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Abstract

Autonomous Mobile Robots (AMRs) have emerged as a promising solution
for efficient material handling in internal logistics. However, deployment in
dynamic, human-shared environments presents major challenges. A core diffi-
culty lies in perception, which must reliably interpret complex scenes to enable
safe navigation. This thesis investigates camera-based perception for AMRs,
motivated by the availability, low cost, and versatility of cameras. A proposed
reference AMR system combining onboard and infrastructure-mounted sen-
sors provides the foundation for exploring key challenges. Two main problems
are addressed: the heavy demand for labeled training data in deep learning
pipelines, and the difficulty of fusing information from multiple cameras while
ensuring robustness to changes in sensor configuration.

To tackle these challenges, the thesis explores unsupervised domain adap-
tation (UDA) as a unifying strategy. UDA enables models to transfer knowl-
edge from labeled simulated datasets to unlabeled real-world data and to
adapt across different multi-camera setups without requiring additional la-
bels. Building on this principle, we propose methods that exploit reliable
pseudo-labels and data augmentation to mitigate domain shifts.

The methods are evaluated on benchmarks for semantic segmentation and
multi-view pedestrian detection, showing improved performance under do-
main shifts without extra labeled data. This enables perception systems to
rely more on simulated datasets and to adapt more readily to new scenar-
ios, reducing annotation costs. By advancing both monocular and multi-view
perception and proposing a reference architecture, this work supports scal-
able camera-based AMR systems and takes a step toward their widespread
deployment.

Keywords: Computer vision, unsupervised domain adaptation, autonomous
mobile robots, internal logistics.
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CHAPTER 1

Introduction

Automation is reshaping industries by increasing productivity, improving safety,
and reducing costs. Among its many applications, internal logistics stands
out as a critical area in manufacturing, where efficient material transport
directly affects production flow. In highly structured settings, Automated
Guided Vehicles (AGVs) have demonstrated the value of automated transport
by navigating along fixed routes. However, AGVs are less suited to dynamic
environments where obstacles, layouts, and human activity change frequently,
since they cannot readily adapt to new scenarios [1]. Variability is particularly
pronounced in many real-world factories. For example, at Volvo Trucks’ final
assembly plants, the production process must accommodate a broad range
of vehicle types—including battery-electric, internal combustion engine, and
hydrogen-powered trucks—all assembled on the same production line. This
diversity significantly increases system complexity and demands flexible mate-
rial handling. Consequently, automation remains challenging, reinforcing the
industry’s reliance on human workers.

Driven by the need for more flexible material handling, Autonomous Mobile
Robots (AMRs) have emerged as a promising solution [1]. Unlike AGVs,
AMRs rely on onboard sensing and decentralized decision-making to navigate
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freely in the environment, dynamically avoiding obstacles and collisions. To
operate efficiently, they must perform three fundamental tasks: (i) estimate
the state of the environment, (ii) localize themselves within it, and (iii) decide
on subsequent actions.

In human-shared environments, such as Volvo Trucks’ final assembly plants,
environment perception (task i) may involve distinguishing obstacles from
traversable areas, detecting and predicting the motion of dynamic agents
(e.g., pedestrians and forklifts), and interpreting contextual cues such as floor
markings or hand signals. Each of these tasks places heavy demands on the
robot’s vision system. Decision-making (task iii) requires sophisticated plan-
ning algorithms that become increasingly complex in unpredictable, dynamic
environments.

Current AMR systems typically employ 3D cameras or LiDAR [1] to capture
data about their surroundings, combined with powerful onboard computing to
process this information. Although advances in sensing and decision-making
algorithms enable these platforms to address the required tasks in principle,
significant challenges remain. Perception and localization often degrade in
highly dynamic environments with frequent changes and occlusions, while
reliance on computationally intensive algorithms increases platform cost and
complexity.

To advance the development of AMR systems, this thesis investigates how
an overarching infrastructure of ceiling-mounted cameras, on-premise cloud
servers, and wireless connectivity can be used to enhance system capabili-
ties. The focus is on environment perception that leverages both onboard and
infrastructure-mounted cameras. While onboard cameras excel at perceiving
the immediate surroundings of the AMRs, ceiling-mounted cameras can pro-
vide reliable perception in occluded or distant areas where onboard sensors
struggle. On-premise cloud computing enables more efficient processing of
computationally demanding algorithms, while wireless communication allows
AMRs to offload tasks to centralized resources. This reduces the hardware
requirements of the AMR platform, which can simplify its design and lower
costs.

While autonomous systems can employ a wide range of sensor modalities,
this thesis focuses exclusively on camera-based perception. This choice is
motivated by the widespread availability, low cost, and flexibility of RGB
cameras in industrial settings, as well as the rapid advancement of Machine



Learning (ML) methods tailored to visual input. The narrower scope enables
a deeper study of the algorithms, data challenges, and architectures specific
to camera-based systems.

The scope is further limited to instantaneous environment perception: de-
riving the 3D layout of the environment and current locations of dynamic
objects from a single set of camera frames. While tasks involving temporal
reasoning, such as object tracking and motion forecasting, are vital for sophis-
ticated decision making, they typically build on these per-frame detections.
Instantaneous perception thus forms the foundation of modern perception
pipelines.

State-of-the-art perception algorithms rely on deep learning models, such
as convolutional neural networks (CNNs) [2] and vision transformers (ViTs)
[3], and require large amounts of annotated training data. Unfortunately,
collecting and annotating real-world data is often time-consuming and costly
[4]. Therefore, heavy reliance on labeled datasets is a major bottleneck for
deploying advanced perception methods at scale. One research focus of this
thesis is to reduce this dependence through training strategies that effectively
leverage inexpensive simulated data and unlabeled real-world data. A central
challenge is how to bridge the domain gap between simulated and real-world
environments, while also learning robust representations from data that lack
labels.

In infrastructure-assisted AMR systems, perception can be based on a com-
bination of onboard and ceiling-mounted cameras. As the number of cameras
increases, overlapping fields of view provide richer information but also in-
troduce new algorithmic challenges. A central question becomes how to fuse
complementary viewpoints in a way that exploits the full potential of multi-
camera setups. This defines the second major focus of the thesis. Special
emphasis is placed on approaches that can generalize across different camera
configurations, since installations often vary in the number, placement, and
types of cameras.

In summary, the scientific contribution of this thesis lies in advancing camera-
based perception methods through data-efficient training and multi-camera
fusion, while the industrial contribution lies in supporting the deployment of
high-performing and cost-efficient AMR systems that address practical chal-
lenges in internal logistics.
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1.1 Research questions

This thesis work investigates the following research questions:

RQ 1 What are the key challenges in designing reliable camera-based per-
ception systems for AMRs in internal logistics?

This question maps out the technical challenges of building robust per-
ception systems for AMRs in dynamic, human-shared environments. Chap-
ter 2| grounds the discussion in an industrial use case at Volvo Trucks and
the infrastructure-based reference architecture for AMR systems presented in
Paper A. Chapter [3] continues by outlining fundamental methods in modern
MTL-based perception pipelines and highlights persistent challenges. Together,
these results provide a foundation for addressing the more focused questions
that follow.

RQ 2 How can ML models for camera-based perception be trained efficiently
without relying on large-scale labeled real-world datasets?

Given the high cost of manual data annotation, it is important to inves-
tigate methods that reduce the need for large labeled datasets. Chapter [
addresses this question by exploring techniques such as semi-supervised learn-
ing, self-supervised learning, and unsupervised domain adaptation to enable
training with fewer annotations while maintaining model performance. Both
Paper B and Paper C contribute with machine learning algorithms dedicated
to learning from unlabeled data.

RQ 3 How can ML methods be designed to leverage multiple cameras to
increase performance and robustness in AMR perception?

When using multiple cameras, either onboard the robot or mounted on in-
frastructure, a central challenge is how to align and integrate these diverse
inputs into a comprehensive and accurate understanding of the environment.
Chapter [5] investigates methods for multi-camera fusion, focusing on ML ap-
proaches that learn fusion strategies from data. Particular attention is given
to generalizability: since camera setups may vary between installations, it is
critical that the learned strategy transfers across different configurations. Pa-
per C addresses this problem through a case study on multi-camera pedestrian
detection with calibrated, static cameras.



1.2 Research approach

1.2 Research approach

This thesis follows a design-science research (DSR) methodology [5], which
focuses on creating and rigorously evaluating artifacts that address relevant
real-world problems. In DSR, research is structured around three intercon-
nected cycles: the relevance cycle, which engages with the application domain
to identify and refine problems; the rigor cycle, which draws on and con-
tributes to the existing scientific knowledge base; and the design cycle, which
iteratively builds and evaluates artifacts.
This thesis follows these principles through a three-step approach:

1. Identify practical challenges from real-world deployments (Relevance
Cycle) — In the industrial application at Volvo Trucks, AMR opera-
tions are observed in practice to pinpoint key perception challenges.
In Paper A, this process leads to the RAIL reference architecture for
infrastructure-based AMR systems, developed and tested within Volvo’s
assembly plant. Through literature review and user feedback, we iden-
tify the core perception challenges that frame RQ 1. These real-world
insights then inform the next phase of our work.

2. Develop methods through academic rigor (Design 4+ Rigor Cycles) —
Guided by the identified challenges and grounded in computer vision
and machine learning theory, we design and benchmark new perception
methods against state-of-the-art on publicly available datasets. Papers
B and C develop two machine-learning artifacts that directly address
RQ 2 and RQ 3. Through comprehensive quantitative evaluation, our
methods demonstrate practical utility by solving relevant problems more
efficiently than existing approaches. Through academic rigor, our work
also contributes to the existing scientific knowledge base.

3. Return to industrial context for evaluation (Relevance Cycle) — Based on
academic findings, the last phase of our approach, which has not yet been
executed, is to reapply our methods in the original industrial context.
The purpose is to assess whether laboratory improvements translate
to operational performance, ensuring both scientific contribution and
practical impact.

Our approach integrates both inductive and deductive reasoning. Induc-
tion arises from empirical observations: through quantitative evaluation on
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dedicated benchmarks we seek generalizable conclusions regarding each arti-
fact’s strengths and limitations. Deduction shapes our hypotheses, drawing on
established theory in computer vision and machine learning. Yet, in the com-
plex, data-driven terrain of modern machine learning, definitive mathematical
proofs are rare; instead, rigorous experimental validation becomes the pri-
mary arbiter of an artifact’s efficacy. By grounding our work in design-science
principles and substantiating our claims with reproducible quantitative exper-
iments and targeted qualitative feedback, this thesis advances state-of-the-art
methods for camera-based perception in internal-logistics AMR systems.

1.3 Outline

This thesis constitutes two parts. Part I presents an overview of the research,
and Part IT includes the appended papers. Part I is arranged in seven chapters.
Chapter [1] presents the introduction to this thesis. Chapter [2| presents the in-
dustrial use case and a reference architecture for AMR systems (Paper A).
Chapter [3] reviews computer vision fundamentals, focusing on modern ma-
chine learning methods and existing challenges. Chapter ] examines learning
from limited labeled data and presents a case study on semantic segmentation
(Paper B). Chapter [5| explores multi-camera perception with a case study on
pedestrian detection (Paper C). Chapter |§| summarizes the included papers.
Finally, Chapter [7] concludes the thesis by addressing the research questions,
highlighting contributions, and outlining future work.



CHAPTER 2

Infrastructure-based AMR System for
Automated Internal Logistics

This chapter begins with outlining the industrial demand for automated in-
ternal logistics. Thereafter, a reference architecture for AMR systems is de-
scribed, followed by an industrial implementation. The chapter concludes by
summarizing existing challenges in automating internal logistics.

2.1 Industrial demand

At Volvo Trucks’ final assembly plants, both battery-electric, internal com-
bustion engine, and hydrogen-powered trucks, are assembled on a single pro-
duction line. To assemble these trucks, around 25 000 unique parts are used.
Since the number of unique parts is so large, it is infeasible to store all parts
in direct connection to the assembly line. Instead, the process relies on a
complex internal logistics solution that enables just-in-time delivery of mate-
rials to the assembly line. Moreover, since the produced trucks are tailored to
the customer demands, the demand for different parts vary over time, which
requires flexibility in logistics.
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The current logistics situation is based mainly on manually driven vehicles,
such as forklifts and tugger trains. Autonomous Guided Vehicles (AGVs) are
also used for certain transportation, but since the AGVs follow fixed routes,
they can can only accommodate parts of the logistics flow. Specifically the part
that is expected to remain the same for a considerable time, since changing
the routes of the AGVs is cumbersome. Meanwhile, the human workforce is
tasked to deal with the flexible part of the logistics.

As an alternative to AGVs, Autonomous Mobile Robots (AMRs) have
emerged as a flexible solution for automated material transport, enabling free
navigation beyond fixed routes. When introduced into complex industrial
environments, these robots must navigate safely in traffic shared with man-
ually driven vehicles and pedestrians. To achieve this, AMRs typically rely
on onboard sensors to localize themselves and detect obstacles in real-time
for collision-free navigation [1|. However, onboard sensors have limited range
and are susceptible to occlusions, complicating perception in cluttered and
crowded industrial environments. Localization, which is often based on simul-
taneous localization and mapping (SLAM) [6], is also challenging in highly
dynamic environments where moving objects interfere with the mapping pro-
cess. Together, these issues reduce the robustness and reliability of AMR
systems, hindering their large-scale deployment in industry.

2.2 Reference architecture

To address the limitations of current AMR systems, Paper A proposes RAIL:
a Reference Architecture for Infrastructure-based AMR Systems in Internal
Logistics, designed to meet the demand for flexible material transport in dy-
namic factory environments. RAIL generalizes traditional onboard-only AMR
stacks by integrating infrastructure-mounted sensing and on-premise cloud
computing to enable collaborative perception, centralized coordination, and
scalable computational resources. Figure (from Paper A) illustrates the
high-level structure of RAIL.

Overall framework

In RAIL, AMRs and external sensors (e.g., ceiling-mounted cameras) transmit
sensor data or extracted features to an on-premise cloud, serving as a central

10
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Figure 2.1: RAIL: a Reference Architecture for Infrastructure-based AMR Systems
in Internal Logistics.

hub for global perception and fleet coordination. RAIL adopts a modular
software architecture that separates the system into dedicated perception and
decision-making components. These components, which are further described
in subsequent sections, are responsible for estimating the states of the robots
and the state of the environment, and deciding the next action for each robot.

Naturally, the action for each AMR is based on the current transportation
requests, which are provided from the factory’s internal logistics system. The
actions computed for each AMR, generally described by motion plans in the
form of trajectories, are communicated wirelessly to the fleet. These motion
plans are then executed on each AMR using a local trajectory tracker and
low-level controllers.

In case of infrastructure disruptions, such as intermittent connectivity or

11
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camera failure, the AMRs may also deploy onboard perception and planning
modules. To facilitate operations under these conditions, additional informa-
tion such as robot states or environment maps may also be shared between
the AMRs and the on-premise cloud. In Figure such information is simply
denoted by the shared state.

Perception

The responsibility of the perception system is divided into two key tasks:
estimating the state of the robots (localization) and estimating the state of
the environment (environment perception).

Localization for AMRs is traditionally achieved by SLAM algorithms based
on onboard sensor data, which aims to build a map of the environment and lo-
calize the robot within this map simultaneously. While universally applicable,
SLAM is difficult in dynamic environments. RAIL lends itself to complement-
ing SLAM with infrastructure based localization, using technologies such as
Ultra-Wideband (UWB) or ceiling-mounted cameras.

Environment perception is further divided into detection, tracking and mo-
tion prediction.

o Detection: identifies and classifies obstacles and agents (humans, fork-
lifts, tugger trains, pallets).

¢ Object tracking: associates detections over time to understand how
agents move in the environment, also enabling velocity estimation.

e Motion prediction: forecasts the future movement of dynamic agents, so
that the planning module can anticipate and avoid potential conflicts.

Each of these perception components can benefit from increased computa-
tional budget on the cloud and from varying data sources; both onboard the
robot and mounted on infrastructure.

Decision making

Based on the perception results, the decision-making module is designed to
provide a long-term route to the goal destination, make short-to-mid-term
decisions to progress towards the goal, and compute a feasible trajectory that
can be followed to achieve the desired behavior. This is managed by four

12
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modules: scheduling and routing, behavioral decision making, path planning,
and motion planning.

e Scheduling and routing: assigns incoming transport requests to available
AMRs and computes long-term routes in a graph-based abstraction of
the environment, respecting time windows and mitigating traffic conges-
tion.

¢ Behavioral decision making: chooses among discrete maneuvers (e.g.,
continue on path, yield, or overtake) based on local traffic context and
global objectives.

o Path planning: generates collision-free paths over a mid-term horizon
based on full-warehouse maps with static obstacles.

e Motion planning: converts a planned path into time-parameterized tra-
jectories, respecting both the robot’s dynamics and the movement of
other, nearby dynamic objects.

In RAIL, the entire fleet management and planning stack can be executed
on the on-premise cloud, which allows for global reasoning of the entire fleet
and environmental state. Again, since many of these sub-tasks are computa-
tionally demanding, they benefit from increased computational resources on
the cloud.

Onboard autonomy and fail-safe

While the architecture is designed to take full advantage of cloud-based com-
putations, it also accommodates onboard autonomy where needed. In certain
environments, onboard sensing may be the only viable option for obtaining
accurate, close-range information. Furthermore, onboard capabilities ensure
robustness to intermittent connectivity or infrastructure failure. Depending
on the specific application and reliability requirements, the onboard stack
may range from minimal functionality (e.g., line following) to fully developed
autonomous navigation.

Key benefits of RAIL

¢ Robustness: infrastructure sensors fill perception blind spots to facilitate
both localization of the robots and environment perception.

13
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e Scalability: on-premise cloud offers scalable computational resources
that are unconstrained by the AMR platform.

o Flexibility: the modular software design allows for updating parts of
the stack. Also, the software stack can evolve more or less indepen-
dently from the AMR hardware since the majority of the algorithms are
executed in the cloud.

e Cost efficiency: by offloading computationally demanding algorithms,
AMRs can be based on simpler hardware, reducing per-unit cost.

2.3 Industrial evaluation

Paper A presents and evaluates the system in the Volvo Trucks final assembly
plant in Tuve, Gothenburg. In the deployment, six robots were transporting
mufflers from a pre-assembly area to the assembly line. The 150-meter drive
involved navigating in a dynamic environment shared with AGVs, manually
operated vehicles and pedestrians, requiring the robots to respond to a chang-
ing traffic situation. The cycle time was around seven minutes and up to 130
transportation tasks were completed each day of operation. The remainder of
this section describes the implemented details and key takeaways from a User
Experience (UX) evaluation.

Overall framework

The architecture of this implementation is shown in Figure 2.2]

The core design principle was to minimize robot complexity and cost by
removing expensive onboard sensors and computational units. Localization,
perception, and planning capabilities were offloaded to a centralized infra-
structure consisting of a local computation cluster and ceiling-mounted cam-
eras. These cameras provide a top-down view of the entire robot-operating
area, supporting both robot localization and environmental perception.

The infrastructure cameras stream images over Ethernet to the on-premise
cloud. Based on these images, the localization module estimates the position
of all AMRs, and the perception module estimates the location of any obsta-
cles in the environment. Based on these results, alongside the transportation
requests and a predefined road network, the planning module assigns tasks and
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Figure 2.2: System architecture of the industrial implementation at Volvo.
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nominal paths to all robots. It then computes aim points for all AMRs that
are transmitted via Wi-Fi to the robots. The robots execute these plans using
low-level controllers and rely on motor odometry for feedback. For safety, an
onboard short-range RADAR and a bumper stop activate emergency braking.

Perception

Localization is based on detecting ArUco [7] markers attached to each AMR.
Detections from calibrated ceiling cameras are transformed into 3D coordi-
nates, which are fused with motor odometry onboard the robots to provide
accurate real-time localization. Environmental perception is achieved through
an occupancy map that discretizes the floor into 5 x 5 cm grid cells, each rep-
resenting the occupancy status. To this end, binary semantic segmentation
(pixel-wise classification of obstacle vs. free space) is first performed separately
for each camera to detect obstacles. To establish the correspondence between
image-view detections and the occupancy map, the resulting binary masks are
projected into a common coordinate frame using camera calibrations. Since
the cameras have partly overlapping field-of-view, the transformed masks are
then fused into a single occupancy map. Due to budget constraints, the system
does not include object tracking or motion prediction, which limits proactive
planning but still enables basic obstacle avoidance.

Decision making

The system supports a single transportation task: moving mufflers from a
pickup station to the assembly line and returning. Scheduling follows a simple
queue-based mechanism, where idle robots wait at the depot until dispatched.
Execution is managed by a finite-state machine (FSM) with states defined by
application-specific conditions (e.g., kitting status, path clearance, intersec-
tion priority). Path planning relies on the A-star algorithm operating over a
manually defined road network, while motion control uses a look-ahead point
and speed ramp profiles with heading regulation by feedback control. The
behavior is intentionally kept simple: robots stop or yield when encountering
obstacles rather than re-planning around them. Consequently, human workers
are expected to keep paths clear.
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Evaluation

Despite the simple design of the perception and decision-making modules, this
AMR system has been delivering material within the Volvo plant for almost a
year. Drawing from observations and interviews with factory personnel who
interact closely with the robots, several insights emerged.

The localization approach based on ceiling-mounted cameras combined with
fiducial markers on the robots deliver sufficient precision for industrial use.
Ceiling cameras also enable reliable obstacle detections far away from the
robots and in densely populated areas, where onboard sensors are susceptible
to occlusion. However, ceiling cameras alone cannot guarantee reliable per-
ception in the AMR’s immediate vicinity, since the robot may be far away
from all cameras. Additionally, object detection from a top-down perspective
can be challenging for small objects or items whose appearance blends with
the factory floor. These observations suggest that combining onboard and
infrastructure-based sensing is a promising direction.

From a behavioral standpoint, forklift drivers reported that the robots’
movements can be unpredictable at times, complicating navigation in an al-
ready busy and complex traffic environment. Furthermore, instances of traffic
deadlock caused by robots obstructing passage were observed. Resolving such
cases smoothly requires richer perception beyond a simple occupancy map,
including dynamic agent detection and trajectory forecasting, alongside more
advanced decision making capabilities. To complement this, clear communi-
cation channels between robots and humans, potentially through auditory or
visual signals, may also improve coordination and safety.

In summary, while the system demonstrates operational viability, these
findings highlight important areas for improvement in perception, behavioral
planning, and human-robot interaction to better support safe and efficient
co-existence in shared industrial environments.

2.4 Challenges in automating internal logistics

The limitations observed in the industrial evaluation reflect broader challenges
in deploying infrastructure-based AMR systems at scale. As identified in Pa-
per A, these challenges span the entire software stack, from localization and
perception to fleet management and planning. In addition to these core mod-
ules, there are system-level concerns such as network reliability, low-latency
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data processing in an on-premise cloud, seamless integration of heterogeneous
components, and rigorous safety, security, and privacy assurances. Many sub-
systems also depend on machine learning, which introduces further hurdles in
data collection, model training, validation, and deployment.

Focusing on the core technologies, perception remains fundamentally diffi-
cult: cameras and other sensors provide only partial, noisy observations, with
occlusions frequently obscuring critical information. The unpredictable behav-
ior of human workers and vehicles introduces additional uncertainty, making
it difficult to anticipate how the environment will evolve. Yet anticipating fu-
ture states is essential for proactive decision making. Fleet management and
planning add further complexity. At scale, task allocation and path planning
quickly become computationally demanding, while dynamic environments re-
quire continuous re-planning to accommodate unexpected events. Designing
planners that produce safe and efficient robot behavior in real time, under
uncertainty and limited compute budgets, remains a fundamental challenge.

While many aspects of infrastructure-based AMR systems warrant further
research, this thesis is dedicated to the perception system. As stated already
in Chapter [T} the scope is further limited to perceiving the current state of
the environment, excluding object tracking and motion prediction.
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CHAPTER 3

Camera-based Perception for Autonomous Mobile Robots

This chapter provides foundational knowledge in modern camera-based per-
ception. It begins with an overview of how deep learning methods, specifically
convolutional neural networks and vision transformers, are used to extract
meaningful information from images. These concepts are then applied to se-
mantic segmentation and object detection, two fundamental tasks in image
interpretation. The discussion then turns to the challenges of interpreting
3D environments using camera-only perception systems. The chapter con-
cludes with an outline of the machine learning life cycle and a summary of
key challenges in camera-based perception.

3.1 Deep neural networks for image processing

Computer vision concerns the automatic extraction of meaningful information
from visual data such as images or video. In autonomous systems, it enables
perception and interpretation of the environment, which are fundamental re-
quirements for navigation, interaction, and decision-making. Traditionally,
computer vision relied on algorithmic approaches in which domain experts
manually defined features and rules for interpreting visual input. Handcrafted
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descriptors such as SIFT [8], HOG [9], Gabor filters [10], and Local Binary
Patterns [11] were widely used. Although these methods achieved success
in specific tasks, they often struggled to generalize to new or unstructured
conditions [12].

The introduction of machine learning, and more recently deep learning, has
transformed the field of computer vision [13]. Instead of explicitly program-
ming rules for visual interpretation, models are trained directly on data and
learn to extract and combine features relevant to the task, such as detecting
pedestrians, identifying drivable surfaces, or recognizing hand gestures. This
data-driven approach generally outperforms traditional handcrafted pipelines
[13], provided the training data is representative. As a result, machine learn-
ing has become the dominant paradigm in modern perception systems.

Among the most influential deep learning models in computer vision are
Convolutional Neural Networks (CNNs) [2] and, more recently, Vision Trans-
formers (ViTs) [3]. These models are widely used in applications ranging
from object detection and image segmentation to action recognition and vi-
sual tracking.

Convolutional neural network

Unlike traditional fully connected neural networks, where every input is con-
nected to every neuron in the next layer, CNNs introduce the concept of local
connectivity and shared weights. This is achieved through the convolution
operation, in which small, trainable filters are applied to local regions of the
input image. These filters scan across the image to detect patterns such as
edges, textures, or corners. The key intuition is that combining local features
provides a strong basis for image recognition |14]. Moreover, because the
same filter is reused across all positions in the image, CNNs naturally achieve
translation invariance—the ability to recognize a feature regardless of where
it appears. This parameter sharing also dramatically reduces the number of
learnable weights compared to fully connected networks, making CNNs both
more efficient and less prone to overfitting [14].

LeNet [14] was among the first successful applications of CNNs in computer
vision, originally developed for handwritten digit recognition. By applying
multiple convolutional filters in parallel, forming a convolutional layer, they
extract rich feature maps from the image. By sequentially applying such con-
volutional layers, the network learns increasingly abstract and complex repre-
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8.1 Deep neural networks for image processing

sentations . Subsequent research established that the depth of the network
is critical for performance . With the advent of powerful GPUs and large-
scale datasets, deep CNNs such as AlexNet achieved breakthroughs in the
ImageNet challenge, marking a turning point for computer vision.

Wl owos - — ——

Low Lo 08 1 21 2 TG

[nput image

14 L= 512

AR w0 28w 012 P

Sl % A6 < 256 a1z

112w 112 = 128

ﬂ vomvolition + RelU7
J max pooling

fully conmected + Rel U7
224 % 224 % 6 . '

Figure 3.1: Illustration of the VGG16 architecture where each block represents
the output of a convolutional, max pooling, or fully connected, layer.
The numbers below each block describe the spatial dimension and the
number of the channels of the produced feature map. The illustration
is taken from .

In addition to convolutional layers, modern CNNs include non-linear acti-
vation functions (e.g., ReLU) that enable the model to learn complex relation-
ships, and pooling layers that reduce the spatial resolution of the feature maps.
A representative architecture for image classification is the VGG16 model,
illustrated in Figure[3.1] Here, the network summarizes the global information
of the image through many subsequent spatial reductions with pooling layers.
As we will see in Section [3:2] CNNs have later been adopted to dense predic-
tions tasks, such as semantic segmentation and object detection. Their ability
to learn from raw image data and automatically extract relevant features,
alongside computationally efficiency and mature implementation frameworks,
has made them a cornerstone of modern perception systems. One of the main
strengths with the convolution is the spatial invariance, allowing to extract
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similar features across the entire image efficiently. Although a core strength,
the local nature of the convolutional operation also presents a challenge in
capturing long-range/global information.

Vision transformer

Transformers were originally introduced for machine translation [19], where
they achieved state-of-the-art results by modeling sequences of text using the
attention mechanisms. At the core of the transformer architecture is scaled
dot-product attention. At a fundamental level, this mechanism enables the
model to dynamically weigh the importance of different input elements rel-
ative to one another, allowing the model to learn the relations between the
elements (e.g., words) of the input sequence. To further enhance this capabil-
ity, transformers employ multi-head self-attention, which allows the model to
capture different types of relationships simultaneously.

The self-attention mechanism has since been widely adopted in vision tasks.
Most notably, the transformer encoder has been adopted to image data, giving
rise to Vision Transformers (ViT) [20] as an alternative to CNNs for feature
extraction. As discussed in the next section, the transformer decoder also
plays a key role in several vision tasks.

The ViT architecture, illustrated in Figure [3:2] requires a fundamentally
different way of representing images than CNNs. Instead of processing a 2D
pixel grid, the image is divided into a sequence of non-overlapping patches,
which are then flattened and projected into a higher-dimensional space using a
linear embedding. These patch embeddings, along with a special classification
token and positional encodings, are input to a standard transformer encoder
composed of layers of multi-head self-attention and feedforward networks.

The self-attention mechanism allows each patch to attend to every other
patch in the image, enabling the model to learn global relationships from the
outset. This contrasts with CNNs, where global context is built gradually
through stacking many local operations. As a result, Vision Transformers can
be more effective in capturing global context [21], which is valuable in tasks
involving multiple interacting objects or understanding the overall structure
of a scene.

Despite their advantages, ViTs also present certain challenges. One of the
most notable is their high data requirement. Since transformers lack the induc-
tive biases inherent in convolutional models (such as locality and translation
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Figure 3.2: Left: Vision Transformer (ViT) architecture . The input image is
divided into fixed-size patches, which are linearly embedded and com-
bined with positional embeddings before being passed to the trans-
former encoder. A learnable classification token (*) is prepended to
the sequence, and its output representation is processed by a multi-
layer perceptron (MLP) to produce class predictions.

Right: Structure of the transformer encoder, consisting of multi-head
attention and MLP blocks.
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invariance), they typically need large training datasets to generalize well .
Furthermore, their computational cost can be higher since the self-attention
mechanism scales quadratically with the number of image patches . These
limitations led to the development of more efficient transformer variants, such
as the Swin transformer [22], which performs self-attention within local win-
dows with linear computational complexity.

3.2 Image analysis — applications

From the industrial application described in Chapter [2] we saw that detecting
the free, drivable space, alongside the location of different objects, such as
forklifts and humans, is critical for downstream planning of the AMRs move-
ments. Starting from the camera images, detecting free vs. occupied space can
naturally be formulated as a (binary) semantic segmentation problem, mean-
ing we aim to classify each pixel of the image as either occupied or free. The
general formulation of semantic segmentation that consider multiple classes,
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which is the topic of Paper B, will be discussed in the first part of this section.
The second part of this section is consequently dedicated to object detection,
which aims to localize objects of interest in an image. This forms the basis of
Paper C, which considers object detection in 3D. However, the focus of this
section is image understanding, which will be extended to 3D understanding
in the next section.

Before we continue, it is noteworthy that multiple extensions of object de-
tection and semantic segmentation exist. For example, instance segmentation
essentially combines the two by producing pixel-level masks for each detected
object in the image. While such detailed information could be relevant in
the considered industrial application, such extensions are not the primary fo-
cus of this thesis. Instead, we focus on the two fundamental tasks: semantic
segmentation and object detection.

Semantic segmentation

Semantic segmentation aims to produce per-pixel classifications. This is typi-
cally achieved by having the model predict a categorical probability distribu-
tion over a predefined set of classes for each pixel. Each pixel is then assigned
the class with the highest predicted score. The most successful models for se-
mantic segmentation today are based on CNNs or ViTs, with comprehensive
reviews provided by and . Figureshows an example prediction from
the MIC segmentation model , which will be discussed further in Chapter
In the figure, semantic classes are color-coded to aid visual interpretation.

road |70 build. [ wall . light tr. sign [VEgER terrain person rider | car __truck | bus _ train_ m.bike bike  n/a

Figure 3.3: Image from the Cityscapes dataset and semantic segmentation
predictions of the method ECAP (Paper B).

The first major breakthrough in applying CNNs to semantic segmentation
came with the introduction of Fully Convolutional Networks (FCNs) [26].
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These networks rely on the convolutional operation all the way from extracting
meaningful features from the raw images to predicting the pixel-level class. A
key challenge for FCNs is capturing global context while preserving high spa-
tial resolution. This is difficult with the original CNN architectures designed
for image classification, as pooling layers progressively reduce feature map
resolution. Several innovations have since been introduced to adapt CNNs to
dense prediction tasks.

A common approach is the encoder-decoder structure, with U-Net [27] as
one of the most influential approaches, illustrated in Figure[3.4 In these mod-
els, the encoder gradually reduces the spatial resolution to capture high-level
semantic information and long-range context, while the decoder progressively
reconstructs a high-resolution segmentation map. Skip connections bridge
encoder and decoder stages, combining high-resolution coarse features with
low-resolution rich semantic features, thereby enhancing the localization pre-
cision. Another key development is the use of dilated (or atrous) convolu-
tions, which increase the receptive field without sacrificing spatial resolution
or increasing the number of parameters. To further improve global context
modeling, multi-scale pyramid modules have been proposed. For instance,
DeepLabv2 [28], which forms the basis for our experiments in Chapter
employs parallel atrous convolutions with varying dilation rates to capture
information at multiple spatial scales.

Recently, ViTs have been adapted for dense prediction tasks [21]. In its
original formulation, the ViT [20] faces two key limitations: high computa-
tional cost due to global self-attention scaling quadratically with image size,
and low-resolution, single-scale feature outputs, which hinder spatial precision
in pixel-wise tasks.

To address these issues, Pyramid Vision Transformer (PVT) [29] intro-
duces hierarchical feature maps in the transformer encoder, enabling both
high-resolution coarse and low-resolution fine-grained feature extraction, in-
spired by the preceding development in CNNs. It reduces the patch size from
16x16 (in ViT [20]) to 4x4 and replaces Multi-Head Self-Attention (MHSA)
with Spatial Reduction Attention (SRA) to lower the computational burden.
PVT v2 [30] further enhances efficiency by refining the attention mechanism
and backbone structure.

Based on the hierarchical feature maps, pixel-level classification can be
achieved with a lightweight decoder. For example, SEGFormer [31] uses a
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Figure 3.4: Illustration of U-Net . Each block represents the output (feature
map) of one of the basic operations. The numbers to the left of each
block defines its spatial dimension, and the number above it describes
the number of channels.

multilayer perceptron (MLP) as decoder, while other works such as DAFormer
[32], which forms the basis of our experiments in ChapterEI, deploys a decoder
consisting of a few convolutional layers.

Object detection

In its basic formulation, object detection aims to predict bounding boxes
around all objects of interest in an image. Modern detectors build on re-
cent advances in CNNs and ViTs, typically starting with feature extraction
using one of these architectures. As in semantic segmentation, it is crucial
that extracted features maintain high spatial resolution to ensure precise lo-
calization. Based on these features, an object detection head predicts bound-
ing boxes and class labels. Two dominant approaches are anchor-based and
transformer-based methods .

In anchor-based approaches, the network predicts classification scores and
additional attributes over a large set of predefined anchor boxes, with varying
sizes and aspect ratios. The model then predicts offsets to adjust the anchors,
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enabling more accurate localization. Notable representatives of this class in-
clude Faster R-CNN [34], SSD [35], and YOLO [36]. However, these methods
typically lack a built-in mechanism for avoiding redundant detections, often
producing many overlapping boxes. Therefore, post-processing using Non-
Maximum Suppression (NMS) is essential, as illustrated in Figure

Figure 3.5: Illustrative example of non-maximum suppression (NMS) in object
detection. Anchor-based object detectors may produce overlapping
bounding boxes (left), making post-processing with NMS necessary to
remove redundant boxes (right). The image is taken from the Wild-

track dataset.

A common class of NMS algorithms is based on greedy selection. They work
by first selecting the detection with the highest confidence score, then remov-
ing all other detections that overlap significantly with this box. This process
repeats for the next highest-scoring box until all detections are processed.
Typically, the NMS method is not learned but rather based on heuristics, such
as the expected minimum distance between separate objects. Naturally, this
process risks suppressing true positives and deteriorating the results, which
has motivated research into alternative approaches.

A recent and significant development is the emergence of transformer-based
object detectors, which offer a fundamentally different formulation. Rather
than generating a dense set of candidate boxes followed by NMS, transformer-
based methods treat detection as a set prediction problem with a one-to-one
correspondence to ground truth boxes during training. As a result, the model
directly predicts a fixed-size set of bounding boxes and learns to suppress
duplicates inherently, which eliminates the need for NMS altogether.

A key enabler of these methods is the transformer decoder for object detec-
tion, first introduced in DEtection TRansformer (DETR) . As illustrated
in Figure DETR combines a CNN backbone (e.g., ResNet101 ) for fea-
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ture extraction with a transformer encoder-decoder architecture. The encoder
processes the image features (flattened into a sequence) and adds positional
embeddings to preserve spatial information. The decoder uses a set of learn-
able object queries, which attend globally to the encoder’s output to identify
objects in the image. Through decoder self-attention, these queries are able
to jointly reason about object presence and avoid duplication.

To reduce the computational complexity of the global attention between
object queries and encoded image features, Deformable DETR replaced
global attention with sparse, deformable attention, allowing each query to
focus on a small set of image patches, thus reducing computational cost. In
Chapter [5} we will see that such attention-based mechanisms underpin many
multi-view detection methods, where image features from multiple cameras
must be effectively aggregated.
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Figure 3.6: Illustration of DEtection Transformer (DETR) with a sample im-
age from the Cityscapes \\ dataset.

3.3 Beyond image understanding: 3D perception

While object detection and semantic segmentation provide a foundation for
camera-based perception, they operate primarily in the 2D image plane. For
autonomous mobile robots (AMRs) to navigate safely and efficiently, they
must also understand the 3D structure of their surroundings. This spatial un-
derstanding—identifying where objects are located in three-dimensional space
and how they relate to the robot—is critical for collision avoidance, path plan-
ning, and interaction with dynamic environments.

To understand how monocular cameras can be used for this task, this section
presents the pinhole camera model, arguably the most common model used in
computer vision, and how it can be used to infer 3D information from images.
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Pinhole camera model

The pinhole camera model [41] is a mathematical abstraction of an idealized
pinhole camera, typically conceptualized as a closed box with a single tiny
aperture. Through this aperture, light rays from the environment pass and
intersect with a planar photosensitive surface, referred to as the image plane.
The model defines a unique mapping between a point in 3D space and a
point on the image plane: a line is drawn from the 3D point through the
optical center (pinhole), and its intersection with the image plane defines
the corresponding image point. Every visible 3D point in the scene is thus
mapped to a unique location on the image, capturing the effect of perspective
projection—a foundational concept in camera-based perception. This section
details the mathematical formulation of the pinhole camera model and its
role in linking image coordinates with real-world coordinates via intrinsic and
extrinsic calibrations.

Coordinate frames and rigid transformation

To model the mapping between 3D world points and image coordinates, we
define three coordinate frames:

e World frame: A 3D point is expressed by Euclidean coordinates as X,, =
(X,Y,Z]".

e Camera frame: The same point is represented relative to the camera as
X. = [X,,Ye, Z,]T. The origin of this coordinate frame is at the optical
center of the camera. By convention, the Z-axis points forward along
the optical axis, while the X and Y axes align with image columns and
rows.

o Image frame: Defined in pixel coordinates on the image plane as p =

[u,v]T.

The transformation between the world frame and the camera frame is ex-

pressed as
X.=RX, +t, (3.1)

where R € R3*3 is a rotation matrix and t € R3 is a translation vector that
describes the displacement between the two coordinate frames.
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Thereafter, normalized image-plane coordinates are obtained by perspective
division: x v
C c
r=28 y=2° 3.2
Zz0 V=7 (3.2)
To convert (x,y) into pixel coordinates (u,v), the intrinsic camera matrix K
is applied through

f 0 ¢
K=1|0 f, cf, (3.3)
0 0 1

where f, and f, are the focal lengths (in pixels) and (cg, ¢,) is the principal
point. Putting it all together, the full forward projection is expressed as

u

s | :K[Rm[

X”} , (3.4)

1

—

where s is an arbitrary scale factor.

Calibration methods

To apply the pinhole camera model in practice, the parameters K, R, and
t must be determined through camera calibration. A widely used method
is proposed by [42], which estimates both intrinsic and extrinsic parameters
from multiple images of a planar calibration object with known geometry, such
as a checkerboard. The method begins with a closed-form solution and re-
fines it through nonlinear optimization by minimizing reprojection error—the
discrepancy between observed image points and those predicted by the model.

Real cameras exhibit lens distortion, mainly radial and tangential distortion,
which can be estimated during calibration and corrected for. Once intrinsic
parameters, extrinsic pose, and distortion coefficients are available, the pinhole
model provides a closed-form mapping between 3D scene geometry and image
measurements. However, this idealized model disregards multiple aspects of
real cameras. For example, the finite aperture size causes light from a 3D
point to be distributed over an area rather than focused to a single point, and
pixel intensities represent light accumulated over finite sensor areas. Despite
this, the pinhole camera model provides sufficiently accurate results in many
real-world applications.
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Inferring 3D information

While (3.4) relates each world coordinate to a unique image point, the re-
verse is not true. Instead, a given image point may correspond to any 3D
point along a ray extending from the camera’s optical center, a property re-
flected by the arbitrary scale factor s. As such, recovering a 3D point from
its image coordinate requires knowledge of depth, since the value of Z, is lost
in projection. Unfortunately, depth information is not directly available in
RGB images, making inferring 3D properties from monocular images alone an
inherently ill-posed problem. Despite this challenge, recent advances in ma-
chine learning have demonstrated impressive results. The problem can also
be alleviated by leveraging prior knowledge, such as planar constraints, or by
applying multi-view geometry. Figure illustrates three common setups for
inferring 3D information from cameras.

The first, and most direct, approach to infer the depth of an image is based
on monocular depth estimation. Here, deep machine learning has enabled the
development of methods that can predict per-pixel depth maps from monoc-
ular inputs by learning statistical priors from large datasets [43]. Based on an
estimated depth Z, of a pixel with coordinates (u,v), the corresponding 3D
coordinate in the camera frame X, and world frame X,, can be computed by

X.=Z.K'!|v], X,=RT(X.—-t). (3.5)

Although recent advances in machine learning have led to models with im-
pressive performance, monocular depth estimation remains a challenging task,
particularly in complex scenes with frequent occlusions [43].

The second approach uses planar constraints to resolve the depth ambiguity.
This is viable when for example, the object of interest is known to move on
the ground which can be accurately approximated by a plane in 3D. If a
pixel point p = [u,v,1]T
vector n and an offset dy (in the camera frame), it back-projects along the ray
sd = sK~'p. The intersection with the plane satisfies sn™d + dg = 0. From
these expressions, the depth s can be solved as

corresponds to a point on a plane with normal

do
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a) Monocular depth b) Planar constraint

Figure 3.7: Different paradigms for inferring 3D structure with cameras: a) learn-
ing based methods can infer the depth of arbitrary pixels, b) and c)
use planar and multi-view constraints to resolve the depth ambiguity.

Once the depth is known, can be used to transform the pixel coordinate
to a 3D point in the world frame.

The third approach leverages multi-view geometry, where multiple overlap-
ping camera views are used to triangulate 3D points. If the same object is
detected in at least two images, the corresponding 3D point must satisfy the
projection of both cameras. Due to noise in detections and calibration
inaccuracies, two or more cameras form an overdetermined system with no
exact solution. The 3D point X,, is typically estimated by minimizing the
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reprojection error across views.

Many modern computer vision systems, including the AMR system pre-
sented in Chapter [2] incorporate overlapping camera views and operate in
environments where the ground can be approximated as a plane. These sys-
tems are therefore naturally suited to all three approaches described above.

In Chapter [5} dedicated to multi-view 3D perception, we will see that mod-
ern learning-based methods often integrate these principles to create more
robust systems. For example, monocular depth estimation may be applied
independently in each view, and associations across views may be learned
implicitly, allowing for enhanced accuracy.

3.4 Machine learning life-cycle

The development of machine learning (ML) systems for computer vision is
an iterative and multi-stage process that extends well beyond model design.
The supervised learning paradigm remains the most widely adopted approach,
and thus shapes the structure and requirements of most modern vision-based
ML pipelines. Figure [3.§ illustrates the main components of the ML life-
cycle, including data collection, annotation, model training, deployment, and
performance monitoring.

Figure 3.8: Machine learning life-cycle.
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Chapter 8 Camera-based Perception for Autonomous Mobile Robots

Training — Supervised Learning Supervised learning assumes access to
a dataset composed of input—output pairs, where the input is typically an
image and the output is a structured label, such as a bounding box or a pixel-
wise semantic category. During training, the model, typically consisting of a
feature extractor g and a task-specific prediction head f, takes an input image
x and produces a prediction § = f o g (x). This prediction is compared to the
corresponding label y via a loss function £(§,y). The model’s parameters (in
both g and f) are optimized through backpropagation (based on gradient
descent) to minimize the loss over the training dataset. The goal is to learn a
mapping from inputs to outputs that generalizes well to unseen data.

This setup introduces several assumptions and requirements. First, the
training data must accurately represent the conditions under which the model
will be deployed. Second, labeling must be consistent and precise to pre-
vent systematic biases. Third, training, validation, and test data must be
clearly separated to enable objective evaluation. While conceptually straight-
forward, these requirements become increasingly complex in large-scale or
safety-critical systems.

Data Collection and Annotation Data collection is the first major step
in the ML life-cycle and directly determines the system’s potential perfor-
mance. In computer vision, this involves capturing images or videos that re-
flect the environments, scenarios, and tasks the model is intended to handle.
An essential consideration is data coverage: ensuring that the dataset spans
the full spectrum of conditions the model may encounter. Insufficient diver-
sity in the data can lead to poor generalization and failure in deployment. For
example, if the dataset underrepresents certain object classes, backgrounds,
or viewpoints, the model is likely to perform poorly on those cases. Therefore,
sufficient data collection is crucial for model performance and is often a time
consuming and costly endeavor.

Once data is collected, it must be annotated with task-specific labels. In
object detection, this typically involves drawing bounding boxes and assigning
class labels; in semantic segmentation, pixel-wise annotations are required.
These tasks are labor-intensive and often require manual inspection to ensure
quality and consistency. Beyond initial training, labeled data is also essential
for model testing and validation. A well-constructed test set must remain
completely isolated from the training process and should include both common
and rare cases, ideally capturing edge scenarios that challenge the model’s
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robustness.

Due to the high cost of data collection and annotation, simulation and
synthetic data have emerged as powerful tools to supplement or replace parts
of the data pipeline. Simulated environments can produce vast amounts of
labeled data with perfect ground truth, and allow for systematic variation
of conditions such as lighting, weather, object configuration, and dynamic
interactions. Synthetic data also enables the generation of rare events, such
as near-collisions or sensor failures, which are difficult or dangerous to capture
in reality.

Despite these advantages, synthetic data introduces the challenge of the
reality gap: models trained on simulated images often struggle to generalize
to real-world data due to subtle but impactful differences in appearance, noise,
and dynamics. However, with carefully designed training strategies, this gap
can be bridged. As explored further in Chapter [4] synthetic data can be a
valuable asset for real-world applications.

Deployment and Monitoring Deployment is a major milestone in the
ML life-cycle, but it does not mark the end of system development. In dynamic
environments, model performance may degrade over time due to changing
conditions, sensor drift, or unanticipated scenarios. Consequently, continuous
monitoring and periodic retraining on newly collected data are often necessary
to maintain system reliability.

A key challenge in deploying ML models in dynamic environments is the is-
sue of uncertainty. Uncertainty in ML models can be broadly categorized into
two types |44]: aleatoric (data-related) uncertainty, which arises from inherent
noise or ambiguity in the data (e.g., occlusions, motion blur), and epistemic
(model-related) uncertainty, which reflects the model’s lack of knowledge due
to insufficient or unrepresentative training data. Reliable uncertainty estima-
tion is essential for building systems that can reason about their own limi-
tations. For instance, high-uncertainty predictions can be flagged for human
intervention, ignored, or used to trigger re-planning in a robotic system. More-
over, uncertainty estimates can guide data collection by highlighting areas
where the model lacks sufficient training data.
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3.5 Challenges in camera-based perception

This chapter has introduced fundamental components of machine learning for
computer vision. It began by outlining the importance of CNNs and ViTs for
automatic feature extraction, followed by a discussion of object detection and
semantic segmentation as two core image analysis tasks. We then explored
how 3D information can be inferred from 2D images. Finally, we examined
the machine learning life-cycle and highlighted practical challenges. Based on
this foundation, the key challenges in camera-based perception that motivate
the investigations in the following chapters are now summarized.

A central challenge is the heavy reliance on large labeled datasets, inher-
ent to the supervised learning paradigm. Real-world data collection is of-
ten costly, time-consuming, and difficult, especially in safety-critical domains.
While simulation offers a scalable alternative, it introduces its own challenges.
Differences in appearance and behavior between synthetic and real-world data
hamper model generalization. These limitations underline the need for ma-
chine learning methods that relax data requirements and can leverage sim-
ulated or unlabeled real-world data to cut collection and annotation costs.
This motivates the formulation of RQ2: How can machine learning models
be trained on datasets with few labels for computer vision tasks? Chapter [4]
addresses this question by investigating methods that reduce the reliance on
labeled data.

Another critical challenge lies in uncertainty estimation. Both aleatoric
and epistemic uncertainty affect the trustworthiness of predictions. At de-
ployment, uncertainty estimates support decision-making by identifying un-
reliable outputs. During training, they highlight uncertain cases that may
benefit from additional supervision. This is particularly important in self-
supervised settings, where inaccurate predictions could reinforce errors. This
issue is further discussed in the next chapter.

Finally, while monocular camera systems perform well in tasks like object
detection and segmentation, they are fundamentally limited in recovering 3D
structure due to depth ambiguity, occlusion, and scale uncertainty. As de-
tailed in Section [3:3] multi-camera systems can alleviate these limitations by
enabling geometric reasoning across views. This leads to RQ3: How to design
ML methods that leverage multiple cameras for increased performance and ro-
bustness in computer vision tasks? Chapter [5] explores ML methods designed
for 3D reasoning with multi-camera systems.
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CHAPTER 4

Learning with Limited Labeled Data

Since creating real-world labeled datasets is time consuming and costly, there
is a great incentive to reduce machine learning methods’ dependence on such
datasets. In doing so, the data collection and annotation step can be sim-
plified, allowing for faster and more cost effective development of machine
learning models in industry and society. This chapter starts with outlining
various methods that address this problem. Next, specific focus is given to
a specific problem formulation known as Unsupervised Domain Adaptation
(UDA). Thereafter, a class of methods known as self-training is investigated.
Finally, a case study on unsupervised domain adaptive semantic segmentation
is presented.

4.1 Approaches

Transfer learning is one of the most widely used techniques to reduce reliance
on labeled data. The principle is straightforward: a model trained on one task
often learns features that are useful for another. For example, image classifi-
cation models trained on large-scale datasets like ImageNet [16] are commonly
reused for downstream tasks through fine-tuning. In this process, the feature
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extraction backbone is initialized with pre-trained weights, allowing the model
to adapt to a new task using fewer labeled examples. This reuse of learned
representations significantly reduces the need for large annotated datasets in
subsequent tasks [45].

More recently, the emergence of foundation vision models has further ad-
vanced this trend by providing feature representations that generalize better
across multiple domains and applications. These models typically employ mas-
sive computational resources and Vision Transformers (ViTs) with billions of
parameters, and are often pre-trained using large-scale image or image-text
datasets. Inspired by the success of large language models, which leverage
masked language modeling [46] to learn to reconstruct missing parts of text
in a self-supervised manner, similar methods have been proposed in computer
vision. For example, iBOT [47] learns to recover information in masked im-
age patches through masked image modeling, and CLIP [48] uses contrastive
learning to predict which caption goes with which image using text-image
pairs collected from the web. Meanwhile, the size of task-specific datasets is
also increasing. Segment Anything [49] was trained on over one billion seg-
mentation masks. While foundation models provide powerful starting points,
they are not universal solutions: many real-world applications still require
domain-specific fine-tuning and curated datasets to achieve high performance.

Given that tailored datasets remain necessary, several strategies aim to re-
duce the cost and effort of annotation. In semi-supervised learning, models
are trained using both labeled and unlabeled data drawn from the same dis-
tribution [50]. A typical scenario involves collecting a large dataset (e.g., from
cameras) and labeling only a small portion, while dedicated training methods
leverage both labeled and unlabeled samples. Complementary to this, active
learning can be used to identify and annotate the most informative or uncer-
tain examples, maximizing annotation efficiency [51]. Few-shot learning [52]
represents another strategy, enabling models to adapt to new tasks with very
limited supervision, which is especially valuable in domains where labeled data
is inherently scarce or costly to obtain.

In contrast to these methods, Unsupervised Domain Adaptation (UDA)
aims to train models without any labeled data from the deployment (target)
domain [4], making it particularly attractive for real-world applications where
annotation is expensive or infeasible. Instead, UDA relies on labeled data
from a related domain (the source domain) and unlabeled data from the tar-

38



4.2 Unsupervised domain adaptation

get domain. This differs from semi-supervised learning, where labeled and
unlabeled data are drawn from the same distribution (domain). A common
application of UDA is bridging the domain gap between simulated and real-
world environments by using labeled simulator data together with unlabeled
real-world data. The goal is to train a model that performs well on the target
domain by leveraging both datasets. Variants such as source-free UDA [53],
which removes access to the source dataset, and domain generalization [54],
which trains models to generalize without any target domain data, extend this
idea. While these are promising directions, this thesis focuses specifically on
UDA.

4.2 Unsupervised domain adaptation

In Unsupervised Domain Adaptation (UDA), a dataset D° from the source
domain including N° image-label pairs is available D° = {xsvk,ysvk},ivjl,
where %% denotes an image from the source domain and y** denotes the
corresponding label. Additionally, a set of N7 unlabeled target domain images
are available DT = {xT’k}ffV:Tl. It is assumed that the two domains are related,
although, yet statistically different. That is, °* and 27°F are sampled from
different underlying distributions. The challenge lies in training the model
on the datasets D° and DT to achieve satisfactory performance on new test
images from the target domain. Naturally, the larger the gap between the
two domains, the more challenging it is to learn a model that can generalize
across the domains.

UDA methods have been developed for various computer vision tasks, in-
cluding image classification, segmentation and object detection. Simulation-
to-real (sim-to-real) adaptation, which is illustrated in Figure is among
the most common UDA settings. The reason is that labels can often be easily
collected in simulation, and by using UDA, no real-world labels are required.
Typically, the appearance of simulated images is very different from real-world
images, resulting in a significant domain gap. However, advancements in gen-
erative Al such as diffusion models [56] and generative adversarial networks
(GANSs) [57], and reconstruction techniques, such as Neural Radiance Fields
(NeRFs) [58] and 3D Gaussian Splatting [59], are narrowing the gap between
simulated and real-world domains. While these improvements help, residual
discrepancies remain, which continues to motivate the development of UDA
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Source Domain Target Domain
Image z°°*
Unsupervised Image 27
Domain
Adaptation

/\

Figure 4.1: Example UDA application: semantic segmentation using the labeled
simulated dataset GTA V as source domain and real-world images
from Cityscapes as target domain.

methods. Importantly, UDA also extends beyond sim-to-real scenarios. Differ-
ences in camera hardware or environmental factors may create domain shifts
in real-world datasets.

The majority of UDA methods can broadly be categorized as based on ei-
ther adversarial training or self-training. In adversarial training, a domain
discriminator provides supervision in a GAN framework to align domain in-
variant input, features, or output. A notable example is CyCADA , which
applies adversarial training in both input and feature space. In their approach,
a style-transfer network transforms the source images to mimic the appearance
of the target images. The style-transfer network is trained to fool the domain
discriminator about the domain, while the domain discriminator is trained to
accurately determine from which domain the input image originates from. If
implemented correctly, the style-transfer network can accurately change the
appearance of the source images to be more target-like, and thus reduce the
domain gap. Similarly, the model used for the end task (e.g., image classifica-
tion, object detection, or semantic segmentation) may be trained to produce
domain invariant features. Lastly, invariance may also be enforced in the out-
put . Here, the assumption is that the marginal distribution of the labels
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is similar across domains, only the appearance of the images are different.
Therefore, enforcing that e.g., object frequency and shapes predicted by the
model, to be similar across domains can improve generalization.

Self-training, on the other hand, involves letting the model supervise itself.
L.e., typically it makes predictions on the target domain samples, and then
uses these predictions later during training. To make this approach feasible,
multiple training tricks are used, which are further described in the next
section. As self-training is the focus of this thesis, we dedicate the next section
to this topic. For a comprehensive discussion around other UDA methods, the
reader is referred to the recent surveys [4], [62].

4.3 Self-training

Self-training is a method aimed at utilizing unlabeled data during training,
thus reducing the requirement on large, labeled datasets for supervised train-
ing. The core idea of self-training is to use the model’s own predictions to
generate artificial labels for unlabeled target data, enabling subsequent train-
ing of the model on this target data using standard supervised techniques.
Due to its general formulation, self-training has been applied across various
computer vision tasks, including image classification [63]-[66], semantic seg-
mentation [67]-[69], and object detection [24], |70], achieving success in both
unsupervised domain adaptation (UDA) [24], [67], [71] and semi-supervised
learning [63], [65], [72]. The artificial label can be either soft, meaning it is
represented as a probability distribution output by the model [64]; or hard,
where the probabilistic output is reduced to a single label, typically the most
likely class. Such hard labels are commonly called pseudo-labels [72], and have
been the dominating approach in recent years [24], |32], [65], [67]-[69], [71].

Although self-training has gained traction due to its broad applicability
and often strong performance, it also presents inherent limitations. Notably,
it suffers from a chicken-and-egg problem: high-quality pseudo-labels are es-
sential for effective adaptation, yet such pseudo-labels can only be expected
after successful adaptation has occurred. In effective implementations, the
quality of pseudo-labels and the model’s performance improve progressively
during training. These methods enhance training effectiveness mainly through
improvements in pseudo-label generation, management of erroneous pseudo-
labels, and data augmentation. The remainder of this section discusses these
three critical aspects.
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Pseudo-label generation

Modern computer vision models typically output uncertain, rather than deter-
ministic, predictions. For example, in image classification and segmentation,
the model commonly outputs a categorical distribution over classes for the
whole image or each pixel, respectively. For object detection, the output may
indicate the probability that a bounding box contains an object. Since the
true label corresponds to a specific class or bounding box, post-processing is
necessary to convert these predictions into pseudo-labels. Formally, pseudo-
label creation can be expressed as

gt = h(fs(a™)), (4.1)

where zT

is an unlabeled target sample, f, is the model, h is the post-
processing function, and 7 is the generated pseudo-label.

For image classification and semantic segmentation, labels are typically in
one-hot format, while model outputs are probability mass functions. By se-
lecting the most likely class for the image or each pixel, a pseudo-label is
produced.

For object detection, pseudo-labeling often requires extra post-processing.
As described in the previous chapter, many detectors use non-maximum sup-
pression (NMS) to extract a set of predicted objects from model outputs.
This process depends on several handcrafted thresholds, such as confidence
and NMS-distance thresholds. The quality of the pseudo-labels is therefore
sensitive to these hyperparameters, which can be particularly challenging to
tune in UDA scenarios where the model’s confidence on the target domain is
initially unknown.

Because self-training effectiveness depends heavily on pseudo-label qual-
ity, numerous techniques have been proposed to improve pseudo-label gen-
eration. A common approach involves averaging multiple predictions—for
example, multiple stochastic forward passes 73], multiple forward passes over
augmented inputs [74] or model ensembles |75]. Inspired by these methods,
the prevalent approach today is the mean teacher [63]. In this setup, a teacher
model generates pseudo-labels, while a student model trains on them using
supervised loss. The teacher has the same architecture as the student but
updates its parameters ¢ as an exponential moving average (EMA) of the
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student’s parameters 6:
b1 < agy + (1 — )by, (4.2)

where a € [0, 1] controls the update rate and ¢ denotes the training step. The
teacher acts as a temporal ensemble of the student, stabilizing training since
it evolves more slowly and generally provides better predictions.

The teacher may additionally have privileged knowledge unavailable to the
student. For instance, the student may operate on low-resolution images for
increased computational efficiency while the teacher generates pseudo-labels
from high-resolution images to improve quality. In more complicated setups,
the student may consider separate images from a single camera, while the
teacher takes video input from a single or multiple cameras. The pseudo-
labeling pipeline can also incorporate complex components, such as multi-
object tracking algorithms or foundation vision models to guide the labeling
process.

However, a key characteristic of self-training is the closed feedback loop
between the model and pseudo-label generation: as the model improves, so
do the pseudo-labels. This loop may not exist if the teacher and student
differ substantially—for example, using entirely different input modalities or
independent pseudo-labeling methods. In such cases, the process is better
described as knowledge distillation or label transfer rather than self-training.
Nonetheless, if possible, providing the teacher with privileged information can
greatly benefit self-training. This topic will be revisited in Chapter [§] when
discussing multi-view methods, illustrating how teacher and student models
may access different data sources.

Managing erroneous pseudo-label

Regardless of the methods used to generate pseudo-labels, it is inherent in
the self-training problem formulation that pseudo-labels contain errors. If the
pseudo-labels were already perfect, there would be no need to further train
the model on unlabeled data. Therefore, handling erroneous pseudo-labels is
a core challenge in self-training.

Before delving into different methods for managing this noise, it is impor-
tant to understand its characteristics and where it comes from. As mentioned
in Section[3.4] uncertainty in machine learning models’ predictions can be clas-
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sified as aleatoric and epistemic. Aleatoric uncertainty, which is irreducible, is
inherent in the data and problem setup. For example, it can arise due to in-
accurate source labels, and the ambiguity of object boundaries due to limited
image resolution. Meanwhile, epistemic uncertainty relates to model deficien-
cies and insufficient training. In the UDA setting, the epistemic uncertainty is
initially large since the target data is out-of-distribution, which significantly
affects pseudo-label reliability.

To allow for further investigation, the label errors may be classified as either
structured or unstructured . Unstructured label noise refers to (seemingly)
random, input-agnostic flips that are equally likely across all classes. While
such noise naturally degrades performance, it doesn’t necessarily change the
model’s overall behavior considerably. In contrast, structured noise are con-
centrated in particular regions of the input/feature space and follow nonuni-
form class-flip patterns. In a UDA scenario this means that certain types
of target-domain examples—say, pedestrians in heavy shadows or unusual
poses—are not only more likely to be mislabeled, but are systematically
mapped to specific wrong classes. Such bias exacerbates the domain gap and
must be treated carefully to enable successful adaptation. Figure [4.2] shows
an example of structured noise in pseudo-labels for semantic segmentation,
where fences were confused with trains.

build. | wall FEE tr. light tr. sign JVEEEHY terrain person rider | car truck | bus  train m.bike bike n/a.

Figure 4.2: Animage (left) from Cityscapes for which the pseudo-label (center)
differs significantly from the label (right).

Various techniques have been proposed to deal with the noise in the pseudo-
labels explicitly. For example, it is common to filter pseudo-labels based
on predicted confidence, and only use those that exhibit high enough con-
fidence . Alternatively, a weighted loss function may be used to assign
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higher importance to confident pseudo-labels during training [74]. Since pre-
dicted confidence is often inaccurate for data that is out of distribution, which
is the case for the target domain, a challenge is also to accurately quantify
the uncertainty of these labels. To this end, formal methods for uncertainty
quantification in deep learning, of which [78] provides a review, may be needed
to accurately predict the reliability of the pseudo-labels.

Moreover, an inherent problem with focusing training on reliable pseudo-
labels is that these typically correspond to particularly easy training samples.
Excessive training on such easy samples may not lead to improved performance
on difficult samples. Furthermore, in multi-class problems, the difficulty often
varies across the classes. Therefore, confident pseudo-labels often originate
from a set of easy-to-adapt classes. Focusing training on these may prohibit
efficient learning of the hard-to-adapt classes. Many methods therefore pro-
pose learning techniques dedicated for maintaining class-balance during train-
ing, e.g., by using class-wise confidence thresholds when generating/filtering
pseudo-labels [74], [77], [79]. It is also common to use curriculum learning
that successively increase the difficulty of the training examples [80].

In the end, this situation is a clearer version of the original chicken-and-
egg problem: we can only create accurate pseudo-labels for the easy samples,
which the model already handles well. The hard examples, where the model
needs the most help, do not get reliable labels. Because of this, self-training
risks becoming a cycle where the model keeps improving on easy cases but
does not get better at the difficult ones. To overcome this, it is important
to find ways to provide reliable guidance for the hard examples so that the
model can learn and adapt to all levels of difficulty.

Data augmentation

Data augmentation has been used extensively in a related class of methods is
called consistency regularization [81], where the idea is that the model’s pre-
dictions on multiple augmented variants of the unlabeled target data should be
similar. Later, self-training methods based on pseudo-labeling adopted simi-
lar techniques. The pseudo-labels are typically generated from predictions on
unaugmented samples, which are then used to supervise the model’s prediction
on a strongly augmented variant of the sample [65], |[67]. Not only can data
augmentation improve the model’s generalization capability by generating di-
verse data, but it can also transform easy examples to hard examples. Hence,
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data augmentation can act as a means of mitigating the inherent problem of
pseudo-labeling methods; that accurate pseudo-labels are typically only avail-
able for particularly easy examples. Instead, data augmentation can enable
efficient training on hard examples with accurate pseudo-labels.

Common data augmentation methods include geometric transformations,
such as image cropping and flipping [82], alongside visual augmentations,
such as image blurring and color jittering [65]. Recently, masking out cer-
tain regions of the image have been used as a strong augmentation technique
to enhance the learning of context [24]. Beyond augmenting the target data
samples, data augmentation has also been used as means to bridge the two
domains through mixing, in particular for the task of semantic segmentation.
Here, many methods employ the data augmentation proposed by DACS [67],
which is illustrated in Figure [£:3] DACS first selects half of the classes in
the source image z°, as indicated by the selection mask ¢, and then cut-

and-pastes the corresponding pixels onto the target image z7.

The same is
done to the labels y° and §7, resulting in a mixed image 2™ and label y™
that include information from both domains. Training on such mixed samples
can hinder the network from learning the two domains separately. Instead,
the network is forced to treat them jointly, which promotes learning domain

invariant features.

4.4 Case study 1 — semantic segmentation

Paper B is focused on semantic segmentation of images captured by a monoc-
ular camera mounted on a car. In the AMR system presented in Chapter [2]
similar methods can help the robot perceive its environment independently,
without relying on infrastructure. As explained in Chapter [3] modern seman-
tic segmentation models are based on CNNs or ViTs and require large labeled
datasets for training. Since it is time-consuming and expensive to create the
required pixel-level annotations, research into semantic segmentation meth-
ods with reduced data demand is motivated. To this end, Paper B studies
Unsupervised Domain Adaptive (UDA) semantic segmentation.

One of the most widely used benchmarks for UDA semantic segmentation is
GTA — Cityscapes. As indicated by the arrow, the GTA [55] dataset serves
as the labeled source domain and the Cityscapes [25] dataset serves as the
unlabeled target domain. Notably, this is a sim-to-real adaptation benchmark
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xT: Target image §7: Target pseudo-label z°: Source image yS: Source label
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Figure 4.3: Illustration of the domain-mixing data augmentation introduced by

DACS .

as GTA is simulated while Cityscapes constitutes real-world data. Example
images from this benchmark are shown in Figure [£.1] Table [£]illustrates the
performance of two popular architectures: the CNN-based DeepLabV2
and the transformer-based SegFormer . Both struggle significantly with
the domain gap between simulated and real-world data, as indicated by the
large performance drop from the oracle (trained with target labels) to source-
only (trained only with GTA). This motivates research on UDA methods.

Table 4.1: Performance in mloU on the Cityscapes validation set after training
on the GTA (Source only) or Cityscapes training set (Oracle). These
results are taken from @

Architecture Source only | Oracle
DeepLabV2 [28] | 34.3 72.1
SegFormer @ 45.6 76.4

Several recent methods, such as DACS , DAFormer , HRDA ,
and MIC , build on self-training and employ cut-and-paste augmentation
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to help overcome the domain gap. The training pipeline, first introduced by
DACS and illustrated in Figure [{.4] operates in two branches. In the target
branch, a teacher model fy processes the target image 2T to create a pseudo-
label 4. These are then combined with a source image #° and the associated
label 4 in the DACS augmentation module, which was introduced in the
previous section, to create a mixed training sample consisting of a mixed
image 2™, mixed label y™, and weight ¢™. The student fs processes the
mixed image and its prediction is compared against the mixed pseudo-label
under the target-domain loss £7. In parallel, the student is supervised on
labeled source data using a source-domain loss £°. Finally, the two losses
are combined, and the student parameters are updated by backpropagation,
while the teacher parameters is updated as an exponential moving average of
the student.

Source dataset

DS L5(y®, fo(z))

fo: Student s S 25
fe: Teacher v _/y fo(z")
25: Source image fo
y°: Source label =M fg(xM)
2T Target image DACS yM
77 Target pseudo-label [Data Augmentation [T(yjt17 fg(wM)’ qM)

M ; ; M
™ Mixed image q
yM: Mixed label g7
q™: Weight 7
L5: Source loss e ¢
LT: Target loss

[27]
Target dataset

Figure 4.4: Illustration of the DACS [67] self-training framework, which has been
used by many subsequent works and forms the basis for the method
presented in Paper B.

To mitigate noise in pseudo-labels, £ is a weighted cross-entropy loss that
manage the influence of each pixel by the weight ¢, which is also produced
by the DACS augmentation module. Pixels from the source have weight 1,
while target pixels are weighted by the fraction of pixels exceeding a confi-
dence threshold 7. As a result, the loss will be dominated by source content
early in training, when confidence on the target is low. As pseudo-label confi-
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dence increases, the model increasingly uses target data. However, this scheme
does not account for variations within individual target images, meaning that
uncertain and erroneous regions in an otherwise confident pseudo-label still
makes undesirable contributions to the loss function.

Paper B highlights that this framework is sensitive to pseudo-label errors.
Experiments with DAFormer on GTA — Cityscapes demonstrate that about
38 % of the total loss during the last 50 iterations originates from erroneous
pseudo-labels. To measure this effect, we introduce DAFormer (denoise),
which uses the true target labels to zero out loss on incorrect pseudo-label
pixels. Experiments on GTA — Cityscapes verify that DAFormer performs
significantly worse than DAFormer (denoise), with an absolute performance
drop of 4 mIoU, demonstrating the negative impact of pseudo-label noise.

By further analyzing the pseudo-labels of state-of-the-art methods, it be-
comes evident that the quality varies significantly over the samples in the
target dataset. Importantly, both high and low quality pseudo-labels exist for
all classes. Figure illustrates two examples of the class rider: one misclas-
sified as a car and one accurately segmented. This suggests opportunities to
improve training by emphasizing high-quality pseudo-labels. The main chal-
lenge that accurate pseudo-labels mostly come from easy samples remains,
but these easy samples cover all classes, which simplifies the problem.

To leverage the accurate pseudo-labels across all classes, Paper B extends
the self-training framework proposed by DACS with a novel data augmenta-
tion method. The proposed method ECAP builds a memory bank of pseudo-
labeled samples during training that is sorted based on predicted confidence.
The DACS data augmentation is then modified by injecting (cut-and-pasting)
content from high-confidence samples of the memory bank. Table shows
that the samples from the memory bank are significantly more accurate than
samples drawn at random from the target dataset, confirming that predicted
confidence correlates well with the accuracy of the pseudo-label. Additionally,
our aggressive data augmentation technique ensures that the samples in the
memory bank are not too easy for the model, and prevents overfitting.

Table 4.2: Accuracy (in %) of pseudo-labels for pixels originating from the ECAP
memory bank and the sampled target image.

Road Sidew. Build. Train M.bike Bike
Memory bank 94.3 67.3 89.9 96.1 80.7 76.3
Target image 91.9 60.5 90.4 55.0 37.5 57.4
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road build. | wall &

person rider car truck | bus train m.bike bike n/a.

Figure 4.5: Left column: Two images containing a rider. Right column: the pre-
dicted pseudo-label by ECAP (Paper B). The rider is indicated by a
white rectangle in all images. In the top row, the rider has been largely
misclassified as a car or truck, while in the bottom row, the rider is
correctly classified and relatively accurately segmented.

The proposed data augmentation was integrated with several recent UDA
methods and evaluated on the GTA — Cityscapes benchmark. As shown
in Table [£:3] ECAP consistently improves performance across methods, with
the largest gains observed for the lower-performing ones. These results high-
light the importance of managing pseudo-label uncertainty in self-training
approaches. Moreover, as discussed in previous section, data augmentation
enables transforming easy examples with accurate pseudo-labels into hard,
informative training examples, resulting in effective training.

In ECAP, predicted confidence was used as a proxy for certainty of the
predictions, which was demonstrated to correlate well with pseudo-label accu-
racy. However, machine learning models often produce confidence scores that
do not match true uncertainty, especially for out-of-distribution samples (i.e.
target data in UDA). Because of this, the ECAP memory bank is sometimes
polluted with erroneous pseudo-labels, highlighting the need for more accurate
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Table 4.3: Performance of different UDA methods without and with ECAP (mloU

in %).
Network UDA Method w/o ECAP w/ ECAP diff
DeepLabV2 DACS 53.9 58.3 +4.4
DeepLabV2 DAFormer 56.0 61.2 +5.2
DeepLabV2 HRDA 63.0 65.6 +2.6
DeepLabV2 MIC 64.2 66.3 +2.1
DAFormer DAFormer 68.3 69.1 +0.8
DAFormer HRDA 73.8 75.0 +1.2
DAFormer MIC 75.9 76.2 +0.3

and reliable methods for estimating uncertainty.

Another limitation is that cut-and-paste augmentation does not preserve
image context, which may prevent the model from learning important contex-
tual cues. For example, the presence of a bike near a person can help classify
them as a rider instead of a pedestrian. However, even when the person is
riding the bike, the bike may be hidden from the camera view (e.g., behind
a fence), so the model must balance using contextual clues with relying on
local object appearance. Designing data augmentations that enable learning
relevant contextual cues alongside local object appearance is an important
challenge for future work.
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CHAPTER b

Multi-view 3D Perception

As the cost of cameras and compute continues to fall, using a rig of multiple
cameras for sensing tasks in both robotics and self-driving cars is becoming
increasingly common. Multiple cameras with overlapping fields of view in-
crease robustness to occlusion and sensor failure and facilitates inferring 3D
structure of the environment. At the same time, multi-view sensing adds
complexity because information from overlapping views must be fused. In
this chapter we first discuss common applications of multi-view perception
and prevalent methods, then investigate the robustness of these methods un-
der domain shifts, and finally present a case study on unsupervised domain
adaptation of multi-view pedestrian detection.

5.1 Applications

In the RAIL framework, presented in Chapter [2] multiple infrastructure cam-
eras together with cameras mounted on AMRs may be used for sensing. Typ-
ical tasks include estimating the drivable surface and detecting and localizing
objects such as pedestrians and forklifts. Unlike the image-space outputs dis-
cussed in Chapter [3[ (2D detection and semantic segmentation), these tasks
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3D object detection

3

BEV semantic segmentation

a =

N

Semantic occupancy prediction

-ﬁ? :
Q

Figure 5.1: Multi-view perception: multiple cameras onboard the robots or
mounted to infrastructure are used to extract relevant 3D information,
such as 3D object detection, bird’s-eye-view (BEV) semantic segmen-
tation, or semantic occupancy prediction.

produce 3D predictions, illustrated in Figure [5.I} which are directly useful for
downstream planning and decision making.

Because factory floors are generally near-planar, bird’s-eye-view (BEV) rep-
resentations are particularly attractive. In the industrial implementation de-
scribed in Paper A, the floor was discretized into a regular grid with 5 cm
by 5 cm cells, and the perception system predicted the occupancy of each
cell. The multi-class variant of this task, known as BEV semantic segmenta-
tion, has been explored extensively in autonomous driving research . In
other settings, especially surveillance, multiple static cameras are used for
BEV object detection, i.e., estimating object locations as 2D ground-plane
coordinates .

However, crowded and cluttered factory environments sometimes include
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overhangs, cranes, or scaffolding. In such cases a pure BEV representation is
insufficient because top-down projections collapse vertical structure: whether
a robot can pass under an overhang depends on height. To support such
use cases, 3D representations of the environment is necessary. A common
approach is 3D object detection [85], where objects are represented by param-
eterized 3D bounding boxes described by center (z,y, z), dimensions (width,
height, length), and heading 6. More recently, semantic occupancy prediction
has gained traction wherein multi-view methods predict occupancy and class
for small 3D cells called vozels to obtain a dense, fine-grained 3D map [86].

As discussed in Section|3.3] camera calibration is fundamental for extracting
3D information and for associating detections across multiple cameras, and
is generally a pre-requisite for multi-view BEV and 3D perception. In many
applications, the cameras can be jointly calibrated before deployment. In
surveillance settings, the cameras can be calibrated in relation to a common
world coordinate system, which is typically fixed and aligned with the ground
plane. For autonomous vehicles an ego-centric world coordinate system that
moves with the car is typically used. In this coordinate frame, the cameras
are static, which again allows for establishing the camera calibration prior to
deployment.

In other applications the relative camera poses change over time, making
one-time calibration infeasible. For example, in the RAIL framework cameras
attached to robots will move together with the robots, and the combination
of onboard and infrastructure cameras results in a time-varying camera setup
that necessitates dynamic recalibration. This makes creating a coherent, joint
representation of the environment considerably more challenging.

Furthermore, using cameras both onboard the robots and on infrastructure
necessitates wireless communication to consolidate the data. This means that
multi-view models must consider bandwidth constraints, additional latency,
jitter and intermittent connectivity. In contrast, applications that consider
multiple cameras onboard a single robot, or multiple infrastructure cameras
with wired links avoid these wireless communication issues.

Although the RAIL framework enables joint use of onboard and infras-
tructure cameras, this section focuses on the simpler case of time-invariant,
pre-calibrated camera rigs with wired connectivity. Under these conditions,
the image-to-world correspondence from the calibrated pinhole camera model
(Section applies directly. In RAIL this setup covers multi-view systems
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mounted on a single robot as well as networks of fixed infrastructure cameras.
Restricting the discussion in this way makes it possible to analyze multi-view
architectures in depth and to establish a clear baseline before addressing more
complex scenarios such as time-varying rigs and intermittent wireless connec-
tions.

5.2 Architectures for multi-view perception

Methods for 3D perception with multiple cameras can be categorized by how
information from different views is fused. As illustrated in Figure three
common paradigms are early, late, and intermediate fusion. In general, all
methods consist of three main components: a feature extractor, a prediction
head, and a fusion block. In early fusion, the pipeline begins with fusion,
followed by a single feature extraction and prediction stage. In late fusion,
each camera view is processed independently through feature extraction and
prediction, and the resulting image-space predictions are fused at the end of
the pipeline. In intermediate fusion, fusion is performed after per-view feature
extraction but before a shared prediction head. The remainder of this section
presents these three paradigms in more detail.

Early fusion

Early fusion involves transforming the raw sensor data (images) into com-
mon coordinate frame where they can be aggregated and processed jointly. In
applications where objects move on a known planar surface, e.g., pedestrians
moving on the ground, the images may be warped directly to a bird’s-eye-view
(BEV) [87]. Warping to bird’s-eye-view is done by applying a homography to
the image, which is a transformation between two images viewing the same
planar surface. In essence, they use that maps image pixels to 3D lo-
cations based on the planar constraint. The information from the different
views are thereby spatially aligned. Thereafter, various fusion techniques may
be applied, such as concatenation along the channel dimension, or averaging.
The attained multi-view image can then be processed by (more-or-less) stan-
dard approaches for semantic segmentation or object detection to perform
the relevant task. While this approach is conceptually simple and may yield
decent results in certain applications, information loss may occur in the trans-
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Early fusion
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Figure 5.2: Illustration of different paradigms for multi-view perception.

formation since the views are distorted. Moreover, pre-trained backbones for
feature extraction and foundation models generally operate on natural images,
and may not generalize well to the fused BEV image, which may exclude the
use of such models for early fusion.

Another approach, which may be more feasible in non-planar scenes, or
unknown planar constraint, is to transform the RGB images into pseudo-
LiDAR through dense depth estimates. By predicting the depth of each pixel
in the cameras, the pixels can be back-projected to 3D through to create a
point cloud. This method has been commonly applied to monocular 3D object
detection in the autonomous driving community . Naturally, it can be
extended to multi-view settings by merging the point clouds created from each
view. Recently, DETR3D proposed such a method as a baseline, which
was significantly outperformed by their own method based on intermediate
fusion. An obvious limitation of the pseudo-LiDAR method is that it depends
on monocular accurate depth estimation. Also, it disregards information in
the image space that may give additional clues about object location and
classes.
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Late fusion

In late fusion, a detection or segmentation model is applied the each of
the cameras separately. The resulting predictions are then fused in post-
processing. This approach is relatively common in the literature of multi-
view pedestrian detection, where many methods rely on 2D detections in the
images. One class of methods deploy background subtraction algorithms on
each view, and then computed likely pedestrian locations based on probabilis-
tic models that consider the foreground in each view [84], [89]. In essence,
evidence for the existence of a pedestrian at a given 3D coordinate is collected
by projecting the point to each camera view by , combined with the ex-
tracted foreground information and an assumed size of the average pedestrian.
To extract more informative information from each view, [90] instead perform
instance segmentation. By detecting the feet of the pedestrian, which are
assumed to be on the ground, the image-view detections can be transformed
to 3D based on a planar constraint through . Once the detections of
each camera have been transformed to 3D, they can be grouped based on e.g.,
Euclidean proximity.

Similar approaches has been investigated in the setting of autonomous
driving. However, in the absence of the planar constraint of objects in the
scene, methods here generally rely on monocular 3D detections. For example,
DETRA3D [88] compare their work to a baseline based on late fusion. Speci-
ically, the monocular 3D object detector FOCS3D [91] is applied to each image
separately to create 3D bounding box detections. Thereafter, the bounding
boxes produced by overlapping cameras are merged and post-processed with
non-maximum suppression. GitNet [92] instead consider BEV semantic seg-
mentation. They develop a monocular approach, which extends to multi-view
setting by applying their model separately on each view. They then sum
the logits (categorical distribution over the considered classes) from multiple
views in each location in the BEV plane, before applying a softmax to derive
the fused class probabilities.

While the late fusion pipline is conceptually simple, it has inherent limita-
tions as its performance hinges on accurate single view results. Specifically,
it suffer from the illposed problem of inferring 3D strucure from a monocular
camera. Second, mised detections and false positives may lead to conflicting
predictions between views, leading to ambiguities when fusing the predictions
from multiple cameras.
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Intermediate fusion

Methods based on intermediate fusion are motivated by the limitations of
early and late fusion. While early fusion fails to leverage high-performing
modern image processing tools, late fusion fails to leverage multiple view and
instead is overly dependent on single view results. In contrast, intermediate
fusion leverages the strength of modern image encoders to extract rich features
from each camera independently. These features, being more abstract than
raw pixels but more informative than discrete predictions, offer a flexible and
powerful representation space for multi-view integration. By fusing at the
feature level, the model can incorporate contextual cues, exploit inter-view
redundancy, and learn correspondences across views, which are essential for
resolving depth ambiguities and reconstructing 3D spatial relationships.

Multi-view methods based on intermediate fusion may be categorized as
either dense or sparse, depending on the nature of the learned feature repre-
sentation in 3D.

Dense intermediate fusion

The most common approach for intermediate fusion revolves around build-
ing a dense feature space in BEV, although alternative representations such
as 3D voxels or multiple orthogonal planes have also been proposed. Such
methods generally consist of three steps; (i) processing each view by a con-
ventional feature extraction backbone (CNN or ViT), (ii) transforming image
features from all cameras to 3D and fusing them into the chosen dense feature
representation, (iii) a task-specific head process the dense features to create
the final predictions. In this framework, stage (ii) is particularly difficult due
to the challenges involved in inferring 3D information from images. Existing
methods can be categorized as either pushing or pulling.

Pushing methods estimate pixel-wise depth in each camera and use this
information to “push” image features into 3D space. In essence, known cam-
era calibration alongside pixel-wise depth estimates allows these methods to
transform pixel coordinates to 3D through , presented in Chapter (3| Al-
though, many methods use a categorical depth distribution rather than a
deterministic value, meaning that each pixel is pushed to multiple 3D candi-
date locations [94]—[98]. Since the depth estimation is performed individually
per view, pushing methods face fundamental challenges due to the ill-posed
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Figure 5.3: Illustration of pushing and pulling methods for dense intermediate fu-
sion. Figure inspired by .

nature of monocular depth estimation. Without stereo or LiDAR cues, the
network must infer depth from appearance alone, which introduces significant
ambiguity.

Pulling approaches have gained popularity, as they don’t depend on monoc-
ular depth estimation. Instead, they initialize a 2D , or 3D ,
grid in world-coordinates, which is then projected into each view to extract
image-view features. This projection, which requires known camera calibra-
tion matrices, is described by . Once the projection of a 3D point in
each camera is established, image features can be sampled through bilinear
sampling , , . However, since scene geometry (actual depth) is not
considered in the transformation, occlusions in crowded scenes result in 3D
points pulling irrelevant information from affected cameras. To increase flex-
ibility, BEVFormer uses deformable attention to predict sampling
offsets around such projected image points to learn where to pull features
from. Alternatively, BEVSegFormer replace the analytical projection
with a learned MLP that maps 3D points to 2D views without explicit cam-
era parameters.

After transforming the image features to 3D based on either pushing or
pulling, most methods collapse the vertical dimension to create BEV features.
However, methods aimed at more detailed 3D tasks, such as semantic occu-
pancy prediction, may adopt voxel representations , or use multiple
orthogonal planes from which fine-grained 3D information can be recov-
ered. Regardless of the chosen representation, it is critical the the resulting
fused features have a fixed dimension independent of the number of cameras,
enabling deployment on camera setups with varying number of cameras. To
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this end, most methods apply simple, non-parametric approaches, such as
summing [83], [86], [96] or averaging [93], [99] across cameras. While effec-
tive, such methods don’t enable sophisticated reasoning about which camera
provides the most relevant features for specific 3D locations, which could be
important in presence of occlusions. To this end, [104] propose a weight pre-
diction branch that learns how to weigh the features from different cameras
to emphasize the most informative views.

Finally, the fused 3D-aware features are further processed to derive task-
specific predictions. While voxel and multi-plane representations require tai-
lored task-specific heads, this is particularly simple in the BEV representa-
tion. Since the BEV representation has similar structure as a 2D feature map
extracted from a single RGB image, i.e., constituting a regular 2D grid of fea-
ture vectors, standard image processing techniques for object detection and
semantic segmentation can be applied. For example, BEVFormer [83] adapt
the image detector Deformable DETR [40] for 3D object detection and the
image segmentation model Panoptic SegFormer [105] for BEV segmentation.

Sparse intermediate fusion

Another class of intermediate fusion methods, initially designed for 3D object
detection, instead rely on a set of sparse 3D object queries. These queries col-
lect and integrate features from all camera views via self- and cross-attention,
following the set-based detection paradigm introduced in DETR [38]. The
extension to mutli-view 3D object detection was first introduced by DETR3D
[88]. Each query predicts an object center point, which is then projected into
each view using the known camera calibration matrix. Based on this reference
points, the object queries extract image features through bilinear sampling.
The mechanism is equivalent to previously presented pulling methods, but
with the difference that this is done for a sparse set of object queries rather
than a dense grid of 3D points. Later, Graph-DETR3D [106] improves this
sampling using a graph structure, while Sparse4D [107] adds deformable at-
tention similar to BEVFormer.

PETR [108] generalizes this further by replacing explicit 2D-3D projections
and bilinear sampling with global transformer cross-attention between object
queries and multi-view image features. Specifically, by encoding 3D positional
information directly into image features via calibration-aware embeddings,
they can use the standard transformer decoder in DETR [38] and allow object
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queries to attend to the multi-view features jointly. Through the interaction,
the model can reason about correspondences between different views more
explicitly than what is done by most previous methods. However, global
cross-attention across multi-view image features is computationally expensive,
making it difficult to extend to dense prediction tasks. Still, the subsequent
model PETRv2 [109] shows strong performance in BEV segmentation, despite
its low spatial resolution caused by sparse queries.

5.3 Generalization

Multi-view 3D perception models built on supervised learning require large,
richly annotated datasets for training. Unlike monocular vision tasks such
as object detection, multi-view methods demand complex camera rigs with
precise temporal and spatial calibration, along with labor-intensive 3D anno-
tation. This makes the process of data collection and labeling significantly
more challenging, which in turn increases the importance of generalization.
Since intermediate fusion methods currently deliver the highest performance
across applications including 3D object detection and BEV semantic segmen-
tation, this section focuses on their generalization capabilities.

Domain shifts in multi-view perception

Domain shifts in multi-view settings can arise from many of the same factors
that affect monocular perception, such as lighting variation, changes in object
types, scene appearance, and the gap between simulated and real environ-
ments. However, multi-view 3D perception also introduces unique challenges
due to variability in camera configurations. Both intrinsic and extrinsic cam-
era parameters play a central role in how image features are mapped to world
coordinates. For example, the size of an object in the image depends not
only on its distance to the camera but also on the camera’s intrinsic parame-
ters, and the spatial correspondence between multiple views depends on both
intrinsic and extrinsic parameters of the cameras. Variations in these pa-
rameters between training and deployment can significantly degrade model
performance [110].

In the industrial application described in Chapter [2| it is critical that a
perception system trained in one factory can scale to new areas or even to en-
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tirely different factories. Because the placement of ceiling-mounted cameras
will vary across installations, the model must handle differences in camera
configuration. At the same time, environmental conditions such as lighting,
object appearance, and scene layout are expected to remain relatively con-
sistent. This makes changes in camera parameters the primary concern for
generalization.

Vulnerability of different architectures

For deployment across varying camera setups, it is crucial that the model ex-
plicitly incorporates camera intrinsics and extrinsics as inputs. In contrast,
methods such as BEVSegFormer [102], which learn image-to-world correspon-
dences from data rather than relying on calibration matrices, are particularly
vulnerable to domain shifts when the camera configuration changes. This
vulnerability arises because the camera geometry is baked into learned pa-
rameters and cannot be easily adjusted to new setups. To address this, most
methods use the camera parameters directly when either pushing or pulling
features to 3D, or in creating 3D aware positional embeddings as in PETR
[108].

Recent research has investigated the generalization capabilities of interme-
diate fusion models under various domain shifts. For instance, |111] evaluate
both pushing methods [94], [95] and pulling methods [83], along with sparse
methods [88], [107], under several types of perturbations. These include en-
vironmental changes such as fog, low brightness, and snow, sensor degrada-
tions such as motion blur and color quantization, and camera failures such
as dropped frames or missing views. They find that all method categories
are vulnerable to such shifts, with pushing methods being especially sensi-
tive. The study by [110] has a particular focus on camera extrinsic shifts. It
shows that both pushing and pulling methods suffer performance drops when
deployed in configurations different from those seen during training.

All these models rely on the quality of image features, which makes them in-
herently sensitive to changes in image appearance. However, the way in which
features are transformed into 3D space may also affect robustness. This is par-
ticularly evident for dense methods that includes a dedicated transformation
step. Generally, domain shifts can affect these methods in all three stages of
the pipeline: (i) image feature extraction, (ii) image-to-world transformation,
(iii) prediction head. A detailed analysis of pushing and pulling methods helps
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clarify where and how these weaknesses appear.

Pushing methods use pixel-wise depth predictions in combination with
camera intrinsics and extrinsics to push image features into 3D space. If
the depth estimates are accurate, the resulting BEV features are well aligned
with the actual positions of objects in the scene. Theoretically, changing
camera positions should not greatly alter the BEV representation if depth is
precise. However, inaccurate depth estimates leads to spatial misalignment
of BEV features, which may cause issues for the prediction head in step (iii).
Unfortunately, depth estimation performance typically degrade under domain
shifts, which deteriorates the performance of the entire framework [110]. In
effect, pushing methods are sensitive to domain shifts in all three stages listed
above.

Pulling methods typically use camera calibration matrices to project 3D
reference points into the image plane and sample image features through bilin-
ear interpolation. This makes the image-to-world transformation stage inher-
ently robust to new camera configurations because it does not rely on learned
mappings. However, the resulting BEV features are stretched and corrupted
by irrelevant features since the transformation doesn’t consider the actual
scene geometry. These distortions vary with camera placement and introduce
distribution shifts in the BEV feature space, causing issues for the prediction
head [112]. For example, pulling features into BEV from a camera with a
top-down view (e.g., a ceiling camera) results in only to mild stretching. In
contrast, features from a side-viewing camera suffer greatly from stretching.
As a result, these methods are sensitive to domain shifts in stage (i) and (iii):
image feature extraction and BEV prediction head. Advanced variants such
as BEVFormer [83] use deformable attention to focus on the most relevant re-
gions in the image, which may help mitigate these geometric distortions. Still,
this merely shifts the burden of generalization to the attention mechanism.

5.4 Case study 2 — multi-view pedestrian detection

In Paper C, we consider estimating the 3D location of pedestrians using a set
of stationary monocular cameras with overlapping field of view. This prob-
lem formulation naturally relates to the industrial use case at Volvo, where
stationary cameras mounted inside the factory may be used under the RAIL
framework to detect dynamic objects. While dynamic objects of different
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classes and shape, such as pedestrians and forklifts, are of interest, Paper C
is dedicated only to pedestrians.

Multiple publicly available datasets exist to facilitate research in this area,
which are listed in Table [5.1] In these datasets, the stationary cameras are
generally mounted at about two meters height and have a side-view of the
scene, together monitoring an area of about 400 square meters. The cameras
have overlapping field of view, so multiple cameras may be used to detect
pedestrians at certain locations. However, since the scenes are crowded (typi-
cally between 20 and 40 people) and the cameras are mounted relatively low,
occlusions are frequent. Moreover, the ground of the monitored area is rela-
tively flat, implying that the 3D position of pedestrians can be well described
by a point on the ground plane. The task is to estimate the location of each
pedestrian on this ground plane. A data sample from the Wildtrack |37
dataset is illustrated in Figure [5.4

Table 5.1: Popular publicly available datasets for multi-view pedestrian detection.

Dataset Samples | Cameras | Scenes | Description

Wildtrack [37] 400 7 1 Real-world: ETH university.

MultiviewX [87] | 400 6 1 Simulation in Unity.
Simulation in Unity (more

GMVD [99) 5995 4-6 7 diverse than MultiviewX).

The state-of-the-art methods for this task are based on intermediate fusion.
Specifically, the non-parametric pulling method based on bilinear sampling is
particularly predominant in the field. A recent method is GMVD [99], which
initializes a 2D grid aligned with the ground plane that is then projected
into each camera view to sample features produced by the image-view feature
extractor (ResNet18 [39]). The acquired BEV features from different cameras
are fused by averaging over the camera-channels. Three convolutional layers
are applied as prediction head to transform the BEV features into the desired
occupancy map, which is a heatmap of likely pedestrian locations. Finally,
the occupancy map is subject to thresholding and non-maximum suppression
(NMS) to derive pedestrian locations. In considering each location on the
heatmap as a candidate detection, the NMS is similar as described i Chapter
Bl While GMVD is conceptually simple and achieves high performance in
the supervised setting, it unfortunately exhibits limited performance across
varying setups in practice.
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Figure 5.4: A sample from the Wildtrack dataset including images from seven
cameras and annotations of pedestrian locations in bird’s-eye-view.
Each camera’s field-of-view is also displayed in the label.

To study this in detail, a few generalization benchmarks based on the men-
tioned datasets are considered in Paper C. Specifically, Paper C explores sim-
to-real adaptation with MultiviewX — Wildtrack, the converse with Wildtrack
— MultiviewX, and adaptation across different camera setups with several
real-to-real and sim-to-sim benchmarks. Table [5.2] shows the performance of
the Oracle, which has been trained on labeled data from the target domain,
and the Source only, which has been trained on labeled data from the source
domain. It also shows the performance of the proposed MVUDA method,
which will be described shortly. All three methods are based on the GMVD
model and the performance is measured by Multi Object detection Accu-
racy (MODA), which accounts both for missed detections and false positives.
For the full details, the reader is referred to Paper C.

As described in the previous section, generalization problems are expected
both in the image-view feature extractor due to appearance changes, and
in the BEV prediction head, since the distribution of the BEV features are
dependent on the camera extrinsics. Meanwhile, the feature pulling is robust
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to distribution shifts as it is not trainable. Table clearly shows that the
method suffers from poor generalizability across different camera setups, both
across simulation and real-world environments, but also within simulation and
real-world respectively, due to changes in camera configuration.

Table 5.2: Performance in MODA on seven adaptation benchmarks of a Source
only and Oracle model, and the MVUDA adaptation method proposed

in Paper C.
Benchmark Source only | MVUDA | Oracle
MultiviewX — Wildtrack 70.0 85.4 91.3
Wildtrack — MultiviewX 35.7 82.2 90.8
Wildtrack2,4,5,6 — 1,3,5,7 | 75.0 79.2 83.7
Wildtrack1,3,5,7 — 2,4,5,6 | 71.6 81.2 86.9
MultiviewX 1,2,6 — 3,4,5 | 54.0 63.9 74.9
GMVD1 — MultiviewX 70.1 88.9 90.8
GMVD2 — MultiviewX 66.3 88.4 90.8

To mitigate the need for collecting and labeling new data for every new cam-
era installation, Paper C investigates this problem under the UDA paradigm.
For example, when studying the benchmark MultiviewX—Wildtrack, labeled
data from MultiviewX and unlabeled data from Wildtrack are used for train-
ing. To address domain generalization issues in both the image-view feature
extractor and the BEV decoder in a unified framework, Paper C proposes a
mean teacher self-training framework that allows for training the entire model
in an end-to-end fashion on unlabeled target data. The framework, illustrated
in Figure [5.5] has many similarities with established self-training methods for
monocular UDA presented in Chapter [f] In each iteration of training, the
student is trained on a labeled source sample and an pseudo-labeled target
sample using an established loss function. Data augmentation is applied to
make the task more challenging for the student. Specifically, we apply 3DROM
[113] that masks part of the images to artificially introduces occlusions, and
Dropout [99] that randomly drops one of the camera views. The pseudo-label
is generated by a mean teacher whose weights are an exponential moving
average of the student’s weights. To generate as accurate pseudo-labels as
possible, the mean teacher is fed unaugmented data samples.

As expected from the study conducted in Paper B, erroneous pseudo-labels
is an inherent problem with the framework. Compared with semantic seg-
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Figure 5.5: Illustration of the self-training framework MVUDA developed in Paper
C.

mentation, wherein pseudo-labels are derived from the predictions by simply
choosing the most likely class at each pixel location, the object detection prob-
lem poses additional challenges due to the reliance on NMS. In applying the
NMS to the predicted occupancy map, two different thresholds must be set.
One for the minimum score in the occupancy map that can be considered a
candidate detection, and one for the distance threshold that determines how
close any two detections can be each other. While the second may be regarded
as a universal constraint applicable to all domains, the first is based on the
model’s confidence, which can be greatly affected by domain shifts. Setting
the thresholds incorrectly can cause even descent predictions of the model be
reduced to completely non-sensical pseudo-labels. Additionally, the thresholds
can’t be tuned on the target domain due to absence of labels.

To this end, Paper C proposes a simple, yet effective, pseudo-labeling ap-
proach to mitigate this issue. The rationale behind the approach is that the
spatial variation of scores across the predicted occupancy map is more impor-
tant than the level of confidence. Specifically, while the overall confidence level
may shift significantly between domains, the spatial smoothness of the pre-
dictions and the fact that pedestrian locations typically coincide with a local
maximum (peak) in the heatmap remains more robust. By altering the NMS
method based on this observation, the generated pseudo-labels become more
reliable, which greatly enhances the effectiveness of the overall framework.

The results in Table[5.2] show that our UDA framework significantly boosts
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5.4 Case study 2 — multi-view pedestrian detection

the performance compared with Source only training. However, the oracle’s
performance is still unmatched, leaving room for future improvements. Within
our proposed framework, more careful treatment of pseudo-label noise, along-
side appropriate data augmentation techniques are likely to improve perfor-
mance further. Another direction is to combine self-training with other meth-
ods for UDA, such as domain-invariant feature learning through adversarial
training, or broader methods for generalizable machine learning, such as foun-
dation vision models. Moreover, the research field would benefit from investi-
gating how the predominant pulling method for feature fusion compares with
pushing or sparse methods, especially under the challenging UDA setting.
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CHAPTER O

Summary of Included Papers

This chapter provides a summary of the included papers.

6.1 Paper A

Erik Brorsson, Kristian Ceder, Ze Zhang, Sabino Francesco Roselli,
Endre Erés, Martin Dahl, Beatrice Alenljung, Jessica Lindblom, Thanh Bui,
Emmanuel Dean, Lennart Svensson, Kristofer Bengtsson, Per-Lage Got-
vall, Knut Akesson

Infrastructure-based Autonomous Mobile Robots for Internal Logistics

- Challenges and Future Perspectives

Submitted for possible journal publication.

This paper addresses the development of autonomous mobile robots (AMRs)
for automated internal logistics in dynamic indoor environments. For AMRs
to operate effectively in such settings, they must be able to perceive their sur-
roundings, localize reliably, and make robust decisions. Most current AMR
systems rely on decentralized onboard sensing and decision making, but they
face challenges on all fronts. Highly dynamic environments cause frequent
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sensor occlusions that hinder perception and localization, while decision mak-
ing that enables seamless collaboration with human workers remains difficult.
To enhance AMR capabilities, this paper investigates the use of infrastructure
sensors, wireless communication, and on-premise cloud resources. We propose
a reference architecture, RAIL, which enables a wide range of infrastructure-
and cloud-based functions, including improved perception through external
sensors and computational offloading to the cloud. Through a combination
of literature review and evaluation in an industrial deployment, we identify
critical open challenges and outline promising directions for future research.
These challenges are grouped into four thematic areas: core autonomy and in-
telligence, infrastructure integration, system-level considerations, and human-
centric design. Although the paper covers a broad scope of AMR functionality,
one of the central findings concerns perception. We find that combining on-
board and infrastructure cameras is a promising approach to achieve robust
and comprehensive environment understanding. However, fusing information
from diverse sources is challenging, particularly under intermittent connec-
tivity and bandwidth constraints. In addition, training and testing machine
learning models require large-scale labeled datasets, which significantly in-
creases costs. Efficient alternatives, such as simulation-based training and
testing, represent a promising direction. The conclusions from our work pro-
vide a foundation for both academic research and industrial adoption of the
next generation of AMR systems.

Contributions: EB decided on the overall layout of the paper, with as-
sistance from KB, KA, and LS. EB also contributed to the development and
implementation of the robotics system as well as to the writing. KC, ZZ,
SFR, EE, BA, JL, TB, KB, and KA contributed to the writing, while PG,
EE, MD, ED, and KB contributed to the development and implementation of
the robotics system.
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6.2 Paper B

Erik Brorsson, Knut Akesson, Lennart Svensson, Kristofer Bengtsson
ECAP: Extensive Cut-and-Paste Augmentation for Unsupervised Do-
main Adaptive Semantic Segmentation

Published in proceedings of IEEE International Conference on Image
Processing (ICIP),

pp. 610-616, Oct. 2024

© 2024 IEEE DOL: 10.1109/ICIP51287.2024.10647390 .

This paper addresses semantic segmentation in images captured from a car-
mounted camera. State-of-the-art approaches based on convolutional neural
networks (CNNs) and Vision Transformers (ViTs) achieve strong performance
in fully supervised settings. However, since pixel-wise labels are costly to ob-
tain, it is essential that models generalize well. A key challenge is that mod-
els are sensitive to domain gaps, which cause significant performance drops
when the training data differs from the deployment environment. To mitigate
this, we investigate unsupervised domain adaptation (UDA), where a model
is trained on a labeled source dataset and adapted to an unlabeled target
dataset. This setting is highly relevant in scenarios such as using labeled
simulation data alongside unlabeled real-world data. Most UDA methods for
semantic segmentation rely on self-training, where pseudo-labels are gener-
ated for unlabeled target data and used for supervised adaptation. However,
self-training is vulnerable to errors in pseudo-labels, which can degrade per-
formance. In our paper, we design a novel data augmentation method devised
to directly address this issue. Specifically, we build a memory bank of con-
fident pseudo-labels which is used through large-scale data augmentation to
focus training on such samples. Our method increases performance on two
popular sim-to-real benchmarks, thereby reducing the reliance on extensive
manual labeling of real-world data. This enhances the practicality of seman-
tic segmentation models for real-world deployment.

Contributions: EB contributed to idea generation, implementation, anal-
ysis, and writing, while KA, LS, and KB contributed to idea generation, anal-
ysis of results, and writing.
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6.3 Paper C

Erik Brorsson, Lennart Svensson, Kristofer Bengtsson, Knut Akesson
MVUDA: Unsupervised Domain Adaptation for Multi-view Pedestrian
Detection

Submitted for possible journal publication.

This paper addresses the problem of multi-view pedestrian detection, where
multiple stationary cameras capture different perspectives of the same scene
to estimate pedestrian positions on the ground plane. The central challenge
lies in fusing complementary information from all cameras into a coherent
representation of the environment, thereby improving robustness to occlu-
sions and the limitations of single-view detections. State-of-the-art methods
employ convolutional neural networks (CNNs) to extract features from each
view independently. These features are projected into a bird’s-eye-view (BEV)
representation, where they are aggregated across views. A prediction head,
typically composed of a few convolutional layers, then outputs an occupancy
map describing pedestrian locations. Although these methods achieve strong
performance in supervised settings, they often overfit to the specific camera
configuration from which the training data was collected. As a result, prac-
tical deployment is hindered, since collecting and labeling new training data
is required for each new setup. To address this limitation, we investigate
unsupervised domain adaptation (UDA) for multi-view pedestrian detection.
Specifically, we adopt a self-training framework to adapt a detector trained
on one camera setup, whether in simulation or in the real world, to a dif-
ferent real-world configuration. We further propose a novel pseudo-labeling
strategy that exploits the spatial smoothness of predictions to reduce noise
in self-training. This approach substantially improves performance on unseen
camera setups without requiring additional labeled data, making multi-view
pedestrian detectors more practical and cost-efficient for real-world deploy-
ment.

Contributions: EB contributed to idea generation, implementation, anal-
ysis, and writing, while KA, LS, and KB contributed to idea generation, anal-
ysis of results, and writing.
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CHAPTER [

Concluding Remarks and Future Work

This chapter concludes the thesis by addressing the research questions, sum-
marizing both the scientific and industrial contributions, and outlining direc-
tions for future work.

7.1 Answering the research questions

This thesis has investigated camera-based perception for Autonomous Mobile
Robots (AMRs). Chapter [2| grounded our work in the industrial application
and proposed reference architecture for infrastructure-based AMR. systems.
Chapter [3| presented the computer vision and machine learning fundamentals
that camera-based perception systems hinge on, and concluded with describ-
ing prevalent challenges. Chapter [4 explored one of these challenges: namely
methods that reduce the dependency on labeled data during training, which
is an important consideration in real-world applications since labeling data is
often expensive and time-consuming. Chapter [5| discussed another fundamen-
tal challenge, concerning fusing information from multiple cameras to create
a more comprehensive and robust environmental representations. Based on
this foundation and the appended papers, the three research questions posed
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at the outset are now addressed.

RQ 1 What are the key challenges in designing reliable camera-based per-
ception systems for AMRs in internal logistics?

In Paper A, we propose RAIL: a Reference Architecture for Infrastructure-
based AMR Systems in Internal Logistics, integrating ceiling cameras, on-
premise cloud computing, and onboard intelligence. In this architecture, the
perception system must estimate the current environment state, such as driv-
able areas and dynamic object locations, by processing image data from on-
board and infrastructure-mounted cameras. This task faces multiple chal-
lenges.

Modern computer vision models based on machine learning encounter diffi-
culties throughout the entire model life-cycle. First, extensive data collection
is required to cover the operational domain sufficiently. Since most ML mod-
els rely on supervised training, this is followed by data annotation, which
often involves expensive and time-consuming manual effort. After data col-
lection and annotation, developing high-performing and generalizable models
remains an ongoing challenge. In the RAIL framework, multiple cameras on
robots or infrastructure may have overlapping fields of view, which raises the
additional question of how information can be fused across cameras for more
robust and precise perception. Finally, models must be extensively tested
and continuously monitored during deployment to ensure reliable operation.
In this context, accurately estimating model uncertainty is critical for under-
standing when the model’s predictions can be trusted, which directly affects
the safety and reliability of the entire system.

This thesis places particular focus on two of these challenges. First, RQ2
addresses ML training methods that require fewer annotations, thus reducing
the need for costly and time-consuming data collection and labeling. This
topic is discussed in detail in Chapter 3 and forms the main theme of Papers
B and C. Second, how to fuse information from multiple cameras is addressed
by RQ3 and Chapter 4, which is central to Paper C.

RQ 2 How can ML models for camera-based perception be trained efficiently
without relying on large-scale labeled real-world datasets?

Labeling real-world data is prohibitively expensive, which limits the broad
use of ML models in computer vision. To alleviate this, simulators offer a
promising approach for data collection, labeling, and model testing. However,
models trained in simulation often suffer from the sim-to-real gap, which hin-
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ders generalization to real-world data. This thesis places specific emphasis
on unsupervised domain adaptation (UDA), which enables training models
using labeled simulated data and unlabeled real-world data, thus achieving
high real-world performance without requiring real-world labels.

Within UDA, self-training has emerged as a promising approach. Effective
adaptation is achieved by training on target data using pseudo-labels gen-
erated by the model itself. A core challenge is that these pseudo-labels are
noisy and often incorrect, limiting adaptation efficiency. Moreover, this la-
bel noise is typically structured rather than random, meaning certain classes
are regularly confused with others under specific conditions. This structured
noise can be reinforced by self-training, worsening the domain gap. In Pa-
per B, we propose a data augmentation method that grounds self-training
in confident pseudo-labels to reduce the negative effect of incorrect labels.
Paper C further studies pseudo-labeling for multi-view object detection and
proposes a robust pseudo-labeling method relying on spatial smoothness in
predictions. While these methods mitigate some challenges, detecting erro-
neous pseudo-labels and reducing their impact remains a key open problem
within the self-training paradigm.

RQ 3 How can ML methods be designed to leverage multiple cameras to
increase performance and robustness in AMR perception?

In Chapter [f] we investigate how multiple cameras can be used for percep-
tion. We limit the discussion to camera rigs that are reasonably well calibrated
and temporally synchronized. In the RAIL framework, such methods could
be applied to process the images from either multiple ceiling cameras on the
on-premise cloud, or to process images from multiple cameras onboard the
robot.

Recently, deep learning methods that learn how to fuse information from
multiple cameras have been successful in tasks such as bird’s-eye-view (BEV)
segmentation and 3D object detection. These methods fuse image-view fea-
tures from all cameras, which are extracted by standard image processing
backbones, enabling a comprehensive understanding of the multi-view im-
ages. However, similar to monocular perception, they generally depend on
supervised training. Furthermore, due to the complexity of sensor setups,
data collection is typically constrained to one or a few specific configurations.
As a result, models often overfit to the training setup, including the cameras’
placement.
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Through a case study on multi-view pedestrian detection, we investigate
an intermediate fusion method based on feature pulling under domain shifts
caused by sim-to-real gaps or changes in camera setup. While the trans-
formation of image features to BEV space naturally adapts to new camera
calibrations, domain shifts can still arise during image-view feature extrac-
tion and within the BEV prediction head, limiting the generalization of these
methods across different camera setups. To address this, Paper C demon-
strates that self-training techniques originally developed for monocular tasks
can be extended to multi-view settings, enabling models to adapt to new cam-
era rigs without labeled data and thereby improving deployment scalability.
A key success factor of the framework lies in generating reliable pseudo-labels
through careful post-processing, which leverages the spatial smoothness of the
predictions.

However, Paper C considers only stationary, well-calibrated cameras con-
nected via wired communication. Fusing data from both onboard and infras-
tructure cameras introduces additional challenges, including spatio-temporal
alignment as the spatial relationship between cameras changes with robot
movement. Moreover, wireless communication introduces constraints such as
limited bandwidth, latency, and jitter, which must also be managed.

7.2 Scientific and industrial contribution

In Paper A, we propose a reference architecture for infrastructure-based AMR
systems and, through a combination of literature review and industrial eval-
uation, provide a solid foundation for future research. In addition, Paper A
identifies critical challenges spanning the entire AMR system, including but
not limited to perception, which serve as important directions for both aca-
demic and industrial research. Papers B and C build on this foundation by
addressing specific perception challenges within the proposed system. Specif-
ically, they present algorithms that advance the state-of-the-art in semantic
segmentation and multi-view pedestrian detection under the unsupervised do-
main adaptation paradigm. Beyond introducing novel methods, the work also
provides insights that can inform future research directions. In particular, we
emphasize the importance of managing pseudo-label noise and designing effec-
tive data augmentation strategies in self-training, and we propose dedicated
methods to address these challenges.
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The contributions of this thesis also hold significant industrial relevance.
Paper A supports the development of robust and flexible AMR systems that
align with industrial needs. The method developed for multi-view pedestrian
detection in Paper C facilitates deployment in industrial settings by reduc-
ing the demand for labeled data. Similarly, the method for unsupervised
domain-adaptive semantic segmentation presented in Paper B reduces anno-
tation requirements for this fundamental task. Since semantic segmentation
is a core computer vision problem with applications well beyond AMRs, the
proposed method and insights may also benefit a broad range of industrial
applications.

Together, these contributions demonstrate both scientific advances in com-
puter vision methods and practical progress toward the deployment of high-
performing, cost-efficient AMR systems in real-world industrial environments.

7.3 Future work

Although substantial progress has been made in this thesis, particularly in
advancing learning with limited labeled data and developing generalizable
multi-view methods for camera-based perception, further research is needed.

For learning with limited labeled data, UDA methods based on self-training
still lag behind oracle performance. Future work may focus on more rigor-
ous handling of inaccurate pseudo-labels, for example by integrating formal
uncertainty quantification methods. While data augmentation has proven cru-
cial, current techniques risk introducing unrealistic artifacts that hinder the
learning of important features such as contextual cues. Advances in synthetic
data generation, including recent methods such as Gaussian splatting, offer
great potential to improve realism and thereby enhance training effectiveness.
Future research should seek to combine such advances in synthetic data gen-
eration with UDA techniques to maximize their complementary benefits.

For multi-view 3D perception, progress in both model architecture and
training methodology is needed to improve generalization. This thesis high-
lighted vulnerabilities in current approaches, underscoring the need for ar-
chitectures that effectively leverage multi-view information while remaining
robust to domain shifts. While this thesis demonstrated that self-training
methods originally designed for monocular detection can be successfully ex-
tended to multi-view settings, future research should investigate strategies
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that more explicitly capitalize on cross-view consistency to further improve
performance. Additional challenges arise when cameras are distributed across
robots and infrastructure and connected via wireless communication. In this
setting, further research is required to enable robust information sharing un-
der bandwidth constraints, latency, jitter, sensor faults, and spatio-temporal
misalignment of data.

While instantaneous environment perception, which is the focus of this the-
sis, lays the foundation for AMR perception, future research must also con-
sider processing time-series data (i.e., videos) to track environment states over
time. Tracking the positions of dynamic agents such as forklifts and pedestri-
ans provides the basis for predicting their future movements, a critical capa-
bility for enabling proactive decision making in AMRs and ensuring smooth
interactions. More generally, temporal modeling improves state estimation
through filtering and increases robustness to occasional misdetections, for ex-
ample those caused by occlusions. Future work should also investigate how
temporal consistency in videos can serve as an auxiliary supervision signal in
self-training frameworks.

Finally, foundation vision models represent a paradigm shift. Instead of
training models for specific tasks, large foundation models trained on vast
datasets offer strong performance across many applications. Although not yet
universal solutions, future research can benefit from leveraging these models,
for example by using them to guide pseudo-labeling in self-training.
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