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A B S T R A C T

As Arctic maritime activity has increased, Arctic shipping risk management has attracted extensive attention. 
Given the limited availability of rescue equipment in Arctic waters, maritime accidents in ice-covered regions 
tend to result in more severe consequences and a greater environmental impact. This paper proposes a data- 
driven framework for analyzing evolution trends and identifying the influencing factors of maritime accidents 
in Arctic waters, in terms of both their severity (casualties and property loss) and pollution (environmental 
impact). First, a data preparation approach is proposed to integrate maritime accident data and associated hy
drometeorological data from 2004 to 2023 for Arctic waters covered under the Arctic Search and Rescue 
Agreement. Second, the evolutionary trends of maritime accidents in Arctic waters are analyzed in terms of their 
severity and environmental pollution. Third, a bivariate probit model is proposed to explore the factors affecting 
the severity and environmental pollution of maritime accidents in Arctic waters. Finally, a marginal effect 
analysis is conducted to quantify the impacts of these factors on the severity and environmental pollution. The 
results indicate that flag state characteristics significantly influence both the severity and the pollution of ac
cidents. Additionally, factors such as machinery damage, wrecked, allision, hull damage, fire/explosion, strong 
winds, and sea ice contribute positively to the severity of accidents, while these factors negatively influence 
pollution accidents to varying degrees.

1. Introduction

In recent years, maritime activities in Arctic waters have increased 
due to the melting of sea ice [1–3]. Arctic shipping risk management 
faces challenges including harsh environmental conditions, inadequate 
infrastructure, and ecological vulnerability [4,5]. More specifically, the 
serious casualties and pollution caused by accidents in ice-covered wa
ters are exacerbated by the limited availability of search and rescue 
resources in Arctic regions. Therefore, a comprehensive analysis of 
maritime accidents in Arctic waters is essential for developing targeted 
risk control options (RCOs) and enhancing Arctic shipping risk 
management.

Previous research on Arctic shipping risk management has primarily 
focused on estimating the probability of maritime accidents caused by 
the individual or combined effects of sea ice conditions (e.g., ice thick
ness and concentration), weather conditions (e.g., wind, visibility), and 

ship operations (e.g., ship speed, engine power) [6–9]. The various types 
of maritime accidents include ships being beset in ice [10–12], ship-ice 
collisions [13], grounding [14,15], and ship-ship collisions during 
convoy operations [16]. Fu et al. [17] and Xu et al. [18] developed 
probabilistic Bayesian network (BN) models for the prediction of ship 
besetting in ice using real Arctic shipping data from the Northeast Pas
sage (NEP). Khan et al. [13,19] predicted the probability of ship-ice 
collisions by considering weather and sea ice conditions. Fu et al. [15] 
proposed a quantitative risk assessment framework for grounding acci
dents using AcciMap-BN. Liu et al. [20] and Zhu et al. [21] investigated 
risk influencing factors and estimated the navigational risk of convey 
operations using multi-source data. Fu et al. [22] developed an 
object-oriented BN model for the quantitative risk assessment of multi
ple navigational accidents in ice-covered Arctic waters. Among these 
studies, BNs have been the most popular modeling technique [23] due to 
their flexibility in integrating statistical data and experimental 
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judgment, particularly in the early stage of Arctic shipping risk man
agement. With the increasing availability of hydrometeorological and 
maritime accident data, statistical models such as logistic regression are 
being used more frequently to identify key factors influencing maritime 
accidents [20]. It proposes an intelligent fleet kinematic model that 
integrates a Traffic State Network (TFSN) with an improved PID 
controller, for the first time comprehensively incorporating mechanical 
delay, communication delay, ship transmission delay, and ice resistance 
into ship safety state classification and speed control, enabling dynamic 
simulation of safe speeds and distances for multiple ships under ice
breaking coordination and generating reliable formation maneuver 
commands [24]. However, more attention should be paid to the evolu
tion trends of maritime accidents under Arctic climate change and the 
specific effects of various technical and environmental factors on casu
alties and the environmental impact of maritime accidents.

In general, maritime accident analysis research has increasingly 
focused on temporal and spatial characteristics [25–27] and the iden
tification of key factors influencing the severity of maritime accidents 
[28,29]. For example, Li et al. [30] explored the dynamic evolution of 
maritime accidents and associated influencing factors using the Inter
national Maritime Organization (IMO) Global Integrated Shipping In
formation System (GISIS) database. Zhang et al. [27,31] discussed the 
spatial distribution of global maritime accidents and piracy incidents 
using text mining and geospatial techniques. Sui et al. [32] conducted 
time series analysis of maritime accidents considering their spatial dis
tribution. Çakır et al. [33] investigated the severity of maritime acci
dents using association rule mining; Zhou et al. [34] studied the 
spatiotemporal patterns of maritime accidents. Li et al. [35] investigated 
spatial heterogeneity using a geographically weighted regression model. 
Lau et al. [36] analyzed the pollution risk of maritime accidents using 
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port state control inspection data. Feng et al. [28] applied machine 
learning techniques to predict accident severity. Cao et al. [37] inte
grated association rule mining and complex network analysis to explore 
the risk factors influencing maritime accidents. Chen et al. [38] and Wan 
et al. [39] analyzed pollution accidents specific to oil tankers and 
container ships, respectively. These studies have primarily relied on 
maritime-related databases, utilizing regression models [29], network 
models [40,41], and geospatial techniques [31] to comprehensively 
analyze the spatiotemporal characteristics and influencing factors of 
ship and accident-related maritime accidents. Liu et al. [42] proposed a 
deep ensemble learning model based on neural oblivious decision trees 
(NODE), combined with focal loss and MC dropout–based uncertainty 
quantification, achieving 97% accuracy, 95% precision, and 93% recall 
on highly imbalanced navigation-mode data, significantly out
performing baseline models such as random forest and gradient boost
ing, and enabling spatiotemporally scalable navigation-mode prediction 
maps to support intelligent decision-making and optimize icebreaker 
resource allocation. However, existing studies have primarily focused on 
identifying factors that influence severe accidents or pollution accidents, 
and limited studies have quantified the impact of accidents or conducted 
comprehensive analyses of factors affecting casualties, property dam
age, and environmental impact. Moreover, hydrometeorological data 
related to maritime accidents have been insufficiently considered in 
maritime accident analysis.

To address these gaps, it is essential to comprehensively analyze the 
dynamic evolution of such accidents and identify the factors that in
fluence both the severity (casualties and property loss) and pollution 
(environmental impact) of maritime accidents in Arctic waters. There
fore, this paper proposes an analytical framework that encompasses data 
preparation, evolution trends analysis, and influencing factors analysis 
of maritime accidents in Arctic waters by integrating maritime accident 
data with hydrometeorological data. A bivariate probit model is devel
oped to identify key factors affecting the severity and pollution of 
maritime accidents, considering the coupling relationship between these 
two consequences. Moreover, the specific influences of these factors on 
the severity and pollution of accidents are quantified using marginal 
effect analysis. The proposed framework and methods offer a novel 
perspective on Arctic shipping risk management, highlighting the most 
critical influencing factors for effective risk mitigation.

The rest of the study is organized as follows: Section 2 describes the 
data sources and methods used to characterize the accidents, Section 3
describes the preprocessing of accident, sea ice, and wind data, Section 4

analyzes the evolutionary characteristics and trends of accidents in 
Arctic waters from a temporal and spatial perspective, Section 5 explores 
the intrinsic mechanisms behind accident impacts using a bivariate 
probit model, Section 6 further calculates marginal effects to quantify 
the impact of key factors on accidents, and finally, Section 7 summarizes 
the results and presents potential directions for future research.

2. Methodology

2.1. Framework

This paper proposes a data-driven framework for analyzing evolution 
trends and identifying the factors that impact both the severity (casu
alties and property loss) and pollution (environmental impacts) of 
maritime accidents in Arctic waters by integrating maritime accident 
data with hydrometeorological data. This framework includes data 
preparation, evolution trends analysis, and influencing factors analysis, 
as shown in Fig. 1.

2.2. Stage 1: Data preparation

In order to obtain a high-quality dataset for maritime accident 
analysis, several data sources were used to collect, process, and sup
plement maritime-accident-related datasets: Lloyd’s List Intelligence 
(https://www.lloydslistintelligence.com/), IMO GISIS (https://gisis. 
imo.org/public/default.aspx), the University of Bremen Sea Ice dataset 
(https://data.seaice.uni-bremen.de/databrowser/), Clarksons (https: 
//www.clarksons.com), and the European Center for Medium-range 
Weather Forecasts (ECMWF) ERA5 atmospheric reanalysis dataset (htt 
ps://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5). The 
final dataset comprised three categories of attributes: ship information 
(e.g., type, flag, age, GT), maritime accident details (timestamp, loca
tion, type, severity, pollution), and environmental conditions (e.g., SIC, 
SIT, wind), as shown in Table 1.

The original maritime accident dataset was collected from Lloyd’s 
List Intelligence. The data preparation process is shown in Fig. 2 and 
comprises the following six steps:

Step 1: Data Cleaning. Using the collected global maritime accident 
dataset from Lloyd’s List Intelligence, each accident record was indi
vidually checked for accuracy. If an accident record contained missing, 
incorrect, or unreasonable information (e.g., a missing timestamp or 
location, or inconsistent severity classification, such as an accident 
labeled as a total loss yet not serious), that specific accident record was 
removed from the dataset. It was ensured that all maritime accident 
entries had location information (latitude and longitude). Moreover, the 
IMO GISIS database was used to verify the accuracy of the accident 
information.

Step 2: Data Filtering. The maritime accident dataset was imported 
into the ArcGIS Pro software [43–49] to extract accidents in Arctic 
waters corresponding to regions defined in the Arctic Search and Rescue 
Agreement [50], which is represented as an irregular polygon.

Step 3: Data supplementation. Some ship information (e.g., age, GT, 
and ship type) in the maritime accident dataset was omitted in the 
Lloyd’s List Intelligence. These data were added using the Ship ID (IMO 
and MMSI numbers) to retrieve data from the Equasis and Clarksons 
datasets.

Step 4: Data Extraction. Based on the timestamp (year-month-day- 
hour) and location (longitude and latitude) of the maritime accidents, 
the corresponding environmental conditions (e.g., SIC, SIT, and wind) 
were extracted from the University of Bremen Sea Ice and ERA5 
datasets.

Step 5: Data discretization. Some continuous variables were dis
cretized to capture evolutionary trends and support subsequent discrete 
choice modeling.

Step 6: Data Storage. The processed data were stored, and a new 
warehouse was created to analyze subsequent evolution trends and 

Table 1 
Data sources.

Attribute Dataset (columns) Source (link)

Ship Ship ID (IMO and MMSI 
numbers)

​

Ship type • Lloyd’s List Intelligence 
(https://www.lloydslistintelligence. 
com)

Flag • Clarksons (https://www.clarksons. 
com)

Age • Equasis (https://www.equasis.org)
Gross tonnage (GT) ​

Accident Timestamp (year- 
month-day-hour)

• Lloyd’s List Intelligence 
(https://www.lloydslistintelligence. 
com)

Location (Longitude 
and latitude)

• IMO GISIS (https://gisis.imo.org/ 
public/default.aspx)

Accident type
Severity (Casualties and 
property loss)
Pollution

Environment Sea ice concentration 
(SIC)

• University of Bremen (https://data. 
seaice.uni-bremen.de/databrowser)

Sea ice thickness (SIT) • ERA5 (https://www.ecmwf.int/en/ 
forecasts/dataset/ecmwf-rean 
alysis-v5)

Wind

S. Fu et al.                                                                                                                                                                                                                                        Reliability Engineering and System Safety 266 (2026) 111644 

3 

https://www.lloydslistintelligence.com/
https://gisis.imo.org/public/default.aspx
https://gisis.imo.org/public/default.aspx
https://data.seaice.uni-bremen.de/databrowser/
https://www.clarksons.com
https://www.clarksons.com
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.lloydslistintelligence.com
https://www.lloydslistintelligence.com
https://www.clarksons.com
https://www.clarksons.com
https://www.equasis.org
https://www.lloydslistintelligence.com
https://www.lloydslistintelligence.com
https://gisis.imo.org/public/default.aspx
https://gisis.imo.org/public/default.aspx
https://data.seaice.uni-bremen.de/databrowser
https://data.seaice.uni-bremen.de/databrowser
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5


influencing factors. The final data warehouse for the maritime accident 
dataset in Arctic waters includes the following columns: multimodal 
state (ship type, flag, age, accident year, accident waters, accident type, 
wind) and binary (severity, pollution, SIC, SIT).

2.3. Stage 2: Evolution trends analysis

The evolutionary trends of the accident severity and pollution were 
analyzed by dividing the dataset into four intervals, every five years on 
average, to explore the evolutionary features of maritime accidents, 
their associated influencing factors, and their geospatial aspects in 
different periods. 

• Trends of annual evolution. Using the processed Arctic accident data, 
annual statistical analyses were separately performed for the number 
of severity and pollution accidents, and trend lines were fitted using 
second-order polynomials.

• Temporal evolution of ship-related factors. Statistical analysis of the 
types of ships, such as fishing or cargo ships, that cause severe ac
cidents or accidents with significant pollution was conducted in four 

annual intervals to explore the trends in the frequency of accidents 
on each type of ship.

• Temporal evolution of accident-related factors. Statistical analysis of 
the types of initial accidents within the four annual intervals, such as 
mechanical failures or fires/explosions, was conducted to explore the 
trends in the frequency of various types of accidents.

• Spatiotemporal evolution of accidents. Using Geographic Informa
tion System (GIS) software such as ArcGIS Pro, severity and pollution 
accidents occurring in the four annual intervals were visualized with 
their latitude and longitude. The spatial evolutionary trend of acci
dents was also analyzed in terms of the density of accident sites in the 
watershed.

2.4. Stage 3: Influencing factors analysis

The discrete choice model [51] is a widely used econometric 
framework for data analysis, particularly in traffic accident research, 
where it facilitates the modeling of individual decision-making pro
cesses. Commonly applied models include the multinomial logit, probit, 
and mixed logit, each of which offers distinct advantages in capturing 
unobserved heterogeneity, correlation structures, and choice 

Fig. 2. Data preparation process.
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probabilities in accident-related studies. The bivariate probit model can 
couple the calculation of the severity and pollution of accidents, which 
has significant practical significance.

A bivariate probit model [52] is a joint model of the outcomes of two 
binary variables. Bivariate probit models are used when there are two 
outcome variables in a model. It is assumed that there is a correlation 
between the stochastic perturbation terms of the system of equations 
and that the equations in the model must be estimated simultaneously. If 
the outcomes of the two binary variables are uncorrelated, we can apply 
two separate probit models. If the outcomes of the two binary variables 
are correlated and the use of a probit model leads to biased estimates 
and affects the conclusions, a bivariate probit model can be used.

The object of this study is the correlation between severity accidents 
and pollution accidents. Therefore, a bivariate probit model can be 
applied. The utility function of the model is defined as: 
{

Y∗
1 = X1β1 + ε1

Y∗
2 = X2β2 + ε2

, (1) 

where Y∗
1 and Y∗

2 denote the dependent variables of the severity and 
pollution, respectively. X1 and X2 are the explanatory variables corre
sponding to Y∗

1 and Y∗
2, which may or may not be the same. β1 and β2 are 

the parameter vectors, and the perturbation terms ε1 and ε2 are subject 

to a joint standard normal distribution, with an expectation of 0, a 
variance of 1, and a correlation coefficient of ρ used to measure the 
correlation between the two equations. 

(ε1, ε2) ∼ N(0, 0, 1, 1, ρ) (2) 

If the latent variables Y∗
1 and Y∗

2 are greater than 0, the dependent 
variables Y1 and Y2 are observed. The observable variables Y1 and Y2 are 
defined as follows: 

Y1 =

{
1,Y∗

1 > 0 (severity accident)
0, others (not severity accident)

(3) 

Y2 =

{
1, Y∗

2 > 0 (pollution accident)
0, others (notpollution accident)

(4) 

When the explanatory variables of the two equations of Eq. (1) are 
identical, i.e., X1 = X2, the result is a bivariate probit model with 
identical variables. Conversely, when the explanatory variables of the 
two equations are not identical, i.e., X1 ∕= X2, the model is called a 
seemingly uncorrelated bivariate probit model because the only link 
between the two equations in the model is the correlation of the 
perturbation terms. If ρ = 0, the model is equivalent to two separate 
probit models. When ρ ∕= 0, the probabilities of (Y1, Y2) can be written 
down and then estimated by maximum likelihood. Since the error terms 
ε1 and ε2 obey a joint normal distribution, the joint probability is: 

P(Y1 = y1, Y2 = y2|X1, X2) = Φ(y1X1β1, y2X2β2, ρ) (5) 

where y1 and y2 take values of 0 or 1.
For the joint probability, the marginal effect of each influencing 

factor is calculated as follows: 

∂P(Y1 = 1, Y2 = 1|X)
∂Xk

= Φ2(X1β1, X2β2; ρ)
(
βk,1 + βk,2

)
(6) 

In this equation, Φ2 is the probability density function of the 

Table 2 
Sources and resolution of the dataset.

Parameter Source Section Spatial 
Resolution

Temporal 
Resolution

Reference

SIC University 
of Bremen

[0, 100] 
%

12.5 × 12.5 
km

Daily [53]

SIT University 
of Bremen

[0, 51] 
cm

6.25 × 6.25 
km

Daily [54]

Wind ERA5 [0, +∞) 
m/s

0.5 × 0.5 
degree

Hourly [55]

Fig. 3. An example of SIC and SIT maps from the Bremen dataset (2023-01-01).
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bivariate normal distribution. βk,1 and βk,2 are the regression coefficients 
of Xk in the two equations, respectively.

3. Data preparation

3.1. Data collection

We collected original maritime accident data from Lloyd’s List In
telligence for the period 2004-2023, covering a total of 56,288 acci
dents. The dataset included ship information (ship IMO, MMSI number, 
ship name, age, gross tonnage (GT), ship type, built by, built at, class, P 
& I club, commercial operator, and other information about the ship 
itself and its ownership) and accident information (including timestamp, 
accident latitude/longitude, accident type, consequence, waters, and 
other accident-related information).

The detailed sources and resolution information of the environ
mental data are listed in Table 2. The environmental data were down
loaded as NetCDF files from the University of Bremen Sea Ice and ERA5 

datasets, with the Northern Earth domain selected according to accident 
dates. SIC and SIT data were extracted from the sea ice datasets of the 
University of Bremen, which are based on satellite observations from 
MODIS and AMSR2 sensors and provide high-quality data on sea ice 
status and extent. Examples of SIC and SIT maps from the Bremen 
dataset are shown in Fig. 3. Wind data, which record the wind speed at a 
height of 10 meters above the Earth’s surface, were extracted from the 
ERA5 dataset. The SIC data range was 0-100%, and the SIT data range 
was 1-51 cm (sea ice with a thickness greater than 51 cm was recorded as 
51 cm). The observational unit for wind data was meters per second.

3.2. Data processing

Given the large scale of original maritime accident data from 2004 to 
2023 (totaling 56,288 items), there was a risk of problems such as 
missing data, recording errors, or systematic errors in the data collection 
and recording process. To ensure the accuracy and reliability of the data 
analysis, this study necessitated the cleaning and processing of the 

Fig. 4. Data preparation process.
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original global maritime accident data (as described in Section 2.2). 
Initially, a systematic data preprocessing of the original accident data 
was conducted, eliminating records of negligible reference value (such 

as those with missing locations or excessively old ships), leaving 53,122 
entries. Subsequently, Arctic accidents were filtered from the global 
maritime accidents, amounting to 1,273 entries. Finally, the original 
Arctic accident data underwent further supplementation and cleansing, 
culminating in a dataset of 1,028 ship accidents in the Arctic waters from 
2004 to 2023. This dataset was devoid of missing strings but did not 
include environmental data. The data preparation process is summa
rized in Fig. 4.

Based on the date and latitude/longitude of the 1,028 Arctic ship 
accidents, the SIC, SIT, and wind data were extracted from the NetCDF 
files and fused with the accident dataset according to the time and 
latitude/longitude. The complete 1,028-entry dataset was finally ob
tained without any missing strings and with environmental data.

For further analysis, the complete dataset was further categorized by 
applying the methods of equipartition, literature references, regulations 
and standards. This classification is shown in Table 3.

Due to the large number of ship types, Table 4 provides a more 
detailed description of the classification of ship types and summarizes 
the subcategories contained within the ship types. Accidents are classi
fied into five types using the initial accident type as a reference, and 
descriptions and explanations of specific accidents are listed in Table 5.

3.3. Data storage

This study considers maritime accident and environmental data for 
the period 2004-2023, and a multidimensional dataset containing 1,028 
complete records was constructed through systematic data cleaning, 
matching, and fusion processing. The dataset was standardized and 
classified to provide a reliable data basis for subsequent research on 
accident evolution trend analysis and impact mechanism analysis. The 
structural characteristics and frequency distribution of the dataset are 
shown in Table 6.

The dataset was imported into ArcGIS Pro for visualization of the 
distribution of accidents in the Arctic region, with the detailed results 

Table 3 
Data classification.

Factors Classifications Reference

Ship Flag 1: Norway, Iceland, Denmark, Finland. 
2: Russia. 3: Canada and U.S.A. 4: Others 
(non-Arctic countries).

[56,57]

GT 1: (0, 3000) tons. 2: [3000, 10000) tons. 
3: [10000, 20000) tons. 4: [20000, +∞) 
tons.

Age 1: (0, 10] years. 2: (10, 20] years. 3: (20, 
30] years. 4: (30, +∞) years.

Type 1: Fishing. 2: Passenger. 3: Cargo ship. 4: 
Tanker ship. 5: Others.

Accident Year 1: 2004~2008. 2: 2009~2013. 3: 
2014~2018. 4: 2019~2023.

Waters 1: Iceland and northern Norway. 2: 
Russia, Arctic, and Bering Sea. 3: 
Canadian Arctic and Alaska.

Latitude 1: Low (Below 66◦34’ N in Arctic 
waters). 2: Medium (66◦34’ ~ 70◦ N). 3: 
High (Above 70◦ N).

Type 1: Machinery damage. 2: Wrecked. 3: 
Allision. 4: Hull damage. 5: Fire/ 
Explosion. 6: Miscellaneous.

[56,58,
59]

Environment SIC 1: (0, 0.1) %. 2: [0.1, 1) %.
SIT 1: below 10 cm. 2: above 10 cm.
Wind 1: (0, 8.0) m/s. 2: [8.0, 13.9) m/s. 3: 

[13.9, +∞) m/s.
Consequence Severity 1: Severity accident (casualties and 

property loss). 2: Other accident.
[56]

Pollution 1: Pollution accident (environmental 
impacts). 2: Other accident.

Table 4 
Ship type descriptions.

Ship 
factors

Description Examples

Fishing Used for fishing activity Fishing, reefer, fish factory, fish carrier, 
etc.

Passenger Ships that carry paying 
passengers

Passenger, passenger ro/ro, ferry, 
research, etc.

Cargo ship Carrying dry bulk, 
general cargo, 
containers

General cargo, bulk carrier, fully cellular 
containership, etc.

Tanker 
ship

Carrying bulk liquids or 
chemicals

Tank barge, chemical tanker, combined 
chemical and oil tanker, liquefied natural 
gas carrier, etc.

Others Engineering or 
icebreaking

Drill ship, tug, icebreaker, drill platform, 
etc.

Table 5 
Accident type descriptions.

Accident factors Description

Machinery 
damage

Failure of or damage to the ship’s mechanical equipment or 
power system, resulting in the ship being unable to function or 
navigate normally.

Wrecked Loss of the ship’s ability to navigate normally as a result of the 
ship’s deviation from its course, causing the ship’s bottom to 
come into contact with the seabed or land.

Allision Includes collision (a ship striking another ship) and contact 
(accidental contact between a ship and a non-moving object that 
is not a ship, such as a pier or bridge).

Fire/Explosion Fire or explosion caused by an ignition source on board a ship.
Hull damage Scratches, indentations on the surface of the hull (shell), or 

rupture of the hull structure.
Miscellaneous Other unforeseen special maritime accidents that are not readily 

classifiable.

Table 6 
The final data set description.

Factors Number Prop. % Factors Number Prop. %

All data 1028 100% Severity consequence
Ship Flag Severity 536 52.14%
Norway, etc. 319 31.03% Others 492 47.86%
Russia 260 25.29% Pollution consequence
Canada and U.S. 

A.
183 17.80% Pollution 45 4.38%

Others 266 25.88% Others 983 95.62%
Ship GT Latitude
(0, 3000) tons 560 54.47% Low 384 37.35%
[3000, 10000) 

tons
259 25.19% Medium 441 42.90%

[1000,20000) 
tons

101 9.82% High 203 19.75%

[20000, +∞) 
tons

108 10.51% Accident type

Ship Age Machinery 
damage

431 41.93%

(0,10] years 228 22.18% Wrecked 185 18.00%
(10,20] years 201 19.55% Allision 125 12.16%
(20,30] years 270 26.26% Fire/Explosion 97 9.44%
(30, +∞) years 329 32.00% Hull damage 52 5.06%
Ship type Miscellaneous 138 13.42%
Fishing 339 32.98% SIC
Passenger 290 28.21% (0, 0.1) % 950 92.41%
Cargo ship 226 21.98% [0.1, 1) % 78 7.59%
Tanker ship 91 8.85% SIT
Others 82 7.98% Below 10 cm 993 96.60%
Year Above 10 cm 35 3.40%
2004-2008 157 15.27% Wind
2009-2013 284 27.63% (0, 8.0) m/s 479 46.59%
2014-2018 339 32.98% [8.0, 13.9) m/s 383 37.26%
2019-2023 248 24.12% [13.9, +∞) m/s 166 16.15%
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shown in Fig. 5. Geospatially, severity accidents are primarily concen
trated in the Norwegian Sea, Barents Sea, and along the coasts of Iceland 
and the United States. In contrast, pollution accidents are more 
dispersed and are predominantly located near coastal areas.

4. Evolution trends analysis

To further investigate the evolutionary trends of severity and 
pollution accidents, this section first provides a statistical analysis of 

accident frequencies over the past two decades and calculates the cor
responding trends. The dataset is then evenly divided into four time 
periods (2004-2008, 2009-2013, 2014-2018, 2019-2023), and the evo
lution trends are analyzed from three perspectives: ship characteristics, 
accident types, and spatial distribution.

4.1. Arctic sea ice

Analyzing sea ice conditions in Arctic waters, using SIC as an 

Fig. 5. The spatial distribution of ship accidents in Arctic waters from 2004 to 2023.

Fig. 6. SIC trends in Arctic waters (2004-2023).
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example, involves importing SIC data for the summer (July 1) and 
winter (January 1) of 2004, 2014, and 2023 into the ArcGIS system, with 
the color map set to unique values. Fig. 6 illustrates the variation in the 
SIC over different periods.

Compared to winter, the extent of sea ice in the Arctic waters during 
summer significantly decreases. Over time, sea ice in the lower latitudes 
of the Arctic has gradually disappeared, while in the higher latitudes, 

both the extent and concentration of sea ice have also diminished. 
Although the extent of sea ice in the Arctic waters during winter has not 
changed significantly over time, the sea ice concentration in the lower 
latitudes has declined.

Fig. 7. Trends in the severity of consequences of accidents in Arctic waters.

Fig. 8. Trends in the severity of the consequences of accidents by ship type in Arctic waters.
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4.2. Severity accidents in Arctic waters

As shown in Fig. 7, the total number of Arctic accidents shows a 
fluctuating upward trend between 2004 and 2023, peaking at 75 acci
dents in 2017. The number of other accidents shows an increasing and 
then decreasing trend, reaching a peak of 50 accidents in 2014. The 
number of severity accidents, on the other hand, show a steady upward 
trend, with the total number of severity accidents exceeding the total 
number of other accidents in 2016, peaking at 46 accidents in 2023. 
These results suggest that the probability of severity consequences from 
marine accidents in Arctic waters is increasing.

4.2.1. Involved ships
According to the results shown in Fig. 8, severity accidents across 

different ship types have exhibited varying degrees of upward trends. 
Fishing ships, represented by the largest sample size, consistently show a 
higher number of severity accidents than other ships, indicating that 
fishing ships in the Arctic have the highest probability of experiencing 
accidents with severe consequences. Although the number of other ac
cidents involving passenger ships has always been higher than severity 
accidents, the proportion of severity accidents has significantly 
increased since the 2014-2018 period. For cargo ships, the number of 
severity accidents exceeded that of other accidents in the 2019-2023 
period. Furthermore, tanker ships and other ship types, which have 

fewer samples, have also shown a trend in the past five years where the 
number of severity accidents exceeds that of other accidents.

Overall, the total number of accidents involving ships was highest 
during the 2014-2018 period, while the proportion of severity accidents 
was highest during the 2019-2023 period. With the exception of pas
senger ships, the number of severity accidents for all other ship types has 
exceeded the number of other accidents. This indicates that the overall 
consequences of maritime accidents in the Arctic have become more 
severe.

4.2.2. Accident type
Fig. 9 shows the number of accidents for each time period for the six 

different accident types, with machinery damage being most common, 
followed by wrecked. The consequences of machinery damage, wrecked, 
allision, and fire/explosion accidents exhibit varying degrees of 
increased severity. Over the ten-year period from 2009 to 2018, the 
number of accidents significantly grew, with severity accidents in the 
2019-2023 period far surpassing other accidents. Hull damage acci
dents, though occurring the least frequently, consistently have a severity 
accident proportion greater than 62%. Miscellaneous accidents show an 
increasing trend in frequency, with relatively few severity accidents, 
indicating a higher level of safety.

Fig. 9. Trends in the severity of consequences by accident type in Arctic waters.
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Fig. 10. Trends in the severity of accident consequences by region in Arctic waters.

Fig. 11. Pollution trends of accidents in Arctic waters.
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4.2.3. Accident regions
The Norwegian Sea and Barents Sea have consistently been high- 

accident areas for accidents across all four periods. Over time, the fre
quency of accidents gradually increased in the waters around Iceland 
and along the northern coast of Canada.

As shown in Fig. 10, during the 2004-2008 period (a), maritime 
accidents were predominantly concentrated in the Norwegian Sea and 
Barents Sea, particularly along the Norwegian coast. In the subsequent 
2009-2013 period (b), the spatial distribution of accidents expanded, 
extending into the Bering Sea and along the U.S. coast. By 2014-2018 
(c), the frequency of severity accidents had markedly increased, with 
a pronounced concentration in the Norwegian Sea and Barents Sea. 
During the most recent 2019-2023 period (d), the spatial distribution of 
accidents became more dispersed, accompanied by a decline in acci
dents within the Bering Strait.

4.3. Pollution accidents in Arctic waters

According to Fig. 11, the probability of pollution accidents is low, 
with a general trend of growth followed by decline. On average, there 
are 2.25 accidents per year, with a maximum of five cases in 2016, 
followed by a steadily decreasing trend.

4.3.1. Involved ships
As shown in Fig. 12, among the five ship types, passenger and other 

types of ships are responsible for the fewest pollution accidents. Fishing 
ships experienced a relatively high number of pollution accidents be
tween 2009 and 2013, with a total of five accidents. The frequency of 
pollution accidents involving cargo ships remained relatively stable. 
Due to the nature of their cargo, tanker ships caused the most pollution 
accidents, reaching a peak of 11 accidents during the 2014-2018 period.

4.3.2. Accident type
Fig. 13 presents the occurrence of pollution consequences for 

different accident types. Since hull damage accidents have no recorded 
pollution consequences, they are not included in the analysis. The ac
cident type that caused the most pollution accidents was miscellaneous 
(24 cases), followed by wrecked (10 cases), with the majority of these 
accidents occurring during the 2014-2018 and 2004-2008 periods, 
respectively. Allision and fire/explosion accidents resulted in fewer 
pollution cases, with only two accidents recorded over the twenty-year 
period.

4.3.3. Accident regions
According to Fig. 14, Arctic ship pollution accidents occurred mainly 

near the Barents Sea, Iceland, and the North American coast during 
2004-2008 and then spread to higher latitudes during 2009-2013, with a 
higher concentration in the Barents Sea. In the period 2014-2018, 
pollution accidents occurred mainly in the vicinity of the Northwest 
Passage. The number of pollution accidents then decreased dramati
cally, with the lowest number of accidents occurring during 2019-2023.

5. Influencing factors analysis

This section uses the integrated analysis-data dataset, which includes 
ship, accident, and environmental information. A bivariate probit model 
is constructed with accident severity and pollution as dependent vari
ables to analyze the mechanisms through which various factors influ
ence the outcomes of accidents.

5.1. Model description

A bivariate probit model was constructed with severity and pollution 
as dependent variables, and factors such as ship, accident, time, and 
environment as independent variables. The types of variables and their 
chi-square test results are listed in Table 7. A (*) indicates that a variable 
was set as a control variable.

Y1 and Y2 denote the dependent variables of severity and pollution, 
respectively, and in Table 7, C_Y1 and C_Y2 denote the results of the chi- 
square test of the independent variables Y1 and Y2. For ordered vari
ables (year, GT, age, wind, etc.), the marginal variables are set as control 
variables, and for unordered variables (type of ship, type of accident, 
etc.), this study refers to the results of the chi-square test to set control 
variables.

5.2. Model estimation

The analysis-data dataset was used as a sample to construct a 
bivariate probit model for Arctic ship accidents by setting two depen
dent variables and 32 independent variables, as listed in Table 7. The 
model estimation results are shown in Table 8.

According to the model estimation results shown in Table 8, in terms 

Fig. 12. Trends in the pollution consequences of accidents by ship type in 
Arctic waters.

Fig. 13. Trends in the pollution consequences of accidents by type in 
Arctic waters.
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of the overall fit of the model, the results of the Wald test showed that 
the hypothesis of rho = 0 was rejected (chi2(1) = 1648.66 with a p-value 
of 0.0000), indicating that there is a significant correlation between 
severity accidents (Y1) and pollution accidents (Y2) and that the 
bivariate probit model is appropriate. S_flag1 (Norway, Iceland, 
Denmark, or Finland) had a highly significant negative effect on pollu
tion accidents (Coef. = -5.3224, p < 0.001), suggesting that it can reduce 
pollution accidents to some extent. In contrast, S_flag2 (Russia) and 
S_flag3 (Canada and U.S.A.) positively affect severity accidents and 
pollution accidents (Coef. = 0.3530 and 0.4637, p-value 0.0130 and 
0.0630, respectively), indicating that these two types of flags increase to 
some extent the number of severity accidents and pollution accidents. 
This is attributed to Russia’s frequent use of the Arctic routes, coupled 
with the prevalence of extreme weather conditions, rapidly changing ice 
conditions, and limited port and search-and-rescue resources in polar 
waters. In contrast, maritime activities in the Canada and USA regions 
are relatively scattered, with insufficient emergency response capabil
ities, increasing the likelihood of accidents escalating into severe con
sequences. Only S_type1 (fishing ship) and S_type4 (tanker ship) of the 
ship type variables significantly affect the consequences of accidents, 
with S_type1 positively affecting severity accidents (Coef. = 0.4624), 
and S_type4 having a more significant positive effect on pollution acci
dents (Coef. = 1.1653), indicating that fishing ships increase the 
occurrence of severity accidents and tanker ships increase the occur
rence of accidents. The outcome is associated with vessel design and 
cargo characteristics. Fishing ships, typically small in tonnage and pri
marily designed for fishing operations, often lack advanced navigation 
and collision avoidance systems, making them less resistant to rough 
seas and more prone to severe accidents. In contrast, tanker ships, due to 
the hazardous nature of their cargo, may cause pollution even if the 
incident itself is not serious. GT did not have a significant effect on either 
accident outcome. Compared to ships older than 30 years, ships aged 10- 
20 years old increase the occurrence of severity accidents to some 
extent, while ships aged 20-30 years old decrease the occurrence of 
pollution accidents (Coef. = -0.5366).

When compared with the historical years 2004-2008, accidents 
during 2018-2023 significantly increase the probability of severity 

accidents (Coef. = 0.8599) and decrease the occurrence of pollution 
accidents (Coef. = -0.7960), which is in line with the conclusions 
reached in Section 4. In terms of accident types, all accident types had a 
significant impact on severity and pollution accidents. Compared to the 
miscellaneous category, all five accident types have a similar type of 
impact on consequences, with all having a positive impact on severity 
accidents (Coef. > 0) and a negative impact on pollution accidents (Coef. 
< 0). Machinery damage often result in loss of ship control, which in 
complex sea conditions can lead to secondary accidents (e.g., wrecked, 
allision et al). Allision, and hull damage are directly linked to casualties, 
though they do not necessarily involve pollutant cargo or fuel spills. 
Fire/explosion, being high-risk accidents, are directly associated with 
severe injuries or total vessel loss, thus exhibiting the highest positive 
impact coefficient (Coef. = 1.6326) on serious accidents.

For the navigational environmental factors, E_wind3 (above 13.9 m/ 
s) significantly increases the occurrence of severity accidents compared 
to E_wind1 but does not have a significant effect on pollution accidents. 
Strong winds are typically accompanied by high-wave conditions, 
significantly impairing vessel maneuverability and navigation radar 
performance. This effect is particularly pronounced in Arctic waters, 
where the combination of low temperatures and strong winds can 
readily lead to severe maritime incidents. The SIC has a more significant 
negative effect on pollution accidents (Coef. = -0.7087), while the SIT 
has a significant positive effect on severity accidents (Coef. = 0.5127), 
indicating that the SIC decreases the occurrence of pollution accidents to 
some extent, while SIT increases the occurrence of severity accidents to 
some extent. High-SIC zones are generally identifiable, prompting ves
sels to adopt deliberate detour strategies to avoid areas with elevated ice 
concentrations as a safety precaution. Moreover, increased SIT imposes 
greater structural loads on vessel hulls, thereby substantially elevating 
the risk of serious marine accidents.

The estimation results indicate that the overall model is statistically 
significant, with a p-value of 0.0000, suggesting that the model as a 
whole is valid. The coefficient of the log-transformed correlation 
parameter /athrho is 0.2231 (p = 0.0360), corresponding to a ρ value of 
0.2194. This implies a positive correlation between the error terms of 
the equations for accident severity and pollution.

Fig. 14. The distribution of pollution accidents by region in Arctic waters.
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Furthermore, the Wald test rejects the null hypothesis of no corre
lation at the 5% significance level, providing empirical evidence of a 
significant association between accident severity and pollution occur
rence. These results support the use of the bivariate probit model, which 
more effectively captures the underlying interdependence between the 
two outcome variables compared to estimating two separate univariate 
probit models.

6. Discussion

The relationship between the control variable and the two observed 
dependent variables is nonlinear, so the coefficients themselves do not 
directly reflect the actual effect of the independent variable on the 
probability of the dependent variable. In order to investigate the amount 
of change in the probability of the dependent variable, taking a value of 
1 for each unit increase in the independent variable, this section cal
culates the marginal effects shown in Table 9.

The results show a significant effect of the accident type. For severity 
accidents (Y1), the marginal effects of A_type1, A_type2, A_type3, 
A_type4, and A_type5 are all significantly positive (marginal values of 
0.3714, 0.4245, 0.2696. 0.4453, and 0.5289, respectively) and have a 
significance level of 1%, indicating that the marginal effects of these 
variables on Y1 are significantly positive. For example, the marginal 
effect of A_type1 is 0.3714, implying that, all else being equal, the 
probability of Y1 will increase by 37.14% for each unit increase in 

A_type1. For pollution accidents (Y2), the marginal effects for all five 
accident types are significantly negative (the marginal results are 
-0.0673, -0.0337, -0.0821, -0.0846, and -0.0984, respectively) and have 
a significance level of 1%, suggesting that a one-unit increase in all five 
accident types will decrease the probability of Y2 by 3% to 10%.

For the ship type, S_type1 has a positive marginal effect on Y1 
(marginal value = 0.1498, P = 0.0150), indicating that each unit in
crease in fishing ships will result in a 14.98% increase in the probability 
of a severity accidents. S_type4 has a significant effect on pollution ac
cidents, with a marginal effect of 0.0727, indicating that each unit in
crease in tanker ships will result in a 7.27% increase in the probability of 
pollution accidents.

As for the environmental factors, strong wind (a wind speed over 
13.9m/s) has a significant positive effect on severity accidents, and each 
unit increase in the strong wind will increase the probability of severity 
accidents by 7.25%. The SIC has a negative effect on pollution accidents, 
and each unit increase in the SIC decreases the probability of pollution 
accidents by 4.42%. Meanwhile, the SIT has a positive effect on severity 
accidents, with each unit increase resulting in a 16.61% increase in the 
probability of severity accidents.

7. Conclusion

This paper has proposed a data-driven framework to identify the 
evolution trends and influencing factors of maritime accidents in Arctic 

Table 7 
Variable descriptions.

Variables Descriptions Chi-square test

Mean Std. Dev.2

Independent variables

Ship Flag S_flag1 1: the flag is Norway, Iceland, Denmark, or Finland, 0: otherwise. 0.31 0.46
S_flag2 1: the flag is Russia, 0: otherwise. 0.25 0.43
S_flag3 1: the flag is Canada or U.S.A., 0: otherwise. 0.18 0.38
S_flag* 1: the flag is Others (non-Arctic countries), 0: otherwise. - -

GT S_GT1 1: the GT of the ship is (0,3000] tons, 0: otherwise. 0.28 0.45
S_GT2 1: the GT of the ship is (3000,10000] tons, 0: otherwise. 0.26 0.44
S_GT3 1: the GT of the ship is (10000,20000] tons, 0: otherwise. 0.25 0.43
S_GT4* 1: the GT of the ship is (20000, +∞) tons, 0: otherwise. - -

Age S_age1 1: the age of the ship is (0,10] years, 0: otherwise. 0.22 0.42
S_age2 1: the age of the ship is (10,20] years, 0: otherwise. 0.20 0.40
S_age3 1: the age of the ship is (20,30] years, 0: otherwise. 0.26 0.44
S_age* 1: the age of the ship is (30, +∞) years, 0: otherwise. - -

Type S_type1 1: the type of the ship is fishing ship, 0: otherwise. 0.33 0.47
S_type2 1: the type of the ship is passenger ship, 0: otherwise. 0.28 0.45
S_type3 1: the type of the ship is cargo ship, 0: otherwise. 0.22 0.41
S_type4 1: the type of the ship is tanker ship, 0: otherwise. 0.09 0.28
S_type* 1: the type of the ship is others, 0: otherwise. - -

Accident Type A_type1 1: accident type is machinery damage, 0: otherwise. 0.42 0.49
A_type2 1: accident type is wrecked, 0: otherwise. 0.18 0.38
A_type3 1: accident type is allision (collision, contact), 0: otherwise. 0.12 0.33
A_type4 1: accident type is hull damage, 0: otherwise. 0.09 0.29
A_type5 1: accident type is fire/explosion, 0: otherwise. 0.05 0.22
A_type* 1: accident type is miscellaneous, 0: otherwise. - -

Year A_year2 1: 2009-2013, 0: otherwise. 0.28 0.45
A_year3 1: 2014-2018, 0: otherwise. 0.33 0.47
A_year4 1: 2019-2023, 0: otherwise. 0.24 0.43
A_year* 1: 2004-2008, 0: otherwise. - -

Environment SIC E_SIC 1: [0.1, 1) % 0.08 0.26
0: (0, 0.1) %

SIT E_SIT 1: above 10 cm 0.03 0.18
0: below 10 cm

Wind state E_Wind1* 1: [0,8) m/s, 0: otherwise. - -
E_Wind2 1: [8,13.9) m/s, 0: otherwise. 0.37 0.48
E_Wind3 1: [13.9, +∞) m/s, 0: otherwise. 0.16 0.37

Dependent variables

Consequence Severity Y1 1: severity (including total loss) 0.48 0.50
0: others

Pollution Y2 1: pollution 0.04 0.20
0: others
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waters, considering both accident severity and pollution. By integrating 
multi-source maritime accident and sea ice environmental data, a 
bivariate probit model has been developed to explore the factors 
affecting the coupled relationship between accident severity and 

pollution. Additionally, a marginal effect analysis has been conducted to 
quantify the impact of these factors on accident severity and pollution. 
The results indicate a significant upward trend in the incidence of 
severity maritime accidents in Arctic waters, with the accident 

Table 8 
Estimated parameters of the bivariate probit model for the maritime accidents in Arctic waters.

Variables Explanation Y1 Y2

Coef. Robust Std. Err. z P>|z| Coef. Robust Std. Err. z P>|z|

S_flag1 Norway, Iceland, Denmark, or Finland -0.0516 0.1242 -0.42 0.6780 -5.3224 0.29 -18.0700 0.0000***
S_flag2 Russia 0.3530 0.1419 2.49 0.0130** 0.3705 0.24 1.5200 0.1280
S_flag3 Canada 0.0202 0.1570 0.13 0.8980 0.4637 0.25 1.8600 0.0630*
S_type1 Fishing 0.4624 0.1919 2.41 0.0160** 0.2345 0.39 0.6100 0.5430
S_type2 Passenger -0.1695 0.1904 -0.89 0.3730 -0.1658 0.46 -0.3600 0.7170
S_type3 Cargo ship 0.2615 0.2033 1.29 0.1980 0.4677 0.38 1.2400 0.2160
S_type4 Tanker ship -0.0085 0.2222 -0.04 0.9690 1.1653 0.38 3.1100 0.0020***
S_GT1 (0,3000] tons -0.0247 0.1553 -0.16 0.8730 -0.2452 0.36 -0.6700 0.5000
S_GT2 (3000,10000] tons 0.0002 0.1468 0.00 0.9990 0.0561 0.29 0.2000 0.8450
S_GT3 (10000,20000] tons -0.1589 0.1357 -1.17 0.2420 0.1239 0.23 0.5300 0.5960
S_age1 (0,10] years -0.1790 0.1326 -1.35 0.1770 -0.0240 0.29 -0.0800 0.9340
S_age2 (10,20] years 0.2517 0.1299 1.94 0.0530* 0.2179 0.27 0.8200 0.4140
S_age3 (20,30] years -0.0137 0.1139 -0.12 0.9040 -0.5366 0.25 -2.1300 0.0330**
A_year2 2009-2013 0.0214 0.1369 0.16 0.8760 -0.1966 0.26 -0.7600 0.4490
A_year3 2014-2018 0.2050 0.1354 1.51 0.1300 -0.3193 0.24 -1.3400 0.1820
A_year4 2019-2023 0.8599 0.1458 5.90 0.0000*** -0.7960 0.30 -2.6300 0.0090***
A_type1 Machinery damage 1.1465 0.1631 7.03 0.0000*** -1.0794 0.22 -4.9000 0.0000***
A_type2 Wrecked 1.3103 0.1806 7.26 0.0000*** -0.5395 0.26 -2.0900 0.0370**
A_type3 Allision 0.8322 0.1928 4.32 0.0000*** -1.3162 0.37 -3.5200 0.0000***
A_type4 Hull damage 1.3744 0.2069 6.64 0.0000*** -1.3560 0.42 -3.2300 0.0010***
A_type5 Fire/explosion 1.6326 0.2416 6.76 0.0000*** -1.5781 0.45 -3.5100 0.0000***
E_wind2 [8, 13.9) m/s 0.0756 0.0956 0.79 0.4290 -0.1098 0.18 -0.6000 0.5490
E_wind3 [13.9, +∞) m/s 0.2239 0.1267 1.77 0.0770* -0.2288 0.28 -0.8100 0.4180
E_SIC [0.1, 1) % 0.0080 0.1650 0.05 0.9610 -0.7087 0.40 -1.7600 0.0790*
E_SIT Above 10 cm 0.5127 0.2438 2.10 0.0350** 0.3190 0.38 0.8400 0.4010
_cons ​ -1.6541 0.3000 -5.51 0.0000*** -0.9961 0.53 -1.8900 0.0580*
/athrho ​ 0.2231 0.1066 2.09 0.0360 0.2231 0.1066 2.09 0.0360
Р ​ 0.2194 0.1014 ​ ​ 0.2194 0.1014 ​ ​

Number of obs. = 1028
Log pseudolikelihood = -700.7198
Wald test of rho=0: chi2(1) = 4.3821
Prob > chi2 = 0. 0.0363
Note: ***, **, * ==> Significance at 1%, 5%, 10% level.

Table 9 
Marginal effect calculation results.

Variables Explanation Y1 Y2

dy/dx Std. Err. z P>|z| dy/dx Std. Err. z P>|z|

S_flag1 Norway etc. -0.0167 0.0402 -0.42 0.6770 -0.3320 0.0440 -7.54 0.0000***
S_flag2 Russia 0.1144 0.0456 2.51 0.0120** 0.0231 0.0151 1.53 0.1270
S_flag3 Canada 0.0065 0.0509 0.13 0.8980 0.0289 0.0160 1.80 0.0710*
S_type1 Fishing 0.1498 0.0617 2.43 0.0150** 0.0146 0.0241 0.61 0.5440
S_type2 Passenger -0.0549 0.0616 -0.89 0.3730 -0.0103 0.0286 -0.36 0.7170
S_type3 Cargo ship 0.0847 0.0658 1.29 0.1980 0.0292 0.0237 1.23 0.2190
S_type4 Tanker ship -0.0028 0.0720 -0.04 0.9690 0.0727 0.0233 3.12 0.0020***
S_GT1 (0,3000] tons -0.0080 0.0503 -0.16 0.8730 -0.0153 0.0227 -0.67 0.5000
S_GT2 (3000,10000] tons 0.0001 0.0476 0.00 0.9990 0.0035 0.0179 0.20 0.8450
S_GT3 (10000,20000] tons -0.0515 0.0438 -1.17 0.2400 0.0077 0.0145 0.53 0.5940
S_age1 (0,10] years -0.0580 0.0429 -1.35 0.1760 -0.0015 0.0180 -0.08 0.9340
S_age2 (10,20] years 0.0816 0.0418 1.95 0.0510* 0.0136 0.0167 0.81 0.4160
S_age3 (20,30] years -0.0044 0.0369 -0.12 0.9040 -0.0335 0.0162 -2.07 0.0390**
A_year2 2009-2013 0.0069 0.0443 0.16 0.8760 -0.0123 0.0162 -0.76 0.4480
A_year3 2014-2018 0.0664 0.0437 1.52 0.1290 -0.0199 0.0153 -1.30 0.1930
A_year4 2019-2023 0.2786 0.0450 6.20 0.0000*** -0.0497 0.0194 -2.56 0.0100***
A_type1 Machinery damage 0.3714 0.0485 7.66 0.0000*** -0.0673 0.0136 -4.97 0.0000***
A_type2 Wrecked 0.4245 0.0537 7.91 0.0000*** -0.0337 0.0157 -2.15 0.0320***
A_type3 Allision 0.2696 0.0607 4.44 0.0000*** -0.0821 0.0233 -3.53 0.0000***
A_type4 Hull damage 0.4453 0.0623 7.15 0.0000*** -0.0846 0.0255 -3.31 0.0010***
A_type5 Fire/explosion 0.5289 0.0730 7.25 0.0000*** -0.0984 0.0298 -3.31 0.0010***
E_wind2 [8, 13.9) m/s 0.0245 0.0309 0.79 0.4290 -0.0068 0.0114 -0.60 0.5480
E_wind3 [13.9, +∞) m/s 0.0725 0.0409 1.77 0.0760* -0.0143 0.0174 -0.82 0.4120
E_SIC [0.1, 1) % 0.0026 0.0535 0.05 0.9610 -0.0442 0.0248 -1.78 0.0750*
E_SIT Above 10 cm 0.1661 0.0788 2.11 0.0350** 0.0199 0.0241 0.83 0.4090
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distribution exhibiting clear spatial clustering. These accidents are 
mainly concentrated in the Norwegian Sea, the Barents Sea, and the 
waters around Iceland and the northern coast of Canada, with a clear 
tendency to spread to higher latitudes. In terms of the distribution of 
ship types, oil tankers are the main ship type causing pollution acci
dents, while fishing ships are the main ship type causing severity acci
dents. Analyses based on bivariate probit models and their marginal 
effects showed that the flag state, ship type, accident type, and envi
ronmental factors had a significant effect on the occurrence of both 
severity accidents and pollution accidents. In terms of ship factors, a 
Russian flag was strongly associated with the occurrence of severity 
accidents, while Nordic and Canadian flags were strongly associated 
with the occurrence of pollution accidents. Fishing ships significantly 
increased the probability of severity accidents, while tanker ships 
increased the probability of pollution accidents. Newer ships were able 
to reduce the probability of severity accidents and pollution accidents to 
a certain extent, relative to older ships. In terms of accident factors, 
mechanical damage, wrecked, allision, hull damage, and fire/explosion 
significantly increased the probability of severity accidents, but these 
factors have different degrees of negative impact on the probability of 
pollution accidents. Among environmental factors, strong winds (wind 
speed > 13.9m/s) and increased SIC significantly increased the proba
bility of severity accidents, while sea ice with a thickness greater than 10 
cm significantly increased the probability of severity accidents. This 
suggests that ice concentration reflects the complexity and dynamics of 
the ice environment, and that a high ice concentration increases the 
uncertainty of ship navigation and increases the probability of accidents. 
Meanwhile, SIT reflects the physical strength of the ice, and thicker ice 
areas are usually regarded as high-risk areas, where ships will actively 
avoid or adopt safer navigation strategies. These findings provide an 
important empirical basis for understanding the main factors influ
encing ship accidents in Arctic waters and provide scientific support for 
the development of risk management and environmental protection 
policies for Arctic shipping.

Future research could further refine the classification and quantita
tive analysis of environmental variables such as sea ice using real data to 
explore the differentiated impact of various ice conditions and other 
meteorological factors on accident outcomes. Additionally, considering 
environmental changes in the Arctic under the context of climate change 
and expanding the research dimensions will provide more scientific 
references for the formulation of maritime safety strategies in Arctic 
waters.
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