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Abstract

We give explicit, highly symmetric equations for the versal deformation of the
singularity Lnn+1 consisting of n + 1 lines through the origin in A

n(k) in generic position.
These make evident that the base space of the versal deformation of Lnn+1 is isomorphic
to the total space for Ln−1

n , if n ≥ 5. By induction it follows that the base space is
irreducible and Gorenstein. We discuss the known connection to a modular
compactification of the moduli space of (n + 1)-pointed curves of genus 1. For other
elliptic partition curves it seems unfeasible to compute the versal deformation in
general. It is doubtful whether the base space is Gorenstein. For rational partition curves
we show that the base space in general has components of different dimensions.
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Introduction
All possible deformations of a singularity can be obtained from its versal deformation. In
general this object is too complicated and one has to be content with partial information,
like the vector space T 1 of infinitesimal deformations or only its dimension. An explicit
description of the versal deformation of a whole family of singularities is only possible if
the equations of the singularities have a high degree of symmetry. An example is the case of
n lines through the origin in the form of the coordinate axes inAn. The resulting equations
are very simple. The ones given in [18] are due to D. S. Rim, but the computation was done
independently by various authors [1,8]. Here we consider the next case, the curve Lnn+1
consisting of n+1 lines in generic position through the origin inAn(k), obtained by adding
a line to the coordinate axes, which does not lie in any of the coordinate hyperplanes; in the
terminology of Smyth [19] this an elliptic m-fold point, with m = n + 1 the multiplicity.
We assume that k is an algebraically closed field of characteristic zero.
An elliptic (n + 1)-fold point is quasi-homogeneous, and has only deformations of

negative weight [15]. This means that the degree of the perturbations is lower than the
degree of the equations, and the deformation variables have positive weights. Therefore
the equations of the total space of the versal deformation are polynomial, of the same
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degrees as the equations of the singularity. Fibrewise the projective closure can be taken,
in a suitable weighted projective space. The base space Bn is then a fine moduli space for
reduced projective Gorenstein curves of arithmetic genus one with a hyperplane section
defined by a specific function t; this is a special case of a general result of Looijenga [13].
The projective scheme P(Bn) is a compactification of the moduli spaceM1,n+1 of (n+ 1)-
pointed curves of genus 1. It is isomorphic to the compactificationM1,n+1(n) constructed
by Smyth [20]. This is proved by Lekili and Polishchuk [12], who construct the projective
family by computing the coordinate ring of the fibres. In their equations the first two
coordinates have a special role, leading to a less symmetric form. The connection to the
versal deformation of Lnn+1 is not made explicitly.
Our symmetric equations were originally obtained in a project with Theo de Jong to

extend the results of [7] on rational surface singularities with reduced fundamental cycle
(that is, withLnn as general hyperplane section) to the case ofminimally elliptic singularities
with reduced fundamental cycle. The equations for Lnn+1 and its deformations are very
similar to those for Lnn (the coordinate axes), but a bit more complicated. Whereas for Lnn
the equations are just zizj = 0 for i < j, we now get the equations zizj = zkzl , which
as written do not provide a minimal system of generators of the ideal of the curve. To
obtain such a system the symmetry of the equations has to be broken. Instead of using the
full system of equations we introduce a new variable y of weight 2 and get

(n
2
)
equations

y = zizj . This simplifies the computation of the infinitesimal deformations. For the versal
deformation we end up with equations in terms of the original full system. Due to the
symmetry it suffices to write down only one equation for the total space and one equation
for the base space. The obtained equations are again similar to the equations for the versal
deformation of the coordinate axes Lnn, but a bit more involved.
In the case at hand it is possible to analyse the equations, as they turn out to have an

inductive structure; in fact, due to the symmetry in several ways. The base space of the
versal deformation of Lnn+1 is isomorphic to the total space of the versal deformation of
Ln−1
n , if n ≥ 5. An equivalent observation is made by Lekili and Polishchuk [12], and used

to study the base space. Like them we obtain the following result (see Corollary 4.2).

Theorem The base space of the versal deformation of Lnn+1 is Gorenstein and irreducible.

The curve Lnn+1 is the simplest elliptic partition curve of embedding dimension n. For
all such curves the dimension of T 1 and T 2 is known [3]. The other extreme is the
Gorenstein monomial curve of minimal multiplicity, the one with semigroup generated
by 〈n + 1, n + 2, . . . , 2n〉. Its equations have less symmetry, and a general computation of
the versal deformation is out of reach. For n = 6 the calculation is still doable, but the
resulting equations are too long to be given here. The situation can again be compared
with rational partition curves. For Lnn the base space is Cohen-Macaulay [17], with rather
simple equations. They become more involved if one starts from the general hyperplane
section of the cone over the rational normal curve of degree n (with its standard toric
equations). We prove here that the monomial curve with semigroup 〈n, n+ 1, . . . , 2n− 1〉
deforms into non-smoothable singularities, if n ≥ 14. In particular, its base space has
components of different dimensions. A similar elementary explicit deformation cannot
be given for the Gorenstein monomial curve, but we see no reason preventing the base
space to be reducible.
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1 Gorenstein curve singularities withminimal δ-invariant
The singularity Lnn+1 of n + 1 lines through the origin in A

n in generic position is the
simplest of a whole class of singularities, for which the dimension of T 1 and T 2 is known
[3]. We review the classification of this class of curves.
Let (X, p) be a curve singularity with r branches and let ν : X̃ → X be the normalisation,

with ν−1(p) = {p1, . . . , pr}. Denote the completion of the local ring ofX at p by ÔX and the
semi-local ring ⊕r

i=1ÔX̃ ,pi by ÔX̃ . The δ-invariant of (X, p) is δ(X) = dimk ÔX̃/ÔX . For
curves X = X1 ∪ X2 ⊂ A

N with singular point p, where the Xi may be reducible, δ(X) =
δ(X1)+ δ(X2)+ (X1 ·X2); here the intersection multiplicity (X1 ·X2) is dim ÔAN /(̂I1 + Î2)
with Î1 and Î2 the ideals of X1 and X2 in the completed local ring of AN at p.
The Milnor number μ(X) has been defined by Buchweitz and Greuel and it is equal to

2δ − r + 1 [5, Prop. 1.2.1]. For a smoothable curve singularity over the complex numbers
the Milnor number is equal to the first Betti number of the Milnor fibre [5, Cor. 4.2.3],
and the genus of the Milnor fibre is equal to δ − r + 1. Therefore we define for all curve
singularities the genus as g(X) = δ − r + 1. We have

g(X1 ∪ X2) = g(X1) + g(X2) + (X1 · X2) − 1 . (1)

A curve singularity X is decomposable (into X1 and X2), if X is the union of two curves
X1 and X2, such that the Zariski tangent spaces of X1 and X2 intersect each other only
in one point, the singular point of X . We write X = X1 ∨ X2. With the exception of an
ordinary double point a decomposable curve is never Gorenstein.
Curves singularities with minimal δ-invariant occur in the literature under several

names (see e.g. [21]). Here we call them partition curves following [2]. They are wedges
of monomial curves. Let Xn be the monomial curve with semigroup generated by
〈n, n + 1, . . . , 2n − 1〉. For a partition p = (n1, . . . , nr) of n we define the partition curve

Xp = Xn1 ∨ · · · ∨ Xnr .

In particular X(n) = Xn, and X(1,...,1) = Lnn, the singularity consisting of the coordinate
axes. We include the smooth point L11, which has δ = 0. Partition curves are exactly the
curves of multiplicity m equal to the embedding dimension n with δ = m − 1 = n − 1.
Given n, they haveminimalmultiplicity andminimal δ. They occur as hyperplane sections
of rational singularities.
For an isolated Gorenstein curve singularity Y of embedding dimension n, n ≥ 3, the

delta invariant has value at least n+1. Gorenstein curve singularities with δ = n+1, n ≥ 2,
are classified in [3] and are called elliptic partition curves. The term elliptic in the name is
explained by the fact that such curves occur as hyperplane sections of minimally elliptic
singularities. The easiest description is as follows: given apartitionp = (n1, . . . , nr) ofn+1,
the elliptic partition curve Yp ⊂ A

n is the curve obtained by a generic linear projection of
the partition curve Xp ⊂ A

n+1. In particular Y(n+1) is the monomial curve generated by
〈n+ 1, n+ 2, . . . , 2n〉, and Y(1,...,1) = Lnn+1, the curve consisting of n+ 1 lines through the
origin in generic position.Thegeneric projectionmightnot respect the grading, but elliptic
partition curves have no moduli, and there exists a quasi-homogeneous representative.

Remark 1.1 The elliptic partition curves (with n ≥ 2) have also minimal multiplicity
m = n + 1. So they are the curves with minimal δ = m. This view point allows to extend
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the classification to n+1 = m = 2. There are two Gorenstein curves withm = δ = 2: the
tacnodeA3 corresponding to thepartition (1, 1) and the rhamphoid cuspA4 corresponding
to (2). Because dimOX/OY = 1 for the generic projection X → Y , the curves A3 and
A4 can be considered to be the projections of A1 and A2. We remark that A1 and A2 are
the first blow-ups of A3 and A4. The first blow-up of A2 is a smooth curve, so A2 can
be considered to belong to the partition (1), for n = 0. With these conventions [3, Prop.
4.1.1] continues to hold for n = 0, 1: the general hypersurface section of a minimally
elliptic surface singularity with −Z · Z = n + 1 (where Z is the fundamental cycle) is an
elliptic partition curve for a partition of n + 1.

The curves Lnn+1 are also elliptic in the sense that they satisfy g = δ − r + 1 = 1, so
δ = r. The classification of curves singularities with g = 1 is due to Greuel [10,11]. By (1)
such a curve is of the form X ∨Lss with X indecomposable of genus 1. For indecomposable
X with r ≥ 2 all branches are smooth and by removing one branch a curve Lr−1

r−1 is left.
Therefore such an X is an elliptic partition curve belonging to the partition (1, . . . , 1)
of n + 1, including the cases n = 0, 1, and consequently it is Gorenstein. These curves
are called elliptic m-fold points by Smyth [19], who comes to the same classification in
arbitrary characteristic.
Behnke and Christophersen have determined the dimension of T 1 and T 2 for all elliptic

partition curves [3, Prop. 5.4.1]:

Proposition 1.2 For an elliptic partition curve Y of multiplicity n+ 1, where n ≥ 4, with
r branches

dimT 1
Y = n(n + 1)

2
− r + 1 ,

dimT 2
Y = n(n + 1)(n − 4)

6
.

Furthermore T 2
Y is annihilated by the maximal ideal of the local ring.

For n = 2 the curve is a plane curve and for n = 3 it is a complete intersection, so the
formula for T 1 does not extend to these cases. For r = n + 1 the formula gives

(n
2
)
, while

for n = 3 the curve is the simple space curve S5 with dimT 1 = μ = 5 and for n = 2 we
have D4 with dimT 1 = μ = 4. The formula for T 2 would give negative dimensions; the
correct dimension for complete intersections is 0.
For the special case of Lnn+1 it had already been shown by Pinkham [15] that T 1 is

negatively graded, and Greuel [11] had computed its dimension: T 1 is concentrated in
degree −1, if n ≥ 4, and has dimension

(n
2
)
.

2 Deformations of negative weight
By a result of Pinkham [15] the curve Lnn+1 has only deformations of negative weight. This
allows to take the projective closure of the fibres of the versal family and obtain in this
way also the versal deformation of the projective cone over n+1 points in P

n−1 in general
position. We recall the general construction, following Looijenga, who makes Pinkham’s
results [15,16] more precise in the Appendix of [13].
Let X ⊂ A

n be an isolated quasi-homogeneous singularity, over a fixed algebraically
closed field k of characteristic 0. This means that the ideal of X is generated by quasi-
homogeneous polynomials. Then X = SpecR, where R = ⊕∞

l=0Rl is a reduced Z+-graded
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k-algebra, with R0 = k . The grading on R corresponds to a Gm-action on X , defined by
λ · ϕ = λlϕ for λ ∈ Gm and ϕ ∈ Rl . As R0 = k and Rl = 0 for l < 0, this action is good,
meaning that the unique fixed point, defined by the maximal ideal R+ = ⊕∞

l=1Rl , is in
the closure of every orbit. The standard projective closure X ⊂ X is defined as follows:
let Rk = R0 ⊕ · · · ⊕ Rk , then R := ⊕∞

k=0Rk is a graded Z+-algebra and X = ProjR. If
t = (1, 0) ∈ R1 = R0 ⊕ R1, then R = R[t] and X becomes a subscheme of X by making t
invertible. The complement ProjR = X∞ = X\X is the divisor defined by t.
A deformation (π , i), where π : (X , Xs) → (S, s) and i : X ∼= Xs, has (good) Gm-action

if both (X , Xs) and (S, s) have (good) Gm-actions making π and i Gm-equivariant. In case
of a good Gm-action the (formal) schemes (X , Xs) and (S, s) can be taken to be affine
schemes X = SpecR and S = SpecA. By the same construction as for X the projective
closure of the deformation can fibrewise be formed. PutRk = AR0 ⊕ . . .ARk and define
X = ProjAR. If t = (1, 0) ∈ R1, then R/tR is naturally isomorphic to A ⊗k R and X∞
is naturally isomorphic to X∞ × S.
By [16] there exists a miniversal object (π , i) for deformations of X with Gm-action,

which also induces a miniversal deformation of the isolated singularity (X, p). The part
π− of π of negative weight is miniversal for deformations of X with good Gm-action.
Looijenga proves that π− is actually universal for this property [13, Thm A.2]:

Theorem 2.1 Let X be a reduced affine scheme with goodGm-action with as only singular
point the vertex. The negative weight part π− of the miniversal deformation of X is a final
object in the category of deformations with goodGm-action. The groupG of automorphisms
of X commuting with theGm-action acts on π− and its projective closure π̄−. Any isomor-
phism between two fibres of the π̄− preserving the pieces at infinity is induced by a unique
element of G.

If the isomorphism (σ̄ , σ̄∞), induced by g ∈ G, satisfies σ̄∞ = 1, then g ∈ Gm [13,
Lemma A.4].
The morphism π̄− has also a moduli interpretation. Looijenga defines an R-polarised

scheme as a triple (Z, Z∞,ϕ∗) consisting of a projective scheme Z, an ample reduced
Weil divisor Z∞ on Z and an isomorphism ϕ∗ : RZ/tRZ → R of graded k-algebras, where
RZ = ⊕∞

l=0H0(OZ(lZ∞)) with t ∈ H0(OZ(Z∞)) the element corresponding to 1 [13,
A.5]. He shows:

Proposition 2.2 Themorphism π̄− : (X ,X∞) → S− is a finemoduli space for R-polarised
schemes.

We specialise to the case Lnn+1. This curve has only deformations of negative weight, so
π− = π . Each geometric fibre of π̄ is a reduced Gorenstein curve of arithmetic genus 1
with n + 1 marked points (the points at infinity).
The approach of Lekili and Polishchuk [12] to determining explicit equations for π̄

in this case is to construct the ring RZ . They start from a reduced, connected projective
curveC of arithmetic genus 1 over an arbitrary algebraically closed field with n+1 distinct
smoothmarked points p0, . . . , pn such thatOC (p0+· · ·+pn) is ample and h0(OC (pi)) = 1
for all i. Generators of RC = ⊕∞

l=0 H0(OC (l(p0 + · · · + pn)) are 1 and functions h0i ∈
H0(OC (p0+pi)) with− respi (h0iω) = resp0 (h0iω) = 1 for a fixed generatorω ofH0(C,ωC ).
Under certain normalisations they determine the ring structure. In their equations the
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indices 1 and 2 have a special role. This approach does not extend to the computation of
the versal deformation of other elliptic partition curves.

3 Computation of the versal deformation
In this section we compute the versal deformation for Lnn+1 for n ≥ 4 using generators
and relations. We recall the main steps of the computation, see also [22, Ch. 3]. Let X be
a variety with Gm-action with isolated singularity at the origin in A

n. Let f = (f1, . . . , fr)
generate the ideal I(X) of X in the polynomial ring S = k[X1, . . . , Xn]. The first few terms
of the resolution of k[X] = S/I(X) are

0 ←− k[X] ←− S
f←− Sk r←− Sl ,

where the columns of the matrix r generate the module of relations. Let X → SpecA be
a deformation of X . The flatness of this map translates into the existence of a lifting of the
resolution to

0 ←− k[X ] ←− S ⊗ A F←− (S ⊗ A)k R←− (S ⊗ A)l .

To find the versal deformation we must find a lift FR = 0 in the most general way. The
first step is to compute infinitesimal deformations. We write F = f + εf ′ and R = r + εr′.
As ε2 = 0, the condition FR = 0 gives

FR = (f + εf ′)(r + εr′) = fr + ε(fr′ + f ′r) = 0 .

We solve the equation f ′r = 0modulo f and then determine r′. After this we lift to second
order. Obstructions to do this may come up, leading to equations in the deformation
parameters. In our case the computation terminates at this point. It constructs the versal
deformation as the zero fibre of the quadratic obstruction map ob: T 1 → T 2.
3.1
For Gorenstein singularities of minimal multiplicitym it is known [24] in general that the
local ring has a free resolution with Betti numbers

βi = i(m − 2 − i)
m − 1

(
m

i + 1

)
, i = 1, . . . , m − 3 ,

while β0 = βm−2 = 1.
We consider Lnn+1, with multiplicity m = n + 1. We can take n of the lines to be the

coordinate axes and as last line the line through (1, . . . , 1). Then the ideal I0 ⊂ P0 =
k[z1, . . . , zn] of Cn is minimally generated by (n+1)(n−2)

2 = (n
2
) − 1 polynomials. We start

from a non-minimal system of generators

fi,j;k,l = zizj − zkzl , i �= j, k �= l, 1 ≤ i, j, k, l ≤ n .

Aminimal system can be chosen to consist of the Fij;1,2 = zizj −z1z2, i < j, but this choice
gives the first two variables a special role.
To write symmetric equations and at the same time minimise the number of equations

it is convenient to embed the singularity inA
n+1. We introduce a new variable y of weight

2 with A
n = {y = 0} and after a coordinate transformation, say replacing y by y − z1z2,
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which transforms the line through (1, . . . , 1) into a parabola, the ideal I of the curve Cn in
A
n+1 is generated by the

(n
2
)
polynomials

gij = zizj − y, 1 ≤ i < j ≤ n .

Next we describe the relations between these generators. Write P = k[z1, . . . , zn, y] for
the (graded) polynomial ring in n + 1 variables. Denote by I0 the ideal in P generated by
the polynomials fi,j;k,l . There is an exact sequence

0 −→ P/I0
f−→ P/I0 −→ P/I −→ 0

where f = z1z2 − y. Let F0 be a free resolution of P0/I0. The same matrices yield a free
resolution F of P/I0. One obtains a resolution of P/I as a mapping cone of a homomor-
phism of complexes F → F which is a lift of f : P/I0 → P/I0. In particular the number of
relations is (n+ 1)(n− 2)/2+ (n2 − 1)(n− 3)/3. The first summand gives the number of
Koszul relations, which we can ignore in deformation computations. The other relations
are linear relations, which we now describe.
We start by forming (n − 2)

(n
2
) = 3

(n
3
)
expressions of the form zigjk . There are

(n
3
)

monomials zizjzk . As zigjk − zjgik = (zi − zj)y and zigjk − zkgij = (zi − zk )y we get n − 1
additional conditions on linear combinations of the zigjk to be syzygies. This gives the
required number of 2

(n
3
)− (n− 1) = (n2 − 1)(n− 3)/3 linear independent relations of the

form

Rik ;jl = zk (gij − gil) − zi(gkj − gkl) .

This computation also shows that the relations between the polynomials fi,j;k,l are gener-
ated by the linear dependencies and

Rik ;jl = zk fij;il − zifkj;kl .

3.2
We determine an explicit basis for the module of infinitesimal deformations T 1, which by
[11] is concentrated in degree −1. We perturb the generators gij to

Gij = zizj − y +
∑

amij zm

and insert these expressions in the relation Rik ;jl :

zk (Gij − Gil) − zi(Gkj − Gkl)

= zk
(∑

amij zm −
∑

amil zm
)

− zi
(∑

amkj zm −
∑

amklzm
)

.

The coefficient of z2k is a
k
ij − akil and has to vanish. From this it follows that akij for i, j �= k

have a common value, which we call ak . Then zk (Gij − Gil) − zi(Gkj − Gkl) is modulo I
equal to

y
(
(aiij − aiil) − (akkj − akkl) + (ajij − ajkj) − (alil − alkl)

)
(2)
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and the coefficient of y has to vanish. We put

bij = aiij + ajij .

Then the condition that (2) vanishes can be written as

bij − bil = bkj − bkl . (3)

This system of equations allows all bij to be expressed in terms of n of them, say b1k ,
2 ≤ k ≤ n and b23. A more symmetric solution is to introduce variables bi, 1 ≤ i ≤ n, and
put

bij = bi + bj .

This solves the equations (3) and the bi are determined by the bij : we have b12 = b1 + b2,
b13 = b1 + b3 and b23 = b2 + b3 so

2b1 = b12 + b13 − b23
2b2 = b12 + b23 − b13
2b3 = b13 + b23 − b12

and

bk = b1k − b1 = b1k + 1
2b23 − 1

2b13 − 1
2b12 .

We apply coordinate transformations to the

Gij = zizj − y + aiijzi + ajijzj +
∑

s �=i,j
aszs

by transforming y �→ y + ∑
s aszs and zi �→ zi + ai − bi. Taking only first-order terms

into account the result is

Gij = zizj − y + (aiij − ai + aj − bj)zi + (ajij − aj + ai − bi)zj .

The coefficients of zi and zj sum to zero:

(aiij − ai + aj − bj) + (ajij − aj + ai − bi) = aiij + ajij − bi − bj = 0 .

Finally we put aij = aiij − ai + aj − bj and aji = ajij − aj + ai − bi. Then aij + aji = 0. As
deformation variables we can take the aij with i < j, but it will be convenient to allow also
aij with i > j, and we will freely use that aij = −aji . The result is the following.

Lemma 3.1 A basis for T 1 is represented by the
(n
2
)
first-order deformations

Gij = zizj − y + aij(zi − zj)

with i < j.
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3.3
To compute the versal deformation we have to lift the relations Rik ;jl , so that they include
the deformation variables. We consider an arbitrary relation Rik ;jl and compute a lift of
this relation up to first order:

zk (Gij − Gil) − zi(Gkj − Gkl)

− aij(Gik − Gjk ) + ail(Gik − Glk ) + akj(Gik − Gij) − akl(Gik − Gil)

= zk (aijzi + ajizj − ailzi + alizl) − zi(akjzk + ajkzj − aklzk + alkzl)

− aij(zizk − zjzk + aikzi + akizk − ajkzj − akjzk )

+ ail(zizk − zlzk + aikzi + akizk − alkzl − aklzk )

+ akj(zizk − zizj + aikzi + akizk − aijzi − ajizj)

− akl(zizk − zizl + aikzi + akizk − ailzi − alizl)

= (zk − zi)(aijaik + akjaki + ajkaji − ailaik − aklaki − alkali) .

We abbreviate

ϕijk = aijaik + ajiajk + akiakj

so that the term in parentheses on the right-hand side of the equation above becomes
ϕijk − ϕilk . The right-hand side can be made to vanish by subtracting this term from
Fij;il = Gij − Gil , for all choices of three out of the four indices i, j, k and l; this means
subtracting ϕkji −ϕkli = ϕijk −ϕilk from Fkj;kl = Gkj −Gkl . To check that this indeed gives
a lift of the relation we have to compute that

−aij(ϕikl − ϕjkl) + ail(ϕijk − ϕjlk ) + akj(ϕikl − ϕijl) − akl(ϕijk − ϕijl) = 0 .

For this it suffices to find for every term in the first summand a term which cancels it; the
computation is not difficult.
We have now lifted one specific but arbitrary relation Rik ;jl , with a second-order pertur-

bation of Fij;il depending on k .We need to lift all relations in a consistent way. The polyno-
mial Fij;il occurs also in the relation Rim;jl form �= k , which we can lift in a similar way. In
order that the resultingFij;il is independent of choicesweneed thatϕijk−ϕilk = ϕijm−ϕilm,
for all k andm. If all these equations are satisfied we indeed have a lift of all relations. So
these equations describe the base space of the versal deformation.
We formulate the result of our computation directly in terms of the aij .

Theorem 3.2 The versal deformation of Lnn+1, where n ≥ 4, is given by the vanishing of
the polynomials

Fij;il = zizj − zizl + (aij − ail)zi + ajizj − alizl
− aijaik − ajiajk − akiakj + ailaik + alialk + akiakl

= (zi − aij)(zj − aji) − (aik − aij)(ajk − aji)

− (zi − ail)(zl − ali) + (aik − ail)(alk − ali) ,



   66 Page 10 of 16 J. Stevens Res Math Sci          (2025) 12:66 

where aij + aji = 0 for all 1 ≤ i, j ≤ n, with base space Bn given by the vanishing of

�i
jl;km = (aik − aij)(ajk − aji) − (aik − ail)(alk − ali)

− (aim − aij)(ajm − aji) + (aim − ail)(alm − ali)

for all pairwise distinct i, j, k, l, m.

It can be checked that the formulas (1.1) – (1.4) in [12] only differ from the above ones
by a coordinate transformation. Their formulas are less symmetric, as they choose to give
the first two coordinates a special role.
Only in the case n = 4, where there are no equations for the base space, which therefore

is smooth, there are nice formulas for the total space in terms of the Gij :

Gij = zizj − y + aijzi + ajizj − ϕijk − ϕijl .

For general n one can take the same formulas for 1 ≤ i < j ≤ 4 and then find the other
Gkl as all Gij − Gil are known.
3.4
It is well known that the curve Lnn+1 is smoothable. One reason is that it is a general hyper-
plane section of the cone over an elliptic normal curve of degree n + 1, so ‘sweeping out
the cone’ defines a smoothing [15, (7.6)]. Pinkham also describes an inductive procedure,
where two lines are smoothed to a quadric with given tangent direction, forming an Ln−1

n
[15, (11.13)]. Such a partial smoothing occurs along the aij-axis in the base space. To be
specific, we choose an−1,n = t and aij = 0 for (i, j) �= (n − 1, n). This solves the equations
for the base space as ϕijk = 0 for all (i, j, k). The equations for the total space of this
1-parameter deformation are

zizj − y = 0, zn−1zn − y + t(zn−1 − zn) = 0 .

For t �= 0 this is a curve consisting of n smooth branches. Among these are the zi-axes for
1 ≤ i ≤ n − 2 and the curve (t, . . . , t, t2). Together they form a curve consisting of n − 1
smooth branches in general position and the linear space spanned by their tangents at
the origin intersects the (zn−1, zn)-plane in the diagonal. The last branch of the deformed
curve is a hyperbola in the (zn−1, zn)-plane with the diagonal as tangent line at the origin.
This is indeed a singularity of type Ln−1

n .
It is also possible to smooth one coordinate axis and the parabola with tangent through

(1, . . . , 1, 0) (in (zi, y)-coordinates). If the axis is the zn-axis, then we have the following
deformation:

⎧
⎨

⎩
(zi − t)(zn + t) − y = 0, 1 ≤ i ≤ n − 1,

zizj − y = 0, 1 ≤ i < j ≤ n − 1.

4 The base space
4.1
The base space is smooth for n = 4. In that case the curve is codimension threeGorenstein
so it and its deformations can be given as Pfaffians of a skew 5 × 5 matrix. For n ≥ 5 we
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have to analyse the polynomials

�i
jl;km = ϕijk − ϕilk − ϕijm + ϕilm .

Wenote that�i
jl;km is antisymmetric in j, l and k,m and symmetric in the pairs (j, l), (k,m).

Furthermore

�i
jl;km − �n

jl;km − �k
jl;in + �m

jl;in = 0 . (4)

Without explicitly identifying their equations as the versal deformation of Lnn+1, Lekili
and Polishchuk observe that the total space of the family for n − 1 is isomorphic to the
base space for n [12, Prop. 1.1.5 (ii)]. This can be seen easily from our equations.

Theorem 4.1 For n ≥ 5 the base space Bn of the versal deformation of Lnn+1 is isomorphic
to the total space of the versal deformation of Ln−1

n .

Proof We start from the equations of the total space and the base space in Theorem
3.2. By substituting zi = ain the polynomial Fij;il (written with the index k) becomes
the polynomial �i

jl;nk . We establish by induction that this procedure gives (together with
the equations for the base space of Ln−1

n ) equations describing the base space of Lnn+1, by
showing that the number of independent equations is equal to the dimension ofT 2, which
is n(n+1)(n−4)

6 .
ThepolynomialsFij;il give n(n−3)

2 linearly independent equations.Thepolynomials�i
jl;mk

not involving the index n describe the base space Bn−1, and by the induction hypothesis
n(n−1)(n−5)

6 of them are linearly independent (the base case is n = 5, where no such poly-
nomials exist). This gives n(n−3)

2 + n(n−1)(n−5)
6 = n(n+1)(n−4)

6 linear independent quadratic
equations for Bn. We remark that this procedure does not give polynomials of the form
�n

jl;km, but equation (4) shows that such polynomials are linear combinations of the other
ones. Therefore we obtain all equations of Theorem 3.2 for Bn. ��

Corollary 4.2 The base space Bn is Gorenstein, has dimension n + 2 and multiplicity n!
24 ,

and is smooth in codimension 6.

Proof By induction on n. For n = 4 the result holds, as B4 is smooth. We view Bn, n ≥ 5,
as total space of the versal deformation of Ln−1

n . By homogeneity it suffices to show the
Gorenstein property for the local ring at the origin. For a flat local morphism ϕ : A → B
of local Noetherian rings B is Gorenstein if and only if A and B/mAB both are Gorenstein
[14, Thm. 23.4]. As both the base and the special fibre are Gorenstein, the same therefore
holds for the total space.
The total space is Gorenstein and therefore Cohen-Macaulay, so all irreducible compo-

nents have the same dimension, given by the formula for the dimension of a smoothing
component, which yields n + 2. The dimension statement follows also by induction, the
base being that the dimension of B4 is 6. The curve Lnn+1 deforms (over reduced bases)
only to other elliptic m-fold points or ordinary double points [11, Prop. 3.6]. As B4 is
smooth for n ≤ 4, it follows that Bn is smooth in codimension 6. Therefore Bn is normal,
and there is only one component.
The multiplicity follows again by induction.We can also use the formula for the Hilbert

series of the graded ring in [12, Cor. 1.1.7] ��
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The inductive construction of the base space makes it possible to give a minimal system
of equations. There are

(n
3
)
expressions ϕijk and the n(n+1)(n−4)

6 equations allow to express
exactly so many in terms of n of them, for which we take the four ϕijk with 1 ≤ i < j <

k ≤ 4 and the n − 4 expressions ϕ12k with 5 ≤ k ≤ n.

Proposition 4.3 A minimal system of equations for the base space Bn is

ϕ1ij = ϕ12i + ϕ12j + ϕ134 − ϕ123 − ϕ124

ϕ2ij = ϕ12i + ϕ12j + ϕ234 − ϕ123 − ϕ124

ϕijk = ϕ12i + ϕ12j + ϕ12k + ϕ134 + ϕ234 − 2ϕ123 − 2ϕ124

where 3 ≤ i < j ≤ n, (i, j) �= (3, 4) in the first two lines and 3 ≤ i < j < k ≤ n.

Proof We reduce ϕijk using �k
i1;j2 = ϕijk − ϕ1jk − ϕ2ik + ϕ12k for i ≥ 3 and �1

i2;j3 =
ϕ1ij − ϕ12j − ϕ13i + ϕ123, �2

1;j3, and finally �1
32;i4 = ϕ13i − ϕ12i − ϕ134 + ϕ124 and �2

31;i4. In
the last two expressions all terms cancel if i = 4. Therefore the formulas in the statement
continue to hold if an index has the value 3 or 4; some terms then cancel. ��

Conversely, we also get equations for the total space, which deform the minimal gener-
ating set zizj − z1z2, by substituting ai,n+1 = zi in the equations for Bn+1 just given. This
gives rather complicated formulas, as the general expression for ϕijk shows.
For n = 5 the resulting equations of B5 can be written as the Pfaffians of the skew

symmetric 5 × 5 matrix
⎡

⎢
⎢
⎣

a24 − a25 −a14 + a15 −a23 + a25 a13 − a15
a34 − a35 −a12 − a25 a12 − a13 + a24 − a34

a12 − a14 + a23 + a34 −a12 + a15
a34 + a45

⎤

⎥
⎥
⎦

where we only write the part of the matrix above the diagonal.
4.2
The interpretation of the base space Bn as fine moduli space for R-polarised curves shows
that the projectivisation P(Bn) is a compactification of the moduli spaceM1,n+1 of (n+1)-
pointed curves of genus 1 by curves with Gorenstein singularities; by forgetting the choice
of t all curves (C, p0, . . . , pn) above a line in the base space are isomorphic.
We compare this compactification with the compactifications constructed by Smyth

[19,20].

Definition 4.4 Let C be a connected, reduced, complete curve of arithmetic genus
one, with n + 1 distinct smooth marked points p0, . . . , pn. Let m < n + 1. The curve
(C, p0, . . . , pn) ism-stable if

1. the curve C has only nodes and Gorenstein singularities of genus one with r ≤ m
branches as singularities,

2. if E ⊂ C is any connected subcurve with pa = 1, then

|E ∩ C\E| + |{pi ∈ E}| > m ,

3. H0(C,�∨
C (−

∑
pi)) = 0.
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Smyth proves that the moduli stack M1,n+1(m) of m-stable curves is a proper irre-
ducible Deligne-Mumford stack over SpecZ[1/6]. In [20], working over a fixed alge-
braically closedfield of characteristic zero, he proves that the corresponding coarsemoduli
spaceM1,n+1(m) is projective.

Proposition 4.5 The moduli space M1,n+1(n) is isomorphic to the projectivisation P(Bn)
of the base space of the versal deformation of Lnn+1, for n ≥ 4.

Proof As Lnn+1 deforms into Ln−1
n (see Section 3.4), all Gorenstein genus 1 singularities

with atmost n branches occur overP(Bn). There cannot be a proper subcurve with pa = 1:
if there would be one with degree k+1 < n+1, then the cone over the hyperplane section
at infinity would be of type Lkk+1∨Ln−k

n−k , which is not Gorenstein. Form = n the condition
(2) in Definition 4.4 excludes the case of a proper subcurve with pa = 1.
By the definition of a coarse moduli space there is a map to P(Bn), which is bijective on

closed points. As P(Bn) is normal, it is an isomorphism. ��
For a discussion of the identification as stacks over SpecZ[1/6], see [12].

5 Elliptic partition curves
In this section we discuss the deformation theory of general partition curves.
5.1
The equations for the monomial curve with parametrisation z1 = tn+1, z2 =
tn+2, . . . , zn−1 = t2n−1, zn = t2n are

zizj =

⎧
⎪⎪⎨

⎪⎪⎩

z1zi+j−1, i + j ≤ n + 1,

z2zn, i + j = n + 2,

z21zi+j−n−2, i + j ≥ n + 3,

where 2 ≤ i ≤ j. The curve deforms into other elliptic partition curves of the same
multiplicity n + 1. An explicit deformation is

zizj =

⎧
⎪⎪⎨

⎪⎪⎩

z1zi+j−1, i + j ≤ n + 1,

z2zn, i + j = n + 2,

(z21 + a2zn + · · · + anz2 + an+1z1)zi+j−n−2, i + j ≥ n + 3.

The projection on the (z1, z2)-plane is given by zn+1
2 = zn+2

1 + a2z21z
n−1
2 + · · · + an+1zn+1

1
and the factorisation of zn+1

2 − a2z21z
n−1
2 − · · · − an+1zn+1

1 determines the partition of
n+ 1. In particular we find a non-rational form of Lnn+1: the (quadratic) equations, similar
to the above ones but with zizj = z1zi+j−n−2 for i + j ≥ n + 3, define n + 1 lines through
the origin, passing through the points (ε, ε2, . . . , εn) with ε running through the (n+ 1)-st
roots of unity.
Knowing the base space for the monomial curve implies knowing the base space for all

elliptic partition curves.However, it seemsunfeasible to compute thebase space in general.
For the monomial curve of multiplicity 6 the computation of the versal deformation is
described in somedetail in [6].Thebase space is just as forL56 a coneover theGrassmannian
G(2, 5), more precisely it is B5 ×A

5. By openness of versality the base space for a partition
curve with r branches is B5 × A

6−r . We have computed equations for the base space
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of the monomial curve of multiplicity 7. The equations contain a very large number of
monomials, and the result is too complicated to be given here. Even for the non-rational
form of seven lines the equations are rather complicated and not very useful; in particular,
the inductive structure given by Theorem 4.1 is not visible.
5.2
The same phenomenon with complicated equations occurs for the versal deformation of
(rational) partition curves. For Lnn in the form of the coordinate axes the result is very
easy, see [18] or [21]. The dimension of T 1 is n(n − 2), but we use n(n − 1) deformation
parameters aij : the coordinate transformations zi �→ zi − δi induce aij �→ aij + δi, for all
j. The versal family is given by

Fij = (zi − aij)(zj − aji) − (aik − aij)(ajk − aji)

with as equations for the base space

(aik − aij)(ajk − aji) − (ail − aij)(ajl − aji) = 0 .

For the irrational form of Lnn, which is the hyperplane section z0 = zn of the standard form
of the cone over the rational normal curve of degree n, the equations become much more
complicated. For the monomial curve the computation is only done up to multiplicity 5
[21]. The quadratic part of the equations of the base space involves as many variables as
the base space of L55 and it defines a degeneration of that space.
The (reduced) base space for Lnn has been studied by Goryonov and Lando [9]. In par-

ticular, its degree in nn−3. By a recent result of Polishchuk and Rains [17] this space is
Cohen-Macaulay; they identify its coordinate ring with an algebra of global sections.
Cohen-Macaulayness does in general not hold for the base space of the monomial

partition curve Xn.

Theorem 5.1 The base space of the versal deformation of themonomial partition curve Xn
with n ≥ 14 has components which are not smoothing components; there are components
of different dimensions.

The idea behind this statement is that the curves Xn are the most singular curves, in
the sense that that any curve singularity degenerates to a partition curve (in a δ-constant
degeneration) [4].
Pinkham’s examples of non-smoothable curves are among the curves Lnr consisting of r

lines in general position through the origin inAn [11,15], with n+1 ≤ r ≤ (n+1
2

)
. One has

δ(Lnr ) = 2r−n−1, so the genus of the curve is g = r−n.We can write δ = n+2g−1. The
general such curve is not smoothable if r > n+ 2+ 6

n−5 (where n > 5), or in terms of g if
r > g + 5+ 6

g−2 . For g = 4 and g = 6 it suffices that r > g + 5, see e.g. [23]. The smallest
example of a non-smoothable curve is L610. The dimension of its base space is 15. A general
smoothable L610 has a reducible base space, with a smoothing component of dimension
20 and the 15-dimensional equisingular component. For the general smoothable Lnr the
smoothing component has dimension smaller than the number of moduli.
A partition curve with r = n + g branches and δ = n + 2g − 1 is Lnn ∨ gA2, where gA2

stands for A2 ∨ · · · ∨ A2; it belongs to the partition (1, . . . , 1, 2 . . . , 2) of n + 2 g .

Lemma 5.2 The curve Lnr−1 ∨ A2 deforms into Lnr , if n + 1 ≤ r ≤ (n+1
2

)
.
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Proof Let the r-th line in Lnr be parametrised by (a1t, . . . , ant).Wemay suppose that a1 =
1.Consider the deformation of the parametrisation ofLnr−1∨A2 ⊂ A

n×A
2 , where only the

paramatrisation of the cusp A2 is changed: (a1st, . . . , anst, t2, t3); here s is the deformation
parameter. As the r lines impose independent conditions on quadrics, there exists a
quadric q in the variables (z1, . . . , zn) which vanishes on the first r − 1 lines, and restricts
to t2 on the line (a1t, . . . , ant). The coordinate transformation zn+1 �→ zn+1 − q/s2,
zn+2 �→ zn+2−z1q/s3 transforms (a1st, . . . , anst, t2, t3) into (a1st, . . . , anst, 0, 0) and leaves
the first r − 1 lines unchanged. Therefore the resulting curve is for s �= 0 isomorphic to
Lnr . The deformation is flat as it is δ-constant. ��

As the monomial curve Xn+2g deforms into Lnn ∨ gA2, the proof of this lemma shows
that it deforms into Lnn+g for any (general) position of the lines, including smoothable
Lnn+g , which have components of different dimensions. We note also that XN deforms
into XN−1. Therefore XN with N ≥ 14 has a base space with components of different
dimensions.
Such a simple argument is not available for elliptic partition curves. It would be interest-

ing to know into which type of singularities the Gorenstein monomial curve can deform.

Funding Information
Open access funding provided by University of Gothenburg.

Declarations

Conflict of interest
The author has no relevant financial or non-financial interests to disclose and has no Conflict of interest to declare. There
are no data sets generated during the current study.

Received: 28 April 2025 Accepted: 18 August 2025

References
1. Aleksandrov, A.G.: On deformations of one-dimensional singularities with the invariants c = δ + 1. Russ. Math. Surv.

33(3), 139–140 (1978). https://doi.org/10.1070/RM1978v033n03ABEH002467
2. Behnke, K., Christophersen, J.A.: Hypersurface sections and obstructions (rational surface singularities) (Appendix by

Jan Stevens). Compositio Math. 77, 233–268 (1991)
3. Behnke, K., Christophersen, J.A.: Obstructions and hypersurface sections (minimally elliptic singularities). Trans. Am.

Math. Soc. 335, 175–193 (1993). https://doi.org/10.1090/S0002-9947-1993-1069742-2
4. Bozlee, S.: Connectedness of the moduli space of all reduced curves. Preprint at https://arxiv.org/abs/2407.07657

(2024)
5. Buchweitz, R.-O., Greuel, G.-M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58,

241–281 (1980). https://doi.org/10.1007/BF01390254
6. Contiero, A., Fontes, A. L., Stevens, J., Vargas, J. Q.: On nonnegatively graded Weierstrass points. https://doi.org/10.

48550/arXiv.2111.07721
7. de Jong, T., van Straten, D.: On the deformation theory of rational surface singularities with reduced fundamental

cycle. J. Algebr. Geom. 3, 117–172 (1994)
8. Ferrer Llop, J., Puerta Sales, F.P.: Deformaciones de gérmenes analíticos equivariantes. Collect. Math. 32, 121–148

(1981). (http://eudml.org/doc/41039)
9. Goryunov, V. V., Lando, S. K.: On enumeration of meromorphic functions on the line. In: The Arnoldfest. Proceedings

of a conference in honour of V. I. Arnold for his 60th birthday, Toronto, Canada, June 15–21, 1997, pp. 209–223. Fields
Inst. Commun. 24 (1999)

10. Greuel, G.-M.: Deformationen spezieller Kurvensingularitaten und eine Formel von Deligne, Teil II der Habilitations-
schrift, Bonn (1979)

11. Greuel, G.-M.: On deformations of curves and a formula of Deligne. In: Algebraic Geometry, La Rábida 1981, pp.
141–168. Berlin etc., Springer (1982) (Lect. Notes in Math.; 961). https://doi.org/10.1007/BFb0071281

12. Lekili, Y., Polishchuk, A.: Amodular compactification ofM1,n from A∞-structures. J. Reine Angew.Math. 755, 151–189
(2019). https://doi.org/10.1515/crelle-2017-0015

13. Looijenga, E.: The smoothing components of a triangle singularity. II. Math. Ann. 269, 357–387 (1984). https://doi.
org/10.1007/BF01450700

14. Matsumura, H.: Commutative ring theory. Transl. from the Japanese by M. Reid. Cambridge, Cambridge University
Press (1989) (Camb. Stud. Adv. Math.; 8). https://doi.org/10.1017/CBO9781139171762

https://doi.org/10.1070/RM1978v033n03ABEH002467
https://doi.org/10.1090/S0002-9947-1993-1069742-2
https://arxiv.org/abs/2407.07657
https://doi.org/10.1007/BF01390254
https://doi.org/10.48550/arXiv.2111.07721
https://doi.org/10.48550/arXiv.2111.07721
http://eudml.org/doc/41039
https://doi.org/10.1007/BFb0071281
https://doi.org/10.1515/crelle-2017-0015
https://doi.org/10.1007/BF01450700
https://doi.org/10.1007/BF01450700
https://doi.org/10.1017/CBO9781139171762


   66 Page 16 of 16 J. Stevens Res Math Sci          (2025) 12:66 

15. Pinkham, H. C.: Deformations of algebraic varieties with Gm-action. Astérisque 20 (1974). http://numdam.org/item/
AST_1974__20__1_0/

16. Pinkham, H.C.: Deformations of normal surface singularities with C
∗-action. Math. Ann. 232, 64–84 (1976). https://

doi.org/10.1007/BF01420623
17. Polishchuk, A., Rains, E.: Algebra of global sections ofψ -bundles on M̄0,n . Preprint at https://arxiv.org/abs/2405.21062

(2024)
18. Schaps, M.: Versal determinantal deformations. Pac. J. Math. 107, 213–221 (1983). https://doi.org/10.2140/pjm.1983.

107.213
19. Smyth, D.I.: Modular compactifications of the space of pointed elliptic curves I. Compos. Math. 147, 877–913 (2011).

https://doi.org/10.1112/S0010437X10005014
20. Smyth, D.I.: Modular compactifications of the space of pointed elliptic curves II. Compos. Math. 147, 1843–1884

(2011). https://doi.org/10.1112/S0010437X11005549
21. Stevens, J.: The versal deformation of universal curve singularities. Abh. Math. Sem. Univ. Hamburg 63, 197–213

(1993). https://doi.org/10.1007/BF02941342
22. Stevens, J.: Deformations of singularities. Springer, Berlin etc. (2003) (Lect. Notes in Math.; 1811) https://doi.org/10.

1007/b10723
23. Stevens, J.: Non-smoothable curve singularities (2025). Preprint at https://arxiv.org/abs/2504.00854,
24. Wahl, J.M.: Equations defining rational singularities. Ann. Sci. Éc. Norm. Supér. (4) 10(1977), 231–263 (1977). https://

doi.org/10.24033/asens.1326

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://numdam.org/item/AST_1974__20__1_0/
http://numdam.org/item/AST_1974__20__1_0/
https://doi.org/10.1007/BF01420623
https://doi.org/10.1007/BF01420623
https://arxiv.org/abs/2405.21062
https://doi.org/10.2140/pjm.1983.107.213
https://doi.org/10.2140/pjm.1983.107.213
https://doi.org/10.1112/S0010437X10005014
https://doi.org/10.1112/S0010437X11005549
https://doi.org/10.1007/BF02941342
https://doi.org/10.1007/b10723
https://doi.org/10.1007/b10723
https://arxiv.org/abs/2504.00854
https://doi.org/10.24033/asens.1326
https://doi.org/10.24033/asens.1326

	The versal deformation of elliptic m-fold point curve singularities
	Abstract
	Introduction
	1 Gorenstein curve singularities with minimal δ-invariant
	2 Deformations of negative weight
	3 Computation of the versal deformation
	4 The base space
	5 Elliptic partition curves
	Declarations

	References


