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Neural Audio is a category of deep learning pipelines which output audio

signals directly, in real-time scenarios of action-sound interactions. In this work,

we examine how neural audio-based artificial intelligence, when embedded

in digital musical instruments (DMIs), shapes embodied musical interaction.

While DMIs have long struggled to match the physical immediacy of acoustic

instruments, neural audio methods can magnify this challenge, requiring data

collection, model training and deep theoretical knowledge that appear to push

musicians toward symbolic or conceptual modes of engagement. Paradoxically,

these same methods can also foster more embodied practices, by introducing

opaque yet expressive behaviors that free performers from rigid technical

models and encourage discovery through tactile, real-time experimentation.

Drawing on established perspectives in DMI embodiment literature, as well as

emerging neural-audio-focused e�orts within the community, we highlight two

seemingly conflicting aspects of these instruments: on one side, they inherit

many “disembodying” traits known fromDMIs; on the other, they open pathways

reminiscent of acoustic phenomenology and soma, potentially restoring the

close physical interplay often missed in digital performance.

KEYWORDS

neural audio, digital musical instruments, neural audio instruments, embodied

interaction, music performance, artificial intelligence, deep learning, latent space

1 Introduction

Physical, sensory and cognitive engagement are fundamental aspects of musical
instrument design, especially during the exploration of novel sound technologies. In the
literature, the term embodiment is often used to refer to these intertwined aspects of
the experience of music making. For example, the embodiment of a guitarist can be
expressed as the holistic experience of using hand movements (physical, bodily motion)
to press strings, feeling the instrument’s body and its vibrations (sensory experience), and
simultaneously interpreting chords and melodies (cognitive processes). And, clearly, the
design of the instrument itself has a key role in fostering such a nuanced experience.
The very concept of embodiment, though, goes beyond the domain of music and musical
instruments. Its roots can be found in cognitive psychology (Varela et al., 2017) and
philosophy (Merleau-Ponty et al., 2013), and its influence is at the base of theories that
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defined some of the most important paradigms in modern design
and human-computer interaction (e.g., Dourish, 2001; Kirsh, 2013;
Höök, 2018).

In the context of musical instrument design, there exist
several key factors that contribute to embodied musical interaction.
These include: affordances embedded in the design, including
physical structure (Keebler et al., 2014), dimensions (Mice and
McPherson, 2021), as well as hidden modalities of interaction
(Zappi and McPherson, 2018); extent (Caramiaux et al., 2015)
and familiarity (Essl and O’Modhrain, 2006) of the sensorimotor
experience leveraged by the instrument; emotional (Leman and
Maes, 2014) and cultural connection (Tragtenberg et al., 2024)
with the instrument and the music that it makes possible. The
primary engine for these and many other factors tends to be
the chosen design methodology and the specific rationales it puts
in the spotlight—e.g., soma design and the focus on sensation
and movement (Höök, 2018), human-computer interaction
entanglement and the mutual influence between technology,1

behaviors, culture and social norms (Morrison and McPherson,
2024). However, at a lower level it is often the technology that
enables, enhances or in some cases even hinders the targeted
embodied experiences.

In the case of acoustic-instrument design, “technology” refers
to craftspeople’s mastery of physical materials and their acoustic
affordances. As discussed by Magnusson (2009), “various solutions
are therefore introduced [by acoustic-instrument designers] to
adapt to or extend the scope of the human body with the
use of levers, keys and other mechanisms,” grounding design
in bodily experience through technology. When shifting to the
domain of digital musical instruments (DMIs), a different set
of technologies become available. Yet, many of the processes
that characterize traditional craftsmanship remain present and get
integrated with elements from physical computing and interaction
design (Jordà, 2005). In this context, the first technologies to
become fundamental vehicles of embodiment are sensors (Küssner
et al., 2014), multimodal feedback apparatuses (Höök et al., 2021;
Leonard et al., 2014) and highly responsive audio interaction
platforms (McPherson, 2017), all harnessed differently by various
theoretical frameworks to realize and assess embodied musical
interaction.

As new technologies emerge, the horizons of instrument
design expand, extending the possibilities for embodied musical
interaction. Without a doubt, recent advancements in artificial
intelligence (AI) are playing an increasingly significant role in
how we craft DMIs and how we conceptualize our epistemological
and phenomenological relationships with them. The most evident
case involves musical interaction with intelligent musical agents
(Tatar, 2019; Erdem, 2022). However, there is a growing interest
in reimagining the embodiment of instruments that incorporate
AI and machine learning algorithms for control and synthesis
purposes, yet are not autonomous (e.g., Fiebrink and Sonami, 2020;
Pelinski et al., 2022).

1 Throughout this article we use the term “technology” in its broad,

classical sense, combining techne (craft knowledge, tacit know-how) with

the material artifacts that manifest that knowledge.

This work belongs to the latter research stream.2 Over the last
five years, we have focused our efforts on integrating deep learning
technologies into DMI design for sound synthesis and processing—
we refer to such devices as neural audio DMIs. Initially, our
exploration was technically driven, centered on building new
neural-audio models and deploying them on real-time platforms.
Then, through both successes and failures, this hands-on work
gradually expanded into a broader inquiry. Our deep dive into
the domain of neural audio DMIs has nurtured new perspectives
on how to use this evolving technology, with a specific focus on
embodiment in relation to the better-studied domain of “canonical”
DMIs (i.e., those that utilize non-neural audio technologies and
have been explored in terms of their embodied interactions). In
this work, we aim to share these perspectives, which we believe
will be valuable for designing future DMIs that incorporate neural
audio synthesis and processing, as well as for advancing the general
development of this technology.

We firmly believe that now is the right time to initiate this
discussion. Neural audio DMIs are beginning to emerge from the
more abstract research challenges of machine learning, statistics
and mathematics; these fields collectively provide much of the
knowledge base and tools needed to develop neural models
that understand, generate and manipulate audio, fostering the
exploration of innovative musical paradigms. As of today, only a
handful of fully fledged neural audio DMIs have been presented
in the literature (e.g., Privato et al., 2023; Diaz et al., 2023) and
companies and creators are just starting to invest in neural audio
plug-ins and applications that can be used for musical performance
(see, for example, Neutone,3 Combobulator,4 or Guitar Rig5),
rather than solely for generating new sounds and novel production
workflows. Yet, the number of research environments and tools
(Caillon and Esling, 2021; Tatar et al., 2023), bespoke systems
and experiments (Nercessian et al., 2023; Shepardson et al., 2024)
that explore and extend the potential of neural audio is quite
impressive (Hayes et al., 2024), especially considering how young
this technology is (Hoopes et al., 2024). This extensive body of
work tends to focus on output quality, computational efficiency
and other technical metrics that lay the foundation for sonic and
musical interaction in the digital domain. However, to define a
musical instrument and its embodied playing experience, it is
necessary to move beyond technical specifications and functional
goals, and aim for a deep understanding of the epistemological and
phenomenological aspects of the musician-instrument relationship
(McMillan andMorreale, 2023), especially when this relationship is
mediated by groundbreaking technology.

The rest of this article is organized as follows. The next
section delves deeper into the context of DMI embodiment,

2 Along these lines, throughout this article we reserve the word

“instrument” for a physical or virtual device whose sound is primarily enacted

by a human performer. Systems deliberately designed for a high degree

of autonomy (often described as interactive music systems or agents) are

mentioned only for context and lie outside the present focus.

3 https://neutone.ai/fx

4 https://datamindaudio.ai/

5 https://www.native-instruments.com/en/products/komplete/guitar/

guitar-rig-7-pro/
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surveying canonical instruments and laying out pertinent theories
of embodied musical interaction. Section 3 turns to musical AI,
tracing how algorithmic and autonomous approaches connect
to mid-twentieth-century conceptions of “organized sound.” We
then define neural audio instruments in Section 4, explaining
their key architectures and real-time potentials. Building on
that, Section 5 examines how these instruments can transform
yet also inherit embodiment challenges known from canonical
DMIs. Finally, Section 6 consolidates our insights and offers
practical recommendations for designers seeking to integrate
neural audio into DMIs in ways that support strong embodiment
and creative performance.

2 DMI embodiment

Embodiment can be strong when playing DMIs. We believe
it is important to emphasize this perspective at the outset to
better contextualize the subsequent sections of this article within
the literature on DMIs and neural audio. Numerous studies have
discussed how the gestural and perceptual experiences involved
in playing DMIs can foster a physical and emotional connection
with the instrument, achieved through diverse combinations of
underlying technologies and mapping strategies (Malloch and
Wanderley, 2017), as well as design metaphors (Fels, 2004). To fully
grasp the extent of embodiment described in these works, we argue
that it is useful to analyze them through the lens of flow.

The concept of flow, introduced by Csikszentmihalyi (1975)
as “the holistic sensation that people feel when they act with total
involvement,” provides a valuable framework for understanding
the embodied experience of playing DMIs. In other words,
flow is a mental state characterized by complete absorption and
effortless engagement, leading to optimal performance. Since its
introduction, flow has been studied in various contexts, with
music-making being among the most prominent (Wrigley and
Emmerson, 2013; Chirico et al., 2015; Habe et al., 2019). Crucially,
the phenomenon of flow is frequently experienced when playing
DMIs, as these interactions inherently engage both physical and
cognitive dimensions (Fels, 2004; Zamborlin, 2015; O’Modhrain,
2011; Nick, 2007). Nash’s doctoral research Nash (2011) explored
how composers and performers attain flow with music production
software by analyzing more than 1,000 creative sessions. Post-task
surveys, adapted from the Dispositional Flow Scale-2 (Jackson and
Eklund, 2002), revealed recurrent episodes of deep focus, loss of
self-consciousness and a distorted sense of time. Complementing
these quantitative findings, Reed et al. (2022) focused on performer
experiences with more idiosyncratic DMIs. Through micro-
phenomenological interviews, the authors gathered data showing
how, under common live performance conditions, performers
of augmented or custom-built instruments entered similarly
effortless states. Anecdotal evidence from practitioners echoes these
academic results; the electronic artist Tim Exile, for instance,
openly discussed the importance of flow during his creative
practice6 and even built a custom instrument—called the Flow

Machine—explicitly to sustain that state throughout performance.

6 https://timexile.medium.com/endlesss-is-beginning-13628c5030e7

Although flow and embodiment are distinct concepts, they are
closely interconnected in the context of playing DMIs. Statements
like that of Fels (2004), who observed that “an embodied interface
allows expression to flow,” suggest a strong relationship between the
two. Expanding on this connection, Armstrong (2006) described
the experience of flow as “a heightened sense of embodiment.”
Numerous accounts in the DMI literature reinforce the idea that
musical flow is deeply dependent on the embodiment of the
instrument. Therefore, the frequent attainment of flow in DMI
performance affirms that strong embodiment is inherent to playing
these instruments.

Building on this intrinsic link between flow and strong
embodiment in DMI performance, we can explore how
embodiment is central to experiencing the fundamental
phenomenological aspects of flow: effortlessness, absorption
and skill development through challenge. For instance, Fels
(2004) argues that to enable expressive musical performance
without cognitive strain, the DMI—or “interface,” as Fels calls
it—must become an extension of the player’s body. From an
enactive perspective, as embraced by Armstrong and later analyzed
by Magnusson (2009), this embodiment can reach additional
phenomenological modes. The DMI can become a medium for
a hermeneutic relationship with the world, facilitating deeper
understanding and interaction. Embodiment can even extend into
epistemological modes. When the DMI acts as “a conveyor of
knowledge used by an extended mind [...] that affords cognitive
offloading,” as described by Magnusson (2009), it enables what
he refers to as virtual embodiment. This concept highlights how
instruments can mediate and augment cognitive processes, further
intertwining embodiment with the flow experience.

Discussing the player’s absorption into musical action during
flow, Armstrong (2006) describes a feeling that is “directly
lived and experienced.” This resonates with more recent DMI
research that studies embodiment through the lens of Shusterman’s
somaesthetics (Shusterman, 2008). Specifically, both Tapparo and
Zappi (2022) and Martinez Avila et al. (2020) present examples
of DMI designs that enhance the player’s bodily awareness

of the physical processes involved in music making. In these
designs, the actions that drive sound production/control are
deautomatized, allowing the player to become fully immersed
in their interaction with the DMI. As Martinez Avila et al.
(2020) remark, this immersion facilitates the instrument becoming
an extension of the body, echoing Fels’ observations and
underscoring how the fundamentals of flow and embodiment
are intertwined.

Achieving a state of flow also requires the musician to
possess above-average skills and to confront meaningful challenges
(Csikszentmihalyi, 1975; Wrigley and Emmerson, 2013). The
development of skills is a key part of the process of DMI
embodiment7—encompassing both intellectual and perceptual-
motor abilities (Gurevich and Fyans, 2011). Oore (2005) and
Cannon and Favilla (2012) describe skill development as a journey
involving a gradual shift from focusing on technical aspects of

7 In the case of acoustic instruments, the development of highly refined

skills is also the path to virtuosity. Yet, interestingly, Morreale et al. (2018)

found that with DMIs virtuosity is not always the musician’s primary aim.
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the interface to cultivating a deeper understanding of the DMI’s
expressive potential. Thus, embodiment is not immediate but
unfolds progressively as the performer gains proficiency, reflecting
the necessity of mastering skills before reaching a state of musical
flow. Furthermore, Fels (2004) adds that “as a player continues
to practice, the requirement for embodiment [...] need[s] to
change to keep the player’s interest.” This ongoing need for viable
challenges—which Wessel and Wright (2002) argue is sustainable
only if the instrument lacks a performance ceiling—has been
emphasized by numerous musicians and scholars studying DMI
design and embodied interaction (e.g., Jordà, 2004; McDermott
et al., 2013; McMillan and Morreale, 2023). Collectively, these
accounts highlight how flow and its prerequisites depend on
embodiment, and how the strength of embodiment makes flow
possible when playing DMIs.

A significant strand of DMI research centers on gestures

(Tanaka, 2010; Jensenius, 2014), here meaning the performer’s
bodily actions that are algorithmically mapped to sound synthesis
(Hunt and Wanderley, 2002). Rich gestural interaction is often
credited with fostering flow (Moral-Bofill et al., 2022) and a strong
sense of embodiment (Jensenius and Wanderley, 2010). Yet, in
the context of DMIs, such experiences are not confined to overt
movement and limited gestures do not necessarily equate to a lack
of flow and of embodiment. Indeed, a wide variety of DMIs exist
that do not heavily rely on gestures and are described byMagnusson
(2009) as being “essentially of a symbolic nature.” Nevertheless,
these instruments are frequently associated with states of flow
during performance. As Green (2011) notes, symbolic mediations,
while not unique to digital systems, do not inherently disrupt
embodied flow. An indicative example is live coding, a digitally
mediated musical practice extensively studied for the specific
cognitive load that musicians manage during performance (Nick,
2007; Sayer, 2016). In live coding, gestures and movements are
less than special; they appear mundane, stemming from everyday
computer interactions rather than traditional musical expressions
(Gurevich and Fyans, 2011). Nonetheless, we argue that within the
context of DMI performances, there is perhaps no clearer example
of being in the flow than an expert live coder during a show. Anyone
with even cursory programming experience can immediately sense
the laser-focus required to juggle algorithms, syntax and groove in
front of a cheering crowd. One stray bracket and the whole party
crashes!

This observation is supported by numerous studies in the
literature that have systematically examined both the skills and
music-making experiences of expert live coders (e.g., Brown and
Sorensen, 2009; Roberts and Wakefield, 2018; Sayer, 2016), as
well as research focused specifically on audience perceptions of
performers’ cognitive states. For instance, Burland and McLean
(2016) investigated live coding performances in contemporary
contexts, such as algoraves and stage setups featuring large-scale
projections of the performer’s screen. Their findings highlight
frequent audience perceptions that performers enter what appears
to be a flow state, with the inherent unpredictability and risks of
real-time coding amplifying the audience’s impression of coders
being deeply “in the zone.” Similarly, Roberts andWakefield (2018)
describe instances where performers become so deeply immersed
in the creative act that they seem to transcend self-consciousness,

fully absorbed in the “authentic moments of decision” that unfold
live on stage.

This points to a profound yet distinct type of embodiment,
one still grounded in gestures but of a different nature, connecting
physical actions with cognitive and intellectual engagement.
Building on Sayer (2016), live coders translate fleeting musical
ideas into executable code through rapid keystrokes, so minimal
physical actions instantly reshape both the program and the
resulting sound. Such technology-mediated actions fit squarely
within the expanded gesture taxonomy proposed by Jensenius
andWanderley (2010), which explicitly accommodates interactions
whose primary locus of expression is not direct sound production,
but the real-time control and reconfiguration of symbolic materials.
Viewed through this lens, embodiment is no longer restricted
to conspicuous instrumental motions; it also encompasses the
performer’s engagement with abstract representations and their
immediate sonic consequences. This perspective extends beyond
live coding to a wide range of DMIs in which embedded algorithms
are coupled with idiomatic physical interaction. User studies on
novel instruments—for instance, those by Gurevich and Fyans
(2011) and Zappi and McPherson (2018)—show that metrics such
as playing technique, appropriation and audience perception can
still reveal rich layers of embodied experience, even when the
performer’s actions are partly symbolic or computational in nature.

2.1 The limits of digital embodiment

Despite the strong sense of embodiment that can arise
when playing DMIs, performers and scholars still often describe
these instruments as less embodied than traditional acoustic
and electric instruments. Here “less embodied” refers to an
experiential imbalance. As outlined earlier in this section,
many DMI designs foreground symbolic or cognitive work
while offering comparatively little continuous bodily/sensory
engagement. Because embodiment, in our definition (see Section
1), stems from the intertwining of physical, sensory and
cognitive engagement, any design that privileges one pole at the
expense of the others risks being perceived as less holistic. The
next paragraphs analyze specific design contingencies—including
control–synthesis split, resolution bottlenecks, haptic absence
and symbolic mappings—that the literature links to this skewed
experience.

Hunt and Wanderley (2002) highlight that “digital musical
instruments are unique in that the control surface is often
completely separate from the sound synthesis engine, enabling
arbitrary mappings between performer actions and sound
synthesis parameters.” While this separation offers unprecedented
possibilities, it can diminish the immediacy and physicality
associated with traditional instruments, where action and sound
are inherently linked through the instrument’s material structure.
In other words, DMI design can lead to more abstract, less
embodied interactions, ultimately detaching the performer from
the physical instrument (Bang and Fdili Alaoui, 2023; Magnusson,
2009). As Gurevich (2014) observes, “the separation of human
action from the sound-producing mechanism limits the potential
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for skilled sensorimotor engagement,” reinforcing the notion
that DMI design innately impacts the performer’s embodied
relationship with the instrument. Furthermore, Gurevich adds that
“the blame [for the loss of sensorimotor skill] is assigned to the
very nature of digital systems but also to their designers,” for an
effortless interaction is often regarded—or used to be regarded—as
a “cardinal virtue” of computers (Ryan, 1991; McDermott et al.,
2013).

The absence of haptic feedback in many DMIs further
exacerbates this issue. Research indicates that the lack of tactile
sensations–such as vibrations or pressure–can significantly impact
the user’s experience and engagement with the instrument
(O’Modhrain, 2001; Young et al., 2018). For instance, when users
interact with intangible DMIs that require mid-air gestures, they
often report a feeling of disconnection from the sound being
produced; this is due to the sound not emanating from a physical
object that can be touched or manipulated (de Lima Costa et al.,
2020) and to the action–sound timing often feeling off (Dahl,
2014). This contrasts sharply with acoustic instruments, where
the physicality of the instrument provides immediate sensory
feedback, reinforcing the embodied experience of music-making.
And, beyond immediacy, subtlety plays a crucial pedagogical and
expressive role in the acoustic domain. Musicians learn to shape
sound through fine motor adjustments guided by tactile and
kinesthetic feedback, developing a heightened awareness of the
body–instrument coupling over time (O’Modhrain and Gillespie,
2018; Saitis et al., 2018). These phenomenological nuances are
often muted when DMIs are built around specific technologies,
including: virtual/mixed reality (Mäki-Patola et al., 2005; Serafin
et al., 2016), three-dimensional user interfaces (Berthaut et al.,
2011) and non-invasive input modalities (Knapp and Lusted,
1990; Ivanyi et al., 2023). In such cases, the absence of direct
tactile references and the reliance on mediated interactions can
heighten the sense of abstraction and constrain the modalities of
embodiment.

The relatively limited embodiment in DMIs can also be
attributed to the constraints imposed by their control technologies.
As Moore (1988) highlights, the finite resolution and timing
inaccuracies of protocols like MIDI introduce a bottleneck in
communication between the performer and the instrument,
effectively narrowing the range of expressive possibilities. Although
one might assume that advancements in control, sensor and
transmission technologies over the past three decades have
resolved these issues, recent literature continues to highlight
open challenges in both control (Zappi and McPherson, 2014;
Jack et al., 2017b) and temporal resolution (McPherson et al.,
2016). These persistent limitations are not merely technical
but fundamentally affect the phenomenological experience of
interacting with DMIs, as performers must often adjust their
actions to accommodate the system’s restricted input bandwidth.
Unlike traditional instruments, which rely on a continuous, finely
timed action–sound coupling—that is, a direct link between the
performer’s gesture (control action) and the resulting sound—
DMIs must often thread their interaction through these digital
bottlenecks (Gurevich, 2014), leading to a more mediated and less
intuitive experience.

The consequence of these contingencies is that users may
find themselves engaging with DMIs in a more cognitive and

less instinctive manner. This shift increases reliance on learned
behaviors and mental models rather than on intuition and
tacit knowledge (Magnusson, 2009). Even through the lens
of disciplines and philosophies such as embodied cognition
and somaesthetics—which tend to emphasize embodiment as
a pervasive aspect of human experience—it is acknowledged
that a reduction in instinctive engagement and tacit knowledge
leads to a corresponding decrease in the depth of embodiment.
An interesting and conspicuous marker of this diminished
sense of embodiment in comparison to traditional instruments
is posture. The expression of musical embodiment during
performance is significantly influenced by posture, which acts
as a conduit for channeling musical ideas through the body
and the instrument (Godøy, 2017). Paradigms like movement-
based wearable instruments or body-centered design approaches
intentionally support more natural posture and individualized
ergonomics when using digital technologies (Cavdir and Dahl,
2022; Kirby, 2023), and several DMI musicians are committed
to researching the “ideal” setup (for example, Tim Exile and
his Flow Machine, mentioned earlier). Nonetheless, it is not
uncommon to see DMI performances characterized by awkward
and uncomfortable setups, with musicians bending over tables that
are too low, too small or otherwise ill-suited to accommodate the
components of the instrument and facilitate seamless interaction.
Compounding this issue is the lack of substantial research aimed
at defining appropriate posture for the unique and idiosyncratic
nature of DMIs. This gap exists both at the stage of instrument
design (Martinez Avila et al., 2023; Mice and McPherson, 2021)
and within the realm of performance practice (Oore, 2005), further
limiting the potential for an embodied connection between the
performer and DMIs.

2.2 Fostering DMI embodiment

In the literature, researchers and designers have suggested
numerous ways to address the challenges posed by the limited
embodiment of DMIs and to improve performers’ embodied
connections with these instruments. Their contributions provide
critical insights into how we can bridge the gap between performers
and digital instruments while maintaining the flexibility and
innovation that DMIs afford.

Integrating haptic feedback remains crucial for addressing
the detachment performers often experience. For instance, Jack
et al. (2017a) demonstrates how vibrotactile feedback can sustain
the performer’s connection to the instrument by directly linking
gestural input with dynamic sonic responses. Building on this,
self-sensing haptic actuators (Davison et al., 2024) offer real-
time feedback through collocated sensing and actuation, further
enhancing the musician’s sensory connection by coupling physical
interaction with nuanced control. Additionally, focusing on
materiality and physicality–such as through interactive surfaces
(Bang and Fdili Alaoui, 2023) or even passive haptics (Çamcı
and Granzow, 2019; Lindeman et al., 1999)–can counteract the
abstraction introduced by mid-air or virtual interaction paradigms,
ensuring that instruments feel like natural extensions of the body.
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As highlighted by Wessel and Wright (2002) over two decades
ago, overcoming the control bottleneck requires designers to
move beyond traditional protocols like MIDI and adopt systems
capable of higher resolution and tighter temporal synchronization.
Isochronous control-audio streams (Neupert and Wegener, 2019)
offer a compelling solution by ensuring real-time synchronization
between control data and audio streams, enabling more precise and
responsive interactions. Real-time processing platforms like Bela
(McPherson, 2017) build on this foundation, combining ultra-low
latency with scalable, nuanced sensor input (Jack et al., 2017b) in an
embedded form factor. By leveraging these advancements, DMIs
can sustain the intricate relationship between gesture and sound
that is central to traditional instruments, fostering deeper musical
embodiment and expressive potential.

Shifting the paradigm from effortless interaction to a
more deliberate, skill-based design ethos can further enhance
embodiment. As Gurevich (2014) argues, fostering skilled
sensorimotor engagement requires intentional design choices
that embrace complexity and resist oversimplification. Tools and
practices from Dalcroze eurhythmics (Bang and Fdili Alaoui, 2023)
and somaesthetics (Hayes, 2022; Tapparo and Zappi, 2022) can
inspire designs that prioritize embodied learning, ensuring that
DMIs cultivate, rather than diminish, the performer’s sensorimotor
skill and tacit knowledge.

3 A new frontier: musical AI

Neural audio instruments represent just one manifestation of a
broader and rapidly evolving area known as musical AI. While this
article eventually narrows in on neural audio instruments and their
unique implications for embodied musical interaction, it is useful
first to establish howmusical AI emerged, evolved and connected to
earlier traditions of generative music and algorithmic composition.
By clarifying its historical lineage and surveying existing literature,
we can better situate the novelty of neural audio within this diverse
landscape of computational musical systems.

3.1 From emergence to autonomy

Musical AI has gained significant visibility over the past two
decades (Ma et al., 2024; Carnovalini and Rodà, 2020; Briot and
Pachet, 2020; Tatar, 2019; Herremans et al., 2017), encompassing
diverse computational approaches for creating and manipulating
musical materials in autonomous or semi-autonomous contexts.
These approaches can draw on “good-old-fashioned AI” (Russell
and Norvig, 2010) (logic- and rule-based systems), statistical or
Markov models (Begleiter et al., 2004), evolutionary algorithms
(Sivanandam and Deepa, 2007), multi-agent systems (Wooldridge,
2009), or deep generative methods (Tomczak, 2022; Goodfellow
et al., 2016)—all supporting a variety of musical practices, from
symbolic composition to sound installations. Although these
methods differ in technological detail, they share a unifying vision
of using computational machinery to undertake tasks traditionally
reserved for human composers and performers.

Despite the recent proliferation of machine learning in music,
the idea of autonomous musical processes predates modern

computation by centuries (Fowler, 1967). Generative art, as
Galanter (2003) explains, involves an artist establishing rule sets
or procedures (ranging from natural language instructions to
mechanical devices) that operate with “some degree of autonomy,”
ultimately producing an artwork. Generative music builds on
this principle, applying algorithmic methods to assemble musical
material. In Algorithmic Composition, Nierhaus (2009) frames
“composing by means of formalizable methods,” suggesting
that a machine is not strictly required for such processes if
composers themselves employ if-and-then rules or other systematic
procedures. Over time, researchers have sought increasingly
sophisticated computational systems to automate or augment these
generative processes, crystallizing the subfield of musical AI.

Various reviews showcase the expanding methodologies and
applications in musical AI. Fernández Rodríguez and Vico Vela
(2013) offered a focused perspective by linking AI in music
to computational creativity, whereas Herremans et al. (2017)
proposed a functional conceptual framework that grounds musical
AI in more conventional music-theory. Tatar and Pasquier (2019)
surveyed 78 musical AI systems through a multi-agent lens
(Wooldridge, 2009), while Carnovalini and Rodà (2020) conducted
a meta-review of articles covering “algorithmic composition,”
“computational creativity” and related keywords. Meanwhile, Briot
and Pachet (2020) zeroed in on deep learning-driven systems
and Ma et al. (2024) examined the rise of large, multipurpose
or “foundation” models for musical tasks. Despite differing
emphases, ranging from symbolic composition to interactive sound
installations, these surveys underscore the interdisciplinary and
evolving character of the field, as well as its potential to challenge
preexisting boundaries in music technology.

3.2 20th century music, organized sound
and beyond

If musical AI explores how computational systems
autonomously generate or transform musical materials, the
question of what those materials can be was radically reimagined in
the mid-twentieth century. Composers like Luigi Russolo, Edgard
Varèse and Karlheinz Stockhausen set the stage for a conceptual
leap from tightly constrained musical resources to the notion that
any sound is musical material.

Luigi Russolo’s The Art of Noises (Russolo, 1913) stands out as
an early manifesto contending that the industrial noises of modern
cities constitute legitimate musical material. In a rapidly urbanizing
world, Russolo saw the roar of motors, machinery and the “eddying
of water and gas in metal pipes” not as mere background clamor,
but as potential compositional elements. His audacious call to
“substitute for the limited variety of timbres [in the orchestra] the
infinite variety of timbres in noises” signaled a major expansion
of the sonic palette, foreshadowing later electronic—and ultimately
computational–approaches.

Building on this expanded view of sonic material, Edgard
Varèse famously defined music as “organized sound” (Varèse and
Wen-chung, 1966). His essay, Liberation of Sound, repositions
the composer as a “worker in rhythms, frequencies, and
intensities,” challenging older assumptions hinged on emotional
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affect, harmony, or melody. By advocating all sound as potential
raw material, Varèse dismantled conventional boundaries of
musical “beauty,” embracing new forms of expression, including
early electronic music. This departure from restrictive definitions
resonates today in AI-driven systems that treat a vast array
of recorded or synthesized sounds as input for algorithmic
manipulation.

Following the notion of organized sound, the materiality of
sound has become a prominent thread in twentieth century sound
studies. Pierre Schaeffer’s notion of “reduced listening” (Schaeffer,
1964) proposed focusing on sound “as is,” without reference to its
other aspects—such as semantics—highlighting sonic materiality
and its potential musical qualities. R. Murray Schafer further
proposed a taxonomy of sound types (Schafer, 1977), which
propelled a research thread on categorizations of sound. Both
Schaeffer’s and Schafer’s proposals were critically analyzed later
in the twentieth century (Demers, 2010), enriching the different
research directions in sound studies.

Stockhausen (1972) further extended the notions of sound
materiality and organized sound by taking the discussion to the
complex relational dynamics among pitch, noise, timbre and
rhythm. In exploring electronic and tape music, Stockhausen
framed sound as existing in three-dimensional spaces, where
musical elements interact along multiple, often continuous,
axes. Later, the temporality of ever-shifting sound properties in
composition was further theorized through spectromorphology

(Smalley, 1997). Together, these new theoretical foundations that
emerged in the twentieth century exemplify how once-rigid
categories like pitch and noise can be understood as points along
a continuum—a principle that strongly resonates with modern
machine learning techniques, which situate sounds (or their
features) in high-dimensional latent spaces.

Collectively, these mid-century composers prompted a
profound shift. Rather than relying solely on discrete tones or
canonical instruments, they declared that musical organization
could derive from any sonic source. This “everything is fair game”
ethos naturally converges with the broad ambitions of musical
AI, wherein algorithms model, reshape, or generate a diversity of
timbres and textures. If Russolo ushered in industrial noise and
Varèse rebranded music as “organized sound,” machine learning
now operationalizes those ideas, providing computational means
to learn sonic relationships and to reorganize audio material at a
granular level. By tracing the evolution from Russolo’s manifesto
to Stockhausen’s multi-dimensional conception of sonic space,
we see how mid-twentieth-century theories paved the way for
an expansive musical canvas. Modern AI frameworks, including
neural audio, inherit these conceptual breakthroughs, but also
push them further by enabling new levels of autonomy in exploring
vast diversity of sounds. This lineage provides essential context for
understanding the rise of neural audio instruments, to which we
now turn.

4 Neural audio instruments

Building on mid-twentieth-century foundations, neural audio
instruments represent a pivotal evolution within musical AI.
While inheriting the experimental ethos of organized sound

and multidimensional sonic exploration, they advance it through
machine-learned representations designed for real-time interaction
in performance contexts. More specifically, we define neural audio
instruments as DMIs that embed neural network and deep learning
approaches capable of directly generating or transforming audio
signals, and enabling real-time action–sound mapping (Jensenius,
2022). Throughout this article, we use the terms neural audio and
neural audio models to refer to such technologies. In what follows,
we clarify their distinction from earlier or purely offline AI-driven
approaches and explain why they can enable a new class of DMIs.

4.1 Neural audio

When embedded in DMIs, neural audio models primarily
occupy the synthesis side of the design. This departs from earlier,
performance-oriented approaches such as interactive machine

learning (Fiebrink and Cook, 2010), where the model essentially
serves as a control conduit, mapping the performer’s control
inputs to parameters within an arbitrary synthesis engine (e.g.,
a frequency modulation engine, a sample bank). Those systems
employ classification or regression with very small datasets,
illustrating how gesture signals should affect synthesis (Fiebrink
and Sonami, 2020), thereby maintaining a clear separation between
the controlmodel and the synthesis algorithm.

By contrast, neural audio models learn directly from example
audio outputs, embedding within their architectures both the
parameters and the algorithms for sound generation. Some
rely entirely on neural-network layers (Wright et al., 2020),
while others partially integrate neural modules with conventional
digital signal processing (DSP) components (Hayes et al., 2024).
Here, training data consist of audio waveform samples or
higher-level perceptual representations (obtained via spectral
transformations like Fast Fourier Transform or Mel-Frequency
Cepstral Coefficient extraction), rather than symbolic or gestural
inputs. Indeed, entire audio signals can be used to drive the model
(Wright et al., 2020; Caillon and Esling, 2021), enabling direct
transformations of the incoming sound. In this way, our definition
of neural audio also diverges from approaches relying exclusively
on symbolic representations (like MIDI) to learn performer–
instrument relationships (e.g., Yang et al., 2019).

The result is a family of models that can learn to organize

or produce a broad spectrum of timbres and evolving perceptual
phenomena, embracing any and all sounds as legitimate musical
material—just as Russolo, Varèse and others once proposed.
To achieve this, however, these models frequently demand
larger training datasets, capturing enough variety of signals that
share the targeted acoustic traits (Caillon and Esling, 2021).
Furthemore, these models exhibit complex relationalities across
modalities. In the visual domain, for example, neural layers can
discover progressively higher-level features (e.g., object shape)
(Zeiler and Fergus, 2014). Likewise, analogous emergent behaviors
arise in the sound domain; Tatar et al. (2020) showed how a
Variational Autoencoder (VAE) arranged audio windows from the
same recording into nearby regions of latent space, effectively
representing sound objects as a continuous “path” in abstract sound
possibility spaces.
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Crucially, this analysis places neural audio beyond the role of
a mere “synthesis module” (like frequency modulation or additive
synthesis) within a DMI. Here, the cross-modality and higher-
level knowledge imprinted throughout the network manifest in
ways that extend beyond sound production. The layers tasked
with predicting the next audio sample or shaping the following
window are driven by deeper layers that continuously track the
historical context of the signal. These deeper layers steer the
synthesis process along connections and decisions that hint at
what meaningful control might look like, e.g., how the network’s
parameters could/should be modulated to trace a specific sound
object’s path. This semantic richness informs not only what sound
can be generated but also how it is produced. From this perspective,
neural audio instruments depart from the typical independence
between control and synthesis observed in canonical DMIs. This
stands in stark contrast to interactive machine learning, where
users can endlessly tweak mappings between control streams and
synthesis parameters, effectively pushing the design process to
treat these two elements as conceptually separate. By contrast,
leveraging neural audio models suggests a more unified DMI
design; one likely characterized by fewer but more intrinsic control
options, which are themselves guided by how the model behaves
and thus more conducive to an embodied sense of playing.
Moreover, this influence extends to feedback. The same learned
topologies that steer gesture–sound paths can guide tightly-coupled
haptic cues, echoing Cadoz’s ergodic ideal (Cadoz, 2009) and
its role in embodiment. And as models advance toward fully
multimodal training (audio-text-vision embeddings, cross-modal
VAEs, etc.), DMIs—already intrinsically multisensory—become an
ideal platform for embedding and exploring these richer feedback
possibilities.

At the same time, the requirement of enabling real-time action–
soundmapping, where physical gestures are immediately translated
into sonic feedback, raises significant practical constraints. Because
these architectures embed learnable synthesis algorithms, they
tend to be more computationally intensive than classification-
or mapping-oriented networks. Achieving minimal latency for
onstage performance thus often necessitates trading off maximal
audio fidelity or parameter granularity (Caillon and Esling, 2021).
Consequently, while large text-to-music or offline generative
models (e.g., Copet et al., 2024; Engel et al., 2019) may exhibit
powerful capabilities, they lack the instantaneous feedback loops
crucial for DMIs. Neural audio instruments, by contrast, strive
for latencies that preserve the tight coupling between performer’s
gestures and evolving sonic output, fulfilling not only the vision of
“organized sound,” but also the immediate, corporeal demands of
musical embodiment.

4.2 Key architectures and their suitability
for DMIs

Having established the conceptual underpinnings of neural
audio, we now shift to a more technical perspective on how
these models are built. The approaches described below reflect
distinct strategies for achieving real-time or near-real-time audio

generation or transformation, each with particular trade-offs and
implications for a performer’s action–sound mapping.

4.2.1 Sample-by-sample architectures
One early class of neural audio models outputs one audio

sample at a time via autoregressive techniques. A well-known
example is WaveNet (Oord et al., 2016a), which builds on
PixelCNN (Oord et al., 2016b) by stacking dilated causal
convolutions to capture long-range temporal dependencies.
ThoughWaveNet achieved remarkable fidelity–particularly in text-
to-speech applications (Oord et al., 2017)–its computational cost
poses a hurdle to real-time performance in DMIs. SampleRNN

(Mehri et al., 2016) similarly generates raw audio sample-by-
sample, employing a recurrent neural network trained directly on
amplitude values. The architecture can produce 8-bit outputs, as
popularized by the music group dadabots (Carr and Zukowski,
2018), who created infinite metal and jazz streams.

Despite these compelling use cases, achieving sufficiently
low-latency inference for stage performance remains an open
challenge, limiting widespread adoption of purely sample-level
synthesis in DMIs. Autoregressive deep learning approaches as in
WaveNET can produce audio sample-by-sample; however, their
computational load typically outstrips what conventional setups
can handle in real time at high audio rates. Conversely, sample-
based approaches have proven quite successful for audio processing
tasks, where the neural network modifies a continuous input signal
in place. Indeed, many virtual analog modeling systems leverage
sample-by-sample recurrent neural networks for effect emulation
(Wright et al., 2020; Hoopes et al., 2024), which can demand
fewer complexities than full-blown generative synthesis. In these
contexts, the networks primarily learn how to reshape or color the
incoming audio stream, requiring less overhead than predicting
entirely new waveforms from scratch—thus rendering real-time
usage more tractable.

4.2.2 Window or spectrogram-based models
A second category of neural audio systems operates at the

audio window (or spectrogram frame) level, trading sample-level
accuracy for computational efficiency. These methods generally
follow one of two approaches: directly generating audio windows
or producing magnitude spectrograms that are later converted
to audio through a vocoder. For example, RawAudioVAE (Tatar
et al., 2023) encodes short waveform segments (1,024 samples)
into a latent space using a VAE. This enables interpolation and
manipulation of embedded sonic features, supporting innovative
live sound design. RawAudioVAE runs ∼5,000× faster than
realtime on an NVIDIA RTX 3080-TI graphics card (laptop
version). While originally demonstrated in a live-coding context,
its low-latency output is suitable for a wider range of DMI designs.

Extending this concept to multimodal applications, Bisig and
Tatar (2021) developed RAMFEM, which couples a dance-pose
encoder with an adversarial VAE for raw audio generation. While
this proof-of-concept successfully maps movement trajectories to
evolving waveforms, issues with audio fidelity and real-time speed
persisted at the time of publication.
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Beyond these direct methods, many systems generate
magnitude spectrograms (via transforms such as the Short-Time
Fourier Transform, the Mel-Frequency Cepstral Transform or the
Constant-Q Transform) and then reconstruct the audio signal
using vocoders like Griffin-Lim (Griffin and Lim, 1984) orMelGAN

(Kumar et al., 2019). Such two-stage designs allow for conditioning
on pitch, loudness, and other descriptors (e.g., Hantrakul et al.,
2019; Colonel and Keene, 2020), striking a pragmatic balance
between expressive control and manageable computation.

4.2.3 Di�erentiable DSP and sound object
generation

A third class integrates DSP blocks within trainable neural
networks, focusing on timbral or “sound object” generation
while retaining some interpretability. Differentiable DSP (Engel
et al., 2020) exemplifies this approach by inserting differentiable
oscillators, filters and reverberation modules into an end-to-end
pipeline, supporting explicit parameter control (pitch, loudness)
and timbral transfer across instruments. While differentiable DSP
architectures can yield high-quality audio, their control layers often
remain somewhat limited in scope (e.g., single parameters for pitch
and loudness), constraining them in creative settings.

Torchsynth (Turian et al., 2021) similarly merges classic
subtractive or additive synthesis modules (oscillators, envelopes,
filters) with a graphics card-compatible framework. Its strength
lies in generating large datasets for machine learning research
or effect design. However, requiring a predefined audio duration
before generating sound, it is less suited to fully interactive, real-
time engagements; yet still suitable for interactions where the initial
sound action is prolonged through processes within the timescale
of sound objects, as in the case of a snare hit. Nevertheless, these
hybrid neural-DSP pipelines offer a promising avenue for bridging
the gap between the richly learned abstractions of deep networks
and the user familiarity of standard DSP metaphors.

4.2.4 Larger-scale generators
Finally, various deep learning pipelines focus on larger

musical timescales, generating entire melodies, beats, or short
compositions. Examples include MusicGen (Copet et al., 2024),
AudioGen (Kreuk et al., 2023), and MusicLM (Agostinelli et al.,
2023), which synthesize musical phrases from textual prompts. As
introduced in Section 4.1, these models can produce convincing
musical snippets or stylistic transformations, yet they typically
lack the real-time feedback loop crucial for DMI performance.
Their operational latencies or reliance on batch prompts preclude
the immediate, gestural interactions that define neural audio
instruments.

4.3 Latent spaces and the “organized
sound” paradigm

As discussed in Section 3.2, a recurring theme in mid-
twentieth-century musical thought was the notion that all sounds
could be valid compositional material. Composers like Russolo

and Varèse envisioned a vast sonic continuum, treating music
as “organized sound” rather than discrete pitches or canonical
timbres. Neural audio approaches, particularly those involving
latent spaces, directly extend this legacy by embedding audio data
in continuous manifolds. In doing so, they can learn to represent
sonic relationships at scale, uncovering structures that mirror and
even surpass human perceptual categorizations.

From a technical standpoint, a latent space is a lower-
dimensional abstraction learned by models such as VAEs,
normalizing flows, or adversarial autoencoders. Rather than relying
on hand-engineered parameters or strict symbolic mappings,
these networks learn a continuous manifold where acoustically
or perceptually similar sounds cluster naturally. In systems like
RawAudioVAE (Tatar et al., 2023), short audio windows are
encoded into latent vectors, potentially giving rise to emergent
high-level features (like “timbre” or “noise content”) as a
consequence of the model’s data organization. Yet, latent spaces
capture more than isolated similarities; they also reveal the
dynamic continuity of sound over time. For instance, as we
reported in Section 4.1, consecutive audio windows from the same
track tend to form a continuous path in latent space, reflecting
transitions that define overall sonic structures (Tatar et al.,
2020). Analogous dynamics appear in timbral-transfer systems,
where magnitude spectrograms are mapped into latent spaces to
discover stylistic similarities (Esling et al., 2018) or to facilitate
continuous cross-domain manipulations (Huang et al., 2019). This
continuous paths reinforce the notion ofmeaningful control that we
previously outlined. Performers navigating these latent trajectories
are effectively engaging with the model’s internal organization of
sound. In other words, the latent space becomes an active interface,
one that draws the performer to traverse continuous paths that
align with the model’s learned notion of “what belongs together”
sonically. This deeper understanding of latent spaces elucidates
how neural audio systems not only generate sound, but also can
serve as a unified approach to real-time, expressive performance.

5 Embodiment of neural audio
instruments

In analyzing the embodiment of neural audio instruments, it is
vital to recognize a longstanding tradition in electronic and digital
music wherein the body of the sound is effectively severed from
its material origins. Early theories in electronic music embraced
sound “as is,” detached from the objects and events that originally
produced it, a legacy that continues to shape our modern view of
digital audio data and synthesis. Below, we revisit this historical
disassociation, culminating in a renewed understanding of how
such perspectives may resonate with or hinder the embodied ethos
of neural audio.

Digital audio data and its synthesis are often disassociated
from their originating bodies. While in audio synthesis the origin
of sound is the electrical currents in analog or digital circuitry,
audio recordings have origins in objects, events or processes in
real environments. Yet, the audio data, its standards and properties
have minimal to no connection to those origins. We think that
the causes of disassociation between digital sound data and its
originating body lie within the convenience of data storage or
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processing in digital and computational means. Tracking the
origins of digital audio requires more logistics and labor, given
that the affordances of current audio formats and standards do not
provide traceability. We argue that this disassociation has resulted
in the disembodiment of digital audio and synthesis, as well as
digital musical instruments.

In our view, the lack of association between audio in
computational domains and embodiment is linked to electronic
music history and the phenomenology of sound in early electronic
music. Those theories suggested approaching sound without its
critical, semantic, functional or connotative properties, and even
proposed technological means to invisibilize the origins of a sound.
Schaeffer (1964) introduced the concept of “objet sonore” or
“reduced listening,” where the sound is taken purely as sound,
without connections to its originating body. Later, John Cage also
commented in an interview (Video et al., 2003):

When I talk about music, it finally comes to people’s minds

that I’m talking about sound that doesn’t mean anything. That is

not inner, but it is just outer. And they say that, these people who

understand that finally say, ‘you mean it’s just sounds?’, thinking

that for something to just be a sound is to be useless, whereas I

love sounds just as they are. And I have no need for them to be

anything more than what they are.

Hence, the phenomenology of sound in early electronic music
focused on the materiality of sound disassociated from its body
or societal context, connecting to Husserl’s notion of époché

to separate perception from external and cultural factors (Ihde,
2012; Demers, 2010). Later, post-phenomenological criticisms of
Schaeffer’s “reduced listening” noted that sound exists within a
historical and cultural context (Demers, 2010), and listening is
more thanmere “reduced listening” spanning reflective, denotative,
and experiential modes (Tuuri and Eerola, 2012). Specifically, Kane
(2007) states two criticisms: “(1) By relying on the sound object
to lend an ontological grounding to musical experience, Schaeffer
perpetuates an ahistorical view about the nature of musical material
[...] (2) Schaeffer maintains an essentialist position on the nature
of technology. Rather than re-think the acousmatic reduction in
its specific relationship to modern technology, Schaeffer conceives
of it as the re-activation of a telos, an originary experience that is
presupposed and retained by our practices, yet always available to
be re-experienced in its fullness.”

In today’s audio technologies, we still observe reminiscences
of the isolated materiality of sound proposed by both Schaeffer
and Cage. Sound is contextualized in computational domains
as sound data without its connections to material origins or
societal contexts.8 Audio data is recorded merely as a signal,
with no connection to a body. For example, Cotton et al. (2024)
presented case scenarios from voice performance and creative
speech practices where the disassociation between the recorded
voice and its originating body resulted in a loss of control, power
and ownership.

Against this backdrop, bridging body and sound in the
context of neural audio entails more than just implementing

8 An exception to this is the metadata recorded in certain musical audio

data, driven partly by copyright or archival needs.

code or collecting data. It may require systematic ways to record
and synchronize physical gestures with sonic events, thereby
reintroducing “materiality” into neural audio’s design and training
processes. Ultimately, embodied neural audio may demand new
frameworks that capture, imitate, extend, augment or even reinvent
the real-world body–sound relationship through computational
means. The insights of Schaeffer, Cage and subsequent critics
remind us that musical embodiment can be easily severed in a
digital paradigm. Before addressing the specific limitations and
opportunities of neural audio instruments (Sections 5.1 and 5.2), or
analyzing them from deeper design and philosophical perspectives
(Sections 5.3 and 5.4), it is crucial to recognize how historical
practices continue to shape the very possibility of an embodied,
body-aware approach to digital sound.

5.1 Limitations

Neural audio instruments share many of the same embodiment
challenges as canonical DMIs, while also introducing additional
complexities that can further constrain embodied interaction.
One fundamental issue concerns their symbolic design. Much like
canonical DMIs, the performer’s actions are routed through high-
level abstractions, but in the case of neural audio instruments
these abstractions are considerably more pronounced. The design
process involves multiple layers, including model architecture,
data curation and training pipelines, each of which can embed
a distinct musical or cultural theory into the instrument. In
this sense, neural audio instruments realize an even stronger
form of what Magnusson (2009) calls “the encapsulation of a
specific musical outlook,” since their core behaviors derive from
symbolic computational structures and dataset-driven knowledge.
As Magnusson presciently noted, “[p]articularly in intelligent
instruments we find that the expressive design and the determinant
of performance experience is to be located at the symbolic
computational level,” suggesting that AI-based models would
inherit and possibly amplify these symbolic constraints. Data
curation, in particular, carries strong practical implications,
especially when designers must gather the large datasets needed to
train neural models. While readily available databases on platforms
such as Kaggle9 and Zenodo10 can speed up the creation of neural
audio instruments, they may also embed cultural norms, biases and
stylistic assumptions that limit the performer’s scope for personal
expression. As noted by Jourdan and Caramiaux (2023), some
practitioners resist this “script of technology” and the normative
tendencies of big data (see also Cotton and Tatar, 2024), instead
favoring smaller, custom datasets that foster a more personal—
and potentially more embodied—experience. However, doing so
can require substantial time and effort to gather and prepare
training materials, prolonging the design process and intensifying
the overall challenges of instrument development.

A second challenge derives from the control bottleneck

(see Section 2), which tends to be even more pronounced
in neural audio instruments than in canonical DMIs. Neural

9 https://www.kaggle.com/

10 https://zenodo.org/
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models often require larger computational buffers and heavier
CPU footprints (Hoopes et al., 2024; Caillon and Esling, 2021),
making them less amenable to real-time, low-latency deployment.
Consequently, designers might limit the number of mappable
parameters to maintain stable performance, thus narrowing
the sensorimotor bandwidth between performer and instrument
(Privato et al., 2024). Unsurprisingly, some practitioners prefer
to avoid the heavy deep learning architectures that power neural
audio DMIs. Instead, they embed simpler machine learning
algorithms (e.g., regression models) on the control side of the
instrument rather than in synthesis, preserving the liveliness
and spontaneity crucial for musical expression (Jourdan and
Caramiaux, 2023). Magnusson (2009) stresses that “human actions
are displaced into representation, thus establishing strata of
complexities and interdependencies that limit the agent”; in neural
audio instruments, these strata are deepened by learning-based
architectures, latent spaces and opaque model states. The result can
be a heightened sense of detachment, especially when performers
cannot easily discern which parameters are being controlled or how
changes in control gestures translate to audible outcomes. While
symbolic interfaces need not disrupt flow in principle (Section 2),
in practice the limited resolution and the unpredictable jitter of AI-
driven systems often lead to the disruption in flow that Magnusson
attributes to symbolic music systems.

Building on these phenomenological complexities, neural
architectures can also exacerbate the black box effect, posing not
only a challenge to the performer’s sense of embodiment but also
raising epistemological concerns. In most DMIs, the software and
hardware processes that define the relationship between action
and sound are inaccessible to the performer, who consequently
perceives the instrument as an immutable, sealed technology (i.e.,
a black box) (McPherson and Zappi, 2015). Even when the effect
of musical actions is obvious from the outside, this inaccessibility
makes it significantly harder to explore, tweak and appropriate the
instrument. The hurdle becomes evenmore prominent when DMIs
embed neural audio and latent spaces, where the model’s learned
sound organization and latent vector ontology further obscure
how actions translate to audible results, often leading to distrust
or frustration (Jourdan and Caramiaux, 2023). Because neural
models often operate on hidden layers of learned representations,
it can be challenging for musicians to develop a deep, embodied
understanding of the instrument’s behavior. While we argue
that the lack of explainability is not always a hindrance to
embodiment (see next subsection), this additional mediating layer
can complicate performance and prevent the instrument from
being fully internalized as an extension of the musician’s body and
intentions.

Importantly, we argue that disruptions in flow and embodiment
are not merely a consequence of enhanced symbolic design, large-
scale machine-learning techniques, or high computational demand;
they are also attributable to inadequate control paradigms. In
other words, much like canonical DMIs, a significant part of
the responsibility lies with designers and the choices they make
(Gurevich, 2014). In the case of neural audio instruments, the
continuous mode switches between the DMI and the “terminus
of our activities” (i.e., the musical outcome) described by
Magnusson (2009) risk being exacerbated by mismatches between

the performer’s intention and the system’s learned behavior.
These mismatches—deriving by both the training process and
the underlying technology—can break concentration and scatter
the performer’s focus, the precise antithesis of fluid, embodied
engagement. While certain specificities of neural audio may require
unique countermeasures (more on this in the next section), this
scenario underscores a heightened need for designers to experiment
with mapping and real-time control solutions that align with the
vast body of research on DMI embodiment (see Section 2.2).
Otherwise, the risk is to amplify the very problems of abstraction
and detachment that have historically affected DMIs in comparison
to acoustic instruments.

5.2 Opportunities

Although inheriting design paradigms from canonical DMIs,
neural audio instruments can foster an embodiment reminiscent
of acoustic instruments. This is primarily due to the lack of

explainability in their inner workings and the fundamentally
different nature of their design process. Unlike imperative audio
coding, where developers must possess a “solid theoretical
knowledge of sound” (Magnusson, 2009), trained neural audio
networks often include knowledge that the designers themselves
may not fully grasp—mirroring how the crafting of acoustic
instruments may not necessitate complete scientific mastery of
the equations and models governing the physics of materials
and vibrations. This built-in opacity can, paradoxically, encourage
non-theoretical knowledge rooted in “discovery, exploration, and
refinement,” reinforcing embodiment through trial and error
(Magnusson, 2009). In line with this, neural audio instruments
lack the prescribed schematics and instruction manuals that
typically guide the use of analog or digital electronic instruments.
While technical documentation may exist, there is no immutable
description of latent spaces or straightforward interpretation of
learned parameters (Tatar et al., 2020; Privato et al., 2024),
reinforcing the parallel with acoustic instruments and the process
of gradually discovering their quirks and their sonic affordances.

This relative independence from explicit design theory is
magnified by the often larger gap between designer and performer
in neural audio contexts. While canonical DMIs commonly involve
overlapping roles or close collaboration (Morreale et al., 2018),
many neural audio models are now created by AI specialists and
only later appropriated by musicians (Chowdhury, 2021; Jourdan
and Caramiaux, 2023), whose expertise leans more toward hands-
on artistic practice than toward scientific or technical knowledge
of the model’s architecture. This division of labor can spare
neural audio practitioners from the tension between conceptual
design and embodied performance that DMI musicians must
often reconcile in their practice (Magnusson, 2009). Rather than
contending with every layer of code that formalizes the relationship
between model architecture, datasets and behavior at inference
time, these performers can learn neural audio instruments in

situ, coaxing out unexpected sonic behaviors through embodied
experimentation, much as acoustic musicians internalize the tactile
features of their instruments. And in the context of this type of
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exploration, the lines that divide intentional affordances, hidden
modes of interaction and constraints may become increasingly
blurred, inevitably shaping how distinctive performance styles and
personal playing techniques take form (Zappi and McPherson,
2014). In other words, the complex and often opaque interplay
of model architecture and data may hinder performers’ ability to
discern explicitly designed behaviors from emerging ones, creating
a sense of ambiguity that can encourage discovery and physical
appropriation (Masu et al., 2016). And the familiar feeling of
playing a vastly appropriated instrument is quite likely to serve as a
catalyst for embodied interaction.

A further consequence of this larger gap between designers
and performers emerges once the neural model has been trained.
While musicians can engage in in-depth exploration of a trained
network, it is far more difficult to go back and refine its behavior
or control interface than it is in most canonical DMIs. In the
latter, revising mappings between synthesis and control (and
feedback too) is often an integral part of an instrument’s ongoing
exploration and practice, rather than a task restricted to the
initial design. Caramiaux et al. (2014) emphasize that postponing
certain design choices to performers can be essential, “allowing
them to interactively implement their own metaphors and control
strategies.” This fluid approach to mapping even led Laetitia
Sonami to declare during her ICMC 2024 keynote that “the
mapping is the instrument” (Sonami, 2024).

Beyond mapping, neural audio instruments complicate the
whole concept of fluid or iterative design. Introducing a new
conditioning parameter may demand a complete update of the
model architecture, a fresh dataset and a second (often time-
consuming) training cycle. Practitioners liken this limitation to
working with analog electronic instruments—design possibilities
may be broad, but once committed to a particular configuration,
reversing course can prove infeasible. The computational burden
can be daunting as well. Recent advances in deep learning often
require resources beyond a single artist’s reach (Jourdan and
Caramiaux, 2023) and as Sonami noted during her keynote, “it
takes three weeks; it’s so frustrating,” or “I could not [train and
test] [...] on my computer,” leaving creators feeling as though they
possess “powerful tools that we cannot use.” While fine-tuning or
transfer learning might mitigate these hurdles, many practitioners
(Sonami included) remain reluctant to spend hours recording new
datasets or re-engineering architectures.

In this sense, instrument-making in neural audio contexts
begins to resemble acoustic instrument-making, like luthiery.
Luthiers rarely deviate drastically from a starting design, since
significant material changes may kill the very resonance they
aim to preserve. Similarly, major revisions to a trained network
or a neural audio architecture can undermine carefully tuned
behaviors, forcing one effectively to rebuild the instrument
from scratch. In canonical DMIs, by contrast, large changes
beyond “safe” remappings are typically easier to implement—
adding filters or output channels, swapping synthesis techniques
and so on. As a result, musicians working with neural audio
instruments are often driven to explore the instrument as-

is, identifying and appropriating its innate affordances rather
than perpetually retooling its internal structure. This exploratory
mindset can encourage a path to embodiment uninhibited by
theoretical knowledge of model design, again mirroring the

organic processes of acoustic instrument practice. Nevertheless,
the constraints described so far need not entirely stifle the
impulse to reimagine and appropriate the instrument. Rather,
they can channel it in ways reminiscent of physically preparing a
piano, as when musicians introduce external interventions (e.g.,
added materials or tangible scores, as shown by Privato et al.,
2024) that do not alter a model’s core, but instead reshape the
instrument’s expressive scope without revolutionizing its inner
structure and mechanisms.

The same long retraining cycle that makes radical redesigns
impractical also imposes a fruitful form of slowness that is directly
aligned with recent perspectives in human-computer interaction
(Odom, 2024). Because neural-audio runs can occupy anything
from half a day to several weeks, design exploration and aesthetic
experiments unfold far more slowly than in non-autonomous
software, where code changes are heard at once. This enforced
pace compels designers to engage with the technology reflectively,
rather than through rapid modifications based on trial and
error. Such slowness in neural audio development emphasizes
the role of artistic experimentation and, in particular, of critical
listening (Demers, 2010; Tuuri and Eerola, 2012). While loss curves
and other metrics offer some guidance, the sonic qualities of a
trained model matter most in a musical setting and should be
judged through careful human or machine listening. Designers
therefore cycle between audition, small dataset or hyper-parameter
tweaks and another long training run, learning the instrument’s
behavior in situ through sound, rather than via rapid code
edits. This rhythm restores listening to the center of instrument
making and, by anchoring exploration in the aural domain,
promises to reinforce the performer’s embodied connection to the
emerging tool.

5.3 Where design meets philosophy

A more interdisciplinary analysis of neural audio instruments
reveals subtler and sometimes less straightforward aspects of
embodiment, emerging from the intersection of design, human-
computer interaction and philosophy. Unlike many established
music technologies that are largely taken for granted, neural
audio systems frequently undergo heightened scrutiny. As Laetitia
Sonami reflected during her ICMC 2024 keynote, “can’t [the
neural audio model] create something new, something great?
[...] It sounds like a failed rendition of the original result.”
A similar skepticism can be found among other artists and
practitioners (Jourdan and Caramiaux, 2023), suggesting that the
concretisation (Latour, 1987) or widespread acceptance of neural
audio tools is not yet in full swing. In other words, despite
the rapid ascent of machine learning in industry, academia and
art, neural audio has yet to be seamlessly blackboxed11 into a
standardized practice. Two converging factors appear to underlie
this provisional status: first, the technology is still maturing and
has not yet attained the simplicity or reliability necessary for broad,

11 Not to be confused with the “black box e�ect” in DMIs, where the design

is opaque to the performer. Here, “blackboxing” refers to Latour’s concept of

scientific or technological acceptance.
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frictionless adoption; and second, the artistic realm is inherently
more critical, where creators often ask whether a tool truly expands
the expressive palette or merely replicates existing paradigms,
even when the general audience is fully convinced of the tool’s
quality/effectiveness. In turn, this ambivalence can constrain full-
bodied immersion; it is indeed unclear how deeply performers can
embody an instrument whose output they distrust or regard as not
quite “there” yet.

A distinct layer of insight emerges when examining what
Magnusson (2009) calls the hermeneutic quality of digital
instruments. Neural audio instruments, like other DMIs, exist
as a “medium for a hermeneutic relation,” but their reliance on
training data means that performers are not only interpreting the
instrument. They are also, at some stage, teaching it to interpret and
modify the world. Once and if purposefully trained, the instrument
externalizes a large portion of the musician’s aesthetics, extending
both their mind and their body. Musicians then find themselves
operating “in sync” with a device that exhibits unpredictable,
nonlinear behaviors akin to acoustic instruments, yet in a higher-
level, learned domain. This dynamic resonates with Sonami’s
discussion of “unpredictable” machine learning, where a broad
training set can produce large, unexpected movements in “timbre
space,” whereas a narrower set yields more stable oscillations.
Such flexibility allows the performer to scale or recalibrate the
“predictability index” (Fiebrink and Sonami, 2020), offering novel
opportunities for real-time musical adaptation and go beyond
hermeneutics.

From a soma perspective, this peculiar extension of human
musical capabilities through neural audio instruments disrupts
traditional dualisms between the performer’s physical self and the
surrounding material environment. In the language of Höök et al.
(2021), a symbiosis emerges in which human and machine take
turns exerting control over the musical process. Although the
model now takes on part of the performer’s creative burden (in
some sort of cognitive delegation), continuous bodily engagement
remains essential for guiding the instrument’s responses in
real time. Moreover, the machine is not completely cognitively
independent either, inasmuch as the musician’s aesthetic choices
and artistic strategies have already been “taught” to the model
through training data, imbuing the instrument with a partial
manifestation of human intent. By integrating the unpredictability
and learned capacities of AI into the musician’s sensorimotor
loop, these systems can foster an unprecedented form of integrated
embodiment that transcends simple augmentation (Hu et al., 2017),
weaving mind, body and machine into one evolving musical agent.
This vision contrasts with Magnusson, who describes a post-

human intentionality emerging in interactions with instruments
that exhibit agency [e.g., feedback systems (Magnusson et al.,
2022), AI-driven DMIs]. Drawing on Ihde’s concept of alterity

(Ihde, 1990), Magnusson argues that the AI instrument represents
an “otherness,” i.e., something that “is not an extension of us
or our thinking” (Magnusson, 2023). In contrast, our framework
leans toward what we call a trans-human intentionality, manifested
through integrated embodiment with neural audio technologies.
Rather than emphasizing the instrument as an autonomous
other, we envision a co-evolving partnership beyond physical and
cognitive dualisms.

5.4 Musical agency

Since the outset of this article, we have emphasized that our
interpretation of neural audio departs from the concept of a
musical agent. The design of neural audio models embedded in
DMIs, as discussed in Section 4.1, does not primarily address the
challenges of creating an improvising collaborator that actively
responds to a musician’s performance. Rather, we have framed
neural audio architectures as an advanced generation of sound-
producing modules that can be controlled in real time, shaping
an instrumental relationship between system and performer. Yet,
because these networks inherently encode control semantics (e.g.,
latent spaces, learned representations), they also steer and inspire
the performer’s agency in ways canonical DMI modules generally
do not.

Nevertheless, it is not uncommon for players to experience
neural audio models in agent-like terms. For instance, Laetitia
Sonami, reflecting on her music-making experiences with neural
audio instruments at the 2024 ICMC keynote (Sonami, 2024),
remarked: “I feel like having a conversation,” while other
accounts offer equally direct expressions of agency (Erdem, 2022).
Rather than being contradictory, these sentiments point to a
deeper interpretive framework wherein partially unpredictable,
learned behaviors elicit a sense of autonomy or co-performance.
Drawing on Moore (2024), several contingencies can foster a
performer’s perception of agency, many of which can resonate
with neural audio: (i) analog contingency, where a musician
cannot reliably replicate an instrument’s sonic output; (ii)
improvisational contingency, in which the system’s unpredictable
responses prompt spontaneous, adaptive playing; and (iii) time-

varying contingency, whereby mid- and large-scale consistency
coexists with momentary surprises. Additionally, Moore notes that
agency may emerge whenever system complexity foils the user’s
ability to track every parameter—precisely the kind of “black box”
situation often posed by learned parameters and latent spaces in
neural audio.

An apparently corollary detail, latency, also shapes whether
performers interpret the instrument as an agent. Lengthy response
times can make the system feel more like a collaborator with its
own timeframe than a responsive tool. Anecdotal and documented
experiences from musicians12 underscore that excessive latency
can foster the impression of the instrument acting on its own,
rather than simply reacting to the performer’s commands. Similar
remarks by Sonami in her keynote emphasize how “repetition” and
“echo” cycles lead to disjointed interactions that some interpret as
otherness or an agent-like presence (Magnusson, 2023).

However, Moore also notes that true collaborative agents
are typically intended and perceived as agential from the outset.
If a neural audio system’s unexpected output is primarily
seen as an error or glitch—something designers strive to
eliminate, rather than an intentional creative deviation—the
relationship aligns less with agency and more with the constraints

12 inSonic 2020: syntheses Festival, 12 December 2020, Karlsruhe,

Germany. Recording available at https://www.youtube.com/watch?v=

sooNxK6oQ4c.
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and idiosyncrasies of an instrument. Indeed, current neural
audio research often focuses on improving predictability,
responsiveness and quality (Shier et al., 2024), reinforcing the
view that these models, while sometimes interpreted as having
their own “will,” are ultimately created to be instrumental to
interactive design.

Finally, Moore (2024) also observes that many practitioners
link a system’s intelligence directly to the “perception or attribution
of agency.” From this perspective, the question of how “intelligent”
neural audio models truly are remains ambiguous. Some accounts
of intelligence, particularly in artificial contexts, prioritize learning
as the core indicator of cognition, providing a more favorable
framing for neural audio. However, if we adopt the situated view
articulated by Suchman (1987), intelligence emerges through
ongoing, context-sensitive adaptation. In neural audio models,
this adaptability remains largely confined to the training phase,
“freezing” network parameters before performance. Consequently,
there is minimal scope for the instrument to dynamically respond
to environmental changes. Indeed, even the presence of genuine
cognition itself may be questioned (Erdem, 2022), since the model
lacks both a sense of environment and a mechanism to continually
refine its actions in situ. In a situated perspective on intelligence, the
agent’s cognition emerges from a dynamic interplay between bodily
engagement, sensorimotor feedback and an evolving environment
(Suchman, 1987). By contrast, AI models’ (including both neural
audio models and musical agents) frozen parameters leave little
room for adaptive re-learning, or context-sensitive adaptation.
Discarding the training–inference dichotomy and enabling
continuous learning during performance could, in principle,
ground a more fully embodied or agentic neural audio practice,
with the model actively sensing its environment and reshaping
its internal representations in real time. For now, however,
whether one perceives these instruments as “intelligent” or merely
“instrumental” often depends on lived experience, rather than any
universal criterion.

6 Conclusion

In this article, we set out to examine how the concept of
musical embodiment intersects with the emerging domain of
neural audio instrument design. We began by contextualizing
embodiment through literature on traditional and acoustic
instruments, and then extended the focus to DMIs. Against this
backdrop, we introduced the idea of neural audio instruments
within a wider landscape of AI-driven music technologies,
discussing both their mid-twentieth-century aesthetic roots
and the various neural architectures that underpin them. These
explorations provided a foundation for understanding their
potential within embodied musical practices. From there, we
considered how such instruments might be embodied in practice.
We highlighted the ways in which they inherit the limitations of
DMIs, yet also open up novel possibilities thanks to their unique
technological paradigms. By integrating perspectives from design,
human-computer interaction and philosophy, we highlighted both
the potential stumbling blocks and surprising opportunities

for creating deeply expressive musical encounters with
AI-driven instruments.

Throughout this analysis, we encountered apparent
contradictions. For example, on one hand, neural audio
instruments often challenge performers by resisting traditional
approaches to remapping or modifying inner workings; their
opaque architectures and learned representations can be difficult
to grasp or adapt. On the other hand, this very opacity can
liberate musicians from technological pre-conceptions or a
strictly hermeneutic mindset, allowing them to engage with the
instrument through tacit exploration rather than forming a rigid
theoretical model. For designers, the realization of this and similar
contradictions might seem daunting; they underscore how every
nuanced design decision (and not just those tied to technical
feasibility) can reverberate through the musician’s subjective,
embodied relationship with this specific manifestation of musical
AI. Still, in the spirit of Gurevich (2014), who concluded his
own challenging assessment of skill in DMIs with tempered
optimism, our intention “is not to say that all hope is lost.” As
our discussion emphasizes, new design initiatives continue to
emerge at the intersection of technology, music, science and
philosophy. Together with the growing ecosystem of neural audio
toolkits and creative communities, such endeavors offer promising,
even disruptive paradigms for future instrument makers willing
to embrace complexity and experiment with the aesthetics and
affordances of AI.

Along these lines, we would like to conclude with five practical
considerations on how to design neural audio instruments that
come from what discussed so far and are aimed at fostering
a strong sense of embodiment. We hope such guidelines will
support designers that today are at the forefront of this exciting yet
challenging endeavor, by encouraging them to create instruments
that empower deeply musical and profoundly human experiences
in partnership with learning-based technologies.

0. Stand on the shoulders of giants. All the core insights from
the DMI literature (see Section 2) remain relevant—and perhaps
even more critical—when designing neural audio instruments.
Challenges like the control bottleneck and the symbolic nature of
action-to-sound can become more pronounced under AI-driven
conditions, so established guidance on fostering embodiment in
DMIs still applies here as a vital starting point!

1. Search for new modes of interaction. As Magnusson
(2009) notes, the behaviors and “materials” of any instrument
strongly condition howmusicians interact with it. Neural networks,
however, may exhibit properties not easily paralleled in earlier
instruments. Hence, novel paradigms, such as directly “traversing”
multi-dimensional latent spaces, might offer fresh avenues for
mapping movement and cognition to sonic outcomes, potentially
unlocking more intuitive or embodied interfaces than one might
initially assume.

2. Challenge dualities. Somaesthetics and phenomenology
already question dualities like mind–body and body–environment
(Höök et al., 2021) and future work on neural audio may similarly
challenge a strict training–inference split (Section 5.4). Moreover,
a pressing and practical concern for DMIs lies in the traditional
control–synthesis divide and the predicate of mapping. We do
not suggest abandoning mapping altogether; exploration of how
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gesture connects to sound is a valuable design tool. However, we
advocate a holistic design perspective where sound and gesture
are conceived as a unified entity from the outset (Caramiaux
et al., 2014), rather than as two separate “containers” later bound
by mapping. Once this integrated foundation has been laid,
the technological challenges of AI, neural networks, data and
training can be addressed without losing an inherently embodied
connection between motion and sonic outcome. This approach
paves the way for more inventive metaphors and interaction
techniques that surpass mere iterative adjustments to input and
output streams.

3. Embrace inexplicability (with a grain of salt). While
research on explainable AI is undoubtedly worthwhile, non-
explainability can play a significant role in the use and design of
neural audio instruments. A flute player, for instance, need not
fully grasp the acoustic physics behind overtone production to
exploit them masterfully. Likewise, performers and even designers
of neural audio systems may choose to focus on musical outcomes

rather than dissecting every underlying process. Indeed, not
all instrument designs are “predicated on the application of
scientific knowledge” (Green, 2011) and a certain measure of
“unknowing” can inspire extraordinary results. By positioning
neural audio synthesis at the intersection of scientific modeling
and pure intuition, designers can open pathways to creative
strategies unattainable through rational design alone. This notion
also resonates with broader human-computer interaction discourse
on the creative power of ignorance (Grammenos, 2014) (ranging
from lack of preconceptions, to true ignorance), where “if
you already know where you are going, you are not going
someplace new.”

4. Make AI inconspicuous. When the AI is not intended to
act as a distinct musical agent, making its presence explicit may be
unnecessary or even counterproductive. Instead, designers might
treat neural audio models as just another invisible part of the
instrument’s anatomy, like the string of a piano or the integrated
circuit of an analog synthesizer. By letting the model manifest
itself only through the embodiment of the musician’s actions and
intentions (the trans-human intentionality), the performer can
experience a unified instrument rather than a model endowed
with conspicuous (artificial) intelligence. Under the hood, such
intelligence may enable feats that would otherwise be impossible,
such as large-scale physical modeling (Diaz et al., 2023), multi-
stream data handling (Fiebrink and Sonami, 2020), or high-level
perceptual organization (Tatar et al., 2020). Yet performers need
not be confronted with “AI” per se. By rendering the model
seamlessly integral, designers promote an experience of playing an
instrument rather than interfacing with an AI model.
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