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ABSTRACT

We derive the global model of thermal quasi-geostrophy on the sphere via asymptotic expansion of the thermal rotating shallow water equa-
tions. The model does not rely on the asymptotic expansion of the Coriolis force and extends the quasi-geostrophic model on the sphere by
including an additional transported buoyancy field acting as a source term for the potential vorticity. We give its Hamiltonian description in
terms of semidirect product Lie–Poisson brackets. The Hamiltonian formulation reveals the existence of an infinite number of conservation
laws, Casimirs, parameterized by two arbitrary smooth functions. A structure-preserving discretization is provided based on Zeitlin’s self-
consistent matrix approximation for hydrodynamics. A Casimir-preserving time integrator is employed to numerically fully preserve the
resulting finite-dimensional Lie–Poisson structure. Simulations reveal the formation of vorticity and buoyancy fronts, and large-scale struc-
tures in the buoyancy dynamics induced by the buoyancy–bathymetry interaction.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0281814

I. INTRODUCTION

The thermal rotating shallow water model (TRSW) is known to
contain the basic mechanisms of the ocean and atmospheric dynamics
on a planetary scale Zeitlin (2018), such as horizontal circulation of a
fluid caused by a misalignment of horizontal gradients of buoyancy
and bathymetry with simultaneous transport of buoyancy, and serves
as a common model in geophysical fluid dynamics (GFD). The TRSW
model is obtained via subsequent approximations of the 3D Euler
equations for incompressible stratified inhomogeneous fluids. For
small buoyancy stratification, it simplifies to the Euler–Boussinesq
equations, and, after vertical averaging, to the thermal rotating Green–
Naghdi equations. Finally, neglecting the non-hydrostatic pressure
effects, one obtains the TRSW equations. For a detailed derivation, as
well as for the stochastic versions of the mentioned models, we refer to
Holm and Luesink (2021); Holm et al. (2021). The TRSW model
incorporates thermal effects through the horizontally varying buoy-
ancy field transported by the flow and describes the motion of a two-
dimensional upper layer of the fluid on top of an inert lower layer with
varying bottom topography (bathymetry). The TRSW equations were
first outlined as early as in 1960s in the work O’Brien and Reid (1967)
and were further developed in Ripa (1993; 1995b; 1999).

The TRSW model contains a number of dimensionless parame-
ters, such as the Rossby number, the Froude number, and the

buoyancy stratification parameter. These parameters are small in the
geophysical regime, which leads to further simplification of the TRSW
model via asymptotic expansions. This yields the thermal quasi-
geostrophic (TQG) equations, which have been derived and analyzed
on the b-plane Holm et al. (2021), Warneford and Dellar (2013),
Beron-Vera (2021), and for which local in time unique strong solu-
tions were proven to exist Crisan et al. (2023). The key mechanism
behind the derivation of such planar versions of the TQG model is the
expansion of the Coriolis parameter in a regular series with respect to
the small Rossby number, which corresponds to a planar approxima-
tion of the Earth’s surface in the neighborhood of a fixed latitude. The
model, therefore, describes local dynamics away from the equator, but
does not constitute a global model on the sphere. In the present paper,
we extend the TQGmodel to the entire sphere by keeping the full vari-
ation of the Coriolis parameter in the thermal quasi-geostropic balance
equation, and present a structure-preserving numerical integration
method for the resulting system of equations.

Quasi-geostrophic (QG) models are the limiting cases of the
TQG equations for constant buoyancy. The former are typically
derived in the planar approximation using the near-balance of the
Coriolis force and the pressure gradient, as well as either the f-plane or
the b-plane approximation to the Coriolis parameter at a certain lati-
tude. For the f-plane approximation, the Coriolis parameter is merely
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replaced with the constant value f0, whereas for the b-plane approxi-
mation, one takes the linear part of the expansion, f ¼ f0 þ by, where
y is the vertical coordinate in the plane tangent to the Earth’s surface.
This approach is known as “theoretician’s geostrophy” Blackburn
(1985) and faces a significant difficulty when attempting to extend it to
the entire sphere. Namely, there is no other f0 than zero that would
represent the whole sphere. The alternative “synoptician’s geostrophy”
by Blackburn (1985) suggests keeping the full variation of f in the geo-
strophic balance. However, this leads to the meridional velocity vanish-
ing at the equator, which is also unrealistic. Perhaps the first model
that overcame the mentioned difficulties was developed by Lorenz
(1960), who, after subsequent simplifications of the velocity divergence
equation, obtained the linear balance equation. This was further sim-
plified by Daley (1983) who found “the simplest form of the geo-
strophic relationship” by taking the trivial solution to Lorenz’s balance
equation. In Verkley (2009), another balance relation was derived for
the one-layer shallow water model based on Daley’s balance equation.
This relation contains the Cressman stretching term Cressman (1958)
proportional to f 2. It was further re-derived in the recent work
Luesink et al. (2024) via the perturbation series in vorticity and velocity
divergence for the rotating shallow water (RSW) model. The perturba-
tion series is a promising approach in application to the TRSW model,
as it allows to derive quasi-geostrophic models and specify valid
parameter regimes. In the present work, we use the perturbation series
to obtain the global TQG model on the sphere and show how the
buoyancy field contributes to the geostrophic balance relation.

Geophysical fluid-dynamical models often possess a Hamiltonian
formulation. This observation originates from the seminal work of
Arnold (1966), and the QGmodels are no exception. The Hamiltonian
framework provides a systematic way to establish the infinite number
of conservation laws in 2D hydrodynamics called Casimirs. When it
comes to computer simulations of the dynamics of the mentioned
models, it is crucial to preserve the Casimir invariants to guarantee sta-
ble numerical solutions and accurate prediction of long-time statistics.
A Casimir-preserving discretization was developed by Modin and
Viviani (2020a; 2020b) for the Euler equations on the sphere and was
used to study long-time solution behavior. It further provided numeri-
cal evidence for the double cascade in two-dimensional turbulence
Cifani et al. (2022) and Modin and Viviani (2022) conjectured by
Kraichnan (1967). The discretization builds on Zeitlin’s self-consistent
truncation Zeitlin (2004), which allows approximating the infinite-
dimensional Lie–Poisson structure by its finite-dimensional matrix
counterpart. The global QG model possesses a similar Lie–Poisson
structure Luesink et al. (2024), which has enabled structure-preserving
numerical methods for single-layer Franken et al. (2024) and multi-
layer Franken et al. (2025) QG models. Numerical results revealed the
formation of stable zonal jets in long-time simulations. The mentioned
models are essentially one-field transport equations, meaning that the
prognostic field (the vorticity in the Euler equations, or the potential
vorticity in the QG equations) is advected by the corresponding stream
function related to the vorticity via the Laplace or Helmholtz operator.
Their matrix approximations are isospectral flows, which makes it pos-
sible to utilize the isospectral time integrator developed in Modin and
Viviani (2020b).

A Hamiltonian formulation can also be found for the global TQG
model as presented in this paper. Global TQG dynamics are described
by a multi-field model with a single transported quantity, rather than a

single-field transport model. Namely, the presence of varying buoy-
ancy breaks the symmetry of the QG equations and introduces a
source term in the vorticity advection equation. This leads to the loss
of enstrophy as a conserved quantity, which is a Casimir in the QG
model. Instead, the TQG equations are formulated in terms of the
semidirect product Lie–Poisson bracket. This bracket was originally
developed in the context of magnetohydrodynamics (MHD) Holm
et al. (1998), Morrison and Greene (1980), and Holm and
Kupershmidt (1983), where the magnetic field is transported by the
fluid, while the Lorentz force is added to the vorticity equation and
thereby breaks the symmetry of the original Euler equations. Thus,
from amathematical perspective, the magnetic field plays the same role
in MHD as the buoyancy does in TQG. The appearance of the semidir-
ect product bracket in TQG is somewhat expected, as it appears when-
ever the symmetry is broken Khesin et al. (2021). The Hamiltonian
formulation of the TQG model allows identifying Casimir invariants
resembling those of MHD. Similarly, the Zeitlin matrix truncation can
be found for TQG, and the resulting system can be integrated in time
using the magnetic midpoint integrator developed in Modin and Roop
(2025) for plasma-physical models. The integrator exactly preserves the
Casimir invariants and nearly preserves the energy.

The paper is organized as follows. In Sec. II, we derive the global
TQG model on the sphere via asymptotic expansion of the TRSW
equations with respect to a small parameter that unifies the Froude
number, the Rossby number, and the stratification parameter. In Sec.
III, we give a Hamiltonian formulation of the TQG model in terms of
a non-canonical Hamiltonian structure, along with the Casimir invari-
ants. In Sec. IV, we present the structure-preserving discretization for
TQG on the sphere, and demonstrate simulation results in Sec. V. We
conclude the paper in Sec. VI.

II. MODEL DERIVATION

In this section, we derive the global TQG model on the sphere
starting from the TRSW equations by following the approach pre-
sented in Luesink et al. (2024). In what follows, we denote the sphere
by S2 � R3 and let x 2 S2. The non-dimensional TRSW equations
read Holm et al. (2021)

@u
@t

þ ðu � rÞuþ 1
Ro

f z� u ¼ � a
Fr2

rðð1þ sbÞnÞ
þ s
2Fr2

ðan� hÞrb;

@g
@t

þr � ðguÞ ¼ 0;
@b
@t

þ ðu � rÞb ¼ 0;

8>>>>>><
>>>>>>:

(1)

where uðx; tÞ is the velocity field of the fluid (note that at this point
there is no assumption of vanishing divergence), z is the outward unit
normal vector on the sphere, f ¼ 2 cosðhÞ is the dimensionless
Coriolis parameter, with h being the latitude (h ¼ p=2 at the equator);
anðx; tÞ is the free surface elevation, so that gðx; tÞ ¼ anðx; tÞ þ hðxÞ
is the total depth, and hðxÞ ¼ 1þ eh1ðxÞ is the bathymetry function.
The constant a is the typical wave amplitude, which is assumed to be
small compared to the total depth gðx; tÞ. We illustrate this in Fig. 1.

The field bðx; tÞ ¼ ðqðx; tÞ � q0Þ=q0 is the dimensionless buoy-
ancy defined as a normalized fluid density variation. The system also
contains three dimensionless parameters. The Rossby number
Ro ¼ U=ðXLÞ is the ratio between the typical velocity U and the rota-
tion velocity XL (X is the Earth’s rotation frequency), with L being the
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typical length scale. The stratification parameter s governs the impor-
tance of buoyancy. The Froude number Fr ¼ U=

ffiffiffiffiffiffi
gH

p
is the ratio

between the typical velocity U and the speed of the fastest gravity waveffiffiffiffiffiffi
gH

p
, with g being the gravitational acceleration and H being the aver-

age fluid depth. In the geophysical approximation, the parameters Ro,
Fr, a, and s are assumed to be small and of the same order, and for
convenience, we shall denote them by the same symbol e

OðaÞ ¼ OðsÞ ¼ OðRoÞ ¼ OðFrÞ ¼ OðeÞ:

A. Simplest TQG balance equation

We first derive the expression for thermal geostrophic balance.
This amounts to expanding the perturbation series of several variables
in Eq. (1) and finding the velocity field that ensures a balance at lead-
ing order.

We start with the transport equation for gðx; tÞ. Combining the
above expressions for hðx; tÞ and gðx; tÞ, we get that gðx; tÞ ¼ 1
þ anðx; tÞ þ eh1ðxÞ. Plugging this expression into the transport equa-
tion for gðx; tÞ in Eq. (1), we obtain

a
@n
@t

þrðanþ eh1Þ � uþr � uþ ðanþ eh1Þr � u ¼ 0: (2)

Since a and e are by assumption small parameters of the same order,
we get from Eq. (2) that the leading term in the velocity field expansion
is divergence-free. Equivalently, the divergence of the velocity field u is
of order e. Small horizontal divergence has been a common assump-
tion in quasi-geostrophic theories and has recently been validated on
observational data Yano et al. (2009). Combining this fact
with the Helmholtz decomposition of vector fields on the sphere, we
obtain

u ¼ z�rwþ erv; (3)

where wðx; tÞ is the stream function generating the divergence-free
part of the velocity field, and vðx; tÞ is the potential for the gradient
part of the vector field uðx; tÞ. This observation allows us to get the
leading term of the buoyancy transport equation

_b ¼ �ðz�rwÞ � rb ¼ b;wf g;
where �; �f g is the Poisson bracket on C1ðS2Þ.

We view the two-dimensional velocity field uðx; tÞ as a three-
dimensional vector field with a trivial radial component, which allows
for the use of the standard curl operator in three dimensions. Then,
using the identity

curlðuÞ � u ¼ ðu � rÞu� 1
2
rjuj2;

we can rewrite the velocity equation in Eq. (1) as follows:

@u
@t

þ xþ f
Ro

� �
z� u ¼ � a

Fr2
r ð1þ sbÞnð Þ � 1

2
rjuj2þ

þ s

2Fr2
ðan� hÞrb; (4)

where xðx; tÞ is the vorticity function defined asx z ¼ curlðuÞ.
Let us now insert the velocity decomposition (3) in Eq. (4) and

apply the divergence operator to both sides. We get

eD _v þr �
 

� xþ f
Ro

� �
rwþ a

Fr2
rðð1þ sbÞnÞ

þ 1
2
rjrwj2 � s

2Fr2
ðan� hÞrb

!
þ OðeÞ ¼ 0;

where we used that z� u ¼ �rwþ OðeÞ. Recall that a; s;Ro, and Fr
are all of order e. Thus, by collecting the terms of orderOð1=eÞ, we find

r � � f
Ro

rwþ a

Fr2
rnþ s

2Fr2
hrb

� �
¼ 0: (5)

We now have to find a solution to Eq. (5). A similar equation, the lin-
ear balance equation, was derived in Lorenz (1960). A conventional
simplifying assumption in GFD is that the Coriolis parameter f has a
small variation, i.e., rf � OðeÞ, which would imply that frw
� rðfwÞ (up to OðeÞ terms). This assumption is evident for the f-
plane and b-plane approximations. To the best of the authors’ knowl-
edge, no rigorous justification of this fact has been offered for the
spherical case. Our subsequent derivation of the TQG balance relies on
the assumption that frw � rðfwÞ. We motivate this assumption as
follows. First, we recall that Eq. (1) are dimensionless and therefore dif-
ferential operators, such as the gradient, are dimensionless as well. We
thus compare the two terms frw and wrf ,

frw ¼ 2L
a
cosðhÞ @w

@h
eh þ 2L

a
cotðhÞ @w

@u
eu;

wrf ¼ � 2L
a
w sinðhÞeh;

where eh and eu are the unit vectors in polar and azimuthal directions,
respectively, and a is the radius of the Earth. We observe that the term
wrf is bounded for all h 2 ½0; p� provided w is bounded.
Furthermore, wrf is of order OðeÞ when L=a � OðeÞ, i.e., when the
horizontal lengthscale is small compared to the Earth’s radius. At the
same time, despite the presence of the same multiplier L=a in the term
frw, the cotðhÞ function has a singularity and therefore cannot be
neglected.

The simplifying assumption frw � rðfwÞ was used in Verkley
(2009), and its validity was illustrated on the dynamics of linear
Rossby waves. The global QG model on the sphere derived by means
of the above assumption was also investigated in Schubert et al. (2009).

FIG. 1. Vertical structure of the flow domain. The free surface is given by the func-
tion anðx; tÞ, which is small compared to the total depth g ¼ anþ h, with hðxÞ
being the bathymetry.
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In the work Luesink et al. (2024), this assumption facilitates the study
of global QG dynamics and reveals the formation of zonal jets.

Using the above reasoning, and also thatrh � OðeÞ, we simplify
Eq. (5) further to obtain

D �fwþ aBu
Ro

nþ sBu
2Ro

hb

� �
¼ 0;

where we introduced the Burger number as Bu ¼ ðRo=FrÞ2 ¼ Oð1Þ.
The simplest solution is trivial and gives rise to the simplest form of
TQG balance:

fw ¼ aBu
Ro

nþ sBu
2Ro

hb:

Further, using the asymptotic expansion for the depth in dimension-
less form hðxÞ ¼ 1þ eh1ðxÞ and keeping the terms of order Oð1Þ, we
obtain the final expression for the TQG balance

fw ¼ aBu
Ro

nþ sBu
2Ro

b: (6)

Remark 1 Eq. (6) generalizes existing results in two aspects.
First, the TQG balance equation found here is the spherical exten-

sion of the balance derived in Holm et al. (2021) for the planar TQG
model. Indeed, in Holm et al. (2021), one has

w ¼ nþ b
2
;

which is recovered (up to multipliers containing the dimensionless
parameters) from Eq. (6) upon expanding the Coriolis parameter as
f ¼ 1þ ef1 (b-plane approximation), which is a valid assumption if
one approximates the Earth’s surface as a plane in the neighborhood of
a certain latitude sufficiently far from the equator.

Second, (6) can be regarded as the thermal generalization of the
spherical QG balance obtained in Luesink et al. (2024) and Verkley (2009),
by including buoyancy effects. Indeed, the QG balance equation derived in
Luesink et al. (2024) is reconstructed from Eq. (6) by setting bðx; tÞ ¼ 0.

B. Potential vorticity equation

We introduce the potential vorticity qtrswðx; tÞ for the TRSW
equations,

qtrsw ¼ 1
g

xþ f
Ro

� �
; (7)

and proceed to derive the TQG potential vorticity by expanding qtrsw
using the perturbation series.

Applying the curl operator to Eq. (3) and using the definition of
the vorticity functionx z ¼ curlðuÞ, we get

x z ¼ curlðuÞ ¼ curlðz�rwÞ þ OðeÞ ¼ ðDwÞzþ OðeÞ;
which gives the expansion for the vorticity

x ¼ Dwþ OðeÞ:
The approximation for gðt; xÞ uses hðxÞ ¼ 1þ eh1ðxÞ þ Oðe2Þ and
reads

g ¼ anþ h ¼ 1þ eh1 þ an ) 1
g
¼ 1� eh1 � anþ Oðe2Þ: (8)

Substituting (8) into (7), we obtain

qtrsw ¼ ð1� eh1 � anÞ xþ f
Ro

� �

¼ Dwþ f
Ro

� e
Ro

h1f � a
Ro

nf þ OðeÞ ¼ qþ OðeÞ; (9)

where

q ¼ Dwþ f
Ro

� e
Ro

h1f � a
Ro

nf (10)

is the leading term of qtrsw. The field q is the TQG potential vorticity
and will henceforth simply be referred to as the potential vorticity.

Using the TQG balance equation (6), we express the surface ele-
vation function n in terms of f ;w; b and insert it into Eq. (10) to obtain
the relation between the potential vorticity q and the stream function
w. We find

q ¼ Dwþ f
Ro

� 1
Bu

f 2wþ s
2Ro

fb� e
Ro

h1f ;

which can be rewritten, using Lamb’s parameter c ¼ 4=Bu and
l ¼ cosðhÞ, to

q ¼ ðD� cl2Þwþ 2l
Ro

� 2e
Ro

lh1 þ s
Ro

lb: (11)

Remark 2 Relation (11) does not rely on the asymptotic expan-
sion of the Coriolis parameter f and only uses the simplifying assump-
tion frw � rðfwÞ. One can compare this relation to the one
obtained in Holm et al. (2021) for the b-plane approximation by
assuming f ¼ 1þ ef1,

q ¼ ðD� 1Þwþ f1: (12)

An evident distinction between the relation (11) on the sphere and (12)
on the b-plane is that the former contains an inhomogeneous (latitude-
dependent) Helmholtz operator, whereas the latter is described by a
homogeneous Helmholtz operator.

Furthermore, one can compare (11) to the similar relation between
q and w derived in Luesink et al. (2024), which is reconstructed (up to
the sign convention) from Eq. (11) by setting bðx; tÞ ¼ 0.

Finally, we derive the evolution equation of the potential
vorticity q. First, let us apply the curl operator to the momentum equa-
tion in Eq. (1), which gives

_x þr � ðxuÞ þ 1
Ro

z � curlðf z� uÞ ¼ s
2Fr2

z � ðrðan� hÞ � rbÞ:
(13)

Further, using the definition (7) of qtrsw and the evolution equation for
g in Eq. (1), we obtain

_x ¼ g _qtrsw �r � ðguÞqtrsw:
Substituting this in Eq. (13) and eliminating the vorticity x by means
of Eq. (7) we find

g _qtrsw �r � ðguÞqtrsw þr � ðgqtrswuÞ � 1
Ro

r � ðf uÞ

þ 1
Ro

z � curlðf z� uÞ ¼ s

2Fr2
z � ðrðan� hÞ � rbÞ: (14)
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It is readily checked that the two terms containing Ro cancel out,
and we come to the evolution equation for qtrsw, see also Holm et al.
(2021)

_qtrsw þ u � rqtrsw ¼ s
2gFr2

z � rðan� hÞ � rbð Þ: (15)

Using the expansions

qtrsw ¼ qþ OðeÞ; u ¼ z�rwþ OðeÞ;
h ¼ 1þ eh1 þ Oðe2Þ; 1

g
¼ 1� eh1 � anþ Oðe2Þ

the identity z � ðrK �rLÞ ¼ K; Lf g for arbitrary K and L, and trun-
cating equation (15) at Oð1Þ, we find the evolution equation for the
potential vorticity q

_q ¼ q;wf g þ s

2Fr2
b; eh1 � anf g:

From the TQG balance Eq. (6), we have

�an ¼ sb
2
� Ro
Bu

fw;

and the potential vorticity evolution thus reads

_q ¼ q;wf g þ b;
se

2Fr2
h1 � s

2Ro
fw

� �
:

In summary, we arrive at the closed model of thermal quasi-
geostrophy on the sphere given by

_q ¼ q;wf g þ b; jf g;
_b ¼ b;wf g;
q ¼ ðD� cl2Þwþ 2l

Ro
� 2e
Ro

lh1 þ s
Ro

lb;

j ¼ se

2Fr2
h1 � s

Ro
lw;

8>>>>><
>>>>>:

(16)

with l ¼ cosðhÞ and c the Lamb parameter.
For simplicity, we choose s ¼ Ro, e ¼ Ro=2, and Fr ¼ Ro=2,

such that (16) simplifies to a system containing only the Lamb param-
eter c and the Rossby number Ro

_q ¼ q;wf g þ b; jf g;
_b ¼ b;wf g;
q ¼ ðD� cl2Þwþ 2l

Ro
� lh1 þ lb;

j ¼ h1 � lw:

8>>>><
>>>>:

(17)

III. HAMILTONIAN FORMULATION OF TQG

In this section, we give a Hamiltonian formulation of the spheri-
cal TQG model (17) in terms of a non-canonical Lie–Poisson semidir-
ect product bracket. Indeed, system (17) can be seen as a Lie–Poisson
flow on the dual of the infinite-dimensional semidirect product Lie
algebra f ¼ f13 f2, where f1 is the space for the potential vorticity field
q, and f2 is the space for the buoyancy b.

First, we observe that Eq. (17) closely resemble the reduced MHD
equations Strauss (1976). Particularly, the potential vorticity q plays
the same role as the plasma vorticity, and the buoyancy field b plays
the role of the magnetic potential. Furthermore, the thermal

(buoyancy) effects on the potential vorticity transport in Eq. (17) are
the same as those of the Lorentz force on the vorticity advection in
reduced MHD. Additionally, the buoyancy field is transported by the
fluid stream function w, as is the magnetic potential in reducedMHD.

One can write the Hamiltonian functional for Eq. (17) as follows:

H ¼ 1
2

ð
S2

q� 2l
Ro

þ lðh1 � bÞ
� �

� D� cl2
� ��1

q� 2l
Ro

þ lðh1 � bÞ
� �

dxdy þ
ð
S2

bh1dxdy

¼ 1
2

ð
S2

q� 2l
Ro

þ lðh1 � bÞ
� �

wdxdy þ
ð
S2

bh1dxdy: (18)

The semidirect product Lie–Poisson bracket on f	 was originally intro-
duced for reduced magnetohydrodynamics Morrison and Greene
(1980), Hazeltine and Morrison (1984), Holm and Kupershmidt
(1983), Ripa (1995a), and for functionals F, G it reads as follows:

½½F;G�� ¼
ð
S2

q
dF
dq

;
dG
dq

� �
þ b

dF
db

;
dG
dq

� �
þ dF

dq
;
dG
db

� �� �	 

dxdy:

(19)

It allows to express the system (16) as

_F ¼ ½½H; F��;
where F is a functional depending on q and b.

The Hamiltonian formulation of Eq. (17) reveals the following
infinite collection of conservation laws, given by

C f ¼
ð
S2

f ðbÞdxdy; I g ¼
ð
S2

qgðbÞdxdy; (20)

where f and g are arbitrary smooth functions. The quantities (20) are
Casimirs, i.e., they commute with any functional Jðq; bÞ in the sense of
the semidirect product bracket (19): ½½C f ;J �� ¼ ½½I g ;J ��0. Again, the
analogy with the reduced MHD models is evident: the Casimir C f is the
magnetic helicity in MHD and reflects that the field b is transported; the
CasimirI g is the counterpart of cross-helicity inMHD.

IV. LIE–POISSON DISCRETIZATION OF TQG ON THE
SPHERE

The formulation of the spherical TQG model in terms of non-
canonical Hamiltonian structures presented in Sec. III suggests that a dis-
cretized model should ideally preserve fundamental conservation laws
such as Casimirs and energy (Hamiltonian). A numerical method that
preserves the Lie–Poisson structure of the governing equations is referred
to as a Lie–Poisson integrator. Such structure-preserving integrators typi-
cally boast good stability properties, do not suffer from artificial dissipation,
and produce physically relevant results by ensuring that the numerical
solution is compatible with known physical andmathematical principles.

The spatial discretization used in the present study is based on
replacing the infinite-dimensional Lie–Poisson structure by a finite-
dimensional Lie–Poisson structure. This method is due to Zeitlin
(1991; 2004; 2005), who developed a self-consistent finite mode trun-
cation of the ideal Euler equations on the flat torus referred to as
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Euler–Zeitlin equations. The key idea underlying his approach is to
approximate the infinite-dimensional Poisson algebra of smooth func-
tions ðC1ðS2Þ; �; �f gÞ by a sequence of Lie algebras of skew-hermitian
matrices uðNÞ converging to ðC1ðS2Þ; �; �f gÞ in a certain sense as
N ! þ1, see Charles and Polterovich (2017). The Lie algebra struc-
ture is provided by the scaled matrix commutator ½�; ��N ¼ 1

�h ½�; ��,
where �h ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 1

p
.

A fully structure-preserving discretization is subsequently
achieved by choosing an appropriate time integration method.
Previous studies have adopted an isospectral integrator Modin and
Viviani (2020a; 2020b) to accompany Zeitlin’s model for the 2D Euler
equations on the sphere. The resulting discrete model fully preserves
the underlying Lie–Poisson geometry of spherical hydrodynamics and
has been utilized for the studies of ideal turbulence Modin and Viviani
(2020a; 2022); Cifani et al. (2023), as well as of QG turbulence Luesink
et al. (2024) and Franken et al. (2024; 2025).

A crucial difference between the Euler and QG models compared
to the TQG model is that the dynamics of the latter involve multiple
fields. The presence of the buoyancy contributes to the potential vortic-
ity evolution such that it is no longer a single transport equation.
Correspondingly, the enstrophy is not preserved in TQG, as opposed
to the Euler and QG equations. An analogous result holds for the
Zeitlin approximation of the TQG model. Namely, the matrix flow is
isospectral only for the buoyancy matrix, while the spectrum of the
potential vorticity matrix is not preserved. This means that the isospec-
tral integrator of Modin and Viviani (2020b) needs to be extended to
be compatible with semidirect product Lie algebras, which was
achieved in Modin and Roop (2025). Here, we apply this method to
simulate the TQGmodel on the sphere.

The finite-dimensional Lie–Poisson structure is obtained via a projec-
tion pN : C1ðS2Þ ! uðNÞ from smooth functions on the sphere to skew-
Hermitian matrices. The projection operator acts on smooth functions (e.g.,
the potential vorticity q 2 C1ðS2Þ) via their spherical harmonic expansion
q ¼P1

l¼0

Pl
m¼�l qlmYlm. Namely, by truncating this decomposition to

some degreeN � 1 and replacing the spherical harmonics Ylm withmatrix
harmonics TlmðNÞ, we obtain the potential vorticity matrix

Q ¼ pNðqÞ ¼
XN�1

l¼0

Xl
m¼�l

qlmðiTlmÞ:

Here Tlm are the eigen-matrices of theHoppe–Yau LaplacianDN Hoppe
and Yau (1998), i.e.,DNTlm ¼ �lðl þ 1ÞTlm, and i is the imaginary unit.
Conversely, one can reconstruct q up to degreeN using the spectral coef-
ficients of Q. The stream function and buoyancy are similarly approxi-
mated by a streammatrix and buoyancy matrix. The projection operator
is applied extensively to products of functions throughout the numerical
method. Given two functions f and g with projections F ¼ pNðf Þ and
G ¼ pNðgÞ, the projection of the product fg is given by

pNðfgÞ ¼ � i
2

ffiffiffiffiffi
N
4p

r
ðFGþ GFÞ;

which converges to fg at a rate Oð1=NÞ. Henceforth, we denote the
projection of the product by F 
 G ¼ pNðfgÞ. For a detailed analysis,
we refer to Franken et al. (2024).

We define Q ¼ pNðqÞ; P ¼ pNðwÞ;B ¼ pNðbÞ;M ¼ pNðlÞ; S
¼ pNðl2Þ, and H1 ¼ pNðh1Þ. Then the finite-dimensional matrix
approximation of Eq. (17) reads

_Q ¼ Q; P½ �N þ B; J½ �N ;
_B ¼ B; P½ �N ;
DNP � cS
 P ¼ Q�M 
 ðB� H1Þ � 2M

Ro
;

J ¼ H1 �M 
 P:

8>>>><
>>>>:

(21)

System (21) will be referred to as the TQG–Zeitlin equations, and
forms a finite-dimensional Lie–Poisson system on the dual f	 of the
semidirect product Lie algebra f ¼ uðNÞ3uðNÞ	. The Hamiltonian is
given by

HðQ;BÞ ¼ 1
2
tr Q� 2M

Ro
þM 
 ðH1 � BÞ

� �†

P

 !
þ trðB†H1Þ;

(22)

and the Casimirs are

C N
f ¼ 4p

N
tr f ðBÞð Þ; I N

g ¼ 4p
N

tr QgðBÞð Þ: (23)

The Hamiltonian (22) and the Casimirs (23) with the functions f and g
chosen to be monomials, converge to their continuous analogs (18)
and (20) as N ! 1, see Modin and Roop (2025).

Finally, a suitable structure-preserving Lie–Poisson time integra-
tor for the flow (21) has been developed in Modin and Roop (2025)
and is adopted in the present study. It preserves the Casimirs (23) for
the TQG–Zeitlin equations up to machine precision and nearly pre-
serves the energy (18). For a time step size h, the scheme
UhðQn;BnÞ7!ðQnþ1;Bnþ1Þ is given by

Bn ¼ ~B � h
2

~B; ~P
� �

� h2

4
~P~B~P;

Bnþ1 ¼ Bn þ h ~B; ~P
� �

;

Qn ¼ ~Q � h
2

~Q; ~P
� �

� h
2

~B;~J
� �

� h2

4
~P ~Q~P þ ~J ~B~P þ ~P~B~J
� �

;

Qnþ1 ¼ Qn þ h ~Q; ~P
� �

þ h ~B;~J
� �

;

(24)

where ~P is computed from ~Q via the inhomogeneous Helmholtz equa-
tion. The subscripts n, nþ 1 denote the time instances. The method
(24) is a midpoint method that preserves the Lie–Poisson structure
and has an order of consistency Oðh2Þ. An implicit system of nonlin-
ear equations is solved via fixed-point iteration to find the variables
with a tilde~at the midpoint of each time step. An important advantage
of the scheme (24) is the absence of group-to-algebra maps typical for
Lie–Poisson integrators, which makes the method efficiently applicable
to high-dimensional Lie–Poisson matrix flows.

The computational cost of the presented algorithm is dominated
by the computation of the commutator, which involves dense matrix
multiplications and requires OðN3Þ operations. The inhomogeneous
Helmholtz problem for computing the stream matrix P is solved effi-
ciently using a diagonal splitting approach as described by Franken
et al. (2024), inOðN2Þ operations.
V. SIMULATION RESULTS

We proceed to illustrate several examples of structure-preserving
simulation of the TQG model on the sphere, where we concentrate on
the conservation properties of the numerical method and qualitative
flow dynamics. A distinctive feature of the Lie–Poisson integrator
described in Sec. IV is the absence of numerical (artificial) viscosity.
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This enables indefinitely long simulations even without external forc-
ing and viscous dissipation, or other types of regularization.
Furthermore, the absence of external forcing and dissipation ensures
that the Casimirs are preserved and the energy is nearly preserved.

The presented numerical results are used to demonstrate the
capabilities of the computational method and to establish that simula-
tion of a large-scale TQG model on the sphere is achievable. We adopt
a Rossby number Ro ¼ 0:01, which is relevant for planetary motions
of the Earth’s atmosphere [see, e.g., Luesink et al. (2024)]. The Lamb
parameter takes the values c ¼ 100 and c ¼ 1000, which correspond
to different rotation frequencies. These parameters are chosen to illus-
trate qualitative flow features, rather than exactly match Earth’s
dynamics. Explicit comparison with Earth’s dynamics requires external
forcing and dissipation and warrants a separate study.

A. Trivial bottom topography

The first set of simulations is performed with a trivial bottom
topography, h1 ¼ 0. The Rossby number is Ro ¼ 0:01, and the Lamb
parameter c ¼ 100. The matrix dimension is N ¼ 512, and the final
simulation time is T ¼ 33. The initial distributions for the potential
vorticity q and the buoyancy b are randomly generated smooth fields.
Namely, we generate initial conditions by specifying the first 100
spherical harmonic coefficients qlm of the potential vorticity as an array
of samples from the standard normal distribution, while leaving the
rest of the coefficients trivial. The initial buoyancy field is generated in
the same way.

First, we demonstrate that the scheme (24) exactly preserves the
Casimir invariants. In Fig. 2, it is shown that the variation of the
Casimirs is of machine precision. Figure 3 shows near preservation of
the Hamiltonian (22), which is validated by the variation magnitude
10�6. The integrator (24) ensures exact preservation of Casimirs, but
cannot achieve exact preservation of the Hamiltonian function, which
is a well-known feature of geometric integrators Hairer et al. (2006).

The simulation results for the potential vorticity q are shown in
Fig. 4. The potential vorticity is shown on shorter time scales than the
buoyancy. The presence of two Poisson brackets in the potential vor-
ticity equation causes growth and rapid development of small-scale
features, after which it becomes difficult to discern flow patterns. That
is, buoyancy causes amplification of the potential vorticity, visible in
the amplitude of q. We provide the dynamics up to t ¼ 4, when the
dynamics are still well-resolved for the chosen spatial resolution. The

effect of rotation is clearly visible near the equator, where elongated
vorticity filaments with sharp gradients form.

The evolution of the buoyancy is illustrated in Fig. 5. Turbulent
mixing is observed closest to the equator, where the Coriolis effects
are small. Simultaneously, in mid-latitudinal bands, elongated zonal
structures develop under the effect of rotation. Gradually, small-scale
features develop in the mid-latitudes as well within larger zonal buoy-
ancy structures. The zonal structures ultimately coalesce to span
across the equator in the long-time distribution of the buoyancy,
showing generally positive values at the equator and negative values
at the poles.

The formation of small scales ultimately leads to a “noisy” solu-
tion, observed in, e.g., the last depicted snapshot of the buoyancy. This
behavior is native to the Zeitlin approximation and accords with earlier
observations of the potential vorticity in the freely evolving two-
dimensional Euler equations Modin and Viviani (2020a) and QG
equations Luesink et al. (2024). Specifically, this is a consequence of
the conservation properties of the numerical method. Nonlinear
advection ensures the distribution of energy over all resolvable scales
of motion. Eventually, the energy distribution stabilizes, and a statisti-
cally steady flow state is reached. The absence of any viscous or numer-
ical (artificial) dissipation ensures that the small-scale features persist,
even after arbitrarily long simulation times. Viscous dissipation sup-
presses the small-scale energy in the Zeitlin approximation as was

FIG. 2. Variation of Casimirs trðB3Þ and trðQB2Þ, corresponding to the choice f ðBÞ ¼ B3 and gðBÞ ¼ B2 in (23). The magnitude of the variation indicates preservation up to
machine precision.

FIG. 3. Variation of the Hamiltonian (22). The magnitude of the variation indicates
near preservation of the Hamiltonian.
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FIG. 4. Evolution of the potential vorticity qðtÞ field for the spherical TQG equations. Initial smooth randomly generated field develops vorticity filaments and small-scale dynam-
ics with simultaneous growth of the magnitude.

FIG. 5. Evolution of the buoyancy bðtÞ field for the spherical TQG equations. Initially smooth field develops turbulent mixing in the equatorial domain along with zonal structures
in mid-latitudes. Final distribution has a zonal structure with generally positive buoyancy at the equator and generally negative buoyancy at the poles.
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previously demonstrated for the two-dimensional Navier–Stokes equa-
tions Cifani et al. (2022) and geostrophic turbulence Franken et al.
(2024), respectively, leading to recognizable flow structures associated
with isotropic turbulence and zonal jet formation. Numerical simula-
tions of viscous Zeitlin-TQG turbulence are the subject of the ongoing
study.

In Fig. 6, we show the final distributions of the potential vorticity
and the buoyancy. In these figures, we apply a low-pass Helmholtz fil-
ter ð1� a2DÞ with a ¼ 1=64 to illustrate large-scale zonal flow fea-
tures present in the long-time solution. The filter is solely for
visualization purposes and is not used in the numerical simulation.

B. Buoyancy-bathymetry interaction

The second test case is designed to exhibit how circulation is cre-
ated by the misalignment of the gradients of the buoyancy and the
bathymetry. The bathymetry and buoyancy are initialized as smooth
fields, respectively depicted in the left panel of Fig. 7 and the top left
panel of Fig. 9. The initial vorticity is set to zero. We adopt a Rossby
number Ro ¼ 0:01 and a Lamb parameter c ¼ 1000.

Previous numerical results of TQG in the b-plane approximation
Holm et al. (2021) suggest emergent sequences of coherent flow pat-
terns at successively smaller scales at the onset of high-wavenumber
instabilities. Consequently, scale-resolving numerical simulations
quickly become challenging without regularization and necessitate,
e.g., viscous dissipation to specify the smallest length scale of the flow.
However, numerical simulations of relevant hyperbolic equations such
as the two-dimensional Euler or QG equations eventually face the
same challenge, but can instead still be used to study large-scale flow
patterns (see Modin and Viviani, 2022; Luesink et al., 2024; and
Franken et al., 2025). In the present study, the hyperbolic TQG equa-
tions are simulated without regularization, and hence the evolution of
small scales is impeded by numerical resolution and leads to noisy sol-
utions. As described before, we therefore only illustrate large-scale flow

features by applying a low-pass Helmholtz filter as a post-processing
step.

We first highlight the evident influence of the bathymetry on the
long-time distributions of the potential vorticity and buoyancy, shown in
Fig. 7. The bathymetry profile is clearly observed in the large-scale buoy-
ancy. This implies an alignment of the gradients of the respective fields,
minimizing the circulation induced by b; jf g in the potential vorticity
dynamics. A zonal structure is observed in the potential vorticity, similar
to the first test case. However, an imprint of the bathymetry is visible,
suggesting an alignment of the potential vorticity with the gradient of
the bathymetry in regions where the zonal velocity is not dominant.

The evolution of the potential vorticity and buoyancy is shown in
Figs. 8 and 9, respectively, depicting the filtered fields. After a short
simulation time, potential vorticity circulation patterns are induced by
misalignment of the buoyancy and bathymetry. Additionally, the rota-
tion causes a strong shear in the zonal velocity near the equator. This
combination leads to plumes of buoyancy that are advected parallel to
the equator. Mushroom-shaped buoyancy dipoles form, similar to the
b-plane case Holm et al. (2021), and an asymmetric roll-up occurs due
to the latitude-dependent Coriolis force. The plumes form fronts of
large buoyancy while turbulence is generated via the buoyancy-
bathymetry interaction.

VI. CONCLUSION AND OUTLOOK

In this paper, we have derived the thermal quasi-geostrophic
(TQG) model on the sphere, highlighted its Hamiltonian structure and
conserved quantities, and provided a structure-preserving computa-
tional method for numerical flow simulations. The model derivation
followed from the asymptotic expansion of the thermal rotating shal-
low water equations. The full variation of the Coriolis parameter f is
retained, with the simplifying assumption frw � rðfwÞ. This leads
to a TQG formulation for the entire sphere, distinct from previously
studied f-plane and b-plane approximations. The resulting system

FIG. 6. Final distributions of the potential vorticity (left) and buoyancy (right) after applying the Helmholtz filter.

FIG. 7. Adopted bathymetry profile (left) and final distributions of the potential vorticity (center) and buoyancy (right). The potential vorticity exhibits zonal structure and aligns
with the gradient of the bathymetry, while the buoyancy aligns with the bathymetry.
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FIG. 9. Buoyancy dynamics. From an initially smooth field, mushroom-like dipole structures form and roll up asymmetrically under the influence of rotation and the interaction
with the bathymetry. Circulation is induced via the buoyancy-bathymetry interaction, and turbulence is generated, which eventually aligns with the bathymetry.

FIG. 8. Potential vorticity dynamics. The misalignment of buoyancy and bathymetry induces circulation in an initially trivial potential vorticity field, which subsequently develops
dipole-like circulations and turbulent flow near the equator.
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shares a semidirect product Lie–Poisson formulation also observed in
ideal two-dimensional magnetohydrodynamics (MHD). The identifi-
cation of the geometric structure readily enabled numerical simula-
tions using a Casimir-preserving Lie–Poisson integrator for semidirect
products Modin and Roop (2025). The conservation properties were
shown numerically for freely evolving TQG turbulence. Large-scale
flow patterns revealed intricate dynamic interplay between potential
vorticity, buoyancy, and bathymetry.

Future research is dedicated to the numerical simulation and
assessment of regularized TQG turbulence, to advance the under-
standing of TQG on the sphere as a model for planetary flow
dynamics. A prime example is the inclusion of dissipation, which
can serve, e.g., as a sub-mesoscale parametrization. Further work is
needed to study the formation and persistence of large-scale coher-
ent structures such as fronts, gyres, and jets. A closer comparison
of the presented discretization to non-geometric methods, and a
detailed analysis of the importance of the geometric discretization
is a subject of ongoing research. Comparing spherical TQG dynam-
ics to TQG flow on the b plane would be another promising direc-
tion of research.
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