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Quantum low-density parity-check codes are a promising candidate for fault-
tolerant quantum computing with considerably reduced overhead compared
to the surface code. However, the lack of a practical decoding algorithm
remains a barrier to their implementation. In this work, we introduce localized
statistics decoding, a reliability-guided inversion decoder that is highly paral-
lelizable and applicable to arbitrary quantum low-density parity-check codes.
Our approach employs a parallel matrix factorization strategy, which we call
on-the-fly elimination, to identify, validate, and solve local decoding regions on
the decoding graph. Through numerical simulations, we show that localized

statistics decoding matches the performance of state-of-the-art decoders
while reducing the runtime complexity for operation in the sub-threshold
regime. Importantly, our decoder is more amenable to implementation on
specialized hardware, positioning it as a promising candidate for decoding
real-time syndromes from experiments.

Quantum low-density parity-check (QLDPC) codes' are a promising
alternative to the surface code’™. Based on established methods
underpinning classical technologies such as Ethernet and 5G*¢,
QLDPC codes promise a low-overhead route to fault tolerance’™",
encoding multiple qubits per logical block as opposed to a single one
for the surface code. While, as a trade-off, QLDPC codes require long-
range interactions that can be difficult to implement physically,
various architectures allow for those requirements*". In particular,
recent work targeting quantum processors based on neutral atom
arrays” as well a bi-layer superconducting qubit chip architecture®
suggest that QLDPC codes can achieve an order-of-magnitude
reduction in overhead relative to the surface code on near-term
hardware.

In a quantum error correction circuit, errors are detected by
measuring stabilizers yielding a stream of syndrome information. The
decoder is the classical co-processor tasked with performing real-time
inference on the measured error syndromes to determine a correction
operation that must take place within a time frame less than the
decoherence time of the physical qubits. Full-scale quantum

computers will impose significant demands on their decoders, with
estimates suggesting that terabytes of decoding bandwidth will be
required for real-time processing of syndrome data’®'. As such,
decoding algorithms must be as efficient as possible and, in particular,
suitable for parallel implementation on specialized hardware®.

The current gold standard for decoding general QLDPC codes is
the belief propagation plus ordered statistics decoder (BP+0OSD)". The
core of this decoder is the iterative belief propagation (BP) algorithm?
that finds widespread application in classical error correction. Unfor-
tunately, BP decoders are not effective out of the box for QLDPC
codes. The reason for this shortcoming are so-called degenerate errors,
that is, physically different errors that are equivalent up to stabilizers
and prevent BP from converging****. The BP+0OSD algorithm aug-
ments BP with a post-processing routine based on ordered statistics
decoding (OSD)"™**%, OSD is invoked if the BP algorithm fails to
converge and computes a solution by inverting a full-rank submatrix of
the parity check matrix. A specific strength of the BP+OSD decoder lies
in its versatility: it achieves good decoding performance across the
landscape of quantum LDPC codes?.
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A significant limitation of the BP+OSD decoder is its large runtime
overhead. This inefficiency stems primarily from the OSD algorithm’s
inversion step, which relies on Gaussian elimination and has cubic
worst-case time complexity in the size of the corresponding check
matrix. In practice, this is a particularly acute problem, as decoders
must be run on large circuit-level decoding graphs that account for
errors occurring at any location in the syndrome extraction circuit.
This shortcoming constitutes a known barrier to the experimental
implementation of efficient quantum codes, as circuit-level decoding
graphs can contain tens of thousands of nodes™. Even with specialized
hardware, inverting the matrix of a graph of this size cannot realisti-
cally be achieved within the decoherence time of a typical qubit”.
Whilst the BP+OSD decoder is a useful tool for simulations, it is not
generally considered a practical method for real-time decoding.

In this work, we introduce localized statistics decoding (LSD) as a
parallel and efficient decoder for QLDPC codes, designed specifically
to address the aforementioned limitations of BP+OSD, while retaining
generality and good decoding performance. The key idea under-
pinning LSD is that in the sub-threshold regime, errors typically span
disconnected areas of the decoding graph. Instead of inverting the
entire decoding graph, LSD applies matrix inversion independently
and concurrently for the individual sub-graphs associated with these
decoding regions. Similar to OSD, the performance of LSD can be
improved using the soft information output of a pre-decoder such as
BP. Our numerical decoding simulations of surface codes, bicycle
bivariate codes, and hypergraph product codes show that our imple-
mentation of the BP+LSD decoder performs on par with BP+OSD in
terms of decoding performance.

The efficiency of the LSD algorithm is made possible by a new
linear algebra routine, which we call on-the-fly elimination, that trans-
forms the serial process of Gaussian elimination into a parallel one.
Specifically, our method allows separate regions of the decoding graph
to be reduced on separate processors. A distinct feature of on-the-fly
elimination lies in a sub-routine that efficiently manages the extension
and merging of decoding regions without necessitating the re-
computation of row operations. The methods we introduce promise
reduced runtime in the sub-threshold regime and open the possibility
of using inversion-based decoders to decode real syndrome informa-
tion from quantum computing experiments. We anticipate that on-the-
fly elimination will also find broader utility in efficiently solving sparse
linear systems across various settings, such as recommender systems™
or compressed sensing®.

Results

The decoding problem

In this paper, we focus on the Calderbank-Shor-Steane (CSS) subclass
of QLDPC codes. These codes are defined by constant weight Pauli-X
and -Z operators called checks that generate the stabilizer group
defining the code space. In a gate-based model of computation, the
checks are measured using a circuit containing auxiliary qubits and
two-qubit Clifford gates that map the expectation value of each check
onto the state of an auxiliary qubit. The circuit that implements all
check measurements is called the syndrome extraction circuit.

For the decoding of QLDPC codes, the decoder is provided with a
matrix H € F'?*IF! called the detector check matrix. This matrix maps
circuit fault locations F to so-called detectors D, defined as linear
combinations of check measurement outcomes that are deterministic
in the absence of errors. Specifically, each row of H corresponds to a
detector and each column to a fault, and Hye=1if fault f€ {1, ..., |F} flips
detector d € {1, ..., |D|}. Such a check matrix can be constructed by
tracking the propagation of errors through the syndrome extraction
circuit using a stabilizer simulator**2,

We emphasize that, once the detector matrix H is created, the
minium-weight decoding problem can be mapped to the problem of
decoding a classical linear code: Given a syndrome s e F?', the

decoding problem consists of finding a minimum-weight recovery e
such that s=H - &, where the vector é € I} indicates the locations in
the circuit where faults have occurred.

The decoding graph is a bipartite graph G(H)=(Vp U V[, E) with
detector nodes Vp, fault nodes Vrand edges (d, f) € E & Hye=1. G(H) is
also known as the Tanner graph of the check matrix H. Since the
detector check matrix is analogous to a parity check matrix of a
classical linear code, we use the terms detectors and checks syno-
nymously. Note that we implement a minimum-weight decoding
strategy where the goal is to find the lowest-weight error compatible
with the syndrome. This is distinct from maximum-likelihood
decoding, where the goal is to determine the highest probability
logical coset.

Localized statistics decoding

This section provides an example-guided outline of the localized sta-
tistics decoder. A more formal treatment, including pseudo-code, can
be found in Methods.

a. Notation. For an index set / = {i;, ..., i} and a matrix
M = (my, ..., my) with columns m;, we write My, =(m;, ..., m; ) as the
matrix containing only the columns indexed by /. Equivalently, for a
vector v, vy is the vector containing only coordinates indexed by /.

b. Inversion decoding. The localized statistics decoding (LSD)
algorithm belongs to the class of reliability-guided inversion decoders,
which also contains ordered statistics decoding (OSD)"***. OSD can
solve the decoding problem by computing &, :H[jll -s. Here, Hyjis an
invertible matrix formed by selecting a linearly independent subset of
the columns of the check matrix H indexed by the set of column
indices /. The algorithm is reliability-guided in that it uses prior
knowledge of the error distribution to strategically select / so that the
solution €, spans faults that have the highest error probability. The
reliabilities can be derived, for example, from the device’s physical
error model'***** or the soft information output of a pre-decoder such
as BP*,

c. Factorizing the decoding problem. In general, solving the
system é[,] = H[jl - s involves applying Gaussian elimination to compute
the inverse Hy,, which has cubic worst-case time complexity, o), in
the size n of the check matrix H. The essential idea behind the LSD
decoder is that, for low physical error rates, the decoding problem for
QLDPC amounts to solving a sparse system of linear equations. In this
setting, the inversion decoding problem can be factorized into a set of
independent linear sub-systems that can be solved concurrently.

Figure 1 shows an example of error factorization in the Tanner
graph of a 5 x 10 surface code. The support of a fault vector e is
illustrated by the circular nodes marked with an X and the corre-
sponding syndrome is depicted by the square nodes filled in red. In this
example, it is clear that e can be split into two connected components,
€, and e, that occupy separate regions of the decoding graph. We

Error

O Check Node

O Fault Node B Invalid Check ®

Fig. 1| Illustration of the factorization of the decoding problem on a
5 x 10 surface code patch. Below the threshold, errors are typically sparsely dis-
tributed on the decoding graph and form small clusters with disjoint support.
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refer to each of the connected components induced by an error on the
decoding graph as clusters. With a slight misuse of notation, we refer to
clusters C; and their associated incidence matrices Hic, inter-
changeably and use |C;| to denote the number of fault nodes (columns)
in the cluster (its incidence matrix, respectively). This identification is
natural as clusters are uniquely identified by their fault nodes, or
equivalently, by column indices of H: for a set of fault nodes C € Vy, we
consider all of the detector nodes in V), adjacent to at least one node in
C to be part of the cluster.

For the example in Fig. 1, the two induced clusters Hc,;, Hc,) are
entirely independent of one another. As such, it is possible to find a
decoding solution by inverting each submatrix separately,

A _ -1 -1
€cucuc™ (H coSicr HicSic,y 0) : @

where s;¢, is the subset of syndrome bits in the cluster Hc,;, which we
refer to as the cluster syndrome. The set C, is the column index set of
fault nodes that are not in any cluster.

In general, linear systems can be factorized into v many decoupled
clusters, yielding

€ u-uc,uc 1= <H cosic - Hic Sic.r 0) : @)
The number of clusters, v, will depend upon H, the physical error rate,
and the Hamming weight of s. If a factorization can be found, matrix
inversion is efficient: first, the v clusters can be solved in parallel;
second, the parallel worst-case time complexity of the algorithm
depends on the maximum size of a cluster k =max;(|C;|), where |C} is
the number of fault nodes in C;. The worst-case scaling O(x*) contrasts
with the O(%) OSD post-processing scaling, where n = |V is the size of
the matrix H. To enable parallel execution, we have devised a routine
that we call on-thefly elimination to efficiently merge clusters and
compute a matrix factorization, as detailed in the Methods.

d. Weighted cluster growth and the LSD validity condition. For a
given syndrome, the LSD algorithm is designed to find a factorization
of the decoding graph that is as close to the optimal factorization as
possible. Here, we define a factorization as optimal if its clusters cor-
respond exactly to the connected components induced by the error.

The LSD decoder uses a weighted, reliability-based growth strat-
egy to factorize the decoding graph. The algorithm begins by creating
a cluster Hy¢, for each flipped detector node, i.e., a separate cluster is
generated for every nonzero bit in the syndrome vector s. At every
growth step, each cluster Hc, is grown by one column by adding the
fault node from its neighborhood with the highest probability of being
in error according to the input reliability information. This weighted
growth strategy is crucial for controlling the cluster size: limiting
growth to a single fault node per time step increases the likelihood that

(a) (b)

Probability R
<)

o
=}

Fig. 2 | Reliability-based weighted cluster growth example for the surface code.
a The syndrome of an error is indicated as red square vertices. The fault nodes are
colored to visualize their error probabilities obtained from belief propagation pre-
processing. b Clusters after the first two growth steps. In the guided cluster growth
strategy, fault nodes are added individually to the local clusters. The order of

an efficient factorization is found, especially for QLDPC codes with
high degrees of expansion in their decoding graphs.

If two or more clusters collide - that is, if a check node would be
contained in multiple clusters after a growth step - the LSD algorithm
merges them and forms a combined cluster. We use the notation
Hic, uc, and sy, y ¢, to indicate the decoding matrix and the syndrome
of the combined cluster.

For each cluster C;, the LSD algorithm iterates cluster growth until
it has enough linearly independent columns to find a local solution, i.e.,
until s;¢; € image(H,c,). We call such a cluster valid. Once all clusters
are valid, the LSD algorithm computes all local solutions,
€c, = H[’Cli] -Sic,;» and combines them into a global one.

The process of weighted-cluster growth is conceptually similar to
“belief hypergraph union-find”’ and is illustrated in Fig. 2 for the
surface code. Here, two clusters are created. These are grown
according to the reliability ordering of the neighboring fault nodes. In
Fig. 2¢, the two clusters merge, yielding a combined valid cluster. The
combined cluster is not optimal as its associated decoding matrix has 5
columns, whereas the local solution has Hamming weight 3, indicating
that the optimal cluster would have 3 columns. Nonetheless, com-
puting a solution using the cluster matrix with 5 columns is still pre-
ferable to computing a solution using the full 41-column decoding
matrix - this highlights the possible computational gain of LSD.

e. On-the-fly elimination and parallel implementation. To avoid the
overhead incurred by checking the validity condition after each
growth step - a bottleneck for other clustering decoders for QLDPC
codes*’ - we have developed an efficient algorithm that we call on-the-
fly elimination. Our algorithm maintains a dedicated data structure
that allows for efficient computation of a matrix factorization of each
cluster when additional columns are added to the cluster, even if
clusters merge - see Methods for details. Importantly, at each growth
step, due to our on-the-fly technique, we only need to eliminate a
single additional column vector without having to re-eliminate col-
umns from previous growth steps.

Crucially, on-the-fly elimination can be applied in parallel to each
cluster Hc;. Using the on-the-fly data structure that enables clusters to
be efficiently extended without having to recompute their new fac-
torization from scratch, we propose a fully parallel implementation of
LSD in Section 2 of the Supplementary Material. There, we analyze
parallel LSD time complexity and show that the overhead for each
parallel resource is low and predominantly depends on the
cluster sizes.

f. Factorization in decoding graphs. A key feature of LSD is to
divide the decoding problem into smaller, local sub-problems that
correspond to error clusters on the decoding graph. To provide more
insight, we investigate cluster formation under a specific noise model
and compare these clusters obtained directly from the error to the
clusters identified by LSD.

(c) (d)

O Fault Node

O Check Node

B |Invalid Cluster Syndrome
B Valid Cluster Syndrome

Cluster Support

adding the first two fault nodes to each cluster is random since both have the same
probability due to the presence of degenerate errors. ¢ After an additional growth
step, the two clusters are merged and the combined cluster is valid. d Legend for
the used symbols.

Nature Communications | (2025)16:8214


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-63214-7

[T T T T T T T |v T~
§1o3 (a) v Vv
N 3 E
w0 E E
= [ v v
g I v &
2102k (o] i
= 3 v
P 1
o L O
510! (o]
3} E E
. FES o O £
3 s
s X
100 E 1 1 1 1 1 1 1 1 1 =
102F T T T T T T T T IV ]
E (b) v Y
3 v o
> F Y >
- L
g v Y (o)
a [ v o
S 1ot D &
10°F ‘o .
- o
2 F
Sl |
ETS O LSD - Mean
i v LSD - Max
0 Noise - Mean
107 | | | \ E

1 1 1
0.15 0.2 0.3 0.4 0.5 0.6

! !
0.06 0.08 0.1 .
Physical Error rate, p (%)

Fig. 3 | Cluster size statistics of the [[144, 12, 12]] bivariate bicycle code of ref. 12
under circuit-level noise with strength p. Markers show the mean of the dis-
tribution while shapes are violin plots of the distribution obtained from 10° sam-
ples. Yellow distributions show statistics for the optimal factorization while the
blue distributions show statistics for the factorization returned by BP+LSD. We
show in (a) the distribution of the maximum cluster size x and in (b) the distribution
of the cluster count, v, for each decoding sample. Markers and distributions are
slightly offset from the actual error rate to increase readability.

As a timely example, we focus specifically on the cluster size sta-
tistics of the circuit-noise decoding graph of the [[144,12,12]] bivariate
bicycle code* that was recently investigated in ref. 12. Figure 3a shows
the distribution of the maximum sizes of clusters identified by BP+LSD
over 10° decoding samples, see Methods for details. The figure illus-
trates that for low enough noise rates, the largest clusters found by
LSD are small and close to the optimal sizes of clusters induced by the
original error, even if only a relatively small number (30) of BP itera-
tions is used to compute the soft information input to LSD. It is worth
emphasizing that large clusters are typically formed by merging two,
or more, smaller clusters identified and processed at previous itera-
tions of the algorithm. Owing to our on-the-fly technique that pro-
cesses the linear system corresponding to each of these clusters (cf.
Methods), the maximum cluster size only represents a loose upper
bound on the complexity of the LSD algorithm.

Figure 3 b shows the distributions of the cluster count per shot, v -
that is, per shot, where the LSD data is post-selected on shots where BP
does not converge - against the physical error rate p. The number of
clusters v corresponds to the number of terms in the factorization of
the decoding problem and thus indicates the degree to which the
decoding can be parallelized, as disjoint factors can be solved con-
currently. At practically relevant error rates below the (pseudo)
threshold, e.g., p <0.1%, we observe on average 10 independent clus-
ters. This implies that the LSD algorithm benefits from parallel
resources throughout its execution.

We explore bounds on the sizes of clusters induced by errors on
QLDPC code graphs in Section 1 of the Supplementary Material. Our
findings suggest that detector matrices generally exhibit a strong
suitability for factorization, a feature that the LSD algorithm is
designed to capitalize on.

g. Higher-order reprocessing. Higher-order reprocessing inOSD is a
systematic approach designed to increase the decoder’s accuracy. The
zero-order solution &, =H[7]1 - s of the decoder cannot be made lower

weight if the set of column indices / specifying the invertible submatrix
Hp;; matches the |/] most likely fault locations identified from the soft
information vector A. However, if there are linear dependencies within
the columns formed by the |/| most likely fault locations, the solution &
may not be optimal. In those cases, some fault locations in / (the
complement of /) might have higher error probabilities. To find the
optimal solution, one can systematically search all valid fault config-
urations in 7 that potentially provide a more likely estimate é. This
search space, however, is exponentially large in |/|. Thus, in practice,
only configurations with a Hamming weight up to w are considered,
known as order-w reprocessing. See refs. 11,21,25,26 for a more tech-
nical discussion.

In BP+OSD-w applied to H, order-w reprocessing is frequently the
computational bottleneck because of the extensive search space and
the necessary matrix-vector multiplications involving H,; and Hy to
validate fault configurations. Inspired by higher-order OSD, we pro-
pose a higher-order reprocessing method for LSD, which we refer to as
LSD - u. We find that when higher-order reprocessing is applied to LSD,
it is sufficient to process clusters locally. This offers three key advan-
tages: parallel reprocessing, a reduced higher-order search space, and
smaller matrix-vector multiplications. Furthermore, our numerical
simulations indicate that decoding improvements of local BP+LSD - u
are on par with those of global BP+OSD - w. For more details on higher-
order reprocessing with LSD and additional numerical results, see
Section 4 of the Supplementary Material.

Numerical results

For the numerical simulations in this work, we implement serial LSD,
where the reliability information is provided by a BP pre-decoder. The
BP decoder is run in the first instance, and if no solution is found, LSD is
invoked as a post-processor. Our serial implementation of this BP+LSD
decoder is written in C++ with a python interface and is available
open-source as part of the LDPC package®.

Our main numerical finding is that BP+LSD can decode QLDPC
codes with performance on par with BP+OSD. We include the results of
extensive simulations in which BP+LSD is used to decode a circuit-level
depolarizing noise model for surface codes, hypergraph product
(HGP) codes®, and bivariate bicycle codes**'.

In BP+OSD decoding, it is common to run many BP iterations to
maximize the chance of convergence and reduce the reliance on OSD
post-processing. A strength of the BP+LSD decoder is that LSD is less
costly than OSD and, therefore, applying the LSD routine after running
BP introduces comparatively small overall computational overhead. As
a result, the number of BP iterations in BP+LSD can be considerably
reduced since LSD requires only a few BP iterations to obtain mean-
ingful soft information values. This is in stark contrast to BP+OSD,
where it is often more efficient to run many BP iterations rather than
deferring to costly OSD. In this work, we use a fixed number of 30 BP
iterations for all decoding simulations with BP+LSD. For context, this is
a significant reduction compared to the decoding simulations of ref. 12
where BP+OSD was run with 10* BP iterations.

a. Surface codes. We compare the threshold of BP+LSD with var-
ious state-of-the-art decoders that are similarly guided by the soft
information output of a BP decoder. In particular, we compare the
proposed BP+LSD algorithm with BP+OSD (order 0)”, as well as our
implementation of a BP plus union-find (BP+UF) decoder** that is tai-
lored to matchable codes. The results are shown in Fig. 4. The main
result is that both BP+OSD and BP+LSD achieve a similar threshold
close to a physical error rate of p = 0.7%, and similar logical error rates,
see panels (a) and (c), respectively. In particular, in the relevant sub-
threshold regime, where BP+LSD can be run in parallel, its logical
decoding performance matches BP+OSD. Note that this is the desired
outcome and demonstrates that our algorithm achieves (close to)
identical performance with BP+OSD while maintaining locality. Our
implementation of the BP+UF decoder of ref. 38, see panel (b),
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Fig. 4 | Comparison of various decoders guided by belief propagation for
decoding rotated surface codes of distance d subject to circuit-level depolar-
izing noise parameterized by a single parameter, called the physical error rate
p, see Section IV C for details. We use Stim to perform a surface code:r-
otated memory z experiment for d syndrome extraction cycles with single and
two-qubit error probabilities p. a The performance of BP+OSD-0 that matches the
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performance of the proposed decoder. b The performance of a BeliefFind decoder
that shares a cluster growth strategy with the proposed decoder. ¢ Performance of
the proposed BP+LSD decoder. The shading indicates hypotheses whose like-
lihoods are within a factor of 1000 of the maximum likelihood estimate, similar to a
confidence interval.
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Fig. 5| Below threshold logical error rate p; of a family of [[25s7, s’]] constant-
rate hypergraph product codes decoded with the BP+LSD decoder. We simulate
N, =12 rounds of syndrome extraction cycles under circuit-level noise with physical
error rate p and apply a (3, 1)-overlapping window technique to enable fast and
accurate single-shot decoding, see Methods for details. The shading indicates
hypotheses whose likelihoods are within a factor of 1000 of the maximum like-
lihood estimate, similar to a confidence interval. Dashed lines are an exponential fit
with a linear exponent to the numerically observed error rates.

performs slightly worse, achieving a threshold closer to p = 0.6% and
higher logical error rates, potentially due to a non-optimized
implementation.

b. Random (3,4)-regular hypergraph product codes. Fig. 5 shows the
results of decoding simulations for the family of hypergraph product
codes* that were recently studied in ref. 13. The plot shows the logical
error rate per syndrome cycle p, =1 — (1 — P;(N,))"/", where N, is the
number of syndrome cycles and P,;(N,) the logical error rate after N,
rounds. Under the assumption of an identical, independent circuit-
level noise model, BP+LSD significantly outperforms the BP plus small
set-flip (BP+SSF) decoder investigated in ref. 45. For example, for the
[[625, 25]] code instance at p = 0.1%, BP+LSD improves logical error
suppression by almost two orders of magnitude compared to BP+SSF.

¢. Bivariate bicycle codes. Here, we present decoding simulation
results of the bivariate bicycle (BB) codes. These codes are part of the
family of hyperbicycle codes originally introduced in ref. 41, and more
recently investigated at the circuit level in ref. 12. In Fig. 6, we show the
logical error Zrate per syndrome cycle, p,,. We find that with BP+LSD
we obtain comparable decoding performance to the results presented
in ref. 12 where simulations were run using BP+OSD-CS-7 (where BP

Physical error rate, p

Fig. 6 | Logical error rate per syndrome cycle p; for various bivariate bicycle
codes under a circuit-level noise model. For each code, d rounds of syndrome
extraction are simulated and the full syndrome history is decoded using BP+LSD.
The shading highlights the region of estimated probabilities where the likelihood
ratio is within a factor of 1000, similar to a confidence interval. Dashed lines are an
exponential fit with a quadratic exponent to the numerically observed error rates.

+0SD-CS-7 refers to the “combination sweep” strategy for BP+OSD
higher-order processing with order w = 7, see ref. 21 for more details).

d. Runtime statistics. To estimate the time overhead of the pro-
posed decoder in numerical simulation scenarios and to compare it
with a state-of-the-art implementation of BP+OSD, we present pre-
liminary timing results for our prototypical open-source implementa-
tion of LSD in Section 3.4 of the Supplementary Material. We note that
for a more complete assessment of performance, it will be necessary to
benchmark a fully parallel implementation of the algorithm, designed
for specialized hardware such as GPUs or FPGAs. We leave this as a
topic for future work.

Discussion

When considering large QLDPC codes, current state-of-the-art deco-
ders such as BP+OSD hit fundamental limitations due to the size of the
resulting decoding graphs. This limitation constitutes a severe bot-
tleneck in the realization of protocols based on QLDPC codes. In this
work, we address this challenge through the introduction of the LSD
decoder as a parallel algorithm whose runtime depends pre-
dominantly on the physical error rate of the system. Our algorithm
uses a reliability-based growth procedure to construct clusters on the
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decoding graph in a parallel fashion. Using a novel routine that com-
putes the PLU decomposition*® of the clusters’ sub-matrices on-the-fly,
we can merge clusters efficiently and compute local decoding solu-
tions in a parallel fashion. Our main numerical findings are that the
proposed decoder performs on par with current state-of-the-art
decoding methods in terms of logical decoding performance.

A practical implementation of the algorithm has to be runtime
efficient enough to overcome the so-called backlog problem*’, where
syndrome data accumulates since the decoder is not fast enough.
While we have implemented an overlapping window decoding tech-
nique for our algorithm, it might be interesting to further investigate
the performance of LSD under parallel window decoding®, where the
overlapping decoding window is subdivided to allow for further par-
allelization of syndrome data decoding.

To decode syndrome data from quantum computing experiments
in real-time, it will be necessary to use specialized hardware such as
field programmable gate arrays (FPGAs) or application-specific inte-
grated circuits (ASICs), as recently demonstrated for variants of the
union-find surface code decoder*®*° or possibly cellular automaton
based approaches™. A promising avenue for future research is to
explore the implementation of an LSD decoder on such hardware to
assess its performance with real-time syndrome measurements.

Concerning alternative noise models, erasure-biased systems
have recently been widely investigated®* *°. We conjecture that LSD can
readily be generalized to erasure decoding, either by adapting the
cluster initialization or by considering a re-weighting procedure of the
input reliabilities. We leave a numerical analysis as a topic for
future work.

Finally, it would be interesting to investigate the use of maximum-
likelihood decoding at the cluster level as recently explored in ref. 56
as part of the BP plus ambiguity clustering (BP+AC) decoder. Specifi-
cally, such a method could improve the efficiency of the LSD - u
higher-order reprocessing routines we explored. Similarly, the BP+AC
decoder could benefit from the results of this paper: our parallel LSD
cluster growth strategy, combined with on-the-fly elimination, pro-
vides an efficient strategy for finding the BP+AC block structure using
parallel hardware.

Methods

LSD algorithm

In this section, we provide a detailed description of the LSD algorithm
and its underlying data structure designed for efficient cluster growth,
merging, validation, and ultimately local inversion decoding. We start
with some foundational definitions.

Definition 1.1. (Clusters). Let G(H)=(V, U V, E) be the decoding graph
of a QLDPC code with detector nodes Vp and fault nodes Vi There
exists an edge (d, f) € E & Hygr=1. A clusterC=(V5 U VE, EC) C G(H) is a
connected component of the decoding graph.

Definition 1.2. (Cluster sub-matrix). Given a set of column indices Cof a
cluster, the sub-matrix Hc) of the check matrix H is called the cluster
sub-matrix. The local syndromes; of a cluster is the support vector of
detector nodes in the cluster. A cluster is valid if sic; € IMAGE(H¢).
Note that a cluster is uniquely identified by the columns of its sub-
matrix Hi¢, hence we use Hiq to denote both the cluster and its sub-
matrix.

Definition 1.3. (Cluster-boundary and candidate fault nodes) The set of
boundary detector nodes S(C) Vf) of a cluster C is the set

A)={u € G(H)|(v,u) € E}. We define candidate fault nodes\(C)
Vi \ V€ as the set of fault nodes not in C and connected to at least
one boundary detector node in B(C)

NC)=ABO) N (Vi \ VE). @)

Definition 1.4. (Cluster collisions) Two or more clusters {C} collide due
to a set of fault nodes A if

Ar < [JAG) and [B(C) N ABp)#0. )

The LSD algorithm takes as input the matrix H € 7", where
m = |Vp|, n = |Vd, a syndrome s € ', and a reliability vector that
contains the soft information A € R". In the following, we will assume
that A takes the form of log-likelihood-ratios (LLRs) such that the lower
the LLR, the higher the probability that the corresponding fault
belongs to the error. For instance, this is the form of soft information
that is returned by the BP decoder.

A sequential version of the algorithm is outlined below and
detailed in the pseudo-code in Box 1. A parallel version of the LSD
algorithm is presented in Section 2 of the Supplementary Material

1. Acluster is created for each flipped detector node d; where s; = 1.
This cluster is represented by its corresponding sub-matrix Hc,.
Initially, each cluster is added to a list of invalid clusters.

2. Every cluster is grown by a single node v; drawn from the list of
candidate nodes A(C). For the first growth step after cluster
initialization, we define A(C;) = A({s;}) - see Definition IV.3. The
chosen growth node v; € A(C)) in each step is the fault node with
the highest probability of being in error. That is, v; has the lowest
value among the LLRs for the candidate fault nodes A; < 4
41 < - <Ap, €=1A(C)]. Hence, the growth step involves adding one
new column to the cluster matrix Hc,.

3. During growth, the algorithm detects collisions between clusters
due to the selected fault nodes. Clusters that collide are merged.

4. The Gaussian elimination row operations performed on previous
columns are performed on the new column together with the row
operations needed to eliminate the newly added columns of H .
In addition, every row operation applied to Hc, is also applied to
the local syndrome s;¢;. This allows the algorithm to efficiently
track when the cluster becomes valid. Explicitly, the cluster is valid
when the syndrome becomes linearly dependent on the cluster
decoding matrix i.e., when s, € image(Hc;). In addition to
cluster validation, the Gaussian elimination at each step enables
an on-the-fly computation of the PLU factorization of the local
cluster. We refer the reader to subsection “On-the-fly elimination”
for an outline of our method.

5. The valid clusters are removed from the invalid cluster list, and
the algorithm continues iteratively until the invalid cluster list
is empty.

6. Once all clusters are valid, the local solutions €, such that H, -
€,c, =Sic, can be computed via the PLU decomposition of each
cluster matrix Hc, that has been computed on-the-fly during
cluster growth. The output of the LSD algorithm is the union of all
the local decoding vectors €.

On-the-fly elimination

A common method for solving linear systems of equations is to use a
matrix factorization technique. A foundational theorem in linear
algebra states that every invertible matrix A factorizes as A = PLU, that

— C C 3
BO)=1d e VI d)¢TE) 3 is, there exist matrices P, L, U such that
of all detector nodes in C that are connected to at least one fault node
not in C, where A(v) is the neighborhood of the vertex v, i.e., A=PLU, (6)
Nature Communications | (2025)16:8214 6
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BOX 1

Localized statistics decoding (LSD) - serial algorithm

e )\
1 H: decoding matrix
2 s: syndrome vector
3 A: fault node soft information vector
4 I:=[]: list of invalid clusters cl;
5 V= []: list of valid clusters cly
6 for s; € s do
7 cli = CREATE CLUSTER(S;)
8 Ladd(cl;)
9 while I # [] do
10 for cle I do
11 | cL.GROW_ CLUSTER())
12 for clj,cl, e TUV do
// check if any clusters clj,cly collide
13 merged = CHECK _ COLLISION(cl;, cly)
14 if merged then
15 cliue = MERGE _ CLUSTERS(cl;, clp)
16 Lremove({cl;, clg})
17 V.remove({cl;, cl¢})
18 Ladd(cliue)
19 for cl €I do
20 cl.PLU_DECOMPOSE()
21 valid = cl.CHECK _ VALIDITY (S[|])
22 if wvalid then
23 V.add(cl)
24 Lremove(cl)
25 local decodings = []
26 for c/ €V do
27 | local _decodings.append(clL.PLU_SOLVE(S(c1))
28 return GLOBAL DECODING(local decodings)
o J

where P is a permutation matrix, U is upper triangular, and L is lower
triangular with 1 entries on the diagonal. Once in PLU form, a solution x
for the system A - x =y can be efficiently computed using the forward
and back substitution procedure*. The computational bottleneck of
this method to solve linear systems stems from the Gaussian elimina-
tion procedure required to transform A into PLU form.

Here, we present a novel algorithm called on-the-fly elimination to
efficiently compute the PLU factorization over I,. Note that the
algorithm can in principle be generalized to matrices over any field.
However, in the context of coding theory, I, is most relevant and we
restrict the discussion to this case.

The main idea of the on-the-fly elimination is that row operations
can be applied in a column-by-column fashion. If the operations that
have been applied to each column of the matrix are stored, they can be
applied to a newly added column such that only this column needs to
be eliminated as all other columns are already in reduced form. This
highlights the nice interplay between cluster growth (i.e., appending
columns) and the on-the-fly elimination for PLU factorization of the
cluster matrix.

To grow and merge clusters, multiple smaller steps are necessary.
As detailed above, these steps include identifying fault nodes/column
indices of the decoding matrix H by which the invalid clusters will grow
and determining whether an added fault node will lead to two or more
clusters merging into a single one - see Definition IV.4. For simplicity,
we first describe the case of sequential cluster growth. Our on-the-fly
procedure can analogously be applied in a parallel implementation,
see Section 2 of the Supplementary Material.

Let C; be an active cluster, that is, (Hc,, Sc,) does not define a
solvable decoding problem as sc;¢image(Hc,). To grow cluster C;,
we consider candidate fault nodes v; € A(C;) - fault nodes not
already in C; but connected to check nodes on its boundary B(C),
see Definition IV.3. The candidate fault node with the highest
probability of being in error according to the soft information
vector A € R" is selected. Once v; has been chosen, we check
whether its neighboring detector nodes are boundary nodes of any
other (valid or invalid) clusters i.e., we check for collisions, cf
Definition IV.4. If this is not the case, we proceed as follows. We
now assume that the active cluster C; described by sub-matrix Hic,
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that has a PLU factorization of the form
Hicy=PiL;U;, 7)

where P;, L;, U; are as in Eq. (6). Adding a fault node v; to the cluster is
equivalent to adding a (sparse) column vector b to H¢, i.e.,
Hioy

m@wwH:< 0 b)- ®

A key insight is that the PLU factorization of the extended matrix
Hic,u v €an be computed through row operation on column b alone:
itis not necessary to factorize the full matrix Hc, , w from scratch. By
applying the PLU factorization of Hic, block-wise to the extended
matrix Hic, y (), we obtain

U;
0

where b; is the projection of b onto the detectors/row coordinates that
are enclosed by C. Similarly, b is the projection onto detector coor-
dinates not enclosed by C;. Importantly, applying the operators L;* and
P,-T does not affect the support of b; and b, as both these operators act
solely on the support of C;. Combining this with Eq. 9, we note that to
complete the PLU factorization of H¢, 1w only b; has to be reduced,
which has a computational cost proportional to its weight - crucially
only a small constant for bounded LDPC matrices H.

We now continue by describing the collision case, where the
addition of a fault node to a cluster results in the merging of two
clusters. The generalization to the merging of more than two clustersis
straightforward.

Suppose that the selected fault node v; by which the cluster C; is
grown is connected to a check node in the boundary B(C,), with C; # C,.
Let b be the column of H associated with the fault node v;. Re-ordering
its coordinates if necessary, we can write b as (b;, by, b-) where b;, by,
and b- are the projections of b on the row coordinates contained in C;,
Ce, and neither of them, respectively. Thus, using a block matrix
notation, for the combined cluster C; U C, U {v}, we have

9

L;'PTb;
bi* '

Hieg| 0 |bs
H[C,UC[U{’I{;}] - 0 ‘H[Cd ‘ b, |- (10)
0 | 0 |b.

By applying the PLU factorization of Hi¢, and Hi¢,, block wise, we can
Put Hic,uc,u into the form

U;| 0|L;'PT'b;
0|U/|L,"PI'b, |- a1y
010 b,

Since U; and Up are, in general, not full rank, they may contain some

zero rows. As a result, the first |C;| + |Cg| columns are not necessarily in
reduced form. To make this issue clearer, we introduce the notation
u,,=L,'P,b,, for m € {i, & and express the above matrix as

Uie| 0 |15,

Ui| 0w 0 | 0 Juy
0 U({ Uy - 0 Uzﬁ. U/ e (12)

0 0 b* 0 0 Wy |

0 0 | b.

Here, by slight misuse of notation, we group the non-zero rows of U,
in the index set (m, ¢), and its zero rows in the set (m, 1); we regroup
the coordinates of vector u accordingly. We remark that the row sets «
and L are distinct from the row set * identified when writing b as the
combination of its projection onto row coordinates enclosed by C; and
outside it. By identifying the appropriate row sets for the clusters C;, C,
and the fault node {v} as detailed in Eq. (12), we can construct a block-
swap matrix to bring Hic y ¢, u w1 into the form

Uie| 0 |1,
0 |Use|uye
0 u;, | (13)
0 0 Uy |
0 0 | b

and similarly for its PLU factors. Since the matrix in Eq. 13 has the same
form as the one in Eq. 8, the algorithm can proceed from this point
onward as in the case of the addition of a single fault node to a cluster.
In conclusion, via a swap transformation, we can effectively reduce the
problem of merging two clusters to the problem of adding a single
fault node to one cluster.

Numerical decoding simulations
For all numerical simulations in this work, we employ a circuit-level
noise model that is characterized by a single parameter p, the physical
error probability. Typically, the standard noise model for each time
step is then to assume the following.
* Idle qubits are subject to depolarizing errors with probability p.
* Pairs of qubits acted on by two-qubit gates such as CNOT are
subject to two-qubit depolarizing errors after the gate, that is, any
of the 15 non-trivial Pauli operators occurs with probability p/15.
* Qubits initialized in |0)(]+)) are flipped to |1) (]—)) with prob-
ability p.
* The measurement result of an X/Z basis measurement is flipped
with probability p.

For surface code simulations, we use the syndrome extraction
circuits and noise model provided by stim®’. We note that this noise
model is similar to the one described above, however, it differs in small
details such as that it combines measurement and initialization errors,
ignores idling errors and applies a depolarizing channel to data qubits
prior to each syndrome measurement cycle. We perform a memory
experiment for a single check side (Z-checks), called surface co-
de:rotated memory z experiment in Stim, over d syndrome
extraction cycles for code instances with distance d.

The syndrome extraction circuits for the family of HGP codes
presented in Section 3 of the Supplementary Material and results
presented in subsection “Numerical results” are obtained from the
minimum edge coloration of the Tanner graphs associated to the
respective parity check matrix, see ref. 13 for details. In particular, we
generate associated Stim files of r = 12 noisy syndrome extractions
using a publicly available implementation of the aforementioned col-
oration circuit by Pattison”. In this case, the standard circuit-level
noise model described at the beginning of this section is employed. We
decode X and Z detectors separately using a (3, 1) — overlapping win-
dow decoder. That is, for each decoding round, the decoder obtains
the detection events for w = 3 syndrome extraction cycles and com-
putes a correction for the entire window. However, it only applies the
correction for a single (c = 1) syndrome extraction cycle, specifically
the one that occurred the furthest in the past. For more details on
circuit-level overlapping window decoding, see ref. 58. We have cho-
sen w =3 as this was the value used in ref. 13. Note that it is possible that
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(small) decoding improvements could be observed by considering
larger values of (w, c) for the overlapping window decoder.

The BB codes are simulated using the syndrome extraction cir-
cuits specified in ref. 12, and the stim files are generated using the
code in ref. 59. There, the authors recreate the circuit-level noise
model described in ref. 12 which, up to minor details, implements the
noise model described at the beginning of this section. Similar to the
HGP codes mentioned above, we decode X and Z decoders separately.
Analogous to our surface code experiments, we simulate for a distance
d code d rounds of syndrome extraction and decode the full syndrome
history at once. As the BB codes are CSS codes, we decode X and Z
detectors separately.

If not specified otherwise, we have used the min-sum algorithm
for BP, allowing for a maximum of 30 iterations with a scaling factor of
a = 0.625, using the parallel update schedule. We have not optimized
these parameters and believe that an improved decoding perfor-
mance, in terms of speed and (or) accuracy, can be achieved by further
tweaking these parameters.

Parallel algorithm

We propose a parallel version of the LSD algorithm (P-LSD) in Section 2
of the Supplementary Material that uses a parallel data structure,
inspired by refs. 60,61, to minimize synchronization bottlenecks. We
discuss the parallel algorithm in more detail in Section 2 of the Sup-
plementary Material. There, we derive a bound on the parallel depth of
P-LSD, that is, roughly the maximum overhead per parallel resource of
the algorithm. We show that the depth is O(polylog (n)+«3) in the
worst-case, where n is the number of vertices of the decoding graph
and k is the maximum cluster size. A crucial factor in the runtime
overhead of P-LSD is given by the merge and factorization operations.
We contain this overhead by (i) using the parallel union-find data
structure of ref. 60 for cluster tracking and (ii) using parallel on-the-fly
elimination to factorize the associated matrices. If we assume suffi-
cient parallel resources, the overall runtime of parallel LSD is domi-
nated by the complexity of computing the decoding solution for the
largest cluster. To estimate the expected overhead induced by the
cluster sizes concretely, we (i) investigate analytical bounds and (ii)
conduct numerical experiments to analyze the statistical distribution
of clusters for several code families, see Section 1 of the Supplemen-
tary Material.

Data availability
The simulation data generated in this study has been deposited in the
Zenodo database and is available under®’.

Code availability

The proposed algorithm and scripts to run the numerical experiments
to generate the results presented above is publicly available on
Github*,
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