ has a CV ∼ 8, the free energy barrier for pairing (A → B) is 0.48 eV,
with the isolated and paired Cu ions having similar stability. If the NH4

+ ion moves
to a CV of ∼ 4, the free energy barrier (C → D) is 0.42 eV, with the paired Cu
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Figure 5.4: Metadynmics simulation with two collective variables. Stable and
metastable structures are labeled with letters (A-F) (a): free energy landscape. (b):
Selected minimum free energy paths. (c): Location of [Cu(NH3)2]+ and NH4

+ for
the different structures.

complex stabilized by -0.19 eV. For the last minima of NH4
+ corresponding to a CV

of ∼ −1, the free energy barrier (E → F) is 0.71 eV, and the isolated Cu species
is preferred by 0.24 eV. These results highlight the importance of collective effects
between the charged ions, which can dramatically alter the free energy landscape,
even when two cations are not in the same cage. Under practical conditions, the
Cu-CHA system contains many cations, and their correlated movements make the
system coupled and challenging to investigate.

5.2.2 Influence of Zeolite Composition
To investigate the influence of zeolite composition, unbiased MD simulations are
performed at different Si/Al and Cu/Al ratios. From the trajectories, the fraction
of paired [Cu(NH3)2]+ complexes is computed and shown in Figure 5.5 for different
zeolite compositions. As paired [Cu(NH3)2]+ complexes are required for O2 ad-
sorption, a higher fraction of paired complexes is expected to correlate with higher
catalytic activity.
For a Si/Al ratio of 5, shown in Figure 5.5(a), a Cu/Al ratio of 0.75 exhibits the
highest fraction of paired [Cu(NH3)2]+ complexes. The dashed line shows the frac-
tion of paired [Cu(NH3)2]+ complexes if they were randomly distributed. For Cu/Al
ratios of 0.75 and 0.5, the simulated fraction of paired complexes is below the dashed
line, indicating that the paired state is more unstable than a random distribution,
likely due to the repulsion between the Cu ions. Interestingly, this is not the case
for a Cu/Al ratio of 0.25 where the simulated fraction exceeds the dashed line after
approximately 1-2 ns. At this low Cu/Al ratio, there are more Al and NH4

+ per
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Cu, which may help to stabilize the paired complexes.
For a Si/Al of 13 [Figure 5.5(b)], the same trend is observed for the different Cu/Al
ratios, where higher values result in a larger fraction of paired Cu complexes. How-
ever, compared to the case with Si/Al 5, the simulated fraction of paired Cu com-
plexes is significantly lower than the random distribution. This suggests that the
higher amount of Al and NH4

+ for a Si/Al ratio of 5 promotes pairing. To isolate
the influence of Al and NH4

+, MD simulations are performed with a fixed number
of Cu ions while only changing the Si/Al ratio. This is shown in Figure 5.5(c), and
here it is clear that additional Al and NH4

+ increase the fraction of paired Cu ions.

Finally, Figure 5.5(d) shows a histogram for the lifetime of the paired [Cu(NH3)2]+
complexes. The lifetime spans from less than 0.1 ns up to almost 3.5 ns. This
suggests that some [Cu(NH3)2]+ pairs are in a more stable configuration than others.
This emphasizes the importance of the local environment, which may be influenced
by favorable Al distributions or by collective effects between the cations. The lifetime
of the pairs can be compared to the timescale of O2 adsorption, which is 108s−1

at standard conditions based on collision theory. This corresponds to an average
time of 10 ns between each O2 adsorption event, thus, [Cu(NH3)2]+ complexes can
be assumed to be paired and separated multiple times before adsorbing O2. This
suggests that the NH3-SCR activity is not limited by the rate of complex diffusion
but rather the stability between the separated and paired states.
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Figure 5.5: Fraction of paired Cu complexes as a function of time for a Si/Al of
(a) 5 and (b) 13, and (c) with a fixed number of Cu ions (30). (d): Histogram for
the lifetime of Cu pairs for a composition of Si/Al=5 and Cu/Al=0.75.
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6
Sulfur Poisoning during NH3-SCR

As discussed in the Introduction, the catalyst is exposed to small amounts of SO2
and SO3, which poison the catalyst and reduce its activity. To develop strategies for
mitigating sulfur poisoning, it is essential to understand the underlying mechanisms.
The sulfur poisoning is studied for low temperatures in Paper II and high tempera-
tures in Paper III, using DFT calculations. The insights from the DFT calculations
are used to develop a kinetic model describing sulfur poisoning in Paper IV.
For Cu-CHA samples with low Cu loading, the NH3-SCR activity as a function of
temperature typically shows a minimum referred to as the seagull shape.109 This is
attributed to two different reaction mechanisms, at low and high temperatures. The
reaction mechanisms reflect different states of Cu present in the two different tem-
perature regimes. The reaction proceeds over [Cu(NH3)2]+ species at low tempera-
tures, whereas framework-bound Cu species are active sites at high temperatures.34

Different Cu species are expected to have different reactivity towards sulfur.
The current understanding of the interaction of SO2 and SO3 species with Cu-CHA
on the atomic level is limited. Previous studies have mostly been focused on ZCuOH
and Z2Cu,39, which are species that are present at high temperatures. As SO2 does
not adsorb in Cu-free chabazite (H-CHA)39, the speciation of the Cu ions is likely to
influence the sulfur deactivation. SO2 temperature-programmed desorption (SO2-
TPD) is a common technique to quantify the sulfur-derived species formed upon
SOx exposure. The desorption of SO2 at 420 ◦C is commonly assigned to the de-
composition of SO4(NH4)2 or HSO4(NH4), and the two high-temperature peaks at
540 and 720 ◦C are assigned to sulfur bonded to Cu and Al.110,111 Since SO2 is
released at 420 ◦C, the catalyst is periodically heated to approximately 500 ◦C to
partially remove the sulfur species, thereby regaining some of the lost activity. The
deactivation that can be recovered through the regeneration procedure is referred to
as reversible deactivation, whereas the deactivation that remains after regeneration
is referred to as irreversible deactivation.38

6.1 First-principle Mechanisms

6.1.1 Low-Temperature Deactivtion
Paper II investigates the reaction of SO2 with Cu complexes present during low-
temperature NH3-SCR, such as [Cu(NH3)2]+ and [Cu2O2(NH3)4]2+. SO2 does not
to react with [Cu(NH3)2]+ but with [Cu2O2(NH3)4]2+ from which a detailed reac-
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Figure 6.1: Proposed reaction cycle for the reaction of SO2 with [Cu2(NH3)4O2]2+

during low-temperature NH3-SCR conditions. Al-O-Si represents a Brønsted site
and is only shown if the complex is bonded to the framework.

tion mechanism is investigated and illustrated in Figure 6.1. The [Cu2O2(NH3)4]2+

complex adsorbs SO2 from structure I to II, leading to a stable Cu sulfate struc-
ture [Cu2(NH3)4SO4]2+ (Structure III). NO and NH3 can couple over the complex,
forming H2NNO that can decompose over a Brønsted site into N2 and H2O. In
addition to N2 and H2O, H2SO4 is formed. The reaction can proceed via two routes,
depending on whether it involves structures that are mobile (roman numbers) or
bound to the framework (letters). As H2SO4 is a bulky molecule, it can not dif-
fuse between chabazite cages due to a high diffusion barrier of 1.45 eV through the
eight-membered ring and may accumulate, leading to a loss in activity. As NH3 is
present, H2SO4 can exchange protons forming SO4(NH4)2 and HSO4(NH4). Ab into
thermodynamic analysis suggests that HSO4(NH4) is the stable species at typical
reaction conditions.

To investigate how the accumulation of HSO4(NH4) affects the NH3-SCR activity,
constrained AIMD simulation is performed and the results are shown in Figure 6.2.
The AIMD simulations are done to investigate the stability of paired [Cu(NH3)]+
complexes, which is necessary for the adsorption of O2. If two ammonium bisulfate
are present (red line), the stability of paired [Cu(NH3)2]+ complexes is decreased,
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Figure 6.2: (a): Free energy profile for the diffusion of a [Cu(NH3)2]+ complex
through an eight-membered ring in the presence of a second [Cu(NH3)2]+ complex
and different numbers of ammonium bisulfates. (b): Snapshot of the initial and
final state from the simulation. Atomic color codes: H (white), N (blue), O (red),
Al (purple sticks), Si (dark yellow sticks), S (yellow), and Cu (bronze).

thus, deactivating the catalyst. This finding implies that the sulfur deactivation at
low temperatures is of physical origin.

6.1.2 High-Temperature Deactivation

At higher temperatures, the [Cu(NH3)2]+ complexes decompose and Cu binds to
the framework. In Paper III, the sulfur poisoning was carried out at 400 ◦C, thus,
only framework-bound Cu species are expected to be present. To investigate sulfur
poisoning at this temperature, the interaction with both SO2 and SO3 is investi-
gated for ZCuOH, Z2Cu, and Z2CuOOCu. Framework bound CuI is not found to
adsorb or react with SOx species similar to the case of [Cu(NH3)2]+. Thus, Cu
ions in oxidation state +1, are not active towards SO2 or SO3. Both low and high-
temperature sulfur poisoning is illustrated in Figure 6.3. At low-temperature, there
are the two complexes [Cu(NH3)2]+ and [Cu2O2(NH3)4]2+ discussed in the previous
section. [Cu(NH3)2]+ can not react with SO2, whereas [Cu2O2(NH3)4]2+ can couple
with NH3 and NO forming HSO4(NH4) and [Cu2O2(NH3)4]2+ is reduced back to two
[Cu(NH3)2]+ complexes. The main result from the high temperature reactions, is
that SO2 forms Cu sulfite species, whereas SO3 forms Cu sulfate species. Formation
of sulfates is more exothermic than the formation of sulfites. Experimentally it is
also observed that SO3 causes more severe catalyst deactivation than SO2.38 The
reactivity of SOx towards the framework bound species is in the order Z2CuOOCu
> ZCuOH > Z2Cu with Z2CuOOCu being most reactive. The formation of Cu
sulfate blocks the Cu-sites by chemisorption, thus, high temperature deactivation is
of chemical nature.
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Figure 6.3: Overview of the Cu ions present at high and low temperatures for Cu
oxidation state +1 and +2, together with the sulfur derived structure formed after
SOx exposure. Atomic color codes: H (white), N (blue), O (red), Al (purple), Si
(dark yellow sticks), S (yellow), and Cu (bronze).

HSO4(NH4) is commonly assigned to the SO2 release in TPD at 420 ◦C, hence,
this deactivation may be recovered by heating the catalyst. However, it has been
suggested that a part of the ammonium sulfate may transform to strongly bound
Cu or Al sulfates.112 The Cu sulfate formed from the framework bound Cu species
is expected to decompose at higher temperatures.

6.2 Modelling of Sulfur Deactivation
In paper Paper IV, we develop a kinetic model that is parameterized using reactor
flow experiments for sulfur poisoning. The mechanism is inspired by some of the
findings discussed in the previous sections, and is illustrated in Figure 6.4. The
model is divided into two parts, reversible and irreversible deactivation, which cor-
respond to the sites S1 and S2, respectively. S1 can react with SO2, NH3, H2O and
O2 to form ammonium bisulfate S1 –HSO4NH4. S1 –HSO4NH4 represent the accu-
mulation of HSO4NH4 inside the cage as proposed in Paper II, hence S1 represent
the physical space inside in the CHA cage. S1 –HSO4NH4 can either decompose as
SO2, or transform into S2 –HSO4. S2 –HSO4 may be attributed to more strongly
sulfur-bound complexes such as Cu sulfates, with examples shown in Figure 6.3. An-
other interpretation of the site could be related to Al sulfates40. S2 –HSO4 can also
decompose as SO2, however, this requires significantly higher temperatures com-
pared to the decomposition of S1 –HSO4NH4. As a result, S2 –HSO4 is more likely
to remain after thermal regeneration. The two sites S1 –HSO4NH4 and S2 –HSO4
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Figure 6.4: Kinetic model for describing sulfur deactivation.

deactivate the Cu-CHA catalyst through deactivation functions that are multiplied
with the NH3-SCR rates.
Figure 6.5(a), shows the deactivation as a function of time at three different temper-
atures during exposure of 30 ppm SO2 in NH3-SCR conditions. A clear temperature
dependence is observed, with 200 ◦C being the most deactivated and the weakest 400
◦C. The sulfur uptake follows the same trend, with significantly more SO2 consumed
at 200 ◦C.
The lower conversion at 400 ◦C can partly be attributed to the simultaneous de-
composition of HSO4NH4, which occurs at similar temperatures.110,111 However, this
does not explain the lower deactivation at 300 ◦C. Our first-principle calculations
in Paper II showed that the [Cu2O2(NH4)]2+ reaction with SO2 is exothermic.
Furthermore X-ray absorption spectroscopy have shown that SO2 is more reactive
towards NH3 solvated species like [Cu2O2(NH4)]2+ compared to framework-bound
Cu species.95 This suggests that a higher sulfur adsorption at low temperature is
related to the presence of more reactive NH3 solvated Cu species.

To simulate more realistic conditions, cycles of sulfation and thermal regeneration
are performed to sulfate the catalyst. These simulations mimic the conditions in the
aftertreatment system, where periodic regeneration is applied to extend the catalyst
lifetime. The catalyst is first sulfated under NH3-SCR conditions with 30 ppm
SO2, followed by regeneration, and this cycle is repeated ten times. Three different
temperatures are investigated for the regeneration and the results are shown in
Figure 6.5(b).
The results denoted Sulfated corresponds to the deactivation just after SO2 expo-
sure, and the result denoted Regenerated corresponds to the deactivation after the
thermal regeneration. For both cases, the deacivation increases as a function of
cycle. Comparing the Sulfated deactivation with the Regenerated deactivation, it is
clear that the catalyst does regain some of the activity after regeneration, however
the deactivation still increases over time. A higher regeneration temperature results
in a lower deactivation. Integration of the sulfur release during regeneration shows
a higher amount when heating to 450 ◦C compared to 400 ◦C as would be expected.
Since sulfation is always carried out under identical conditions, this suggests that
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Figure 6.5: (a): Deactivation for sulfation experiments with 30 ppm SO2 in NH3-
SCR conditions at 200, 300 and 400 ◦C. (b) Relative deactivation for sulfation-
regeneration experiments for after sulfation (Sulfated) and after regeneration (Re-
generated). The regeneration is performed up to 400, 425 and 450 ◦C. Sulfation is
done at 200 ◦C. The relative deactivation is the deactivation divided by the deacti-
vation of the sulfated state after the first cycle.

a larger amount of SO2 remains on the catalyst after regeneration at 400 ◦C. The
model can describe the trend in the deactivation for the different temperatures.
To better understand the interplay between S1 –HSO4NH4 and S2 –HSO4, the evolu-
tion of sulfur coverage is investigated in Figure 6.6. Figure 6.6(a) displays the exper-
imental NO concentration and temperature with the sulfation periods highlighted
in yellow for 4 cycles. As SO2 is dosed, the NO conversion drops rapidly. Figure
6.6(b) shows the evolution of the coverage and SO2 release predicted by the model
following the protocol in Figure 6.6(a). During the sulfation, only S1 –HSO4NH4 is
formed. As the temperature increases, S1 –HSO4NH4 is either decomposed as SO2
or transformed into S2 –HSO4. The fact that S2 –HSO4 is only formed during the
regeneration highlights the importance of optimizing the regeneration conditions
to prevent transformation to S2 –HSO4. The interplay between S1 –HSO4NH4 and
S2 –HSO4 in the model provides a handle for optimizing the sulfur tolerance of the
catalyst.
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Figure 6.6: Sulfation regeneration procedure of four cycles. (a): Experimental NO
out and temperature. A yellow color is used to highlight when SO2 is dosed (b):
The evolution of the coverage and SO2 release predicted by the model, following the
experiments in (a).
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7
Conclusions and Outlook

This thesis investigates the dynamics and reactivity of the Cu species in Cu-CHA,
as well as the influence of sulfur species for NH3-SCR, using a combination of theo-
retical and experimental methods. Cu ions are dynamic in the sense they can have
different speciations depending on reaction conditions. First principle-based micro-
kinetic modeling is used to study H2-TPR profiles, which can be used to distingiush
between different Cu species. To study the diffusion of Cu ions in the zeolite, a
machine learning force field was constructed to enable simulations of larger systems
over extended times, which was necessary to capture the diffusion dynamics. DFT
calculations, experiments and kinetic modelling is used to study sulfur poisoning of
NH3-SCR.

H2-TPR is a common technique to characterize the Cu ions in Cu-CHA, however,
the interpretation is often ambiguous. To understand which Cu ions may be influ-
encing the H2-TPR profiles, a first-principle-based micro-kinetic model was devel-
oped. Several Cu sites in oxidation state +2 consumed H2, which was Z2CuOCu,
ZCuOH, Z2CuHOOHCu, Z2Cu and Z2CuOOCu. The micro-kinetic model agreed
well with the experimental findings and provided a way to link specific Cu sites to
the reduction temperatures.
A machine learning force-field was constructed to study the mobility and pairing
of [Cu(NH3)2]+ complexes. Metadynamics simulations revealed that the presence
of neighboriing [Cu(NH3)2]+ and NH4

+ cations affects each other’s movements. By
varying the zeolite composition, it was found that the fraction of paired [Cu(NH3)2]+
complexes is enhanced by increasing the Cu/Al ratio and decreasing the Si/Al ratio.
Interestingly, for a high amount of Al and NH4

+ ions, the simulated fraction of paired
[Cu(NH3)2]+ complexes is higher than if they were distribution randomly. Lastly,
the lifetime of the pairs vary significantly, highlighting the heterogeneous nature of
Cu-CHA, where some configuration are more stable than others. Machine learning
force-field provides information on the diffusion dynamics of [Cu(NH3)2]+ and the
interplay between the Al ions and counter ions otherwise inaccessible to conventional
AIMD simulations.
The reactivity of sulfur towards Cu ions during both and high-temperature NH3-
SCR conditions was studied using DFT calculations. At low temperature, SO2 was
found to react strongly with the peroxo complex [Cu2(NH3)4O2]2+. With this result,
a reaction mechanism was proposed involving the reaction of SO2, NO, and NH3,
to form H2SO4, H2O and N2. As H2SO4 is a bulky molecule it may accumulate in
the cage over time deactivating the catalyst. H2SO4 can interact with other NH3
species and a thermodynamic analysis was performed that found the HSO4(NH4)
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species to be most stable at typical reaction conditions. Lastly, AIMD simulations
suggested that the presence of two HSO4(NH4) species destabilizes the pairing of
[Cu(NH3)2]+, inhibiting the adsorption of O2. The reaction of SO2 and SO3 towards
the framework-bound Cu complexes Z2Cu, ZCuOH and ZCuOOCu present at high
temperature, showed that more stable Cu sulfates were formed when reacting with
SO3. ZCuOH and ZCuOOCu form more stable Cu sulfur complexes compared to
Z2Cu. The two studies show that there is a large difference in the poisoning mech-
anism depending the temperature. At low temperatures, the poisoning mechanism
is physical blocking by the accumulation of HSO4(NH4) species, while at high tem-
peratures, the Cu sites are blocked by forming stable Cu sulfites/sulfates.
Based on the previous findings from DFT calculations, a kinetic model was devel-
oped and parameterized to reactor flow experiments. The model consist of two
sites S1 –HSO4NH4 and S2 –HSO4, which describe reversible and irreversible deac-
tivation, respectively. Sulfation regeneration experiments showed that while the
regeneration procedure recovers part of the lost activity, deactivation still increases
with each cycle. The irreversible deactivation (S2 –HSO4) only forms during the
regeneration, which shows the importance of optimizing the regeneration conditions
to minimize long-term deactivation. The interplay between reversible deactivation
(S1 –HSO4NH4) and irreversible deactivation (S2 –HSO4) provides a framework to
improve regeneration by limiting the formation of S2 –HSO4.

Although the use of ML-FF can provide new insights not accessible by standard
DFT, the method also has limitations. The ML-FF can be challenging to validate
against experimental data, and is instead typically validated against DFT calcula-
tions. However, since the ML-FF is trained on DFT data, it inherits the same limita-
tion, such as the approximation of the exchange-correlation term. In addition, DFT
calculations of the large systems used in ML-FF simulations is not feasible, thus,
the ML-FF can only be validated on smaller systems. The use of machine learning
force-fields allows simulation in the range of microseconds, however, turnover fre-
quencies typically occur at much longer timescales. To extend simulation times, a
kinetic Monte Carlo model can be used, in which the rates may be calculated from
the machine learning force-field.
The low-temperature sulfur deactivation is linked to the destabilization of paired
[Cu(NH3)2]+ complexes, however, this has only been studied using small unit cells
with short simulation times. To study how HSO4(NH4) species influence the pair-
ing of [Cu(NH3)2]+ complexes, the machine learning force-field constructed in this
thesis could be extended to allow simulations containing sulfur species, or a kMC
model including sulfur species could be constructed. The kinetic model constructed
for sulfur poisoning demonstrates the potential for optimizing the regeneration pro-
cedure. Studying how the gas composition, flow rate, and other factors affect the
deSOx efficiency could provide valuable insights needed for extending the lifetime of
the catalyst. Under practical conditions, NO2 is also present, and the SOx induced
deactivation of the fast SCR reaction should be investigated.

The thesis combines theoretical and experimental techniques to give a comprehen-
sive understanding of the NH3-SCR mechanism over Cu-CHA, and the deactivation

48



7. Conclusions and Outlook

caused by SO2. By incorporating findings from first-principles calculations into re-
actor models, it is possible to connect observations from atomistic insights with
experimental observations under realistic conditions. The emergence of ML-FF as a
new approach in the computational toolbox opens the possibility to simulate larger
systems over longer timescales, allowing the study of Cu dynamics under conditions
closer to real catalytic operation. Overall, the findings and workflow presented here
help bridge the gap between theory and experiment and can guide the development
of more active catalysts.
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