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Asymptotic Analysis of Machine Learning Models
Comparison Theorems and Universality

David Bosch

Department of Computer Science and Engineering
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Abstract

This thesis investigates the asymptotic regime of machine learning models -
a regime in which both the number of trainable parameters (model size) and
the number of data points grow infinitely at a fixed ratio. Understanding model
behavior in this limit provides valuable theoretical insights into model statistics
such as training error and generalization error, particularly in high-dimensional
settings relevant to contemporary machine learning practice.

The core methodological tools used throughout this work are Gaussian
comparison theorems, with a special emphasis on the Convex Gaussian Min-max
Theorem (CGMT). These theorems enable the rigorous analysis of complex
learning algorithms by comparing them to alternative surrogate problems,
which are simpler to analyze. By constructing such asymptotically equivalent
optimization problems, we are able to derive characterizations of the models of
interest by proxy.

A secondary but significant theme in this thesis is the concept of universality
in the asymptotic regime. Universality results demonstrate that many statistical
properties of machine learning models are asymptotically governed only by
low-order moments (e.g., means and variances) of the data distribution, rather
than its full structure. This insight justifies the use of Gaussian surrogate
models that match these moments, making them amenable to analysis via
Gaussian comparison tools.

Keywords

Asymptotic Analysis, Learning Curves, Convex Gaussian Min-max Theorem,
CGMT, Universality, Comparison Theorem

iii





List of Publications

Appended publications

This thesis is based on the following publications:

[Paper I] David Bosch, Ashkan Panahi, Ayca Özcelikkale, Double Descent
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Chapter 1

Introduction

In the last few years, the usage of machine learning (ML) and artificial intelli-
gence (AI) has exploded to unprecedented levels. Modern machine learning
models, such as large language models [1], [2] and modern image diffusion
models [3], [4] are stunning works of technical innovation; the theory of ML has,
however, struggled to keep up with this rapid growth. Many decisions made by
practitioners are guided by experiment and empirical observations, but lack
rigorous theoretical underpinnings. This has left us with many questions: why
do some models generalize better than others? How can initial conditions and
algorithms be tuned for optimal performance? Can we predict expected model
behavior without having to go through the expensive process of training? This
thesis is an attempt to shed new light on these questions and considers the
topic of what happens when models grow large, both in terms of their size as
well as the amount of data that is used to train them. We examine this “large”
regime through statistics.

Statistical models attempt to model real-world objects and their relation-
ships through a limited number of samples from a population (data). For
example, we may with to measure the length of an object and perform sev-
eral measurements, each slightly different due to methodological error, our
statistical model would then attempt to model the true length by means of
the observations. A broad class of statistical models are parameterized, where
we assume that there exists a set of parameters that explains the randomness
of our observations. These parameters must be fit to match our collected
data. In the context of neural networks (NN), these parameters are the model
weights, and we fit them by minimizing some loss function; the minimization is
completed using an algorithm like gradient descent.

This thesis is concerned with ML models in the asymptotic regime, which
is the regime where both the number of data points (observations) and the
number of model parameters grow large. This regime is often seen in practice,
for example, modern LLMs are both trained on billions of data points and have
billions of weights. Until recently, there was little theoretical analysis in this
regime. Classical statistics concerns itself primarily with the underparameter-
ized regime, where the number of data points is much smaller than the number

3



4 CHAPTER 1. INTRODUCTION

of model parameters. It was common wisdom that increasing the number
of model parameters would result in overfitting; a scenario where the model
becomes too specialized to training data and fails to generalize well to unseen
data. Interest in this field has increased in large part due to the observation
that in practice, many ML models can generalize well even when massively
overparameterized [5], sometimes even better than in the underparameterized
regime.

There exist a number of approaches to analyze models in this regime,
including the replica technique [6]–[9], Approximate Message Passing (AMP)
[10], [11], Gaussian widths [12], and well as the focus of this thesis Gaussian
comparison theorems [13]. As the name suggests, comparison theorems allow
us to analyze models, or more specifically optimization problems over model
parameters, by comparing them to alternative optimization problems. These
alternative optimization problems should be simpler, or more amenable to
analysis, than the original problem. Assuming that certain statistics of the
alternative problem converge to definite values, in the asymptotic limit, similar
conclusions may be drawn for the original problem. The particular theorem,
central to this thesis, is the Convex Gaussian Min Max Theorem (CMGT)
[14]–[16], which allows for comparisons of optimizations that contain bilinear
Gaussian forms. Two papers in this thesis also extend the CGMT to more
general setups, such that greater classes of models can be analyzed.

The CGMT, as well as many other theoretical approaches, assume Gaussian-
ity of the data or features to be applicable. This is, however, not representative
of real data. Despite this fact, in high-dimensional space (such as the asymp-
totic regime), we frequently observe that many statistics of the model begin to
concentrate. An example of this phenomenon is the central limit theorem [17],
where the sample mean of a set of observations from a wide class of probability
distributions converges to a normal distribution. Analogously, in many of the
interesting statistics of ML models, such as training and testing loss, will under
certain conditions also be asymptotically unchanged if the data or features
are replaced by Gaussians which share the same first and second moments.
This is called universality [18]–[24]. As such, for non-Gaussian random data
or features, proving universality and applying the Gaussian surrogate model
allows for the analysis by means of comparison theorems (or other techniques).

In paper I of this thesis, we extend the existing analysis of the least
absolute shrinkage and selection operator (LASSO) and the closely related
basis pursuit (BP) problem, which attempt to minimize the ℓ1 norm of a
solution vector of a square-loss optimization. We derive expressions for the
asymptotic generalization error for both problems. Furthermore, we consider
weak and strong features and demonstrate their impact on generalization. In
paper II, we consider the setup of random features regression (see section 3.2).
Here we extend the existing universality results of [23] to additional cases,
including ℓ1 regularization, and then make use of a novel nested application of
the CGMT to obtain asymptotic expressions for the training, generalization
error, as well as the sparsity of the solution vector. We particularly focus on
the case of elastic net regularization [25] and ℓ1 regularization, which could not
be previously analyzed, in the random feature context. In Paper III, we prove a
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universality result for deep random features models and then obtain asymptotic
expressions for the training and generalization error. In Paper IV, we prove
an extension of the CGMT to sums of Gaussian bilinear forms that share one
optimization variable. We use this extension to examine models such as multi-
source regression and binary classification of Gaussian mixture models, and
obtain asymptotic expressions. In Paper V, we prove a further generalization of
the CGMT to setups in which features are shared or repeated. This allows us to
obtain asymptotic results for greater classes of models, including vector-valued
regression and regression with convolution.

The rest of the thesis is structured as follows. In Section 2 we discuss
comparison theorems in detail. We describe Slepian’s and Gordon’s lemma and
how these comparisons over Gaussian processes can be extended to comparison
theorems between optimization problems. We further discuss the Convex
Gaussian Min-Max theorem, which is centrally used in papers I, II, and III.
Finally, we also outline a statistical physics framework for proving comparison
theorems of this form, a framework we make use of in paper V. In section 3,
we discuss how comparison theorems are specifically used to analyze machine
learning problems. We also discuss random feature models and universality,
which are studied in papers II and III. In section 4 we give a summary of
the papers included in this thesis, and in section 5 we give our conclusions
and future directions. Part II of this thesis includes appended copies of the
discussed papers.
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Chapter 2

Comparison Theorems

2.1 What are Comparison Theorems

Comparison theorems, within the context of this thesis, refer to a set of
probabilistic tools that allow for the comparison between the moments of
functions of random variables. The theorems in this work will always consider
a pair of processes, the first being called the primary, which is the object of
interest, whose properties we wish to analyze. The second process will be called
the alternative, and is the process that will be compared to the primary. In
general, the alternative process will be easier to analyze than the primary, and
the expected values of many statistics of the alternative process will bound the
same statistics of the primary. This ensures that the alternative is a useful
proxy for the analysis of properties of the primary process that we wish to
study.
We discuss three related comparison theorems in this section, discussed in the
order of historical development. The first theorem is Slepian’s lemma, which
allows for the comparison between two Gaussian processes whose covariance
structure satisfies a set of inequalities. There exists a well-known pair of
processes that satisfy these inequalities, which gives rise to the Gaussian Max-
Max theorem, as it allows for the comparison between two random Max-Max
optimization problems.
The second theorem that we consider was given by Gordon. Similarly to
Slepian’s result, it allows for the comparison between two Gaussian processes
whose covariance structures satisfy some set of inequalities. The same well-
known pair of processes that satisfy Slepian’s lemma can also be shown to
satisfy Gordon’s lemma, resulting in the Gaussian Min-Max theorem (GMT),
which allows for the comparison between two Min-Max problems.
The third theorem, developed most recently, extends the Gaussian Min-Max
theorem. While the GMT only provides a one-sided bound, the Convex
Gaussian Min-Max Theorem (CGMT) ensures both an upper and lower bound
on the value of the primary process, bounds that in most considered cases
become asymptotically tight. To establish this bound, there is an additional
cost of requiring convexity/concavity assumptions on the considered pair of

7



8 CHAPTER 2. COMPARISON THEOREMS

processes.
Finally, we discuss how both the Gaussian Max-Max Theorem and the Gaussian
Min-Max Theorem can be derived through a single framework based on results
from statistical physics involving Gaussian interpolation.

In addition to the three comparison theorems discussed in this section, two
of the papers in this thesis prove further generalizations of the CGMT, which
may be used to analyze a broader class of models. Further discussion on the
generalizations can be found in sections 4.4 and 4.5.

2.2 Slepian’s Lemma and Gaussian Max-Max
Theorem

In 1962, Slepian [26] proved the following theorem about Gaussian centered
Gaussian processes:

Lemma 1 (Slepian’s Lemma [26]) Let Xi, Yi for i = 1, . . . , n be two se-
quences of real-valued centered Gaussian random variables, which satisfy the
following inequalities:

• E[X2
i ] = E[Y 2

i ] for all i = 1, . . . , n

• E[XiXj ] ≤ E[YiYj ] for all i, j ̸= i = 1, . . . , n.

Then for c1, c2, . . . , cn ∈ R we have that:

P

[
n⋃

i=1

Xi ≥ ci
]
≥ P

[
n⋃

i=1

Yi ≥ ci
]
.

In the case that c1 = c2 = · · · cn = c are all equal to some shared c, the union of
events

⋃n
i=1Xi ≤ c becomes equivalent to the maximization maxiXi ≤ c. As

such, Slepian’s lemma demonstrates that if there exist two Gaussian processes
that have the same variance, but one has greater pairwise covariance, we can
find probabilistic bounds on the maximum over the set of all random variables.

One pair of such processes that satisfy these inequalities is the following:

p(x,y) = xTGy + ∥x∥ ∥y∥ γ, (1)

a(x,y) = ∥x∥ gTy + ∥y∥hTx. (2)

Here x ∈ Rn,y ∈ Rm are n and m dimensional vectors respectively and ∥·∥
denotes the 2-norm, G ∈ Rn×m, γ ∈ R, g ∈ Rm,h ∈ Rn all have i.i.d standard
Gaussian entries and are independent of each other. We can see that for any
value of x,y, these processes are real valued and centered. It can also readily
be shown that EG,γ [p

2(x,y)] = Eg,h[a
2(x,y)] and EG,γ [p(x,y)p(x

′,y′)] ≤
Eg,h[a(x,y)a(x

′,y′)] where x ̸= x′,y ̸= y′. Using this pair of processes, the
following theorem can be proven about comparing these two processes
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Theorem 1 (Gaussian Max-Max Theorem) Let p(x,y) and a(x,y) be
defined in (1) and (2) respectively. Let X ⊂ Rn and Y ⊂ Rm be two compact
sets and let ψ : X × Y → R be a continuous function. Then, for any c ∈ R:

P
[
max
x∈X

max
y∈Y

p(x,y) + ψ(x,y) > c

]
≤ P

[
max
x∈X

max
y∈Y

a(x,y) + ψ(x,y) > c

]
.

The Gaussian max-max theorem allows for a probabilistic comparison between
two maximization problems. We note that both problems share the same
continuous ψ function; this allows us to bound problems of the form p+ ψ by
instead considering a+ ψ, which is often easier to analyze.

Slepian developed his lemma to study the maximum singular value of a Gaus-
sian matrix G ∈ Rm×n. If we denote by Sn ⊂ Rn the unit sphere in n dimen-
sions, we observer that σmax(G) = maxx∈Sn

∥Gx∥ = maxx∈Sn
maxy∈Sm

yTGx,
where σmax denotes the maximum singular value. This problem can be
expressed as a particular case of the Gaussian Max-Max Theorem where
ψ = 0,X = Sn, and Y = Sm, the alternative can be solved in this case to
find that the expected value of the maximum singular value of G is bounded
asymptotically by

√
n+
√
m, exactly as is predicted by standard results from

random matrix theory [27].

2.3 Gordon’s Theorem and the Gaussian Min-
Max Theorem

In 1985, Gordon [28] developed an extension to Slepian’s lemma which may
be used to analyze min−max optimization problems in contrast to simply
maximization problems. Gordon’s Comparison Lemma is given as follows:

Lemma 2 (Gordon’s Lemma [28]) Let Xi,j , Yi,j for i = 1, . . . , n, j = 1, . . . ,m
be two sequences of real valued centered Gaussian random variables, which sat-
isfy the following inequalities:

• E[X2
i,j ] = E[Y 2

i,j ] for all i = 1, . . . , n, j = 1, . . . ,m

• E[Xi,jXi,k] ≤ E[YiYj ] for all i = 1, . . . , n, j, k = 1, . . .m.

• E[Xi,jXl,k] ≥ E[Yi,jYl,k] for all i ̸= l = 1, . . . , n, j, k = 1, . . .m.

Then for ci,j ∈ R for i = 1, . . . , n, j = 1, . . .m we have that:

P




n⋂

i=1

m⋃

j=1

Xi,j ≥ ci,j


 ≥ P




n⋂

i=1

m⋃

j=1

Yi,j ≥ ci,j


 . (3)

Similarly to the case of Slepian’s lemma discussed above when ci,j = c for
all i, j then the intersections and unions over the events that Xi,j ≥ c becomes
equivalent to the probability that the event that minimaxj Xi,j ≥ c.
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Gordon’s Lemma is proven by means of an interpolation between the two
Gaussian processes. We can define two covariance matrices ΓX ∈ Rnm×nm and
ΓY ∈ Rnm×nm defined elementwise by:

ΓXim+j,i′m+j′ = E[Xi,jXi′,j′ ], ΓYim+j,i′m+j′ = E[Yi,jYi′,j′ ],

where i, i′ = 1, . . . , n and j, j′ = 1, . . . ,m. We can then consider a Gaus-
sian Process Ztij which has covariance matrix Γt =

√
tΓX +

√
1− tΓY which

interpolates between the processes X and Y . We define the function,

Q(Z;Γ) = P




n⋂

i=1

m⋃

j=1

Zi,j ≥ ci,j


 .

It can be shown that

dQ

dt
(Z;Γt) =

nm∑

α<β

∂Q

∂Γα,β
(Z;Γ)

∣∣∣∣
Γ=Γt

(ΓXα,β − ΓYα,β).

Gordon then proves that the derivative with respect to Γα,β is positive in case
2 of the theorem and negative in case 3 of the theorem. This, combined with
the assumption of equality in case 1 of the theorem, shows that dQ

dt ≥ 0, from
which the statement in equation (3) follows trivially.

The same set of processes as described in equations (1), (2) satisfy this set
of relations as well. From this, we can obtain the Gaussian Min-Max Theorem
(GMT):

Theorem 2 (Gaussian Min-Max Theorem) Let p(x,y) and a(x,y) be
defined in (1) and (2) respectively. Let X ⊂ Rn and Y ⊂ Rm be two compact
sets and let ψ : X × Y → R be a continuous function. Then, for any c ∈ R:

P
[
min
x∈X

max
y∈Y

p(x,y) + ψ(x,y) ≤ c
]
≤ P

[
min
x∈X

max
y∈Y

a(x,y) + ψ(x,y) ≤ c
]
.

Once again, this comparison theorem allows us to obtain bounds on the object
of interest p+ ψ by means of analysis of a+ ψ in the cases that a+ ψ is easier
to analyze.

Both Theorem 1 and Theorem 2 operate on continuous sets, while both
Slepian’s and Gordon’s theorems consider finitely indexed Gaussian Processes.
This issue is resolved by means of an ϵ−net argument. The compact sets X and
Y both admit nets of finitely many elements. On these nets, the theorem holds
by Gordon’s lemma. An additional proof is necessary to show that probabilistic
bounds still hold when not on the net; the continuity of ψ (which is equivalent
to uniform continuity on compact sets X ×Y) is necessary to ensure that these
deviations cannot be too large.

2.4 The Convex Gaussian Min-Max Theorem

In 2014, [13] proved that under mild additional conditions, the GMT provides
not only an upper bound on the values of the primary but also a corresponding
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lower bound. Both bounds are based on the same alternative problem. This
Convex Gaussian Min Max Theorem (CGMT) also resolved a secondary issue
of the GMT, which limited its application to ML-specific problems, that being
the presence of the γ term in (1). This term is problematic because it does
not up frequently in the problems of interest. The bilinear term naturally
appears when analyzing many machine learning problems. We discuss this in
more detail below in section 3, the γ term, however, does not. Requiring the
presence of the γ term for the theorem to hold, therefore limits the theorem’s
applicability. The CGMT, therefore, instead considers the following primary
process:

r(x,y) = xTGy, (4)

which is equivalent to p as given in (1) but without the γ term. The theorem
is given as follows:

Theorem 3 (Convex Gaussian Min-Max Theorem) Let r(x,y) and a(x,y)
be defined in (4) and (2) respectively. Let X ⊂ Rn and Y ⊂ Rm be two compact
sets and let ψ : X × Y → R be a continuous function. Then, for any c ∈ R:

P
[
min
x∈X

max
y∈Y

r(x,y) + ψ(x,y) ≤ c
]
≤ 2P

[
min
x∈X

max
y∈Y

a(x,y) + ψ(x,y) ≤ c
]
.

Furthermore, assume that X ,Y are both convex sets, and that ψ is convex-
concave on X × Y. Then for any c2 ∈ R:

P
[
min
x∈X

max
y∈Y

r(x,y) + ψ(x,y) ≥ c2
]
≤ 2P

[
min
x∈X

max
y∈Y

a(x,y) + ψ(x,y) ≥ c2
]
.

One of the most powerful features of the CGMT is that, if the alternative
optimization problem concentrates asymptotically, or in other words, if there
is some value A ∈ R such that for any ϵ > 0,

lim
n,m→∞

P
[∣∣∣∣min

x∈X
max
y∈Y

a(x,y) + ψ(x,y)−A
∣∣∣∣ > ϵ

]
= 0,

then the optimal value of r + ψ must concentrate to the same value of A as
well. Furthermore, this result can be strengthened. We denote by (x̂r, ŷr) the
optimal point of the min−max problem over r + ψ and similarly denote by
(x̂a, ŷa) the optimal point of the min−max problem over a+ψ. Then, for many
functions f(x) : X → R or g(y) : Y → R, if the value of f(x̂a) concentrates
asymptotically then f(x̂r) will concentrate on the same value. This observation
allows for the analysis of the statistics of the primary optimization problem by
proxy through the study of the statistics of the alternative optimization. For
example, in the context of machine learning, this machinery allows us to study
the generalization error of the primary objective through the generalization
error of the alternative. In section 3 below, we discuss how the CGMT can be
used as a tool in the asymptotic analysis of machine learning models.
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2.5 Statistical Physics Approach to Comparison
Theorems

More recently, Stojnic [29] showed that the Gaussian Max-Max Theorem and the
Gaussian Min-Max Theorem can be proven together in a single master theorem
based on a different proof framework from statistical physics. This is possible
due to the relationship between the solutions of optimization problems and
their associated Gibbs (or Boltzmann) distribution. We consider a parameter
β > 0, which is traditionally called the “inverse temperature” (as this is the
unit it takes in the context of statistical physics). Next, we consider a function
f(x) which we will assume to be convex, defined on some compact set X , then
it can be proven [30], [31] that

min
x∈X

f(x) = lim
β→∞

1

β
log



∫

X
e−βf(x)dx

︸ ︷︷ ︸
≡Z


 .

This quantity on the right at a finite value of β is called the free energy function,
and the quantity Z is called the partition function. A similar expression for
the maximum of a concave function can be obtained by flipping the sign of
the exponent. The partition function also allows us to construct a probability
distribution called the Gibbs distribution, whose probability density function
is given by:

1

Z
e−βf(x).

The value of Z in this context acts as a normalization constant to ensure that
the probabilities sum to 1. If we assume that f(x) has a unique optimal value
x̂ then the Gibbs distribution will concentrate more of the total probability
density around this optimal point, such that in the limit of large β it will
converge weakly to a delta function around x̂. In other words for another well
behaved function g(x), we have that:

lim
β→∞

1

Z

∫

X
g(x)e−βf(x)dx = g(x̂).

While it may appear initially that we have increased the complexity of
the problem, the benefit of this approach is that for finite values of β, our
smoothed version of minimization is continuous and differentiable. Intuitively,
this allows us to determine properties of our objective at “finite temperature”
(i.e. β <∞), and then finally take the β limit to obtain our objects of study.

In the case of the Gaussian comparison theorems, we consider a function

Ht(x,y) =
√
tp(x,y) +

√
1− ta(x,y) + ψ(x,y),

where t ∈ [0, 1] p and a are defined in (1) and (2) respectively and ψ is a
continuous function of interest. The function Ht expresses an interpolation
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from our primary to the alternative objective. We then consider the following
function

ξ(X ,Y, β, s, t) = EG,γ,g,h
1

β
log

(∫

X

(∫

Y
eβHt(x,y)dy

)s
dx

)
.

Here s ∈ {−1, 1 } is an additional parameter that defines if the problem is
max−max or min−max. Similarly to above, it can be shown under mild
conditions that:

lim
β→∞

ξ(X ,Y, β, s, t) = EG,γ,g,h max
x∈X

smax
y∈Y

Ht(x,y).

We can note that by setting s to the value of −1 we can obtain a min−max
optimization, as required for the GMT. The bounds between the expected
values of the primary and alternative optimizations can then be obtained by
studying the value of dξ

dt , in other words, how the function changes as we
interpolate from the primary to the alternative. We make use of a similar
statistical physics framework in paper V for a CGMT extension.
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Chapter 3

Comparison Theorems in
Machine learning

Within the context of machine learning, we assume that a dataset is a set
of random samples drawn from some distribution D, which describes the
likelihood of observing a particular sample. Our goal is then to train a model
that performs a certain task based on the data in the dataset. For example,
in supervised learning, we attempt to predict a label corresponding to each
observation. As the dataset is a random variable, with samples drawn from
the underlying data distribution D, our model is also random and dependent
upon which particular set of data points is drawn. In machine learning, we
are generally interested in particular statistics of this model, most saliently
the expected training error and generalization error with respect to the data
distribution D. However, we are also interested in additional statistics such as
the expected model sparsity or quantization.

Throughout this thesis, we will focus on the empirical risk minimization
framework in the supervised learning case. In this framework, we consider a
dataset D = { (xi, yi) }ni=1 of n data points and labels. The model of interest
fθ(x) will be parameterized by a set of parameters θ, and the goal will be to
choose a particular choice of model parameters which minimizes a given risk
function. In general, we will consider a loss function ℓ(·, ·) which will measure
how well the model can predict the label yi from the data point xi, as well as
a regularization function R(θ) which will impose some additional penalty on
the undesired model parameters. In general, our optimization problem will
take the form:

min
θ

1

n

n∑

i=1

ℓ(fθ(xi), yi) +R(θ). (1)

We note that in theory we would like to minimize the parameters with respect
to the dataset distribution D, and consider E(x,y)∼D[ℓ(fθ(x), y)] instead of the
sum in (1). However, in practice, the distribution D is often either unknown
or computationally intractable. As such, we limit ourselves to the empirical
distribution over the n collected samples and use this empirical distribution to

15
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compute the expected value of the loss. 1 To apply the comparison theorem
discussed in section 2 to problems in the form of (1), in general, two conditions
need to hold. Firstly, we must be in the student-teacher framework. In this
framework, the labels yi are generated by means of a known function of xi.
It is generally assumed that there exists some set of teacher parameters θ∗

that characterize how the labels are generated. A common case studied in the
literature is yi = g(θ∗Txi), where g : R → R is a suitable function, such as
the sign function (for binary classification) or label corruption in the form of
additive noise.

The second condition is Gaussianity. Our comparison theorems of interest
rely on the objective function being Gaussian. In simple cases, such as linear
models, this requires assuming that xi are drawn from a Gaussian distribution.
For more complex models, we need to prove that our objective can be approx-
imated asymptotically by a Gaussian model. This type of analysis is referred
to as universality and is discussed in more detail below. The chain of analysis
for a given ML problem then becomes first proving universality and finding an
asymptotically equivalent Gaussian model, and then subsequently analyzing
that Gaussian model, such as by means of a comparison theorem, studies such
as [32]–[34] follow this approach.

This chapter presents few well-known studies carried out by universality
and Gaussian comparison results. In section 3.1 we will discuss linear models
and how these may be broached by the CGMT. In section 3.2 we will consider
random feature models, which can be considered as proxies for 2-layer fully
connected neural networks, as well as deep random features. Both shallow
and deep random feature models are non-Gaussian, but can be shown to be
asymptotically similar to Gaussian models by means of universality arguments.

3.1 Linear Models

In the case of linear models, our ERM equation takes the form:

min
θ

1

n

n∑

i=1

ℓ(xTi θ, yi) +R(θ).

By means of the convex conjugate of the loss function ℓ with respect to the
first argument, this model can be expressed in a form amenable to the CGMT:

min
θ

max
z

1

n
zTXθ − 1

n

n∑

i=1

ℓ∗(zi, yi) +R(θ).

where z = [z1, z2, . . . , zn]
T is the dual variable introduced in the convex conjug-

ate ℓ∗ of ℓ and X is the matrix of data points with rows xi. If X is a Gaussian
matrix (i.e., the data is sampled from a Gaussian distribution), problems of
this form can be analyzed by the CGMT. There exist results in the literature
that analyze different choices for the loss and regularization function [19], [35],
[36] and how these choices impact the performance of the model.
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3.2 Random Features

Random feature models [37], which are the subject of analysis of a number
of works in this thesis, are two-layer neural networks in which the weights
from the input layer to the hidden layer are not trained. The randomly
initialized weights, in essence, map the input features into a different space
using a random embedding. For input features xi ∈ Rd, the model is given
by fθ(xi) = θTσ(Wxi), where W ∈ Rm×d are a set of i.i.d Gaussian random
weights, and σ is a non-linear activation function. The random features model
has been studied extensively [36]–[39] as a proxy for neural networks.

The random feature model is, however, not Gaussian and therefore is not
directly amenable to applications of the CGMT. Despite this fact, when the
activation function σ is odd, it has been proven [23] that the empirical risk
minimization optimization problem with respect to the RF model is asymptot-
ically equivalent to a Gaussian model which shares the same first and second
moments. In practice this result can be strengthened further by approximating
the odd activation σ(Wxi) ≈ ρ1Wxi + ρ2z, where ρ1 = Ex∼N (0,1)[σ

′(x)],

ρ∗ =
√
Ex∼N (0,1)[σ2(x)]− ρ21 and z is a standard normal vector. This approx-

imation can be obtained by means of a truncated Hermite polynomial expansion
of the activation function. We note that this approximation results in a linear
model, which may be analyzed by means of the CGMT. Demonstrating that a
model is asymptotically equivalent to a Gaussian model with respect to a set
of test functions is called universality. Papers II and III in this thesis prove
universality results.

Universality in this work, as well as in many others [19], [23], [24], [40], is
generally proven by means of Lindeberg’s method. The principle of Lindeberg’s
method is to step by step replace parts of the feature matrix by a Gaussian
surrogate, and then to bound the difference in the value of the test functions
under this change. For example, let X ∈ Rn×m be a data matrix of n data
points of dimension m, where each data point xi ∼ P for some probability
distribution P with mean µ and covariance Σ. Furthermore, let T (X) be some
function of this data, for example, the training loss of a model trained on this
data.

To apply Lindeberg’s argument, we consider another set of data points
x̃i ∼ N (µ,Σ), and consider a set of intermediate matrices

Xr = [x1 x2 · · ·xr−1 x̃r · · · x̃n]T , r = 0, . . . , n.

We observe that X0 = X and Xn = X̃. Now, we note that

∣∣∣T (X)− T (X̃)
∣∣∣ =

∣∣∣∣∣
n−1∑

r=0

T (Xr)− T (Xr+1)

∣∣∣∣∣ ≤
n−1∑

r=0

|T (Xr)− T (Xr+1)| ,

where the first equality is obtained by a telescoping sum, and the second by
the triangle inequality. If we demonstrate that |T (Xr)− T (Xr+1)| ≤ C

n3/2 , for
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some constant C > 0, we will be able to show that:

∣∣∣T (X)− T (X̃)
∣∣∣ ≤

n−1∑

r=0

C

n3/2
≤ C√

n

n→∞−−−−→ 0.

As such, by bounding the difference between two successive terms of the
replacement, we can prove that the statistics T of X and a Gaussian surrogate
that matches the first and second moments are asymptotically equivalent.

The random feature model can be naturally generalized to a deep random
feature model. In the deep RF model, we consider an L−layer deep neural
network where only the final output layer is trained. More formally we consider
L matrices W (1), . . . ,W (L), each of dimensions W (l) ∈ Rml×ml−1 . Then,

we recursively define a sequence of models, where z
(0)
i = xi ∈ Rm0 and

z(l+1) = σ(W (l+1)z(l)), with σ being a a non-linear activation function applied
elementwise. The final model of interest is then given by fθ(xi) = θTz(L).
Similarly to the shallow random features case, we can prove universality results
for this model. We prove this in paper III.

3.3 Limitations of Existing Comparison Theor-
ems

Both the linear models and random feature models discussed above assume
that the labels are 1-dimensional objects. While this allows for the analysis of
single regression problems as well as binary classification, single-dimensional
output cannot express the behavior of more complex models. The central
difficulty is that an application of the CGMT necessarily requires the bilinear
form zTXθ, where X is an i.i.d. Gaussian matrix. For more complex models,
attempting to express the model as a bilinear form will result in the repetition
of Gaussian elements. For example, the natural extension to the bilinear form is
Tr[ZTXΘ] where Z,Θ are now matrices. This form shows up in the analysis
of multiclass models (of which some cases have been analyzed [41]), however
linearizing this form results in (vec(Z))T (I ⊗X)(vec(Θ)), where vec(·) is the
vectorization operation that stacks all columns of a matrix into a single vector,
and ⊗ denotes the Kronecker product. The matrix (I ⊗X) is clearly not i.i.d.
Gaussian, as such the CGMT cannot naively be used to analyze this problem.
Furthermore, other models of interest, such as convolutional neural networks
and time series, also cannot be linearized into the requisite bilinear form. This
limitation of the CGMT is in part addressed by our work in paper V, where
we prove a generalization of the CGMT. Our more general form can handle
problems such as certain convolutional filters and time series, and we discuss
some examples in the paper.



Chapter 4

Summary of the Included
Papers

4.1 Paper I

In this paper, we consider the Least Absolute Shrinkage and Selection Operator
(LASSO) and the closely related Basis Pursuit optimization problem. For a
given data set {(xi, yi) ∈ Rm × R}ni=1, the LASSO problem is given by

min
θ∈Rm

1

2n

n∑

i=1

(yi − θTxi)
2 +

λ√
m
∥θ∥1 , (1)

where λ ≥ 0 is the parameter that controls regularization strength. The basis
pursuit problem is defined in the limit of λ→ 0, when m > n, as

min
θ∈Rm

∥θ∥1
s.t.

yi = θTxi i = 1, . . . , n.

We consider the case where xi are normally distributed with zero mean
and covariance matrix R, and where the labels are given by

y1 =
1√
m
xTi θ

∗ + νi, i = 1, . . . , n.

Here, νi is i.i.d Gaussian noise with variance σ2
ν . It is specifically assumed that

θ∗ is nearly sparse. By this, we mean that a small subset A of indices of θ∗

exists such that θ∗
A, i.e. θ∗ restricted to the indices in A, has values much

larger than θ∗
Ac . For this problem, the generalization error, as a function of

the regularization parameter, can be expressed as

Egen(λ) = Ex,y(y − θ̂Tλx)
2 − E(y − xTθ∗)2

= eTλReλ,

19
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where θ̂λ is the solution to (1) for a given value of regularization strength λ ≥ 0,

and eλ = θ̂λ − θ∗ is the error vector.
In Theorem 1 of this paper, we demonstrate, by means of the CGMT, that

the optimization problem (1) can asymptotically be expressed as

min
e

1

2
eTRe+

q√
n
eTh+

qλ

β
√
m

∥∥∥∥
θ∗
√
m

+ e

∥∥∥∥
1

,

where h ∼ N (0, Im) and β, q are constants satisfying:

q2 = eTRe+ σ2
ν , β = q +

1

n
eTh.

In this paper, we consider the case that R is diagonal, with entries rj
for j = 1, . . . ,m. The values of rj give the strength of the given features.
We consider combinations of strong and weak features, such that for some
set r1 = r2 = · · · rm1

= R for some larger value R and for the remainder
rm1+1 = · · · = rm = r where R > r. This gives us m1 strong features and
m − m1 weak features. Theoretically, we determine an expression for the
generalization error in terms of these weak features given by:

Egen(λ) =
1

m

m∑

j=1

rjEϕ

[
T λq

βrj

(
θ∗j +

qϕ
√
rjγ
− θ∗j

)2
]
,

where γ = n
m , ϕ is a standard Gaussian random variable, and T is a soft

thresholding operator, defined as

Ta(b) =





b− a b > a

b+ a b < −a
0 |b| ≤ a

.

We also give theoretical expressions for the predicted sparsity of the solution
vector. We experimentally verify the claims made and explore the impact of
the regularization strength and strength of the features, and the generalization
and sparsity of the solution vectors.

4.2 Paper II

In this paper, we consider the case of random features regression as described
in section 3.2. We make two contributions to this problem. The first is an
extension of the results for universality, and the second is a novel nested
application of the CGMT that allows us to express the original optimization
as a 4-dimensional scalar optimization. Previous results involved optimizations
of m-dimensional proximal operators, which were, in many cases, intractable.

For universality, we extended the existing results in [23]. [23] had given
universality results for random feature models, under a number of assumptions.
The main assumption we improve upon is the necessity of the regularization



4.2. PAPER II 21

function to be strongly convex, and to have a third derivative that is uniformly
bounded over all R.

We extend this result in two ways. Firstly, we deal with regularization
functions that are not differentiable at all points. We prove that if we can
construct a sequence of functions Rk(θ) converging uniformly to R(θ) as k →∞,
and if all of those functions Rk are thrice differentiable, then universality holds
for R(θ) as well. This allows us to prove universality for the elastic net
regularization function:

R(θ) =
α

2
∥θ∥2 + λ ∥θ∥1 .

Here α, λ are two regularization strength parameters. Secondly, we extend
the universality results to ℓ1 regularization. To prove this, we make use of a
similar technique as [19] and consider elastic net regularization at very small
values of α. We demonstrate that with high probability the feature matrix X
(as described in section 3.2) satisfies the restricted isometry property [42]. We
make use of this to show that the difference in solution vector between the cases
of α small and α = 0 is negligible, and therefore the solution is stable, despite
the lack of strong convexity. We make use of this argument to demonstrate the
universality of ℓ1 regularization.

We then consider the Gaussian equivalent random feature problem for the
case of generic strongly convex regularization or ℓ1 regularization, and find
an alternative optimization problem by means of a nested CGMT argument.
We note that there are two sources of randomness in the RF problem, the
randomness of the Gaussian input data z and secondly that of the Gaussian
weight matrix W . The two applications of the CGMT are applied to both
sources of randomness, successively. The resulting alternative optimization
problem is given by:

max
β>0

min
q>0

max
ξ>0

min
t>0

1

m
E
[
M 1

2c1
R

(
θ∗ − c2

√
γ

2c1
ϕ

)]

−c
2
2γ

4c1
+
ξt

2
+
βq

2
+
βσ2

ν

2q
+
ξβ2

2tη
− βξ2

2q
− qβ

2η
− β2

2
,

where ϕ is a standard Gaussian vector, c1, c2 are functions of β, q, ξ, and t, and
M 1

2c1
R is the Moreau envelope over the function R. The Moreau envelope

with step size τ over a function f is given by:

Mτ f (y) = min
x

1

2τ
∥x− y∥2 + f(x).

In the case that the regularization function is separable, in many cases, the
Moreau envelope can be solved explicitly, which allows us to obtain a four-
dimensional scalar optimization function that converges to the training error
of random feature regression. We can similarly obtain an expression for the
generalization error that is asymptotically exact. Experimentally, we consider
the cases of elastic net and ℓ1 regularization, and verify our claims. Similarly
to paper I above, we also obtain asymptotic expressions for the sparsity of the
solution vector.
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4.3 Paper III

In this paper, we consider the deep random feature model as described in
section 3.2. We prove two results. Firstly, we prove a universality result which
states that a deep RF is asymptotically equivalent to a Gaussian model which
matches the first and second moments at each layer. Secondly, we analyze
this result using the CGMT to obtain asymptotic expressions for this model.
For the universality, we recall that the deep random features model is defined

recursively. For a dataset { (xi, yi) ∈ Rp0 × R }ni=1, we define z
(0)
i = xi and

z
(l+1)
i = σ(W (l+1)z(l)i) where W (l) for l in 1, . . . , L are pl × pl−1 standard

Gaussian random matrices. For odd activation functions σ, we find the following
recursive Gaussian equivalent feature map:

γ
(0)
i = xi, γ(l+1) = ρ1,l+1W

(l+1)γ(l) + ρ2,l+1g
(l),

where each g(l) is an independent standard Gaussian vector and ρ1,l, ρ2,l are
constants also defined recursively as follows:

ρ1,l = Ez∼N (0,1) [σ
′(αl−1z)] , ρ2,l =

√
Ez∼N (0,1) [σ2(αl−1z)]− α2

l−1ρ
2
1,l.

Where σ′ is the derivative of the activation function σ and αl are constants
also defined recursively as:

α0 = 1, αl =
√
ρ21,lα

2
l−1 + ρ22,l.

We prove that under a set of assumptions (given in section 3 of the paper) that
the training error of the empirical risk minimization (1) for the deep random
feature model and the Gaussian equivalent feature map is bounded by order

O
(

1√
n

)
. As such, in the asymptotic limit these the training error of the two

problems will be identical. In other words, with respect to the training error,
the deep random feature model, asymptotically, behaves like a Gaussian process
with a complex covariance structure.

We prove our universality result by means of Lindeberg’s method, which
involves constructing a series of steps that interpolate between the deep RF
and the Gaussian equivalent model and then bounding each step. Unlike most
approaches of Linderberg’s method, we apply this method in the dual space
to the original ERM optimization. Mathematically, we can note that for the
empirical risk minimization framework, as discussed above in section 3, that:

min
θ∈Rp

L

1

n

n∑

k=1

ℓ(zTk θ, yk) +R(θ)

= min
θ∈Rp

L,a∈Rn
max
d∈Rn

1

n

(
n∑

k=1

ℓ(ak, yk) + dk(ak − zTk θ)

)
+R(θ)

= − min
d∈Rn

1

n

n∑

k=1

ℓ∗(−dk, yk) +R∗
(
1

n
Zd

)
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here ℓ∗ is the convex conjugate of ℓ with respect to the first element, R∗ is the
convex conjugate of the regularization function R and Z is the matrix with
columns zk. In our proof, we create a chain that replaces the elements of Z
with their Gaussian equivalents and prove that this difference is bounded.

We further analyze these resulting Gaussian equivalent models and find an
alternative optimization by means of the CGMT, which will share the same
optimal value. We experimentally verify that these expressions are accurate.

We also note that the covariance matrix of the Gaussian equivalent features
γ(l) forms a Lyapunov recursion, the recursion is given by:

R(0) = I, R(l) = ρ21,lW
(l)R(l−1)W (l)T + ρ2,lI.

We examine the eigenvalue distribution of this matrix using standard techniques
from free probability theory and find a recursion that describes the Stieltjes
transform of the covariance matrix. We note that the recursion suggests that
there is a limiting distribution of the eigenvalues of R as we increase the number
of layers.

4.4 Paper IV

In this paper, we prove a generalization of the Convex Gaussian Min Max
Theorem. In section 2.3 we discuss the pair of processes, (1) and (2), which
satisfy Gordon’s comparison lemma and are used to prove the comparison
lemma. Here we find another pair of primary and alternative processes that
fulfill Gordon’s lemma’s requirements. The processes are:

p(x,y1, . . . ,yk) =

k∑

l=1

yTl GlΣ
1/2
l x+ γl

∥∥∥Σ1/2
l x

∥∥∥ ∥yl∥ ,

a(x,y1, . . . ,yk) =

k∑

l=1

∥yl∥ gTl Σ1/2
l x+

∥∥∥Σ1/2
l x

∥∥∥hTl yl.

Here Gl,γl,hl, gl for l in 1, . . . , k have i.i.d standard Normal entries and Σl

are all positive semi-definite covariance matrices. As described in sections
2.3 and 2.4, a pair of equations that satisfy Gordon’s lemma can be used to
prove a Gaussian Min-Max Theorem, and can then be extended to a Convex
Gaussian Min-Max theorem. The CGMT theorem for this new pair of processes
(Discussed in detail in section III of the paper), proves that for an arbitrary
function ψ(x,y1, . . . ,yk) which is continuous, convex in x and concave in all
yl, that for any ϵ, c ∈ R where ϵ > 0:

P
[∣∣∣∣min

x
max

y1,...,yk

r + ψ − c
∣∣∣∣ > ϵ

]
≤ 2kP

[∣∣∣∣min
x

max
y1,...,yk

a+ ψ − c
∣∣∣∣ > ϵ

]
,

where r is defined, analogously to (4) CGMT discussed in section 2.4, as:

r(x,y1, . . . ,yk) =

k∑

l=1

yTl GlΣ
1/2
l x.
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In other words, as in the case of the CGMT, if a + ψ concentrates on some
definite value, then p + ψ will concentrate on the same value for any finite
value of k. We prove additional results such that if the solutions of a+ ψ have
a high probability of belonging to a ball of a fixed radius, then the solutions
of r + ψ will share this property. This allows us to consider the results of the
generalization performance of r + ψ by means of the solutions of a+ ψ.

We make use of this new CGMT to examine the asymptotic behavior of
two different problems, the first is multi-source Gaussian regression and binary
classification for Gaussian mixture models, and experimentally verify these
results.

4.5 Paper V

In this paper, we prove another generalization of the Convex Gaussian Min-Max
Theorem. As discussed in section 3.3, a central limitation of the CGMT is
that the matrix G in the primary process (see section 2.4 and (4)) must be
i.i.d. standard normal. This condition fails to hold in more complex models,
such as vector-valued regression. As an example, considering just vector-
valued linear regression where the labels are of dimension k, over a dataset
{ (xi,yi) ∈ Rm × Rk }ni=1:

min
Θ∈Rm×k

1

2n
∥XΘ− Y ∥2F ,

where X ∈ Rn×m,Y ∈ Rn×k are have columns xi and yi respectively and
∥·∥F denotes the Frobenius norm. Expressing this optimization as a min-max
problem, we can see that:

min
Θ∈Rm×k

max
Z∈Rn×k

1

n
Tr[ZTXΘ−ZTY ]− 1

2n
∥Z∥2F

= min
θ∈Rmk

max
z∈Rnk

1

n
zT (Ik ⊗X)θ − zTy − 1

2n
∥z∥2 .

In the first line, we have introduced Z ∈ Rn×k and have taken the convex
conjugate of the Frobenius norm, and in the second line we introduce z =
vec(Z), θ = vec(Θ), y = vec(Y ). We can see that Ik⊗X is not i.i.d. Gaussian
but instead repeats the features of X multiple times over along the diagonal.
This means that the CGMT cannot be applied. In this paper, we extend the
CGMT to cases like this.

We formalize the idea of sharing weights. We let G̃ be a Gaussian matrix
and let Ak,Bk for k in 1, . . . ,K be sets of K-deterministic matrices, we then
consider Gaussian Matrix Sum (GMS), as

G =

K∑

k=1

AT
k G̃Bk.

In other words, the matrices Ak,Bk encode how the elements of G̃ are repeated
in the matrix G. As an example for the case of vector-valued regression
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as discussed above, we have k matrices Aa ∈ Rnk×n,Ba ∈ Rmk×m where
a = 1, . . . , k. These matrices are defined element-wise as (Aa)bn+c,d = δa,bδc,d
and (Ba)bn+e,f = δa,bδe,f where a, b = 1, . . . , k, c, d = 1 . . . n and e, f = 1, . . .m
and δa,b is the Kronecker delta.

For matrices G that can be expressed as a GMS, we find a new pair of
primary and alternative equations

p(x,y) = xTGy +Tr[P 1/2γQ1/2],

a(x,y) =
∑K
k=1 f

T
k Bky + hTkAkx.

Here G is a GMS, γ ∈ RK×K is a standard Gaussian matrix, and F ,H are
matrices with columns fk,hk respectively. F = F̃P 1/2 and H = H̃Q1/2

where F̃ , H̃ are i.i.d standard Gaussian matrices. Finally, P ,Q are positive
semi-definite matrices defined element-wise as:

Pk,k′ = xTAT
kAk′x, Qk,k′ = yTBT

kBk′y.

We can note that this pair of equations is directly equal to the CGMT pair
given in (1) and (2) if K = 1. We prove the CGMT version of this theorem
using a statistical physics proof using Gaussian interpolation as discussed in
section 2.5. We further make use of our new theorem to examine the asymptotic
behavior of vector-valued regression and regression with matrix convolution
and experimentally verify our results.
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Chapter 5

Concluding Remarks and
Future Directions

In this thesis, we have used comparison theorems and universality results to
study machine learning models in the asymptotic regime. That being the
regime where both the model parameters and the number of data points grow
infinitely, but at a finite ratio. We have shown that comparison theorems are
powerful tools for asymptotic analysis as they allow us to consider easier to
analyze proxy problems that share important statistics with the problems of
interest. We have extended the literature on comparison theorems by extending
the convex Gaussian min max theorem to both setups where the primary
problem has independent but not identically distributed rows and to setups
where features are shared. We have also considered random feature models,
both shallow and deep, and have proven that these models can be analyzed
through the same CGMT machinery by proving that they are asymptotically
equivalent to Gaussian problems, which share moments, i.e., universality.

5.1 Future Directions

A number of future directions exist for the present research. Firstly, we
can use the novel CGMT introduced in paper V to analyze a wide class of
models, including linear time series models. These models also involve sharing
weights between different instances of time, which can be captured using the
weight-sharing machinery in paper V.

Another important direction is the analysis of dynamics in the asymptotic
regime. While some results exist [43], full gradient descent dynamics, even
for simple models, are difficult to analyze. As far as the authors are aware,
no theoretical tools exist that can handle multiple discrete time steps of
gradient descent without introducing a fresh dataset at each step. Capturing
the full dynamics of training would allow for substantially better theoretical
understanding of the impact of initial conditions, order of introduced data
points (in the case of stochastic methods), and optimal hyperparameter values.
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Finally, the replica method, the CGMT, and approximate message passing
methods all seem to give identical results when applied to the same problem.
There should be a general theorem that proves the relationship between these
three methods. There has been some (unpublished) work proving an equivalence
between the replica and another CGMT generalization [44]–[46], which claims
to make the replica method rigorous. We are not aware of any similar results
between the CGMT and message passing methods.
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