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Abstract

With the rising demand for machine learning-based applications,
efficient and cost-effective inference serving systems have become
imperative. These systems are tasked with meeting customer re-
quirements outlined by Service Level Objectives (SLOs), encom-
passing model accuracy, response time, and cost considerations.
Despite the adoption of proactive scheduling techniques by mod-
ern inference serving systems, dynamic factors such as fluctuating
query patterns still pose challenges such as delayed response time.
To address these, we propose an adaptive solution leveraging SLO-
aware scheduling techniques to optimize resource allocation. Our
approach aims to minimize the need for additional resources per
inference service. By introducing malleable inference pipelines,
we enhance flexibility in resource allocation during peak loads by
readjusting the resource assignment to processing pipelines to ac-
commodate maximum possible queries dynamically. Our findings
indicate that the proposed scheduler effectively utilizes system re-
sources throughout execution while meeting most SLOs (4.2X less
SLO violations). We observe an average reduction of 1.6X in the end-
to-end latency of query processing, compared to baseline methods.
We also demonstrate the impact of dynamically reducing the re-
sources per inference query to accommodate more inference queries
in the system. Our solution accommodates 1.4X more queries on
average compared to the baselines and achieves 1.6X higher system
throughput in terms of queries per second on average.
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1 Introduction

Applications relying on machine learning inference are growing in
number and expected to keep increasing with time [22, 23, 29, 34,
41]. Indicatively, Meta (formerly Facebook) reported that it serves
over trillions of inference requests each day [17], and the estimates
are, up to 90% of the Al resources in production datacenters are
consumed by inference queries [8, 19]. Businesses that leverage
machine learning services for their products not only require quick
and accurate inference responses but also at a minimal cost. Infer-
ence serving systems provide dedicated infrastructure for inference
demand, usually operating under strict Service Level Objectives
(SLOs) that define acceptable response times (e.g., tail latency or
throughput) [15]. Achieving these SLOs can be costly, as special-
ized ML hardware [24] is often required to meet the requirements
under bursts. However, static solutions for bursty workloads ne-
cessitate provisioning additional resources, driving up operating
costs. A more effective alternative is to dynamically adjust inference
resources to make optimal use of the existing hardware, thereby
reducing costs without compromising performance [32].

Modern inference serving systems implement a wide variety
of techniques to assign resources proactively, in order to satisfy
SLOs and maintain high resource utilization. Popular techniques are
multi-tenancy [15, 28], i.e. co-locating inference models on shared
resources; adaptive batching [9, 15, 33] - dynamically adjusting
the batch size of the inference model; model selection [18, 33]
which refers to selecting amongst different variants of a model; and
accuracy scaling [7], where model variants are selected based on
the accuracy of the model.

Many factors can lead to SLO violations, resulting in a devia-
tion from targeted performance. These factors include (i) a variable
pattern of incoming inference queries in terms of batch size and
arrival times [4], and (ii) a change in the execution environment
due to co-located applications, which requires a reassessment of the
available resources [39, 40]. In case of SLO violations, modern infer-
ence serving systems may revise the scheduling decisions to find a
new resource allocation configuration, and migrate the application
to a new set of resources, which can result in adding migration
overhead and an increase in the amount of resources to satisfy SLOs
under new conditions [25, 36]. Alternatively, they may drop/defer
the query if the available resources do not suffice [42]. These tech-
niques lead to resource overprovisioning and/or increased opera-
tional costs. For example, the inference query load decreases after
certain peak hours. To avoid resource overprovisioning, Proteus [7]
performs accuracy scaling, thereby reducing the resources of an in-
dividual model during peak time, sacrificing some accuracy. In this
paper, we adopt an alternative approach by dynamically readjusting
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the layer-to-resource assignment of a model while maintaining per-
formance as required by the SLO. Our method mitigates the need
to increase resources during peak load and improves the overall
throughput of the inference serving system. We assume pipelined
parallelism, treating the model as an inference pipeline composed
of stages that encapsulate consecutive model layers. Layers within
a stage are implemented in a data-parallel manner, allowing each
stage to be treated as a unique schedulable and malleable task, i.e. a
set of resources can be assigned/reassigned to a task, and layers can
be added or removed from a task. To the best of our knowledge, this
strategy is not used in state-of-the-art inference serving systems
[7, 15, 33], and is orthogonal to existing inference serving sched-
ulers [7, 15, 18, 33], therefore, it can be used to prevent unnecessary
resource overprovisioning and better utilize existing resources.
Our proposed solution adapts to fluctuating loads by leveraging
malleable resource allocation to models in the form of malleable
inference pipelines. Additionally, we implement an adaptive SLO-
aware scheduling strategy for these malleable pipelines. If a new
query arrives and there are no resources to allocate, the scheduler
searches for opportunities to downscale existing pipelines with-
out violating the SLO requirements of any inference request being
served. We quantify the impact of using malleability in terms of
system throughput, and assess our solution in terms of resource
utilization, system occupancy, and end-to-end latency. Finally, we
compare our solution against three baseline resource allocation
strategies. The first allocates the maximum possible resources per
inference query statically, showcasing gains in resource utilization.
The second mirrors existing inference-serving systems, assigning
SLO-aware resources [25, 36]. The third utilizes query buffers to
process similar queries together, favoring peak workloads by for-
warding incoming queries to resources serving similar queries [10].
In summary, we make the following contributions:

(1) We propose a scheduler for inference serving systems that
leverages malleable pipelines to effectively utilize system
resources throughout execution, resulting in 4.2X fewer SLO
violations compared to baselines and enhancing the over-
all processing time for the query stream. Additionally, we
observe an average improvement of 1.6X in the end-to-end
latency compared to baseline methods.

(2) We demonstrate the impact of dynamically reducing re-
sources per inference query to accommodate more queries,
achieving 1.4X more queries on average compared to base-
lines, and 1.6X higher system throughput in terms of queries
per second on average.

2 Background

Inference serving systems are instrumental in managing the bur-
geoning demand for machine learning inference across diverse
sectors like healthcare, security, and analytics [22, 23, 29, 34, 41].

Query load: The query load in inference serving exhibits several
distinct characteristics. The query size fluctuates dynamically ac-
cording to type of applications, spanning from a single inference
query to larger batch sizes [18]. Moreover, inference serving has
been reported to follow a diurnal load pattern in arrival queries
per second, across datacenters and services [20]. This pattern leads
to significant fluctuations in the load between peak and off-peak
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times, posing challenges in resource provisioning and utilization.
Allocation of resources to inference queries: Resource allo-
cation by schedulers in inference serving systems is a pivotal as-
pect, directly influencing system performance and efficiency. These
systems operate under hard cost constraints. Specialized ML hard-
ware is used to achieve interactive latencies [24] which is compar-
atively expensive to procure and operate, and must thus be used
efficiently. Since many inference queries need to be processed simul-
taneously, inference serving systems co-locate inference models on
the shared computing resources, to avoid resource under-utilization,
as long as Quality of Service (QoS) is maintained. Various tech-
niques have been proposed for efficient resource allocation, such as
multi-tenant inference serving [28], adaptive batching, and model
caching [15, 37]. SLO-aware scheduling prioritizes tasks based on
their latency or throughput requirements, as specified by service
level objectives (SLOs) [12-14, 18]. Overall, efficient resource alloca-
tion by schedulers is essential for optimizing inference serving sys-
tems’ performance and ensuring reliable operation under varying
workload conditions. Dynamic workload adjustment is another key
feature, allowing schedulers to adapt resource allocation based on
workload characteristics and system conditions [18]. For example,
during periods of high demand, more resources may be allocated
to critical tasks to prevent latency spikes, while non-critical tasks
may receive fewer resources to ensure overall system stability.
Inference parallelism: Schedulers allocate computational re-
sources to optimize throughput and meet SLOs, defined as latency
or throughput objectives. Techniques such as parallelism exploration
determine optimal configurations for resource utilization [31], while
model partitioning and pipelining enable parallel execution by di-
viding complex models into smaller components [21, 30]. Parallel
inference pipelines enhance throughput by leveraging layer-wise
parallelism, reducing communication overhead, and minimizing
weight copying [11]. The "bind-to-stage" method [26] assigns each
pipeline stage to a distinct set of compute resources, hereby referred
to as execution places avoiding resource sharing. Achieving opti-
mal throughput necessitates balanced pipeline stages; otherwise,
throughput may be impeded by pipeline stalls resulting from depen-
dencies among stages. Inference pipelines can be made malleable
by readjusting the network layers to form a new pipeline with a
new length. This feature can be used to adjust resource allocation
during varied workload and SLO requirements.

2.1

Adapting resource allocation dynamically to handle increasing infer-
ence queries while avoiding SLO violations is crucial for optimizing
resource utilization. To motivate our work, we conduct a scheduling
experiment on an inference server, hosted on a single node with
64 cores, serving queries for predictions with the VGG16 network.
We assume the notion of an Execution Place (EP) as a set of com-
pute/memory resources, on which we can bind and execute a single
stage of a pipeline. In this system, we define 8 execution places,
each featuring 8 cores, avoiding overprovisioning of resources. We
examine a window of 20 seconds, during which we issue 100 queries
of batch size 10, with random arrival times. [4, 16, 33]. We set an
SLO of 10s as a challenging target under co-location, given the the
measured end-to-end latency for VGG16, shown in Table 1. We

Motivation
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evaluate three schedulers: 1) Malleable Pipelines dynamically adjust
resources, balancing throughput and SLO compliance. 2)Maximum
Pipelines maximize resource allocation but increase query waiting
times. 3) SLO-Compliant Pipelines allocate just enough resources to
meet SLOs, leaving resources underutilized during light workloads.
Figurel shows that Malleable Pipelines achieve the best balance,
with higher throughput and fewer SLO violations (12%) compared
to Maximum (38%) and SLO-Compliant Pipelines (45%). The Maxi-
mum pipelines scheduler tends to use more resources than needed,
resulting into longer waiting times for the queries, which could be
accommodated earlier during the execution. On the other hand, the
SLO-compliant scheduler cause some EPs to remain idle when there
is less workload. A malleable pipeline approach is about finding
the balance between the other two types of scheduling, reducing
the SLO violations and efficiently utilizing resources.

20.0 4 QPS =2.6

17.51
15.04

12.54

10.0

7.54

End-to-end latency [s]

5.0 1

1

Maximum Pipelines SLO compliant pipelines

2.51

Malleable Pipelines

Figure 1: End-to-end latency and throughput (Queries Per
Second, QPS) for VGG16 pipelines under a 100-query load on
a 64-core system, evaluated using three scheduling policies:
Malleable Pipelines, Maximum Pipelines (with 8 cores per EP),
and SLO-Compliant Pipelines.

3 Methodology
3.1 System Overview

To simulate a real-world inference serving system and test our pro-
posed approach, we design a system to perform scheduling of in-
ference pipelines, supporting malleability. We present an overview
of the system in operation in Figure 2.

Inference serving systems consist of multiple compute units
organized across several large servers. In our evaluation, we specif-
ically focus on a single server containing multiple compute units
called execution places (EPs). Each EP is a multi-core processing
unit, and several EPs together form a multi-chip architecture. We
evaluate all scheduling scenarios under the assumption that all EPs
have uniform, non-contented memory access, and that EPs do not
share any cache level.

Within this system, all inference models are executed using
pipeline parallelism. Each workload assigned to an EP represents
a pipeline stage of an inference model. For example, an inference
model with eight pipeline stages would require eight EPs. Each
pipeline stage is composed of several layers of the model. Since
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each EP includes multiple cores (8 cores per EP in this configu-
ration), layers within a pipeline stage execute in a data-parallel
manner. Consequently, a group of consecutive inference layers is
allocated to an EP by the runtime system’s task assignment mecha-
nism. Depending on how the runtime manages parallel tasks, these
allocations are executed as threads or processes.

Another crucial component of the inference serving system is the
query load and its associated metadata (see Step 1 in Figure 2). Our
simulated input streams consist of various parameters, including the
type of inference model to be executed, the batch size of the query,
the priority of the query (e.g., Low or High), SLO requirements
specified in terms of latency, and the arrival time of the query. In
a practical scenario, the query streams would be assembled by a
stream pre-processor. The query load, characterized by batch sizes
and arrival times, aligns with real-world workload patterns, as
detailed in [4, 16, 33], exhibiting diurnal peaks and arrival rates
following a Poisson distribution [18]. In this context, the batch
size refers to the number of inference instances per request. Our
proposed solutions can be used in real-world inference systems by
replacing the Query Stream with the actual stream of queries.
Due to its design, the system presents challenges such as real-time
query arrivals with varying inference sizes, query priorities, and
SLO requirements. As each query constitutes a distinct workload, it
requires the allocation of separate resources. The arrival times and
batch sizes keep changing across the query stream. We consider that
these factors are randomized and unpredictable; this hinders the
pre-scheduling of resources, underscoring the need for a dynamic
resource allocator to efficiently handle incoming workloads.
Before the scheduler comes into action, the following components
are activated. First, an input stream is created, providing details of
the query workload and associated metadata. Second, an offline-
generated mapping table is constructed to link inference models to
pipelines with various configurations. Each pipeline configuration
specifies the depth of the pipeline and how layers are distributed
across its stages. These configurations are derived using the state-
of-the-art layer-to-pipeline mapping method proposed in [38].

A pipeline configuration details the sequential assignment of
network layers to pipeline stages. For example, the configuration
[2,4, 4,3] corresponds to a network with 13 layers, assigning the
first 2 layers to stage 1, the next 4 layers to stage 2, and so on.
Configurations are ranked based on performance, enabling the
scheduler to select optimal pipeline arrangements that meet the SLO
requirements for the specific query. After these preprocessing steps,
the online scheduler dynamically allocates resources to queries by
using these ranked configurations while considering the current
system occupancy.

3.2 Resource Allocation and Priority-Based
Inference Queue Management

To evaluate different resource allocation strategies for inference
queries, we devise a scheduler within our simulated environment.
Incoming inference queries are categorized into two queues: High
and Low priority (see Step 1 in Figure 2), inspired by production-
level model serving systems such as NVIDIA Triton Inference
Server [3] defining model configurations. The queues assist in a) pri-
oritizing resource allocation and b) avoiding dropping high-priority



CF ’25, May 28-30, 2025, Cagliari, Italy

Pipeline performance. Pipeline Configuration

Networks |1 Stage | M Stage Networks | 3 Stage

M Stage

Model = VGG
Batchsize = 50 Model 1 | 2s 1s Model 1 [6.4.3] 2...3)
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Model N Model N

Priority = High

Pre-Profiled
Model
Performance
S

High Priority Queue

Dropout Predictor Scheduler

o

Low Priority Queue

Query Waiting buffer

Stream

Memory

Figure 2: System Overview. Steps 1 and 2 generate a work-
load for a simulated inference system. Step 3 performs the
resource assignment and scheduling. Finally, the query is
executed in step 4
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Figure 3: Impact of dropout predictor on the processing time
of high priority queries

queries. The scheduler periodically checks for new queries and al-
locates the resources. Resources are first allocated to high-priority
queries, and then assigned to low-priority queries. To mitigate
waiting times for high-priority queues, the scheduler integrates a
predictor (see Step 2 in Figure 2). Similar to [7, 37], we drop low-
priority queries based on the outcome of the predictor. The predictor
estimates waiting and processing times based on pre-profiled per-
formance data and current system conditions. If the predicted end-
to-end latency (i.e waiting time + processing time) for a low-priority
query exceeds a specified time window, the scheduler discards the
query or directs it to other available servers, indicating that the
inference server cannot process it within the required timeframe.

Dropout Predictor: Algorithm 1 outlines the process of predict-
ing the execution time of inference queries. The algorithm takes
two inputs. The first input is the inference query Q, i.e. the model
type, batch size, SLO target, and query priority. The second input
is EP_times, a list indicating the finish times of queries executing
on individual EPs. These times accumulate with new finish times,
as new queries are projected to execute on respective execution
places. Initially, the algorithm calculates the required resources and
processing time for the query, based on SLO requirements, utilizing
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pre-profiled execution times of models on specific resource sizes,
such as the latency of the model on a pipeline of length N. The
formation of pipelines for a given length is performed offline using
Shisha [38], a layer-to-pipeline mapping algorithm. Lines 4 and 5
identify the N EPs with the earlierst finish times. The EP with the
latest finish time among the candidate EPs determines the waiting
time of the current query. Line 6 calculates the total processing
time (E;) of the query. If the processing time of a low-priority query
exceeds the allowed time window, the query is dropped; otherwise,
the finish times of candidate EPs are updated by accumulating the
processing time of the current query.

Algorithm 1 Dropout Predictor

: Input: Q (inference query), EP_times (execution times of EPs)

: N « calculate_required_EPs(Q)

: P; « calculate_execution_time(Q, N)

: candidate_EPs « get_min_finish_time_EPs(N)

: W; « max_finish_time(candidate_EPs)

E; «— W; + P,

. if (E; > TIME_WINDOW and priority (Q) == LOW) then
Drop_query()

else
update_EP_times(candidate_EPs, E;)

: end if

= O 0 0 N U WD

—_

We use the dropout predictor with our scheduling technique,
Accordion, and all baselines. Figure 3 shows the processing time
of high-priority queries from two periodically bursty workloads
and scheduling with Accordion. The results show that ~ 82% of
the queries on average have a better processing time compared to
when the dropout predictor is not used.

3.3 Accordion: An SLO-Aware Malleable
Pipeline Resource Allocator

This paper presents a novel approach that capitalizes on the mal-
leability feature of inference pipelines, namely dynamically allocat-
ing resources to adapt to fluctuating workloads while preserving the
SLO requirements of high-priority queues. Our proposed resource
allocation strategy, outlined in Algorithm 2, starts by computing
the best possible resource allocation (Bestgssign) for a given query,
Q. Initially, the algorithm checks for available free EPs to accom-
modate this allocation. If there are insufficient free EPs, it evaluates
whether the available resource capacity can still meet the SLO. As
a fallback, it reviews the assignments of currently active pipelines,
retrieving EPs from them without violating the SLO of their respec-
tive queries (Qs), as depicted in lines 16 through 34. If no EPs can be
retrieved from existing queries, the query must wait until resources
become available. The procedure of fetching EPs from active queries
utilizes pre-profiled data to check the latency of a model w.r.t. to
pipeline depths under consideration. Once a decision is made to
fetch EPs from a currently active query, the pipeline is rescheduled
on the new set of EPs and the query processing is resumed. We do
not re-allocate EPs from scratch to active queries, as this would
induce additional cost to migrate the model to a new set of EPs.
Instead, we remove the number of EPs that need to be fetched. This
incurs the cost of reconfiguring the pipeline of the active query
on fewer EPs, i.e. moving a few layers between EPs, according to
the new pipeline configuration. For a ResNet layer, the weights
are typically in the order of 100K B (potentially slightly more or



Accordion: A malleable pipeline scheduling approach for adaptive SLO-aware inference serving

less). Assuming a NUMA-like link, we estimate the time to move
the weights to 5ms. Because this latency is very small compared
to the end-to-end latency of the inference pipeline (which ranges
from 0.2 to 4.8 seconds as per Table 1), its impact is negligible and
therefore not taken into account. Furthermore, we observed in our
experiments that the maximum frequency of readjustments is only
0.9% of the total number of inference passes within a query stream.
Upon readjusting the pipeline, the query is resumed from the in-
ference instance which was being processed. For example, a query
pipeline with an inference size of B is readjusted after processing X
(X < B) inference instances. Then the new configuration pipeline
will resume from inference instance number X+1.

Algorithm 2 Adaptive SLO aware scheduler

: Input: Q (inference query), EP_status

: M = get_Model_type(Q);

: Bestassign = get_best_assignment(Q)

: EPger = getfoptimalePfrequirement(Bestassign)

: Freegps = get_Free_EPs(EP_status)

: if Freepps # 0 and satisry_SLO(Q, Freegps) then
EPger = Freegps > Assign less but enough EPs
Assign(EPse;, Q)

9: Add(Q, active_queries)

: else

11: if Freegps == 0 then

0N D YR WY

12: EPge; = get_minimal_EP_requirement(Q)
13: Fetch_EPS(EPse;)

14: end if

15: end if

16: procedure FETCH EPS(EPsc;)

17: for Qs in active_queries do

18: depth = get_pipeline_depth(Qs)

19: while (depth > 1) do

20: if (confirm_SLO(Qs, depth)) then
21: reduce_pipeline(Qs, depth — 1)
22: Free_EP(EP_status, 1);

23: depth — —;

24: else

25: break;

26: end if

27: end while

28: end for

29: if (get_Free_EPs(EP_status) == EPg.;) then
30: Assign(EPses, Q)

31: Add(Q, active_queries)

32: else

33: wait(Q)

34: end if

35: end procedure

4 Evaluation

4.1 Experimental setup

We simulate the inference serving system and query patterns by
generating a database of execution times for individual neural net-
work layers. To construct this database, we execute neural network
layers on an Intel Alder Lake [35] which contains 8 Performance
cores (P-cores). We record the execution times for all the layers on
a single EP (8 P-cores). The database is later used by the simulator
to calculate execution times for pipeline stages. We consider layers
executed one after another within a pipeline stage so the execu-
tion time of a stage is calculated as the sum of execution times of
each layer. The end-to-end latency and speedups of the networks
recorded on EPs for 1 to 8 stage pipelines are shown in Table 1.
Since the measured performance on Alder Lake is on the order of
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seconds, our evaluation Service Level Objectives (SLOs) are also
expressed in seconds. However, applying advanced optimization
techniques—such as vectorization, matrix units, or GPUs—could
reduce latencies to more acceptable levels.

Our simulated inference serving system comprises 64 EPs, as
discussed in Section 3.1, with each set of 8 P-cores representing
a single EP within the system (a total of 512 cores). To simplify
experimentation, we cap the highest possible allocation per query
at a set of 8 EPs (64 P-cores), a decision based on the observation
that representative models do not scale beyond 8 P-cores.

For the inference queries, we employ the Keras [2] implementa-
tion of three representative convolutional neural networks: VGG16,
ResNet50, and ResNet152. Our simulated query patterns are in-
spired by previous literature [4, 16, 33], , employing periodic arrival
patterns typical of real-world workloads observed over intervals
up to 10 minutes. Additionally, the inference query sizes follow a
log-normal distribution.

4.2 Baseline Approaches

The scheduler periodically monitors the incoming query stream,
and allocates execution places (EPs) to the pending inference queries
awaiting processing. We examine various resource assignment ap-
proaches commonly used in state-of-the-art inference serving sys-
tems, together with our proposed approach, Accordion.

(1) SLO-Conforming: Schedulers such as those in Hercules [25]
and DeepRecSys [18] allocate resources strictly to meet query SLOs.
When the system load increases dynamically, resources are re-
assessed and scaled accordingly, potentially adding servers to main-
tain the required service levels. We adopt this baseline by selecting
a pipeline configuration that satisfies the given SLO and allocating
EPs accordingly.

(2) Fastest resource allocation: Inspired by the method described
in [36], this strategy allocates the maximum feasible resources to
incoming queries, achieving the fastest possible query completion,
enhancing overall system throughput by rapidly processing queries.
We implement this by assigning the fastest pipeline configuration
and corresponding EPs to each query, which typically leads to using
more EPs per query compared to the SLO-Conforming approach.
(3) Buffer-Based Solution - BBS : As presented in [10], this ap-
proach buffers incoming queries when resources are occupied by
prior inference requests. If an incoming query matches a query
(model type and SLO) already processing, it is queued and processed
sequentially on the existing EP set, optimizing resource reuse.

(4) 1-Stage: This conservative strategy allocates exactly one EP per
query, resulting in a simple, single-stage inference pipeline.

4.3 Evaluation Metrics

To analyze SLO conformance and resource utilization, we evaluate
the end-to-end latency of the inference pipelines scaled to batch
size and SLO violations. System occupancy is measured as the
percentage of EPs busy at any given time. System throughput is
quantified in terms of Queries Per Second (QPS) delivered by the
scheduling algorithms for the entire query stream.

Query Streams: We generate six sample query patterns to mimic
real-world/real-time scenarios discussed in [4, 16, 33]. To simulate
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the periodic behavior of incoming queries, we introduce 2 and 5
peaks representing periodically bursty workloads. We present the
arrival rate for the two patterns in Figure 4a. The batch sizes of the
queries follow a log-normal distribution. The type of models (i.e.
VGG16, ResNet50 or ResNet152) and associated priority (i.e. High
or Low) are assigned randomly. Query streams 1,2 and 3 contain 2
peaks and average inference sizes (also referred to as batch sizes) of
1,20, and 100 and query streams 4,5,6 contain 5 peaks with average
batch sizes of 20, 50, and 70 respectively. These values are selected
through multiple trials to select values that saturate the simulated
system to its maximum capacity. Query streams 1 and 4 have the
lowest workload relative to the system’s capacity, indicating periods
of lighter traffic. Figure 4b illustrates the execution times of each
query, when the inference is executed as a single-stage pipeline. The
query streams contain three model types, as mentioned in Table 1.

SLO Targets: For our analysis, we use the execution times of the
1-Stage pipeline models listed in Table 1. We define three Service
Level Objectives (SLOs)—Strict (10%), Moderate (25%), and Relaxed
(50%)—based on percentages of the maximum execution time ob-
served across the entire query stream. These distinct SLO settings
enable us to evaluate scheduler performance under both stringent
and relaxed timing constraints. The rationale behind selecting these
SLOs is to establish latency requirements relative to each specific
query stream. This approach allows us to evaluate scheduler perfor-
mance across a spectrum of latency constraints, rather than using
a single fixed latency as employed in previous work [15]. We note
that we determine the SLOs based on the performance of the 1-
Stage pipeline configuration, which is an 8-core (1 EP) data-parallel
implementation, however during simulation, the schedulers typi-
cally allocate multiple EPs, leading to improved latency. We also
highlight that our SLO targets derive from performance data as
shown in Figure 4, and do not consider query waiting times, which
can introduce additional delays impacting end-to-end latency. The
actual speedups achieved might be lower than those anticipated
solely from the baseline 1-Stage pipeline latencies used for SLO
calculations.

Table 1: End-to-end Latency and speedup of pipelines com-
prising of stages 2 to 8 executed on 2 to 8 EPs respectively

Model | Latency (s) Speedup
2EPs 4EPs 8EPs
ResNet50 1.40 1.33 2.19 3.29
VGG16 0.69 1.43 2.71 3.47
ResNet152 4.82 1.94 2.06 5.66

4.4 Evaluating SLO-aware malleability with
Accordion
4.4.1 End-to-End Latency. To assess the impact of malleability, we

first compare Accordion against all the baseline approaches, for all
6 query streams. The results, shown in Figure 5, underscore the
impact of malleability in enhancing overall system performance, as
all other approaches result in increased waiting times. Accordion
demonstrates a substantial improvement in completing the query
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Figure 5: Comparison of the end-to-end latency of Accordion
and baselines, for all query streams. The horizontal lines
represent different SLO targets.

stream. Specifically, it is 1.3 faster on average compared to Fastest,
BBS and SLO-Conforming, and 2.2 faster than the 1-Stage baseline.

4.4.2 Comparison of SLO-aware scheduling techniques. The effi-
ciency of Accordion is underscored by its ability to process inference
queries with latencies that do not violate the target SLOs. To assess
this ability, in Figure 5, we examine the performance of Accordion
against the baselines detailed in Section 4.2, for the three different
SLO targets. The SLO-Conforming technique allocates sufficient
resources to queries to meet the SLO targets. However, because of
longer waiting times for all queries, it leads to SLO violations. The
Fastest technique, assisted by offline performance measurements,
is designed to ensure SLO conformance and assigns the maximum
numbers of EPs to deliver the fastest inference. Nevertheless, as it
does not dynamically adjust resource allocation during peak peri-
ods, it also results in SLO violations due to longer waiting times.
BBS also results in SLO violations due to longer waiting times, as
queries arriving when no resources are available are buffered within
a selected set of EPs, already processing a similar type of queries.
Query stream 1 contains queries with smaller batch sizes and low
arrival rate relative to execution times of the queries, which means
that enough EPs are free at the arrival time of queries and most
queries are processed immediately. This is a best-case scenario and
all schedulers perform well with this type of workload. With query
streams 2 and 4, all schedulers except BBS are able to achieve moder-
ate and strict SLO targets. The increased workload in these streams
increases the waiting times with BBS. The benefit of malleability
is visible in query streams 3, 5, and 6. These streams contain a
heavier workload, resulting in constantly busy EPs. In this case, the
only way to free up some EPs is through dynamic readjustment of
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for all the scheduling techniques. Accordion achieves on average
1.13x fewer SLO violations compared to the baselines under strict
SLO targets. Furthermore, it performs on average 4.2x fewer SLO
violations under moderate SLO targets. Finally, Accordion results in
approximately only 2% of SLO violations across all query streams
under relaxed SLO targets. This corresponds to 1.7Xx fewer viola-
tions compared to the baseline techniques.

4.4.4 Malleable resource allocation and system throughput. Accor-
dion initially allocates higher numbers of resources to inference
queries, resulting into higher performance. Subsequently, it dynam-
ically adjusts the resource allocation width of the pipelines within
the system whenever there is a need to accommodate additional
queries but resources are insufficient. We analyze the effect of down-
sizing resources by observing the number of active queries in the
system at any given time, in Figure 7, for all query streams. Accor-
dion demonstrates the capability to accommodate a larger number
of queries in the system for execution and manages to complete
the workload earlier than the baselines. Accordion processes 1.3,
1.6, and 1.5X more queries compared to SLO-Conforming, Fastest,
and BBS. 1-Stage processes the highest number of queries (equal
to the maximum number of EPs in the system, i.e 64) at any time
interval as this scheme always assigns one EP per request, but sacri-
fices throughput because of longer processing times. Specifically, for
query streams 2, 3, 4, and 6, 1-Stage is ~ 200% slower than Accordion
on average. For query streams 1 and 4, the arrival rate of incoming
queries is relative to the execution time of queries, and system re-
sources are free at the time of query arrivals, therefore, we observe
no significant difference between the different techniques, except
for 1-Stage. Figure 8 represents the system throughput achieved in
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Figure 7: Timeline of active queries in the system.
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ond (QPS) of Accordion and baselines against the system
throughput of 1-Stage baseline

terms of queries per second (QPS). For query streams 5 and 6, Ac-
cordion achieves 2X higher throughput normalized to the minimum
(1-Stage). Accordion generally performs better than the other tech-
niques, offering 1.2 higher throughput than the baselines across
all query streams.

4.4.5 System occupancy. The aim of malleable pipelines is to max-
imize resource utilization, thereby avoiding the need of adding
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Figure 9: System occupancy over time across query streams

more compute resources during peak workload times. To assess the
ability of Accordion to maintain high system occupancy, we look at
the number of resources occupied by the queries during the course
of execution of a whole query stream, in Figure 9. It is evident that
for query streams 2, 3, 5, and 6, Accordion consistently maintains
the system occupancy at 100% for = 70% of the time and completes
execution earlier than the Fastest and 1-Stage schedulers. While the
Fastest technique also sustains the system at full capacity for ~ 82%
of the time, it is plagued by longer waiting times and takes 1.6x
longer time on average to finish the whole query stream. This is
because Fastest does not dynamically adjust resources; even if there
are slightly fewer available EPs than those required, they will not
be used but the query will wait for more EPs to become available.
Conversely, the 1-Stage pipeline technique assigns exactly one EP
per query, leaving EPs idle when no incoming or waiting queries
are present, resulting in poor resource utilization. Accordion and
Fastest show similar occupancy for query streams 1 and 4, which
have low arrival rates and smaller inference batch sizes.

5 Related Work

Various inference serving systems are currently employed in prac-
tice, offering a spectrum of solutions for SLO-aware resource allo-
cations considering the query workload. Clipper [15], Pretzel[27],
and DeepRecSys [18] statically optimize batching and hardware
selection for inference serving systems, necessitating developers to
specify a variant, manage, and scale model resources as the load
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varies. INFaaS$ [33], on the other hand, navigates the variant search
space on developers’ behalf and dynamically leverages model vari-
ants to meet applications’ diverse requirements but does not sup-
port dynamic resource allocation based on variable query workload.
Popular techniques in resource management for inference systems
include multi-tenancy, as highlighted in works like [15, 28], which
involves hosting multiple inference models on shared computa-
tional resources. This approach promotes resource efficiency and
cost savings but can lead to challenges such as resource contention
and interference between co-located models. Adaptive batching, as
discussed in [15, 33], dynamically adjusts the batch size of infer-
ence models based on workload characteristics and system condi-
tions. By optimizing resource utilization and reducing inference
latency, adaptive batching enhances system responsiveness and
efficiency. Model selection techniques [18, 33] involve selecting
the most appropriate variant of a model based on application re-
quirements and resource constraints. By selecting models with
optimal computational complexity and accuracy levels, model se-
lection optimizes resource allocation and enhances overall system
performance. Accuracy scaling strategies, exemplified by [7], dy-
namically select model variants based on real-time accuracy needs.
By leveraging simpler models when high accuracy is not critical,
accuracy scaling ensures efficient resource allocation and perfor-
mance optimization, adapting to changing accuracy requirements
in inference tasks. Furthermore, resource allocation approaches
typically adopted in [18, 25, 36] utilize offline performance data
to match configurations with SLO requirements. To mitigate high
query workload, proactive approaches are also adopted as proposed
in [10] by leveraging query buffers to accommodate similar types of
queries arriving in the future. SageMaker [1], AI Platform [6], and
Azure ML [5] offer developers separate online and offline services
that autoscale VMs based on query workload.

6 Conclusion

In this paper, we harness the inherent malleability feature of in-
ference pipelines to address challenges encountered by inference
serving systems during peak workload periods. By dynamically re-
allocating resources among pipelines, we demonstrate a reduction
in the necessity to scale up system resources during peak workload
times. Additionally, our proposed technique leads to improved re-
source utilization. Accordion serves as an additional feature atop
a basic inference serving scheduler and can be implemented on
servers utilizing any kind of processing unit. We abstract this func-
tionality as execution places, making it adaptable to various hard-
ware configurations.
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