CHALMERS

UNIVERSITY OF TECHNOLOGY

Characterizing and Mitigating Performance Variability in Parallel
Applications on Modern HPC multicore Systems

Downloaded from: https://research.chalmers.se, 2025-10-16 22:29 UTC

Citation for the original published paper (version of record):

Cui, M., Pericas, M. (2025). Characterizing and Mitigating Performance Variability in Parallel
Applications on Modern HPC

multicore Systems. Proceedings of the 22nd ACM International Conference on Computing Frontiers
2025 Cf2025, 1: 151-158. http://dx.doi.org/10.1145/3719276.3725184

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

)
@ Characterizing and Mitigating Performance Variability in Parallel

Applications on Modern HPC multicore Systems

Minyu Cui Miquel Pericas
Chalmers University of Technology and University of Chalmers University of Technology and University of
Gothenburg Gothenburg

Goteborg, Sweden
minyu@chalmers.se

Abstract

In high-performance computing (HPC), OpenMP has become the de
facto programming model for shared-memory systems. However,
running OpenMP-based parallel applications on multicore systems
often faces the challenge of performance variability, particularly
as core counts increase in modern HPC clusters. Factors spanning
from Operating Systems (OS) and hardware feature to OpenMP im-
plementation can significantly impact performance stability. This
paper evaluates execution time variability across five multicore
systems from multiple HPC clusters, covering two different ISAs
and using five OpenMP benchmarks and a real-world mini-app
compiled with both gcc and llvim/clang. We analyze the effects
of various factors such as thread-pinning, OpenMP runtime im-
plementations, OpenMP scalability, simultaneous multithreading
(SMT), core resource reservation, frequency scaling, and platform-
specific features such as hybrid architecture core configurations.
Our findings highlight the complex interplay of these factors in
performance variability and propose lightweight mitigation strate-
gies to enhance the stability of OpenMP programs for developers
and system users.

CCS Concepts

« Computing methodologies — Massively parallel algorithms; «
Computer systems organization — Multicore architectures.

Keywords

HPC, performance variability, mitigation strategies, OpenMP, simul-
taneous multithreading, resource reservation, multicore systems,
hybrid architecture.

ACM Reference Format:

Minyu Cui and Miquel Pericas. 2025. Characterizing and Mitigating Per-
formance Variability in Parallel Applications on Modern HPC multicore
Systems. In 22nd ACM International Conference on Computing Frontiers (CF
°25), May 28-30, 2025, Cagliari, Italy. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3719276.3725184

1 Introduction

Optimization efforts in HPC usually focus on the performance
of parallel applications, with performance variability often ad-
dressed only as an afterthought. However, in parallel computing

This work is licensed under a Creative Commons Attribution 4.0 International License.
CF ’25, Cagliari, Italy

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1528-0/25/05

https://doi.org/10.1145/3719276.3725184

Goteborg, Sweden
miquelp@chalmers.se

with OpenMP, performance stability is crucial for consistent and
repeatable results, especially on large-scale multicore HPC clusters.
If one or more threads encounter resource contention, OS inter-
rupts, or non-application work during the execution of parallel
applications, the execution time will likely be impacted in hard to
predict ways. This problem has gained more attention with the
rise of large-scale multicore platforms on modern HPC clusters.
Performance stability can be influenced by OS features, hardware
configurations, and OpenMP implementation. A major source of
execution time variability is OS noise, caused by OS daemons and
system processes|2, 6, 21] that interfere with the user application.
Resource contention further contributes to variability, as shown in
previous studies on shared network [3] and I/O interference [27].
On SMT-enabled systems, over-subscribing physical cores without
reserving cores for OS leads to performance instability [14, 16],
while hardware factors such as dynamic voltage scaling [17] also
add variability. In OpenMP, thread migration can improve core
utilization but often increases variability due to data migration
overhead.

Thread-pinning has effectively stabilized performance [10, 18—
20], although it does not always optimize execution time. Some
studies suggest that letting the OS manage thread placement can
enhance speed [19], but at the cost of stability. A common strategy
to mitigate OS noise is to reserve core resources. Systems like Cray
XE implement core specialization [24], reserving one or more cores
for OS and service threads. LUMI [15] dedicates 12.5% of the cores
in the LUMI-G partitions to the OS for low-noise operation. With
modern systems featuring increasing core counts, a critical ques-
tion arises: What is the optimal number of cores to reserve while
avoiding core resource wastage (Q1)? On SMT systems, reserving
threads for OS has been shown to reduce performance perturba-
tions [16]. Hybrid architectures such as Intel AlderLake, which has
both performance cores (P-cores) and efficient cores (E-cores), are
less common in HPC due to load-balancing challenges caused by
asymmetry. Little is known about how the combined use of these
cores affects performance stability. This raises an intriguing ques-
tion: What is the optimal number of enabled E-cores for OS tasks
to minimize interference and enhance system efficiency (Q2)?

Prior studies have explored individually thread pinning, SMT,
frequency variation, or focused on specific platforms like Intel
Xeon Phi [2, 5]. None has synthesized their combined impact on
performance stability across modern machines. What happens to
performance stability when these effects work together (Q3)? Given
the increasing complexity of modern systems, understanding how
these effects interact is essential. To the best of our knowledge,

https://orcid.org/0000-0002-5983-1648
https://orcid.org/0000-0002-7583-6609
https://doi.org/10.1145/3719276.3725184
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719276.3725184
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3719276.3725184&domain=pdf&date_stamp=2025-07-04

CF 25, May 28-30, 2025, Cagliari, Italy

no existing research directly addresses the three outlined ques-
tions (Q1-Q3). Furthermore, most previous studies focus on a single
architecture or a narrow range of homogeneous systems, limit-
ing the generalizability of their findings across diverse hardware
platforms. Given the wide range of modern architectures, from
traditional homogeneous systems to hybrid designs like Intel Alder-
Lake, there is a critical need to evaluate performance variability
in parallel applications across modern HPC architectures to en-
sure broader applicability. This work addresses questions Q1-Q3
by evaluating performance variability across diverse platforms, in-
cluding traditional homogeneous systems and hybrid designs. Our
key contributions include:

e Comprehensive experimentation: We conducted extensive ex-
periments using five OpenMP microbenchmarks and a real-world
mini-app (Lulesh) across five platforms including two distinct
instruction set architectures (ISA) and four vendors: AMD, Intel,
Fujitsu, and AWS.

o Insights into performance variability: We identified key fac-
tors influencing stability without relying on kernel modules or
platform-dependent performance counters. We proposed effec-
tive lightweight, user-level mitigation strategies, including thread
placement control, OpenMP implementation, core resource reser-
vation for the OS, and isolation from co-running processes. Our
findings also highlight the impact of frequency scaling, particu-
larly on AMD Zen2 and Intel Xeon platforms, a factor beyond user
control. These insights shed light on OpenMP programming-level
recommendations, for system user and OpenMP code developers.

e Case studies on resource reservation for OS: We examined
optimal core reservation on SMT platform and evaluated E-core
allocations on Intel AlderLake to minimize OS interference and
enhance stability of user workloads, while avoiding core over-
reservation to ensure efficient usage.

The remainder of the paper is organized as follows. Section 2
presents the experimental environment. Section 3 outlines our

methodology for evaluating performance variability, Section 4 presents

experimental results and mitigation strategies. Section 5 provides
recommendations, followed by related work in Section 6 and con-
clusion in Section 7.

2 Experimental Environment

This section outlines the experimental environment, including hard-
ware platforms and compiler versions, which are summarized in
Table 1, and the OpenMP benchmarks and mini-app used in this

paper.

2.1 Hardware platforms

To ensure broad applicability within HPC community, we adopted
five diverse multicore platforms.

AMD Zen2 (PDC Center): An HPE Cray EX supercomputer
with dual AMD EPYC Zen2 2.25GHz 64-core processors, totaling 128
physical cores and 256 hardware cores/threads (hyperthreading). It
has eight NUMA nodes (16 physical cores each) and operates at a
maximum frequency of 3.4GHz. Additionally, each socket functions
as a quad-NUMA domain. It runs SUSE Linux Enterprise Server
15 SP3 with the Linux kernel version 5.3.18-150300.59.76_11.0.53-
cray_shasta_c.

152

M. Cui et al.

Intel AlderLake (local workstation): A hybrid design with
8 performance cores (P-cores, supporting hyperthreading) and 8
efficient cores (E-cores) in a single NUMA domain. The cores can
operate with a maximum frequency of 3.2GHz. It runs Ubuntu
22.04.5 LTS with the Linux kernel version 5.19.0-32-generic.

Intel Xeon (C3SE Cluster): This platform integrates two Intel
Xeon Gold 6130 2.1GHz 16-core processors per node, totaling 32
cores across two NUMA nodes. The cores can operate at a maximum
frequency of 3.7GHz. It runs Rocky Linux release 8.9 (Green Obsid-
ian), with the Linux kernel version 4.18.0-513.11.1.el8_9.0.1.x86_64.

Fujitsu A64FX (Barcelona Supercomputing Center): Pow-
ered by ARM processors manufactured by Fujitsu A64FX CPU
(Armv8.2-A + SVE), this platform features 48 cores across four
NUMA nodes (each with 12 cores), along with 12 “assistant cores”,
which are dedicated to handling OS activities and are not visible to
the user. The cores operate at a maximum frequency of 2.20 GHz.
It runs Red Hat Enterprise Linux Server 8.1 (Ootpa) with the Linux
kernel version 4.18.0-147.3.1.el8_1.aarché4.

AWS Graviton3 (EC2 C7g instances): This platform features
the latest AWS Graviton3 processors with 64 CPU cores in a single
NUMA node. It runs Amazon Linux release 2 (Karoo) with the Linux
kernel version 5.10.167-147.601.amzn2.aarch64.

We used both gcc and llvm compilers, along with their respective
OpenMP libraries, across all platforms. On Graviton3, the ARM
Compiler for Linux (ACFL), based on llvm, was used. Compiler
versions are provided in Table 1.

2.2 OpenMP benchmarks and application

Depending on their characteristics and relevance to the goal of
this paper, we evaluated various OpenMP benchmarks and a real-
world mini-app, including both compute- and memory-bound work-
loads. BabelStream [7] is a widely used memory-bound benchmark
to measure sustainable memory throughput, via simple opera-
tions (kernels) such as copy, add, mul, triad, and dot products.
The EPCC microbenchmark suite [4, 13, 26] includes schedbench,
syncbench, taskbench and arraybench, focusing on loop schedul-
ing, synchronization, task scheduling, and array-based operations.
Lulesh [11, 12] incorporates both compute- and memory-bound
kernels, serving as a compact, full-featured mini-app. The insights
learned from the mini-app exploration can be directly applied to
full-scale applications. These workloads assess how CPU cores,
SMT implementation, and thread placements affect performance
variability, offering insights applicable to real-world parallel com-
puting. All workloads were tested on the five platforms, except
taskbench, arraybench and lulesh on A64FX, due to expired access.

3 Experimental Design

We design our benchmarking methodology to characterize perfor-
mance variability while ensuring reproducible, unbiased measure-
ments. Experiments were conducted in isolation on a single node
within production, site-managed clusters, without privileged access
to modify the execution environment. Instead of trace analysis, we
ran each experiment 10 times under identical conditions to account
for variability and apply statistical analysis to ensure the robust-
ness of our results. We collected execution times across 10 runs

Characterizing and Mitigating Performance Variability

CF 25, May 28-30, 2025, Cagliari, Italy

Table 1: Parameters of the hardware platforms

Platforms AMD Zen2 Intel AlderLake Intel Xeon Fujitsu A64FX Graviton3
Architecture x86_64 x86_64 x86_64 ARM aarch64 ARM aarch64
CPU model AMD EPYC Zen2 | Inteli9-12900K | Intel Xeon Gold 6130 | Fujitsu A64FX ARM Graviton3
Number of CPU cores 128, 2-way SMT 8, 2-way HT 32, no SMT 48, no SMT 64, no SMT
Number of NUMA nodes 8 1 2 4 1
gce version gee v12.2.0 geev11.4.0 geev12.2.0 gee vill geev12.3.0
llvm/clang version clang v15.0.6 clang v14.0.0 clang v15.0.6 clang v16.0.6 | armclang (llvm v17.0.0)

and analyze variations and the trends to derive reliable conclusions
about performance stability.

3.1 Thread-pinning

We use three OpenMP environment variables to control thread
placement: OMP_NUM_THREADS, OMP_PLACES and OMP_PROC_BIND.
OMP_NUM_THREADS defines the number of threads. OMP_PLACES de-
fines specific cores or hardware threads for OpenMP threads to
be placed. OMP_PROC_BIND determines the thread pinning policy,
specifying how threads are assigned to the places. Used together,
these variables enable fine-grained control over thread affinity. We
set OMP_PROC_BIND as close to ensure that the threads remain near
their parent thread’s location [9, 22].

3.2 Using Simultaneous Multithreading (SMT)

Among the platforms tested, only AMD Zen2 and AlderLake feature
SMT. To assess its impact on performance variability, we design
three experiment configurations: (i) ST - using only the first hard-
ware thread per core, reserving the second thread for OS activities
to absorb OS noise and shield user workload executions from sys-
tem interference; (ii) MT - Using both hardware threads per core
for user workloads; (iii) STb - Like ST, but with the second thread
busy running a background task during user workload executions.

3.3 Frequency logging on a dedicated core

To analyze the impact of frequency scaling on performance vari-
ability, we collected core frequencies during experiments, using
a Python script running on a dedicated core. The script accessed
the Linux CPUFreq sysfs interface to track frequency levels across
all cores. No other applications were executed concurrently except
for the specified ones, minimizing interference from the frequency
logger and background activities, and ensuring minimal impact on
benchmark execution.

4 Experimental Results

This section analyzes experimental findings, focusing on factors
contributing to performance variability and corresponding miti-
gation strategies. Each runtime configuration was tested 10 times
to capture execution time variability, along with any variability
inherent in EPCC micro-benchmarks, which performed 30 repeti-
tions. Due to space limitations, we highlight representative results,
emphasizing key impacts on variability. To quantify this, we re-
port the average (Avg.) execution time over 10 runs. Execution
time variability is assessed by normalizing the minimum (min.)
and the maximum (max.) execution times against the average time
of each run for the benchmarks reporting both. This allows us to
examine how the normalized minimum and maximum execution

153

times (Norm. exe. time) fluctuate relative to the average execution
time in each run. We report compiler results default to gcc, unless
notable differences arise. In all boxplots, the red line indicates the
median, and the blue line indicates the mean. We first evaluate two
commonly used mitigation strategies. We then provide our specific
observations on performance variability and offer corresponding
mitigation suggestions.

4.1 The commonly used mitigation methods

(a)lulesh (b)lulesh
1.10 1.10
Q
£
¢ 1.05 1.05
X
QJ
§1.00 fffff 1.00 a—
2 =
0.95 0.95

*“~ no thread-pinning thread-pinning
Figure 1: Lower variability after thread-pinning for lulesh on
AlderLake running with 8 threads, using gcc for compilation.

4.1.1 The effect of thread-pinning. We first compare results with
and without thread-pinning, conducted in the ST configuration,
as described in Section 3. Overall, thread-pinning significantly im-
proves performance stability across all platforms, except Graviton3.
For example, on AlderLake (disabling 8 E-cores), Figure 1 shows
that letting the OS to manage thread placement (left subfigure)
by default results in substantial execution time variability due to
dynamic thread migration. OS-level workload balancing aims to
optimize core usage by moving threads between cores during exe-
cution, but this can lead to instability if application characteristics
and thread placement policies are misaligned. In contrast, thread-
pinning (right subfigure) mitigates this variability effectively. Tak-
ing the standard deviation as a metric (as in the rest of this paper),
performance variability is reduced by 87.8% after thread-pinning.
Similarly, improvements were observed across other benchmarks
and the mini-app, though the extent of improvement varied. For
Graviton3, thread-pinning had negligible impact, likely due to the
virtualized cloud environment, where the cloud hypervisor (Nitro)
abstracts CPU core management and presents vCPUs to the virtual
machine, making thread-pinning either ineffective or unnecessary.
For consistency, thread-pinning was applied in all subsequent ex-
periments.

4.1.2 Reserving additional hardware resources for OS using SMT.
Previous studies suggest that reserving additional hardware cores
or threads for OS activities can reduce performance variability.

CF 25, May 28-30, 2025, Cagliari, Italy

Table 2: Avg. execution time (s) of lulesh in Figure 1

Platforms - - - clang -
pin [no pin pin [no pin
AlderLake | 11.201 | 11.474 | 12.440 | 14.807
g lulesh g 1015 lulesh
=1.021 S1.010 il
i Hepos sifloeas
001< 1. == -
©0.99 553001 & I T
€0.98 E‘0.990
s
=z AN DD ADAD .
NN N N N AN DD DD
NP NI
A GG
(a) AMD Zen2 (b) AlderLake

Figure 2: Higher variability for lulesh due to SMT and co-
running processes, using gcc for compilation.

Table 3: Avg. execution time (s) of lulesh in Figure 2

AMD | ST:127 | MT:127 | ST:128 | STb(l) | STb(b) | STb(s)
Zen2 [9.082 | 17.232 | 8999 | 12.777 | 17.049 | 9.219
Alder | ST:7 | MT7 ST:8 | STb() | STb(b) | STb(s)
Lake | 11769 | 11.387 | 14415 | 18.374 | 33.542 | 15.865

Our experiments on AMD Zen2 and AlderLake, the only platforms
supporting SMT, confirmed this. To explore this further, we tested
how using these threads for user applications or background tasks
affects performance stability. We used lulesh (as the user applica-
tion with compute- and memory-bound kernels) to illustrate our
findings in Figures 2. The first hardware thread of each physical
cores was dedicated to the user application, while the second thread
was either reserved for the OS (ST), assigned to the user applica-
tion (MT), or busy with background tasks: STb(l) (running lulesh),
STb(b) (running BabaelStream), or STb(s) (running schedbench). The
number after the colon in Figures 2 denotes the total number of
used physical cores.

When comparing the ST and MT tests, the ST configuration
achieves better performance stability by reserving the second thread
per core for OS activities, thereby absorbing OS noise, especially
on AMD Zen2 (73.7% of variability is reduced in Figure 2a). Con-
versely, the MT configuration, which uses both hardware threads
for the user application, negatively impacts performance stability.
We also explored the impact of co-running processes on perfor-
mance variability. As expected, the ST configuration outperforms
all STb configurations in terms of stability, as shown in the right
four columns of each subfigure in Figure 2. The STb configurations
show some performance perturbations, primarily due to interfer-
ence from OS activities and co-running processes on the same cores
as the user application (even not on the same OpenMP places).
Among the STb cases, STb(l) and STb(b) exhibit the highest variabil-
ity, potentially caused by memory contention, as both background
tasks are memory-bound.

While the two methods above effectively reduce variability, they
do not eliminate it entirely. We continue to explore other factors

154

M. Cui et al.

that contribute to variability and examine how the studied effects
interact to reduce performance variability (answering Q3), while
also introducing additional mitigation strategies.

4.2 The effects of OpenMP scalability and
platform characteristics

schedbench:dynamic_1

syncbench:barrier

1.25 112
. i
120 e e R R — "
G115 G o5t i i
] |
$1.10 I i'gg i) '
: ¢ -1 f " 0
E1.05 | Eoos ;]
¥ ! min.
Z1.00f 4 for] 2ol ! 1 ma
48 16 32 64 128 254 256 bl a 8§ 16 30 32
number of threads number of threads
(a) AMD Zen2 (b) Intel Xeon
babelstream:copy taskbench: master task
L 108+ min w13l - mn t
Elosp © " Eiaf -~ ™ I
= £
§,(;1.04 gll 1 i + §
91.02 . 1 1.0t i ' ::
Ero0f 44—+ E09 !
s 1 5000 |
Z20.98 z 8-573 1 H
0965—% § 16 32 47 48 2 4 8 16 32 63 64
number of threads number of threads
(c) A64FX (d) Graviton3

Figure 3: Scalability of variability for schedbench, syncbench,
babelstream and taskbench as the number of threads in-
creases, using gcc for compilation.

CPU Frequency Timeseries CPU Frequency Timeseries

3. ! T
g3.0 23.0
925 825
=3 —
§20 g2 B
frs . —
L = 1o — s
. O O O D D DD
O 0 O OO L® S 2 S 2SO
O A2 O A A9 LS O gV 2 o O
PO OIS S R P XS » 9 9 o & .S
Timestamp Timestamp
(a) 2 threads (b) 4 threads
CPU Frequency Timeseries - CPU Frequency Timeseries
HHEEEES
23.0 g3.0 ‘
: L L
325 350
1 [i
2.0 u‘:1‘5
15 1.0
O O O L & O L& N N O N
O A7 L A A A9 N N N N
TR AT A D X R O R
Timestamp o Timestamp
(c) 8 threads (d) 16 threads

Figure 4: CPU frequencies of cores used to run syncbench in
Figure 3b on Intel Xeon.

This experiment evaluates the impact of OpenMP scalability
and explores how increasing thread counts influence performance
stability in Figure 3. All tests were performed in ST configuration,
except for AMD Zen2 when the thread count exceeded 128. As
expected, increasing thread count generally adds to execution time
variability across all tested platforms except AlderLake. This effect
is particularly pronounced at higher thread count (> 128 on AMD
Zen?2 in Figure 3a, > 30 on Intel Xeon in Figure 3b, > 32 on A64FX

Characterizing and Mitigating Performance Variability

Table 4: Avg. execution time in Figure 3

thread count/execution time
AMD 4/8/16 32/64/128 254/256
Zen2(ms) | 126.6/125.0/125.2 124.5/129.7/122.5 137.3/134.5
Intel 2/4/8 16/30/32 -
Xeon(ys) 0.81/0.85/0.86 1.14/6.71/2.45 -
A64FX 2/4/8 16/32/47 48
(s) ~0.0065 ~0.0065 0.00097
Gravi 2/4/8 16/32/63 64
ton3(us) 2.0/4.0/15.4 80.8/670.1/3230.4 3570.8

in Figure 3c, and > 32 on Graviton3 in Figure 3d). Notably, when uti-
lizing all cores/hardware threads for benchmark execution, e.g. 256
threads (128 physical cores) on AMD Zen2, 32 threads on Intel Xeon
and 64 threads on Graviton3, performance stability deteriorates
markedly. This instability stems from resource depletion solely for
user programs, leaving no capacity for OS activities, which inter-
feres with benchmark execution. Recent discussions on resource
isolation in [6, 8] echo these findings. To mitigate this interference,
we spared at least one core/hardware thread for the OS during
subsequent tests. On A64FX, the performance variability increased
slightly with higher thread counts (e.g. 47 or 48 threads), as shown
in Figure 3c. However, this variability is less pronounced compared
to other platforms, likely due to 12 off-line cores reserved for system
operations. On AlderLake, we did not observe a significant increase
in variability. This is due to its limited core count (8 P-cores with
all E-cores disabled during this experiment to minimize the impact
of the hybrid architecture).

Figure 3 also reveals irregular results that challenge the above
conclusion. On AMD Zen2, we observed relatively high variability
with 4 threads (Figures 3a) compared to 8 threads, while on Intel
Xeon, relatively high variability occurred with 2, 4, and 8 threads
compared to 16 threads (Figures 3b). This variability is attributed
to frequency variation. For example, Figure 4 shows the core fre-
quencies during syncbench test on Intel Xeon, revealing higher
frequency fluctuations with 2 (Figure 4a), 4 (Figure 4b) and 8 (Fig-
ure 4c) threads, but not with 16 (Figure 4d) threads. Performance
fluctuations on both AMD Zen2 and Intel Xeon likely stem from
the Turbo mechanism, which temporarily increases clock speeds
beyond the base frequency when operating below the Thermal De-
sign Power (TDP) and thus introduces variability due to dynamic
clock speed adjustments. With fewer active cores, reduced power
consumption and thermal output enable higher core frequencies,
contributing to these fluctuations. We do not observe frequency
variation on A64FX, and we lack access to core frequency data for
Graviton3 due to system limitations.

4.3 The effect of OpenMP implementation

When running syncbench on Graviton3 compiled with gec and
setting OMP_WAIT_POLICY to passive, we noticed significant execu-
tion time variability in two synchronization kernels, critical and
lock/unlock, as the thread count increased. Using critical as
an example, shown in Figure 5, switching OMP_WAIT_POLICY from
passive (Figure 5a) to active (Figure 5b) dramatically reduced this
variability (86.5% on average and up to 95.3%). This indicates how
different algorithms in the OpenMP runtime can affect the execu-
tion time variability. The OMP_WAIT_POLICY environment variable

155

syncbench:critical

CF 25, May 28-30, 2025, Cagliari, Italy
-;%%%é%ééééégé g
3

: N#@OOONQ‘OOOONQ’&OOOONQ’&DOOON VooNIT O
NN NN S S ST S ST LIn;nWn

number of threads

Execution time
COorRNNWWA
OU1C>U|OU‘|OU1C>

oonN<
[Tallejte]e]

(a) OMP_WAIT_POLICY=passive
syncbench:critical

NBEOOONAOD
L5
Ik
i
HIO—
HIO—
HIH—
HIH
IO
HIH
A
HIH
HIH
HI—

Execution time
OOOOHHKHKF

N#@COON#&OODON#LDOOONQ‘LDOOON#&OOO
NN S S ST ST ST

number of threads

(b) OMP_WAIT_POLICY=active

Figure 5: Setting OMP_WAIT_POLICY to active when compiling
syncbench (critical) with gee on Graviton3 reduces the vari-
ability.

hints at the OpenMP implementation about the desired behavior
of waiting threads. For libgomp (the gcc OpenMP runtime library),
the passive policy instructs waiting threads to immediately yield
the CPU upon failing to acquire a lock, allowing the OS to schedule
other processes. This leads to excessive voluntary context switches,
which introduce direct overhead and cause inconsistent wake-up
times in thread resumption, further exacerbating performance vari-
ability in synchronization scenarios. In contrast, the active policy
directs waiting threads to spin for a specified duration before yield-
ing the CPU. This busy-waiting mechanism reduced OS preemption
and eliminates excessive (voluntary) context switches, thereby re-
ducing variability in Figure 5b.

However, the observed variability largely disappeared at a certain
point during our experimental analysis. We speculate that this was
due to an update to the system, which was probably causing the
problem. However, this remains a hypothesis, as there is no way
to analyze it further. Interestingly, we did not observe the same
behavior on other platforms, or when using the armclang compiler
on Graviton3. Therefore, we conclude that the observed effect is
likely a combination of synchronization algorithms and platform-
specific characteristics.

4.4 The effect of resource reservation for the OS

Reserving physical core resources for OS activities can often yield a
notable reduction in performance variability. However, determining
the optimal amount of reserved resources is crucial to avoid core
over-reservation, which can lead to unnecessary resource wastage.
To address this, we conducted a case study on AMD Zen?2 to explore
the impact of adjusting the number of reserved cores (Q1). Addi-
tionally, for hybrid architectures such as Intel AlderLake, which
features both P- and E-cores, we performed a case study to identify
the optimal number of enabled E-cores (Q2).

CF 25, May 28-30, 2025, Cagliari, Italy

©1.020 lulesh 0118 lulesh

£1.015 €115

“—%'8%8 112

gl g1.10

%1.000/ % L] %

£0.995 Eé = 108

£0.990 £1.03] . i

50.985 §1.00/x & = = + &

Z0.980 S > oA =098

SATLONON A S

AN AN QQQ%QQ
SEGGNG X' RS
(a) AMD Zen2 (b) AlderLake

Figure 6: Variability in lulesh with varying reserved core
counts on AMD Zen2 and varying enabled E-core counts on
AlderLake, using gcc for compilation.

4.4.1 Avoiding core over-reservation with SMT on AMD Zen2. As
we do not have privileged access to fine-tune the execution envi-
ronment on AMD Zen2, and enabling SMT does not negatively
affect performance stability as long as the additional hardware
threads are reserved for the OS (as discussed earlier), we kept SMT
enabled by default on AMD Zen2 and used only one thread of the
cores at most, i.e. ST configuration, to run the user application.
Performance variability behavior when reducing the number of
reserved physical cores from 16 (ST:112) to 0 (ST:128) is shown in
Figure 6a, after removing an outlier for the ST:128 test. For AMD
Zen? platform examined in this study, we find that reserving 4
physical cores (ST:124) may achieve the best performance stability
without significant loss of absolute performance (seen in Table 5),
effectively addressing question Q1. This observation suggests that
core resources can be utilized more efficiently especially in large-
scale multicore systems, while avoiding core over-reservation such
as 16 (ST:112) and 8 (ST:120) cores in this experiment.

4.4.2 Determining the optimal number of enabled E-cores on Alder-
Lake. In the earlier experiments, all E-cores were disabled to elimi-
nate the impact of the asymmetric architecture on AlderLake. In
this experiment, we investigate the execution time variability for
lulesh with varying E-core counts, as shown in Figure 6b, to evalu-
ate the performance implications of enabling E-core in this hybrid
architecture. In Figure 6b, we used the 8 P-cores to run the appli-
cation while enabling 0 (8P:0E), 1 (8P:1E), 2 (8P:2E), 4 (8P:4E), 6
(8P:6E) and 8 (8P:8E) E-cores each at boot time. We observe that
enabling some E-cores can reduce the variations in execution time,
while also slightly reduce execution time (seen in Table 5). For
example, even with 1 E-core (8P:1E), the results were more stable
compared to enabling no E-core (8P:0E) (85.2% of variability is
reduced). For AlderLake tested in this study, enabling 2 (8P:2E) or 4
(8P:4E) E-cores impressively mitigated the execution time variabil-
ity (as well as slightly improved absolute performance), effectively
answering question Q2. Through experimenting with different E-
core configurations, we aim to understand the trade-offs between
high performance and system efficiency, providing insights into
optimal core configurations for hybrid architectures.

156

M. Cui et al.

Table 5: Avg. execution time (s) of lulesh in Figure 6

AMD | ST:112 | ST:120 | ST:124 | ST:126 | ST:127 | ST:128
Zen2 7.67 7.87 7.97 7.99 8.03 8.23
Alder 8POE 8P1E 8P2E 8P4E 8P6E 8PSE
Lake 10.21 10.02 9.98 9.95 9.94 9.93

Table 6: Avg. execution time (yus) of schedbench (x represents
all the values in x-axis) in Figure 7

static_x dynamic_x | guided x
1NUMA | ~163615 | ~163463 ~163908
2NUMA | ~143215 | ~141634 ~141994

4.5 The effect of frequency scaling

In addition to performance variability caused by frequency fluc-
tuations discussed in Section 4.2, we observed greater variability
when the same thread count was launched across multiple NUMA
nodes (= 5 NUMA nodes on AMD Zen2 and > 1 NUMA node on
Intel Xeon). This increased variability is largely attributed to fre-
quency scaling, which is beyond the user’s control. For example,
on Intel Xeon with two NUMA nodes, Figures 7a and 7c compare
performance variability for schedbench using 16 threads on a single
NUMA node versus across both nodes. When both NUMA nodes
were used, the variability increased significantly (Figures 7c), cor-
responding to greater frequency fluctuations (Figure 7d). Notably,
performance variability on Intel Xeon (0.96 ~ 1.10 in Figure 7c) is
broader on average than on AMD Zen2 (0.994 ~ 1.005, data not
shown), aligning with higher frequency fluctuations recorded on
Intel Xeon (Figure 7d) compared to AMD Zen2 (data not shown).

schedbench CPU Frequency Timeseries

2110
£108 min 3.51—
°1.06 max | >301=
£1.04 §3.01=
1o g2s5 2 [| [| [||
£0.98 §2.0-
20196 SRy
~ 6 @ 5 O 5=
@-><,/ Ny &{("}"’ Qb‘_ Qp/bzb} b)? 102
§ F e’ & TS ¥ N N & S &
F o &0 & © g S < 'S
Timestamp o
(a) variability: 1 NUMA (b) frequency: 1 NUMA
2119 schedbench . CPU Frequency Timeseries
el =
£108 R 3.5
°1.06 | e . =
g104{] | §3.012
I — ————— L]
58:28 P T N T A : Ez,of
20.96 15—
[© @ N~ O i
%4 2 ,LQD‘ RS RN L7 é?’ <V 1.0
& F T & ST P F N LSS LSS
&
£ P 5*8\@\\(@“\ RIS ST)

Timestamp

(c) variability: 2 NUMA (d) frequency: 2 NUMA
Figure 7: Variability in schedbench and the corresponding
core frequencies on Intel Xeon, when launching 16 thread
on a single NUMA node versus across both NUMA nodes.

4.6 The effect of mitigation strategies on
absolute execution time

This paper focuses primarily on performance variability and the ef-

fectiveness of mitigation strategies. Our proposed mitigation meth-

ods further enhance performance stability by exploring the inter-
play of effects studied together, effectively answering Q3, while

Characterizing and Mitigating Performance Variability

we also briefly summarize their impact on absolute performance
(execution time). Thread-pinning significantly reduces variability
(Figure 1), but does not consistently improve or degrade execution
time, as its effect depends on the experiment configuration (Ta-
ble 2 shows the reduction in execution time for lulesh), including
thread count, platform, compiler, and application characteristics.
Allocating additional hardware resources to the OS via SMT gen-
erally enhances both performance (reduced execution time) and
stability, seen in Figure 2 and Table 3. On Intel Xeon and Graviton3,
increasing thread counts tends to negatively impact both execution
time and variability, shown in Figure 3 and Table 4. Reducing re-
served cores for the OS slightly increases execution time (Table 5),
the optimal number of reserved cores to achieve best performance
stability depends on the platform and workload (Figure 6). Lastly,
frequency fluctuation introduces variability (Figure 7), although a
higher frequency generally reduces execution time (Table 6).

5 Recommendations

Based on our findings, in addition to common recommendations
such as thread-pinning, core resource reservation, and addressing
frequency fluctuations (which is beyond our control), we propose
the following strategies to mitigate execution time variability for
OpenMP-based applications on multicore systems.

Avoid core over-reservation: Considering Q1, although core
reservation reduces performance variability, excessive reservation
of CPU cores does not provide additional benefits and can lead to
inefficient resource utilization.

Avoid co-running processes: Avoiding co-running processes
when executing user programs on platforms with SMT is impor-
tant for maintaining performance stability. Even background codes
executed in different threads than user programs can interfere with
their executions.

Enable appropriate E-cores in hybrid architectures: Consid-
ering Q2, in hybrid architectures such as Intel AlderLake, enabling
an optimal number of E-cores while keeping P-cores fully engaged
for critical user workloads allows the system to efficiently manage
background tasks without significantly impacting the performance
of user workloads.

Best practices for performance stability in multicore sys-
tems: We recommend not to use too few or the full number of
cores in the node. This strategy reduces variability by avoiding (a)
core boosting (too few active cores) and (b) frequency reduction
(too many cores leading to thermal issues).

6 Related work

As modern multicore systems incorporate increasing number of
cores, factors such as OS noise and frequency variations amplify
performance variability, particularly in parallel computing environ-
ments. Studying these effects and developing mitigation strategies
are essential. This section reviews current research efforts aimed
at reducing performance variability or providing insight into its
mitigation.

Several studies have explored thread affinity mechanism to en-
hance performance stability of parallel applications on multicore
machines [10, 18-20]. The authors in [18] demonstrated that OpenMP
applications experience high execution time variability when thread

157

CF 25, May 28-30, 2025, Cagliari, Italy

placement is managed by the OS, whether running alone or in
parallel with other independent processes. The later works com-
pared multiple thread pinning strategies on three multicore ma-
chines [19] and proposed dynamic thread-pinning policy for phase-
based OpenMP programs [20]. However, these results are largely
limited to systems with a small scale of cores, with most tests
conducted on machines with up to 8 cores, except for one study in-
volving 96 cores. Recent work [10] introduced a practical OpenMP
runtime system supporting both flat and nested parallelism. While
thread-to-CPU binding was evaluated in terms of execution times,
performance variability was not a primary focus. Explicitly specify-
ing the affinity setting is generally recommended. Core source reser-
vation techniques have also been proposed to reduce performance
variability by isolating user applications from OS functions. For
instance, the core specialization feature [24], implemented on Cray
XE systems, reserved one or more cores for OS and service threads.
Similarly, the LUMI supercomputer reserved the first core of each
core compute complex (CCX) to operate in low-noise mode [1].

On systems with SMT, performance variation often arises when
both threads of the physical cores are utilized. Studies have ob-
served worse variability when running parallel applications on both
threads per core compared to using a single thread per core [14, 16].
Tuning core frequencies has been extensively studied as a means
of managing performance variability. Dynamic voltage scaling, for
example, has been shown to induce execution time variability [17].
The authors established a correlation between performance vari-
ability and core operating frequency [16], observing that hardware-
enforced power limits further magnified these effects. Even in ther-
mally stable states, frequency variation can cause significant perfor-
mance variability [23]. OS noise in NUMA architectures could ex-
acerbate run-to-run performance variability, as highlighted in [25].
The authors proposed a performance-stable NUMA management
scheme to improve performance stability.

7 Conclusion

This study investigates performance variability in parallel applica-
tions using OpenMP through experiments on five OpenMP bench-
marks and a real-world mini-app, compiled using gcc and llvm/-
clang, across four production clusters and a local workstation. Our
findings reveal the complex interplay of factors influencing per-
formance variability, including thread-pinning, OpenMP runtime
implementations, SMT, core resource reservation, frequency fluctu-
ations, and hardware-specific characteristics like E-cores usage in
a hybrid architecture. We demonstrated effective mitigation strate-
gies, such as applying thread-pinning, reserving core resources for
OS activities to absorb noise while avoiding core over-reservation,
and optimizing E-core usage in hybrid architectures. However, some
performance perturbations, particularly frequency fluctuations, re-
main beyond our control. Future work will extend this evaluation to
include more benchmarks, larger-scale parallel programs, and other
programming models. We also aim to analyze OS noise sources
and explore advanced methods to further mitigate or eliminate
performance variability.

CF 25, May 28-30, 2025, Cagliari, Italy

Acknowledgments

This project has received funding from the European High-Performance

Computing Joint Undertaking (JU) under Framework Partnership
Agreement No. 800928 and Specific Grant Agreement No. 101036168
(EPI SGA2). The JU receives support from the European Union’s
Horizon 2020 research and innovation programme, and from the
Swedish Research Council, among others. Additionally, this work
has received funding from the project PRIDE from the Swedish
Foundation for Strategic Research with reference number CHI19-
0048. The computations were enabled by resources provided by
Chalmers e-Commons at Chalmers. The computations were enabled
by resources provided by the National Academic Infrastructure
for Supercomputing in Sweden (NAISS), partially funded by the
Swedish Research Council through grant agreement no. 2022-06725.
The authors thank the Barcelona Supercomputing Center, Spain
for providing access to Mare Nostrum 4 ARM-CTE partition.

References

[1] Andrey Alekseenko, Szilard Pall, and Erik Lindahl. 2024. GROMACS on AMD
GPU-Based HPC Platforms: Using SYCL for Performance and Portability. ArXiv
abs/2405.01420 (2024). https://api.semanticscholar.org/CorpusID:269502644
Roberto Camacho Barranco and Patricia J. Teller. 2016. Analysis of the Execution
Time Variation of OpenMP-based Applications on the Intel Xeon Phi. https:
//api.semanticscholar.org/CorpusID:1550490

Abhinav Bhatele, Kathryn Mohror, Steven H Langer, and Katherine E Isaacs.
2013. There goes the neighborhood: performance degradation due to nearby jobs.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 1-12.

J. Mark Bull. 1999. Measuring Synchronisation and Scheduling Overheads in
OpenMP. In In Proceedings of First European Workshop on OpenMP. 99-105. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8780

Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel Oshin,
Naveen Cherukuri, and Kalyan Kumaran. 2017. Run-to-run Variability on Xeon
Phi based Cray XC Systems. In SC17: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 1-13.

Daniel Bristot de Oliveira, Daniel Casini, and Tommaso Cucinotta. 2023. Op-
erating System Noise in the Linux Kernel. IEEE Trans. Comput. 72, 1 (2023),
196-207.

Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018.
Evaluating Attainable Memory Bandwidth of Parallel Programming Models via
BabelStream. Int. J. Comput. Sci. Eng. 17, 3 (jan 2018), 247-262.

Balazs Gerofi, Kohei Tarumizu, Lei Zhang, and all. 2021. Linux vs. Lightweight
Multi-Kernels for High Performance Computing: Experiences at Pre-Exascale.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC °21). New York, NY, USA.

HPCWiki. 2022. Binding/Pinning. https://hpc-wiki.info/hpc/Binding/Pinning.
Shintaro Iwasaki, Abdelhalim Amer, Kenjiro Taura, Sangmin Seo, and Pavan
Balaji. 2019. BOLT: Optimizing OpenMP parallel regions with user-level threads.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 29-42.

Tan Karlin. 2012. LULESH Programming Model and Performance Ports Overview.
https://api.semanticscholar.org/CorpusID:58454153

Tan Karlin, James R. McGraw, Jeff Keasler, and Bert Still. 2013. Tuning the LULESH
Mini-app for Current and Future Hardware. https://api.semanticscholar.org/
CorpusID:64395756

[13] James LaGrone, Ayodunni Aribuki, and Barbara Mary Chapman. 2011. A
Set of Microbenchmarks for Measuring OpenMP Task Overheads. https:
//api.semanticscholar.org/CorpusID:8375037

Edgar A Leon, Ian Karlin, and Adam T Moody. 2016. System noise revisited:
Enabling application scalability and reproducibility with SMT. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 596—
607.

LUML. 2023. The low-noise mode on LUMI-G. https://lumi-supercomputer.github.
i0/LUMI- training- materials/User-Updates/Update-202308/lumig-lownoise/.
Aniruddha Marathe, Yijia Zhang, Grayson Blanks, Nirmal Kumbhare, Ghaleb
Abdulla, and Barry Rountree. 2017. An Empirical Survey of Performance and
Energy Efficiency Variation on Intel Processors. In Proceedings of the 5th Interna-
tional Workshop on Energy Efficient Supercomputing (Denver, CO, USA) (E2SC’17).
Association for Computing Machinery, New York, NY, USA, Article 9, 8 pages.
https://doi.org/10.1145/3149412.3149421

[2

—

8

=

(9]
[10]

[11]

[12]

[14]

=
i)

[16]

158

(17

[18

[19

IS
=

[21

[22]

[23]

[25

[26]

M. Cui et al.

Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, and Denis Barthou. 2010. Measuring
and Analysing the Variations of Program Execution Times on Multicore Platforms:
Case Study. In Research Report. inria 00514548v2.

Abdelhafid Mazouz, Sid Ahmed Ali Touati, and Denis Barthou. 2011. Analysing
the Variability of OpenMP Programs Performances on Multicore Architectures.
https://api.semanticscholar.org/CorpusID:55852616

Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, and Denis Barthou. 2011. Performance
evaluation and analysis of thread pinning strategies on multi-core platforms:
Case study of SPEC OMP applications on intel architectures. In 2011 International
Conference on High Performance Computing & Simulation. 273-279. https://doi.
org/10.1109/HPCSim.2011.5999834

Abdelhafid Mazouz, Sid-Ahmed-Ali Touati, and Denis Barthou. 2013. Dynamic
Thread Pinning for Phase-Based OpenMP Programs. In Euro-Par 2013 Parallel
Processing, Felix Wolf, Bernd Mohr, and Dieter an Mey (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 53-64.

Aroon Nataraj, Alan Morris, Allen D. Malony, Matthew Sottile, and Pete Beckman.
2007. The ghost in the machine: observing the effects of kernel operation on par-
allel application performance. In Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing (Reno, Nevada) (SC ’07). Association for Computing Machinery,
New York, NY, USA, Article 29, 12 pages. https://doi.org/10.1145/1362622.1362662
OpenMP. 2018. OpenMP-API-Specification. https://www.openmp.org/wp-
content/uploads/OpenMP- API-Specification-5.0.pdf.

Allan Porterfield, Rob Fowler, Sridutt Bhalachandra, and Wei Wang. 2013.
Openmp and mpi application energy measurement variation. In Proceedings
of the 1st International Workshop on Energy Efficient Supercomputing. 1-8.
Howard Porter Jr. Pritchard, Duncan Roweth, Dave Henseler, and Paul Cas-
sella. 2012. Leveraging the Cray Linux Environment Core Specialization Fea-
ture to Realize MPI Asynchronous Progress on Cray XE Systems. https:
//api.semanticscholar.org/CorpusID:53474239

Jaehyun Song, Minwoo Ahn, Gyusun Lee, Euiseong Seo, and Jinkyu Jeong. 2021. A
Performance-Stable NUMA Management Scheme for Linux-Based HPC Systems.
9 (2021), 52987-53002.

Pengyu Wang, Wanrong Gao, Jianbin Fang, Chun Huang, and Zheng Wang.
2021. Characterizing OpenMP Synchronization Implementations on ARMv8
Multi-Cores. In 2021 IEEE 23rd Int Conf on High Performance Computing & Com-
munications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City;
7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 669-676.

Li Xu, Thomas Lux, Tyler Chang, and all. 2021. Prediction of high-performance
computing input/output variability and its application to optimization for system
configurations. Quality Engineering 33, 2 (2021), 318-334.

https://api.semanticscholar.org/CorpusID:269502644
https://api.semanticscholar.org/CorpusID:1550490
https://api.semanticscholar.org/CorpusID:1550490
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8780
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.8780
https://hpc-wiki.info/hpc/Binding/Pinning
https://api.semanticscholar.org/CorpusID:58454153
https://api.semanticscholar.org/CorpusID:64395756
https://api.semanticscholar.org/CorpusID:64395756
https://api.semanticscholar.org/CorpusID:8375037
https://api.semanticscholar.org/CorpusID:8375037
https://lumi-supercomputer.github.io/LUMI-training-materials/User-Updates/Update-202308/lumig-lownoise/
https://lumi-supercomputer.github.io/LUMI-training-materials/User-Updates/Update-202308/lumig-lownoise/
https://doi.org/10.1145/3149412.3149421
https://api.semanticscholar.org/CorpusID:55852616
https://doi.org/10.1109/HPCSim.2011.5999834
https://doi.org/10.1109/HPCSim.2011.5999834
https://doi.org/10.1145/1362622.1362662
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://api.semanticscholar.org/CorpusID:53474239
https://api.semanticscholar.org/CorpusID:53474239

	Abstract
	1 Introduction
	2 Experimental Environment
	2.1 Hardware platforms
	2.2 OpenMP benchmarks and application

	3 Experimental Design
	3.1 Thread-pinning
	3.2 Using Simultaneous Multithreading (SMT)
	3.3 Frequency logging on a dedicated core

	4 Experimental Results
	4.1 The commonly used mitigation methods
	4.2 The effects of OpenMP scalability and platform characteristics
	4.3 The effect of OpenMP implementation
	4.4 The effect of resource reservation for the OS
	4.5 The effect of frequency scaling
	4.6 The effect of mitigation strategies on absolute execution time

	5 Recommendations
	6 Related work
	7 Conclusion
	Acknowledgments
	References

