Cognitive Augmentation Technologies

VR, AI and Social Robots for Industry 5.0

Huizhong Cao

Department of Industrial and Materials Science Chalmers University of Technology Gothenburg, Sweden, 2025

Cognitive Augmentation Technologies VR, AI and Social Robots for Industry 5.0 Copyright © 2025 Huizhong Cao All rights reserved. Technical Report No. IMS-2025-13 Department of Industrial and Materials Science Chalmers University of Technology SE-412 96 Gothenburg, Sweden Phone: +46 (0)31 772 1000 www.chalmers.se

The cover, designed by the author, uses a VR headset as a frame to merge with the vision of the future factory. This factory is portrayed as a tourist destination featuring human-machine interaction to enhance both work experience and pedagogical purposes. Created

using Adobe Illustrator and GPT-40 for base image generation.

Printed by Chalmers Digitaltryck Gothenburg, Sweden, September 2025

Abstract

Digital innovations and an increasingly integrated global economy are transforming manufacturing systems—complex sociotechnical arrangements that integrate technology, information systems, and human labor. For European industry in particular, the COVID-19 pandemic, supply chain disruptions, and trade tensions have heightened uncertainty and exposed vulnerabilities in conventional production models. Besides, manufacturing is undergoing rapid transformation amid an aging workforce, prompting a shift toward Industry 5.0's human-centric vision. This paradigm seeks to harmonize advanced technologies with inclusive design, worker empowerment, and well-being, addressing widening skill gaps and the need for resilient, sustainable operations. Within this context, cognitive augmentation technologies—such as video-based instruction, virtual reality (VR), and AI-enabled humanoid social robots—offer new pathways to support learning and day-to-day operations, but also introduce mental workload demands that must be carefully measured and managed.

Comparative studies show that augmentation yields the greatest value when systems are designed for accessibility, usability, and well-being. Video instruction proved most cognitively efficient for onboarding; VR delivered superior spatial understanding but imposed the highest mental workload; AI-driven humanoid social robots occupied a middle ground. Overreliance on AI guidance increased mental workload and error risk, underscoring the need for calibrated assistance, transparent interaction, and thoughtful human–AI task allocation. Human-centered interface design, clear information pacing, and adaptive guidance emerged as key levers to reduce unnecessary complexity, support universal design demands, and enhance satisfaction and motivation.

The thesis demonstrates that a mixed-measures approach—integrating subjective ratings (e.g., NASA-TLX, RSME), physiological signals (e.g., HRV), and performance indicators (completion time, error rate)—provides a robust basis for quantifying mental workload and comparing modalities. Triangulation enabled detection of overload and underload, informed iterative interface refinements, and supported closed-loop adaptations in future research (e.g., tuning information density and pacing, simplifying interaction flows, switching assistance modality) to maintain workload within an optimal band.

Conceptually, the work reframes Industry 5.0 as a human-centric ecosystem where technologies symbiotically augment and empower workers, supporting dignity, wellbeing, and inclusion. Methodologically, it contributes a validated pipeline for mental workload assessment in real manufacturing contexts based operations. Practically, it offers guidance for technology development and adoption in adaptive and inclusive systems for universal design for vulnerable groups, which is also the future direction to continue after the licentiate study. Together, these contributions lay a foundation for resilient, inclusive, and sustainable manufacturing aligned with the goals of Industry 5.0.

Keywords: Human-centricity, Cognitive Augmentation, Mental Workload, Interaction Design, Virtual reality, Social Robots

List of Publications

Appended publications

This thesis is based on the following publications:

1. Exploring the current applications, limitations and potential of extended reality for sustainability in manufacturing

Huizhong Cao, Henrik Söderlund, Mélanie Despeisse, Björn Johansson

Presented at 2023 Eco Design Conference, Nara, Japan, 29 November to 1 December 2023.

Published in $EcoDesign\ for\ Circular\ Value\ Creation:\ Volume\ I,$ Springer Nature Singapore.

https://doi.org/10.1007/978-981-97-9066-5_32

Huizhong Cao initiated the paper and wrote it together with the co-authors. Huizhong was the corresponding author together with Henrik and presented the paper at the Eco Design conference.

2. Cognitive Augmentation in Industry 5.0: Comparing Mental Workload in VR, Humanoid Conversational Robot and Video Learning

Huizhong Cao, Emmie Fogelberg, Peter Thorvald, Elias Tengelin, Omkar Salunkhe, Johan Stahre

Submitted to a scientific **journal** - Computer and Education.

Huizhong Cao initiated the paper and wrote it together with the co-authors. Huizhong was the corresponding author.

3. Cognitive ergonomics: Triangulation of physiological, subjective, and performance-based mental workload assessments

Emmie Fogelberg, Huizhong Cao, Peter Thorvald Published in **Journal** Frontiers in Industrial Engineering. https://doi.org/10.3389/fieng.2025.1605975

Huizhong Cao developed the HRV assessment method and did the quantitative analysis together with Emmie. Emmie was the corresponding author.

4. Human-centered design of VR interface features to support mental workload and spatial cognition during collaboration tasks in manufacturing Huizhong Cao, Francisco Garcia Rivera, Henrik Söderlund, Cecilia Berlin, Johan Stahre, Björn Johansson

Published in **Journal** Cognition, Technology and Work, June 20, 2025. https://doi.org/10.1007/s10111-025-00809-6

Huizhong Cao initiated the paper and wrote it together with the co-authors. Huizhong was the corresponding author.

Other publications

The following publications were published during my PhD studies as co-author, supplementary to the licentiate thesis work. However, they are not appended to this thesis due to content overlap or lack of direct relevance.

1. VR interaction for efficient virtual manufacturing: mini map for multiuser VR navigation platform

Huizhong Cao, Henrik Söderlund, Mélanie Despeisse, Francisco Garcia Rivera, Björn Johansson

In 2024 Swedish Production Symposium (SPS) (pp. 335-345). Advances in Transdisciplinary Engineering.

https://ebooks.iospress.nl/doi/10.3233/ATDE240178

Huizhong Cao initiated the paper and wrote it together with the co-authors. Huizhong was the corresponding author.

2. Beyond Videoconferencing: How Collaborative Tools Make Virtual Design Reviews Work

Francisco Garcia Rivera, Asreen Rostami, Huizhong Cao, Dan Högberg, Maurice Lamb

In 2025 International Conference on Human-Computer Interaction (HCII) (pp. 96-112). Virtual, Augmented, and Mixed Reality. HCII 2025. Lecture Notes in Computer Science, vol 15790. Springer, Cham.

https://doi.org/10.1007/978-3-031-93715-6_7

Huizhong was the co-author for this conference paper. Francisco was the corresponding author and presented the paper.

3. Challenges and opportunities to advance manufacturing research for sustainable battery life cycles

Björn Johansson, Mélanie Despeisse, Jon Bokrantz, Greta Braun, Huizhong Cao, et al.

Published in Frontiers in Manufacturing Technology, Sec. Sustainable Life Cycle Engineering and Manufacturing, Volume 4 - 2024.

https://doi.org/10.3389/fmtec.2024.1360076

Huizhong Cao contributed the XR part for the battery production application development together with Henrik. Björn was the corresponding author.

4. Integrating Dynamic Digital Twins: Enabling Real-Time Connectivity for IoT and Virtual Reality

Lejla Erdal, Ammar Gubartalla, Paulo Victor Lopes, Huizhong Cao, Guodong Shao, Per Lonnehed, Henri Putto, Abbe Ahmed, Sven Ekered, Björn Johansson

In 2024 Winter Simulation Conference (WSC), Orlando, FL, USA, 15-18 December 2024, published in 2024 IEEE.

https://ieeexplore.ieee.org/document/10838921

Huizhong Cao supervised the thesis work and wrote it together with the co-authors. Lejla was the corresponding author and presented the paper.

Definition

XR Extended Reality (XR) is the umbrella term for technolo-

gies that act as interfaces between the real and virtual worlds. The term includes Virtual Reality (VR), Mixed Reality (MR), and Augmented Reality (AR) (Fast-Berglund

et al., 2018).

VR Virtual reality applications completely immerse the user

in a virtual world, usually using a head-mounted display (HMD) or projections that encapsulate the users with a full visual experience of a virtual world (Fast-Berglund et al.,

2018).

AR Augmented reality technology allows us to remain in the

real world while overlaying digital information and augmented visuals on top of our perception of the real world (Fast-

Berglund et al., 2018).

MR Mixed reality technology can help us to mix and overlay

3D elements from both the real and virtual worlds in the same experience and environment. Usually, this is done via an HMD in combination with visual inputs from the real world using cameras or AR headsets with a transparent

display (Fast-Berglund et al., 2018).

effort required by an individual to accomplish a task at a

given time (Realyvásquez-Vargas et al., 2023).

Learning Refers to the process through which an individual acquires,

organizes, and applies new knowledge or skills (Realyvásquez-

Vargas et al., 2023).

Cognitive augmentation Implies the extension of cognition, such as the ability to

memorize, problem-solve, perceive, cooperate, and perform

efficiently.

Cognitive augmentation

technology

Technology that is added to a sociotechnical system to

enhance operators' cognitive capability.

ICF catagorization The International Classification of Functioning, Disability

and Health (ICF) provides a standardized way to describe health and health-related states at individual and population levels, and was endorsed by WHO Member States for

universal application across contexts (WHO, 2001).

ents for decision-making, problem-fixing, and creativity

(Rajkumar et al., 2024).

Acknowledgments

The PhD journey for me is very special. Not only I am from the art industry—architecture design—but also, how cute it has been through those ups and downs. First, I would like to thank my main supervisor and my insightful line manager, Prof. Johan Stahre, for trusting me, seeing my potential, and helping me with multidimensional self-development with true insights. Thank prof. Björn Johansson for being the executive and efficient role model, and insspire me to combine research, project and self-growth in an efficient way. I would also like to thank Prof. Peter Thorvald for giving me brilliant ideas in paper writing and cognitive augmentation technologies. My sincere thanks go to Prof. Cecilia Berlin and Dr. Clarissa, who are my mentors and who have helped me with academic and personal growth with confidence and therapy sessions. My thank goes for Prof. Mélanie Despeisse, Prof. Anders Skoogh, Prof. Anna Syberfeldt, Prof. Jon Bokrantz, and Senior Lecturer Ebru Turanoglu Bekar, who have been inspiring academic role models for me to look up to. It has been amazing to have you all on my side as spiritual guides.

This thesis was enabled by the support of several research initiatives. I gratefully acknowledge funding and collaboration from the VINNOVA-funded projects PLENUM and DIGITALIS, whose partners and teams brought industrial relevance and co-creation to the work. I also thank the EU project SkillAIblity and TRIREME for its commitment to human-centric, skill-oriented innovation and for the opportunity to contribute to a broader European community. To all project partners and collaborators—academic and industrial—thank you for your trust, engagement, and shared ambition to make technology inclusive and cognitive. At Chalmers, I am grateful for Chalmers' Area of Advance Production and the Department of Industrial and Materials Science, and the SII lab for providing an inspiring environment, facilities, and administrative support.

To the participants who volunteered time and attention for our experiments: this research quite literally stands on your contributions—thank you for your curiosity for the study.

I would like to express my heartfelt gratitude to my dear PhD colleagues and friends who have made my work memory unique and legendary. In particular, I am deeply thankful to Lic. Siyuan, Lic. Henrik, Lic. Greta, Elisa, Mohan, Silvan, Elham, Lic. Hao, Lic. Qi, Lic. Tina, Dr. Arpita, Ellinor, Sandra, Sven, Dr. Omkar, Dr. Zaynab, Magnus and Per, for the energy you brought into our social gatherings/wisdom exchange and for the companionship that made this journey joyful. I am so proud to have so many smart and kind friends to share the adventures in life together. To my friends and co-authors, Francisco and Emmie, thank you for your resonance, understanding and interest in our work. Being part of the Production 2030 program has been invaluable, and I am especially grateful to Akshay for the entrepreneurship adventure, and spiritual support.

Finally, I would love to thank my husband, Liangyu. You have been my initial motivation to take the challenge to be a PhD student in a bright new field, from art to production. The times you spent with me reflecting on quantitative studies with your computational and mathematical background have been profound and purposeful for my study, and more than that, your love and smile have always enlightened me. Thank you for being there for me with knowledge and love. I would also express love and gratitude to my parents, my grandma, and my younger sister. Without your support, encouragement, and life wisdom, I would not have been a happy me and learned the secret of gaining energy from pure nature.

Contents

Αŀ	ostrac	t	i
Lis	st of l	Publications	iii
De	efiniti	on	vii
Αc	know	eledgements	ix
1	Intro	oduction	1
	1.1	Background	1
	1.2	Research gaps	3
	1.3	Vision, Mission and Aim	4
		1.3.1 Mission	4
		1.3.2 Research Questions (RQs)	5
	1.4	Scope and Delimitation	6
	1.5	Thesis Outline	7
2	The	oretical Framework	11
	2.1	Transformation from Industry 4.0 to 5.0	11
	2.2	Human-technology Interaction	13
	2.3	Mental Workload	14
		2.3.1 Mental workload assessment	14
	2.4	The International Classification of Functioning	16
	2.5	Cognitive Augmentation Technology	17
		2.5.1 VR as cognitive augmentation technology	17
		2.5.2 Humanoid social robots	19
		2.5.3 Mental workload in VR and humanoid social robots	19
3	Rese	earch Approach and Methods	21
	3.1	The design of research	21
	3.2	Experimental approaches	22
		3.2.1 Prototype-based experiment Method	22
		3.2.2 Comparative Experiments	23

	3.3	3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 Project	Personas and Participants Hypothesis testing Data analysis methods Statistical significance Statistical power t overview	27 27	1 7 7
4	Sum	mary of	f the Appended Papers	31	L
	4.1	-	1	32)
		4.1.1	Background		2
		4.1.2	Methods	32)
		4.1.3	Results	33	3
		4.1.4	Discussion and Conclusion	33	3
	4.2	Paper	2	35	ó
		4.2.1	Background	35	ó
		4.2.2	Methods	35	ó
		4.2.3	Results	37	7
		4.2.4	Discussion and Conclusion	39)
	4.3	Paper	3	41	L
		4.3.1	Backgound	41	Ĺ
		4.3.2	Methods	41	Ĺ
		4.3.3	Results	42	2
		4.3.4	Discussion and Conclusion		
	4.4	Paper	4	42	2
		4.4.1	Background	43	-
		4.4.2	Methods	43	3
		4.4.3	Results		
		4.4.4	Discussion and Conclusion	45	ó
5	Diss	ussion		47	7
5	5.1		butions of This Thesis		
	5.2		tion on methodology		
	5.3		tions on Research Quality and Ethics		
	5.4		e Research		
	5.4	ruture	nescaren		
6	Conc	lusion		59)
Re	feren	ces		61	L
Аp	pende	ed Pape	ers		
1	-	_	ne Current Applications and Potential of Extended Reality for Enviro	on-	
2			ugmentation in Industry 5.0: Comparing Mental Workload in VR, H ial Robots, and Video Learning	lu-	
3	_		rgonomics: Triangulation of physiological, subjective, and performancal workload assessments	ce-	
4			tered design of VR interface features to support mental workload a ition during collaboration tasks in manufacturing	nd	

CHAPTER 1

Introduction

1.1 Background

Digital innovations and an increasingly integrated global economy are driving significant changes in manufacturing systems, which are a complex fusion of technology, information systems, and human labor (Johansson et al., 2024). Particularly in European industry, recent challenges—such as the COVID-19 pandemic, supply chain interruptions, and trade tensions—have increased uncertainty and exposed weaknesses in traditional production (Marta Pinzone et al., 2024). Within the framework of the Industry 5.0 revolution, there is growing emphasis on redesigning manufacturing to be more robust, sustainable, and, most importantly, human-centric (Breque et al., 2021), as illustrated in Figure 1.1. The application of human-centricity is a crucial component of this change. To fully realize human-centricity in Industry 5.0, several key imperatives must be prioritized (Ghosh et al., 2024).

The ongoing digital transformation in industry is shaped by major global trends such as the COVID-19 pandemic and geopolitically induced uncertainty, including supply chain tensions, tariffs, and difficulties in global collaboration (Amankwah-Amoah et al., 2021). The emergence of a contested, increasingly inward-looking, and unstable multipolar world has been paralleled by profound technological change and the deepening digitalization of economies and societies (Szczepański, 2024). Technology has become a battleground in the geopolitical quest for power, and the accelerated adoption of advanced digital technologies has increased the demand for digital proficiency to advance the "Made in Europe" partnership (McCormack and commission, 2020).

Figure 1.1: Industrial revolution - Industry 5.0 (Breque et al., 2021)

However, as the workforce ages and digitalization accelerates, significant skill gaps are emerging (Greta Braun, 2023). According to the OECD, the labor force participation rate of workers aged 50–64 in 27 European Union countries increased from 37.9% in 2000 to 67% in 2023, with Sweden ranked highest globally at 87.4% (OECD, 2023). A work environment that does not accommodate age-related cognitive decline can exacerbate health problems among older workers, negatively affecting their well-being and productivity (Lilah Rinsky-Halivni et al., 2022). Thus, effective management of mental workload remains critical.

The emergence of profound technological change and growing dependence on digitalization has brought challenges not only for aging workers but also for people with visual impairments (Kerdar et al., 2024), neurodiverse populations (Adler, 2024), people with hearing impairments (Balcevics and Aravind, 2023), and people with cognitive impairments (Van Holstein et al., 2021) due to the lack of universal design. For example, as Adler notes, digital applications with cluttered interfaces can overwhelm users with ADHD, while platforms that rely heavily on text-based instruction can make it harder for individuals with dyslexia to process information.

As global attention intensifies on geopolitical uncertainty, aging trends, climate change, and resource depletion, the manufacturing sector faces pressure to transition to operations that are sustainable, resilient, and fundamentally human-centric, embracing ethics, inclusivity, and empowerment (Rajkumar et al., 2024). While the Industry 5.0 vision aspires to harmonize advanced digital technologies, effective information systems, skilled workforces, and sustainable practices within a human-centric framework, a significant gap persists between this ideal and current industrial realities (De J Pacheco and Iwaszczenko, 2024). The research problem, therefore, is to bridge this gap by identifying and addressing the chal-

lenges that hinder the adoption of emerging digitalization technologies, adaptive information systems, upskilling pathways, and sustainability initiatives within a human-centric production ecosystem (Bucci et al., 2024).

1.2 Research gaps

Based on that research problem, we need to identify the challenges further to specify the gaps between ideal and current industrial realities and to specify the research initiatives.

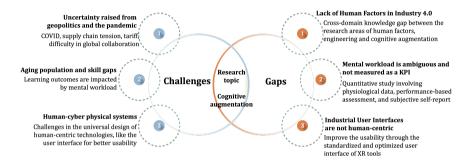


Figure 1.2: Problem structure

To address these research problems and challenges, as illustrated in Figure 1.2, this research focuses on digitalization, human–technology interaction, and cognitive enhancement. The aim is to empower the workforce through advanced cognitive acceleration technologies for human-centric production.

The first gap identified in this study is the cross-domain knowledge gap among human factors, manufacturing, and cognitive augmentation. The emergence of Industry 5.0 has shifted workplace dynamics, requiring workers to make rapid decisions using real-time data while overseeing collaborative robots (cobots) and advanced digital technologies such as XR, AI, and digital twins (Ricci et al., 2025). As a result, workers' mental workload has intensified, necessitating constant adaptation to evolving technologies, and it can significantly correlate with physical fatigue and human error (Arturo Realyvásquez-Vargas et al., 2023).

Current approaches lack robust, quantitative methods for measuring mental workload in empirical manufacturing environments to assess digital and virtual training. There is a need for integrated studies that combine physiological data, performance-based assessment, and subjective self-report to better understand and manage cognitive demands. In addition, affordable, portable, and flexible equipment is needed to collect physiological data suited to industrial work environments (Lucchese et al., 2025).

Previous studies show that virtual training environments are often used when real-world training is impractical due to high costs, safety risks, time constraints, or substantial resource requirements (Moskaliuk et al., 2013). This digital approach reduces reliance on physical machinery and equipment, supporting the transition toward more sustainable industrial practices. Virtual reality (VR), in particular, offers features that can help manage cognitive overload and tailor experiences to users' needs (Ratmono et al., 2024).

However, a key barrier to broader adoption is that VR tools can impose higher mental workload, often resulting in dizziness, navigational challenges, and poor learning outcomes—especially among novice users. Moreover, most extended reality (XR) applications to date remain confined to single use cases and lack scalability, which significantly hinders practical adoption. Transitions between tasks or technologies often require costly configuration changes and force users to relearn interaction methods (Memmesheimer and Ebert, 2022). Addressing these issues requires the development of standardized, universally designed, and optimized user interfaces for VR tools to enhance usability and support effective learning (H. Cao, Rivera, et al., 2025).

Human-centric technologies are designed to augment rather than replace human capabilities to create more adaptive and responsive systems.

—Ben Shneiderman (Shneiderman, 2022)

1.3 Vision, Mission and Aim

Instead of focusing on what humans can do with new technology, Industry 5.0 asks what technology can do for humans?

—European commissioning, Industry 5.0

The vision of the research is a future industry where a human-centric paradigm for Industry 5.0 has been adopted, where technology and production processes have been designed to adapt to the diverse needs of the workforce, rather than requiring workers to adapt to them (Ghosh et al., 2024).

1.3.1 Mission

The shift requires more natural, adaptive, and effective human-technology interactions, augmenting and empowering operators to work alongside advanced systems.

This vision manifests in three core imperatives as missions:

Transition from smart to cognitive technology: Develop and implement sophisticated digital technologies with intuitive, natural, and adaptive user interfaces that can be flexible for complex human needs and contexts.

- Empower the workforce: Equip employees with essential digital proficiency, cognitive and emotional intelligence, and foster continuous learning within flexible work environments. By upskilling shop floor workers and supporting diverse learning pathways, the workforce becomes ready for the demands of Industry 5.0 and can bridge emerging skill gaps.
- Enhance worker well-being and resilience: Prioritize the physical and mental health of employees by implementing comprehensive safety measures, reducing injury risks, and ensuring dignity and data privacy. The aim is to leverage digital solutions and create workplaces that are safe, satisfying, and resilient, supporting both individual and organizational well-being.

The research aims to leverage cognitive augmentation technologies—including VR, AI agents, social robots, and video instructions—to empower shop floor workers and enhance cognitive ergonomics in digital proficiency upskilling processes.

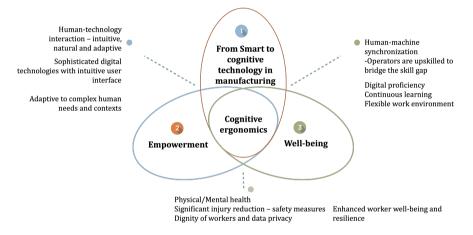


Figure 1.3: Mission—the three core imperatives

1.3.2 Research Questions (RQs)

To advance the mission of evolving industrial systems from smart to cognitive—with human well-being achieved through augmentation and empowerment—cognitive augmentation technologies are proposed as a research focus to realize this vision.

The cognitive augmentation technologies examined include video instruction, VR, and humanoid social robots for Industry 5.0. To enact the vision through the mission pathways, the research questions are formulated. The first research question (RQ1) establishes a basis for understanding the impact of current cognitive augmentation technologies on users in the context of Industry 5.0:

RQ1 How do cognitive augmentation technologies influence shop floor workers during the learning and operational phase in the Industry 5.0 manufacturing context?

Cognitive augmentation technologies—such as VR, robotic assistants, and advanced visualization tools—promise to enhance human performance by offloading, supporting, or amplifying cognitive processes. "Learning phase" refers to guided instruction with the augmentation tool, whereas "operational phase" denotes unaided task execution. However, these systems can also introduce novel mental demands, making it imperative to objectively quantify the workload they impose. Mental workload reflects the interplay between task requirements and an individual's cognitive capacity and influences usability, performance, and user acceptance (S. G. Hart and Staveland, 1988). A triangulated evaluation (subjective, physiological, and performance) is used as the methodological spine for RQ2 to capture complementary facets of mental workload and to reduce single-measure bias. Research Question 2, therefore, asks:

RQ2 How can quantification of mental workload be utilized for improvement of cognitive augmentation technologies?

This thesis examines how these technologies are applied in instructional design during both the learning and operational phases, as well as the development of user interfaces that prioritize intuitive and effective human–technology interaction.

1.4 Scope and Delimitation

Although a cross-discipline view are emphasized, the thesis is limited to the following:

- The cognitive augmentation technology application and adoption scenario
 are focused in a factory setting in manufacturing. The layout planning,
 design review, and instruction design are mainly studied use cases in this
 thesis; other use cases, like human-robot interaction or data monitoring and
 visualization, are briefly discussed but without an empirical study.
- The thesis is based on the full design and evaluation cycle of the digital platform development in VR, Humanoid social and Video, other cognitive augmentation technologies like AR are delimitated.
- The thesis provides a focused angle in mental workload assessment and regards it as an indicator for usability; a more holistic or comprehensive understanding of trust, satisfaction, and engagement is briefly discussed but not quantitatively measured.
- The triangulation of measurement modalities focuses on physiological, performance based, and subjective data. At the same time, in each category,

the metrics are selected based on the feasibility, availability, portability, and the optimal indicator discussion, which are briefly included.

- The main users studied in this licentiate thesis are novice/expert operators
 and engineers from manufacturing companies. The sampling in the experiment has a mixed testing group from both students and citizens, novice and
 experienced operators/engineers from manufacturing companies in Sweden,
 to represent the operator; the personas' representation is briefly discussed.
- The mental workload studied in this study focused on an ultra-short phase of experience; the corresponding technologies, longitudinal studies, or motivation of users are not currently studied in this thesis.

1.5 Thesis Outline

The theoretical framework are outlined in Chapter 2, followed by a description of the research approach and methods in Chapter 3. The summary of the appended papers is presented in Chapter 4. Chapter 5 provides a discussion of the results to answer RQ1 and RQ2, while Chapter 6 offers a summary of the main findings and conclusions. As shown in Table 1.1, the disposition of the thesis is presented.

Table 1.1: Overview of the chapters in this thesis

Chapters	Description	Key deliverables
1. Introduction	The chapter introduces	Background: Industry 5.0 aims
	the topic, background,	to bridge the gap between its
	aim and research ques-	human-centric vision and cur-
	tions of this thesis.	rent industrial practices.
		RQ1: How do cognitive aug-
		mentation technologies influence
		shop floor workers during the
	learning and operational	
		in the Industry 5.0 manufactur-
		ing context?
		RQ2: How can quantification of
		mental workload be utilized for
		improvement of cognitive aug-
		mentation technologies?
		Scope: Evaluates cognitive tech
		in manufacturing via mental
		workload for training and design.

Continued on next page

Table 1.1: Overview of the chapters in this thesis (continued)

Chapters	Description	Key deliverables
2. Theoretical	The chapter introduces	Human-Technology Interaction:
Framework	key concepts and theories used to support the research. Providing contextualization and theory in the intersection between manufacturing, XR and learning theories.	Designing for human capabilities Mental Workload: Cognitive task demand Cognitive Augmentation: Technology enhancing human cognition VR: Immersive training and simulation Social Robots: AI-driven humanoid assistant
3. Research Approach and Methods	The chapter explains the underlying worldviews and academic perspectives that have framed the research as well as the methods used in answering the research questions.	Research philosophy: Pragmatic-empiricist, critical realist. Research process: Prototype-based experiments, comparative studies, mixed-methods analysis. Research method: Quantitative (performance, physiological, subjective metrics) and qualitative (thematic) analysis.
4. Summary of the Appended Papers	The chapter provides an overview of the ap- pended papers, focus- ing on the main results and contributions rele- vant for this thesis in answering the stated re- search questions.	Paper 1: Summary of method, main results and discussion of Paper 1. Paper 2: Summary of method, main results and discussion of Paper 2. Paper 3: Summary of method, main results and discussion of Paper 3. Paper 4: Summary of method, main results and discussion of Paper 4.

Continued on next page

Table 1.1: Overview of the chapters in this thesis (continued)

Chapters	Description	Key deliverables
5. Discussion	The chapter combines	RQ1: Findings and discussion
	findings from the ap-	regarding RQ1.
	pended paper, and ad-	RQ2: Findings and discussion
	ditional work, to an-	regarding RQ2.
	swer the two research	Contributions: Highlighting and
	questions and forming	discussing the scientific and
	the contribution of this	practical contribution of this
	thesis. Furthermore,	thesis.
	this chapter also dis-	Limitations: Discussion on the
	cusses the methods used	scientific quality and limitation
	and future research di-	of the thesis.
	rections.	Future work: Proposed future
		work and studies as part of the
		authors continued PhD studied.
6. Conclusion	The chapter offers a	Summary of the key takeaways
	summary of the thesis,	and contributions of the thesis.
	focusing on providing an	
	overview of the problem	
	formulation, key contri-	
	butions and answers to	
	the research questions.	

CHAPTER 2

Theoretical Framework

This chapter orients the reader to the theoretical foundations that underpin cognitive augmentation in modern manufacturing. It begins by mapping the evolution from Industry 4.0's digitally connected, automation-focused systems to Industry 5.0's human-centric vision, highlighting how the role of technology shifts from replacing to empowering workers. It then frames human-technology interaction through cognitive ergonomics, explaining why mental workload is a pivotal lens for designing interfaces and workflows that are usable, inclusive, and efficient. Building on this, the chapter outlines how mental workload can be assessed with complementary subjective, physiological, and performance-based methods, and shows how these insights inform the design and deployment of augmentation technologies—such as XR and humanoid social robots. The aim is to provide a coherent narrative linking concepts, measures, and technologies so that subsequent sections can focus on how to augment skills, support learning and collaboration, and sustain well-being and resilience on the shop floor.

2.1 Transformation from Industry 4.0 to 5.0

Industry 4.0 foregrounded tightly integrated cyber—physical systems that link sensors, actuators, and embedded computation with cloud/edge analytics to enable real-time monitoring, control, and autonomous optimization across production networks (Da Xu et al., 2018; Zubrzycki et al., 2021). In contrast, Industry 5.0 reframes this digital foundation toward a human-centric paradigm that prioritizes empowerment, well-being, resilience, and sustainability, adapting technology to workers' needs and elevating human creativity and decision-making rather than

replacing it (Breque et al., 2021). Representative Industry 4.0 technologies include CPS/CPPS, IIoT, edge—cloud computing, big-data/AI analytics, and digital twins (Da Xu et al., 2018). Representative Industry 5.0 technologies emphasize collaborative robots (cobots), human-digital twins, AI copilots/assistants, XR for training and support, and ergonomic, adaptive HMIs that augment skills and enable inclusive, resilient operations (Breque et al., 2021; Oeij et al., 2024).

Industry 5.0 aims to create a more harmonious relationship between humans and technology to address challenges arising from increasing reliance on automation and digitalization (Erlantz Loizaga et al., 2023). It seeks to promote worker well-being and establish sustainable, resilient systems through human-centered strategies that incorporate virtual reality (VR), artificial intelligence (AI), robotics, and digitalization (Joel Alves et al., 2023). However, interactive systems in automotive manufacturing settings have yet to catch up with consumer products in terms of interaction quality and user experience (Mucha et al., 2018). In the era of Industry 5.0, mental-workload optimization offers opportunities to boost shop-floor performance and efficiency while enhancing collaboration, well-being, and job satisfaction (Eva Geurts et al., 2022).

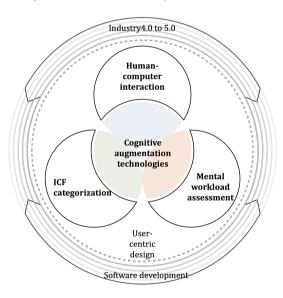


Figure 2.1: Theoretical framework

2.2 Human-technology Interaction

Industry 5.0 makes human—computer interaction the conduit for its human-centric vision, turning interfaces, guidance, and feedback into the means by which advanced automation actively augments human judgment, creativity, and well-being on the shop floor (Lihui Wang, 2021). Human—system interaction demands coordination of perceptual, cognitive, and motor functions (Neumann et al., 2020). Cognitive ergonomics addresses four major difficulties in human—computer interaction (HCI): long task completion times, low user satisfaction, high error rates, and extended response times (Cañas, 2008). Human factors and ergonomics research can improve system performance and well-being in manufacturing companies (Arto Reiman et al., 2021).

This changing landscape ushers in new challenges and opportunities, particularly in workforce development and lifelong learning, while raising new ethical considerations. Industry 5.0's digital-twin technology underscores the importance of human expertise in the creation and application of these systems. Notably, not all industries and factories need to be fully automated or unmanned; technical and economic viability should also be considered when promoting intelligent manufacturing. For example, unlike the automotive industry, the aviation, aerospace, shipping, and construction sectors—owing to the complexity of their tasks and processes—have not yet realized full automation and unmanned production. They remain largely dependent on human—machine cooperation, the accumulation of human knowledge and experience, and human self-motivation (Neumann et al., 2020).

Emerging technologies—including the Internet of Things, AI, machine learning, collaborative robots, and virtual/augmented reality—have been crucial in shaping human-centered intelligent manufacturing (HCIM) (Neumann et al., 2020). Yet traditional industrial robots still struggle to meet new demands, largely due to inadequate human—machine interaction design (Neumann et al., 2020).

The human—technology interaction enabled by augmentation technologies includes real-time auditory feedback (Bustoni, 2025), tactile feedback, and visual interaction, which requires rapid information processing and can therefore impose a higher mental workload (Y.-T. Huang et al., 2025). The application of augmentation technology to empower users is associated with high intrinsic motivation and deep comprehension. This grants users full decision authority for critical task evaluation, meaningful choice, and autonomous expertise development and flexibility (Pan, 2022).

2.3 Mental Workload

Mental Workload can be defined as "the ratio of demand to allocated resources" (Luong et al., 2020). It is an essential metric for evaluating the impact of performing tasks and predicting operators' performances and technology adoption (Cañas, 2008). Optimizing mental workload has been proven to reduce human errors, improve system safety, increase productivity, and enhance operators' satisfaction with their working experience (Luong et al., 2020).

Cognitive load is a common word used interchangeably with mental workload. Longo and Orrú (2022) contend that while they may come from various fields, they are essentially the same (Luca Longo and Orrú, 2020). Cognitive load is mostly associated with educational psychology (Sweller et al., 1998), whereas mental workload is associated with ergonomics, human factors (MacDonald, 2003), psychology (Hancock et al., 2021), and aviation (Sandra G. Hart, 2006).

Mental workload can be measured in multiple ways, including subjective (or self-report), physiological, and task performance measures (Emmie Fogelberg, Peter Thorvald, et al., 2024). Self-report methods can be categorized into multidimensional or unidimensional scales (Luong et al., 2020). One of the most recognized and commonly used standardized multidimensional scales is the NASA-Task Load Index (TLX) (S. G. Hart and Staveland, 1988). Performance measures mainly depend on the type of task, and error rate and completion time are the common measures (Emmie Fogelberg, Peter Thorvald, et al., 2024). The physiological measures can be assessed through signals like electroencephalogram (EEG), pupillometry, heart rate variability (HRV)(Tao et al., 2019), etc.

Excessive levels of mental workload have been shown to alter physiological processes, including hormonal regulation. Similar to stress, high mental workload triggers elevated secretion of the hormone cortisol (Nomura et al., 2009). In addition, Kusnanto et al. (2020) found that blood sugar increases in correlation with mental workload (Kusnanto et al., 2020). Other associated symptoms are poorer body postures (Adams and Nino, 2024), fatigue, drowsiness (Borghini et al., 2012), and decreased HRV (Yannakakis et al., 2016).

2.3.1 Mental workload assessment

Mental workload can be understood as the balance between task complexity and an individual's cognitive capacity to meet those demands (MacDonald, 2003; B. Wang et al., 2024), although the lack of a universal definition makes it difficult to claim exact boundaries of the construct. When this balance aligns with an individual's skills, studies report better performance along with higher motivation and productivity (Bartram and Turley, 2009; L. Longo et al., 2022; Venkatesh and Ram, 2015). Conversely, when mental workload is either too high or too low, performance suffers (Xie and Salvendy, 2000; Young et al., 2015). Elevated workload, in particular, is associated with increased errors and longer response times (Foy and Chapman, 2018; Ryu and Myung, 2005).

Assessment methods are commonly grouped into three categories: subjective, physiological, and performance-based (Matthews, De Winter, et al., 2020). Over the past three decades, multimethod assessments have become more prevalent (Di Stasi, 'Alvarez-Valbuena, et al., 2009), and several authors recommend combining instruments because single measures cannot capture signals outside their own scope (Veltman and Gaillard, 1998).

Subjective measures rely on self-ratings of perceived workload and are popular because they are easy to administer (Zarjam et al., 2015), relatively insensitive to time constraints (Marino et al., 2021), able to capture small variations (Paas et al., 2016), show strong validity (Grandi et al., 2022; Torres et al., 2021), are non-interruptive (Bommer and Fendley, 2018; Grandi et al., 2022; Torres et al., 2021), and are low cost (Arana-De las Casas et al., 2023; Bommer and Fendley, 2018; Grandi et al., 2022; Torres et al., 2021). Widely used scales include NASA-TLX (S. G. Hart and Staveland, 1988), the Cooper-Harper Rating Scale (Cooper and Harper, 1969), and the RSME (Zijlstra and Van Doorn, 1985).

Physiological assessments are increasingly popular because they provide "hard" evidence via traceable bodily and neural changes (Annett, 2002; Fairclough and Houston, 2004), and they have become more accessible due to improvements in device cost and size (Guzik and Malik, 2016). Common measures include eve tracking (Hertzum and Holmegaard, 2013)—such as pupil diameter (Argyle et al., 2021; Batmaz and Ozturk, 2008) and blink frequency (Faure et al., 2016)—skin conductance (Lagomarsino et al., 2022; Shimomura et al., 2008), neural activity (Wilson and Eggemeier, 2020), heart rate (HR) (Argyle et al., 2021; Henelius et al., 2009), and heart rate variability (HRV) (Delliaux et al., 2019; Grandi et al., 2022). When used for workload, HRV serves as an indicator of cardiovascular responses to heightened demands (Miyake, 2001). Unlike HR, which is measured in beats per minute, HRV captures fluctuations in the intervals between heartbeats (Mc-Craty and Shaffer, 2015; Shao et al., 2020), can be measured non-intrusively, and can be computed in under two minutes (Bläsing and Bornewasser, 2020). HRV is often collected via photoplethysmography (PPG), which detects changes in blood volume in the microvasculature (Allen, 2007), with signals obtainable from multiple body sites such as fingers and earlobes (Kiselev et al., 2016). With lightweight sensors, participants can, for example, assemble a drone without meaningful restrictions from instrumentation. HRV is the variation in the length of heartbeat intervals (Malik et al., 1996). HRV represents the heart's ability to respond to a wide range of physiological and environmental stimuli (Acharya et al., 2006). Low HRV indicates a monotonously regular heart rate. Furthermore, reduced HRV is linked to decreased regulatory and homeostatic autonomic nerve system (ANS) activities, reducing the body's ability to deal with internal and external stimuli.

Performance-based assessments focus on observable actions and execution and help quantify how individuals allocate limited cognitive resources and differ in performance profiles (Butmee et al., 2018). Typical industrial assembly metrics include speed, accuracy, time, reaction time, and error counts (Drouot et al., 2022; Lagomarsino et al., 2022). These variables can be measured in the main task to check goal success or in a secondary task to see how much mental capacity remains.

2.4 The International Classification of Functioning

The International Classification of Functioning, Disability and Health (ICF) provides a standardized way to describe health and health-related states at individual and population levels, and was endorsed by WHO Member States for universal application across contexts (WHO, 2001). It conceptualizes functioning as a dynamic interaction between health conditions and contextual factors, allowing description in both neutral (functioning) and negative (disability) terms (WHO, 2001; Battistella and De Brito, 2002).

ICF comprises three coded components—Body Functions and Structures, Activities and Participation, and Environmental Factors—plus Personal Factors as contextual elements, with components operationalized using qualifiers such as capacity and performance for activities/participation (WHO, 2001; Battistella and De Brito, 2002). The unit of classification is domains within these components; importantly, ICF "does not classify people," but describes each person's situation across domains (WHO, 2001).

ICF's body functions explicitly include mental functions, aligning the framework with cognitive ergonomics and mental workload constructs in which working memory limits, task demands, and environmental conditions jointly shape performance (Battistella and De Brito, 2002; L. Longo et al., 2022). Building on ICF, the analysis connects mental workload and users' cognitive functions (body functions) with task performance (activities/participation) and the digital work environment (environmental factors).

Body functions are the physiological functions of body systems (including mental functions), and body structures are anatomical parts such as organs and limbs (WHO, 2001). Activities and participation span learning, general tasks and demands, communication, mobility, self-care, domestic life, relationships, major life areas, and community life, assessed via capacity and performance qualifiers (WHO, 2001; Battistella and De Brito, 2002). Environmental factors cover the physical, social, and attitudinal environment, and are explicitly coded as facilitators or barriers that influence functioning (WHO, 2001; Battistella and De Brito, 2002).

Personal factors (e.g., age, lifestyle, coping habits) are included conceptually as contextual elements but are not formally classified in ICF due to cultural variability and scope concerns; their assessment is left to users and domain-specific applications (WHO, 2001). Scholarly work discusses ongoing efforts to structure personal factors (e.g., self-efficacy, attitudes, motivation) while emphasizing the need for conceptual clarity to avoid overlap with other components (Fehrmann et al., 2022). But in this thesis, the personal factors are delimited from the discussion of mental workload, as a more objective perspective of mental workload imposed by digitalization tools is raised, but not the motivation or lifestyle of each user. But we acknowledge the importance of personal factors regarding future universal design.

2.5 Cognitive Augmentation Technology

Cognitive enhancement—understood as the augmentation of brain processes—has been a prominent topic in academic and public debates about increasing physical and mental capabilities (Nitish Singh Jangwan et al., 2022). In recent years, numerous recommendations have been proposed for improving cognitive functions, and physical and behavioral treatments have been investigated in the context of cognitive enhancement (Nitish Singh Jangwan et al., 2022).

Cognitive augmentation can be framed in four compact dimensions: spatial cognition (where the assembly is), memory cognition (what the assembly/parts are), comprehension cognition (how the assembly state is), and decision-making cognition (how to perform the operation). These dimensions cooperate to support the task flow from locating and recognizing to understanding and acting (Pang et al., 2024).

Cognitive augmentation technologies are designed to provide rich feedback with reduced mental workload, making them well suited for progressive learning and symbiosis between working systems and operators (Lucchese et al., 2025). The technologies serve to support and empower the workforce, fostering more high quality jobs and prosperity beyond efficiency. By relieving individuals of physical and cognitive strain, stress, and workplace risks, these technologies offer effective means to support and amplify human capabilities on the modern shop floor (HORIZON, 2025). In manufacturing, cognitive enhancement technologies aim to improve human perception, cognition, and decision-making by integrating advanced digital tools—such as extended reality (XR), AI agents, social robots, and digital twins—into industrial environments (Lihui Wang, 2021).

2.5.1 VR as cognitive augmentation technology

VR systems represent innovative solutions that merge technological advances with human centric design, aligning with Industry 5.0 principles (Escallada et al., 2025). However, despite progress in VR technologies and hardware, if a VR task is not designed with an appropriate level of mental workload that matches users' expertise, both task performance and technology utilization can be constrained (Zhang et al., 2016).

In manufacturing, VR is a key enabler supporting layout planning, design reviews, virtual prototyping, machine/robot interaction, ergonomics assessment, and virtual training (Erlantz Loizaga et al., 2023). Enhancing the cognitive ergonomics of VR application interfaces aims to align technology with human needs and capabilities, promoting efficiency, effectiveness, and user satisfaction in manufacturing processes.

The gamified multi-user VR experience described here combines essential technology components and approaches established in current research. The Unity 3D game engine (*Unity Engine* 2025) is one of the platforms used to construct XR applications in this study, and its customization and adaptability make it suitable for industrial and academic applications (Tytarenko, 2023). The integration of

Photon Networking for multi-user capabilities aligns with established practices in collaborative VR. Furthermore, implementing VR Builder for task sequencing and interaction design is consistent with documented methodologies for constructing instructional VR training applications without substantial C programming (Söderlund et al., 2024).

As another gamified platform, Unreal Engine (*Unreal Engine* 2025) can bridge gaps by providing more realistic environmental rendering, detailed avatar customization, and seamless communication for user enhancement and social interaction in immersive worlds. This platform can address issues such as AI integration, improved haptic feedback, and optimization of large-scale VR projects (Berrezueta-Guzman and Wagner, 2025).

For engineering and industrial application design, commercial software such as IC.IDO (IC.IDO, 2025)—which combines high-end visualization with real-time physics simulation to enable authentic human-centered process validation—can also be used. The fundamental architecture of VR prototypes is based on established CAD data formats, specifically the JT (Jupiter Tessellation) format, an ISO-standardized solution for 3D data interchange and visualization.

VR prototypes frequently use head mounted displays (HMDs), such as the Meta Quest series, which hold over 70% market share due to their wireless capabilities and mixed-reality features (Wheeler, 2024). The wireless operating mode eliminates tethering restrictions while preserving high-fidelity rendering via a streaming architecture that separates computational processing from display hardware (Petersen, 2024).

2.5.2 Humanoid social robots

A humanoid social robot (HSR) is defined as "human-made technologies that can take physical or digital form, resemble people in form or behavior to some degree, and are designed to interact with people" (Fox and Gambino, 2021). This definition emphasizes that HSRs exhibit both form anthropomorphism (human-like voice or appearance) and behavioral anthropomorphism (gestures, spoken messages, nonverbal expressions) (Fox and Gambino, 2021). To enhance the social-interaction functionality and social capital of humanoid social robots, a natural language model can be introduced to enable fluent communication, and computer vision can be used to enable eye contact and facial expression (Dogan, 2021).

The HSR demo in this study is built on a tabletop humanoid social robot from Furhat (Furhat, 2025). The back-projected face technology used by Furhat robots creates lifelike expressions by projecting animated faces onto a translucent mask. The Furhat OS platform offers speech, facial-animation, and gesture-control APIs. The HSR can be customized with context, sequential assembly instructions, and other task information by connecting to the GPT-40 API via Python for external integration. In addition, it can function as a virtual mentor—presenting with a human persona, voice, and face—and deliver customized teaching based on the operator's skill level.

2.5.3 Mental workload in VR and humanoid social robots

Navigation in VR can impose substantial mental load on users, affecting short-term memory, attention, perception, and response time (Han et al., 2021). Elevated mental workload during visuomotor adaptation in immersive VR has been associated with poorer long-term motor memory and reduced context transfer (Juliano et al., 2021). Increases in mental load also manifest in ocular metrics—such as larger relative pupil size and fewer fixations—indicating impacts on attention (Schirm et al., 2023). Collectively, these effects can degrade overall user experience and the effectiveness of VR applications.

Users frequently experience higher mental workload during complex motor tasks in head-mounted displays compared with traditional computer screens (Bernal, Jung, et al., 2024). Moreover, higher cognitive and affective load during VR navigation can diminish navigational performance (Parsons et al., 2023). Without mitigation, these mental-load factors can adversely affect collaborative activities in virtual environments—such as layout planning, design reviews, and remote assistance. It is therefore crucial to leverage user cognitive psychology and interface/scene-design features early in the VR design phase to improve information acquisition and task execution, enhance user experience, and reduce mental workload (Fu et al., 2024; H. Cao, Rivera, et al., 2025).

Research Approach and Methods

This chapter describes the research approach, methods, and techniques used to achieve the research aim and mission. First, the research activities are presented with papers.

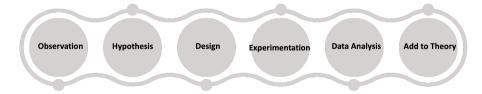


Figure 3.1: General scientific methods steps, adapted from (Pruzan, 2016)

3.1 The design of research

Scientists share certain beliefs in common: that scientific disciplines are reliant on evidence, the use of hypotheses and theories, and the logic used (AAAS, 1990). Science does not have a unified epistemology, but the overarching technique gives a consistent criterion of validity for all hypotheses. Inadequate data collection and processing might lead to subjective outcomes, thus it is crucial to evaluate different participants using consistent criteria (Harold, 1983).

My research is grounded in a pragmatic-empiricist worldview that privileges direct measurement and statistical validation to illuminate human—technology interactions. By systematically quantifying mental workload across objective (per-

formance, physiological) and subjective (self-report) domains, this epistemological stance asserts that reliable knowledge emerges from observable, reproducible data rather than intuition or expert conjecture alone. In adopting mixed-methods mental workload assessments, the study embodies a critical realist approach: it assumes that cognitive phenomena and user experience are real and measurable, yet acknowledges that no single metric can fully capture their complexity. This synthesis of quantitative rigor with complementary qualitative insights enables the empirical demonstration of how technology can symbiotically empower, augment, and include users. Ultimately, this philosophy holds that ambiguity in human–technology symbiosis is best resolved through transparent experiment design and comparative data analysis, yielding actionable, generalizable insights into usability and cognitive impact.

The term of 'scientific method' refers to a systematic procedure for carrying out a scientific investigation and justifying the privileged status of the research findings (Pruzan, 2016). The delineation introduces a step-by-step of an apparent logical and/or chronological progression in research activities; however, it is not always linear or sequential (Pruzan, 2016). The adapted scientific research methods steps are illustrated in the Figure 3.1. Objectivity, curiosity, creativity, and interpretation give the research process repeatability and transparency while also advancing our understanding of the hard and soft science socio-technical system sector.

3.2 Experimental approaches

3.2.1 Prototype-based experiment Method

There are various modeling and analytic methods for complex experimental setups. The use of quantitative data to compare and reveal significant differences between subjects can provide us with a clear picture of the usability of technology as well as quantify the interaction between humans and technology. It is difficult to determine the interaction between humans and technology without measuring or relying solely on qualitative data, as subjective assessments may not accurately reflect reality (Emmie Fogelberg, Peter Thorvald, et al., 2024), and expert opinion is not reliable in this new sector. The primary unique working methods used in this study were to quantify the user experience through mental workload assessment. How to understand the symbiosis, empowerment, augmentation, and inclusion of technology from a cognitive perspective? Mixed mental workload evaluation methods could be a feasible solution to demonstrate the significance of ambiguity and personalization by scientific comparison experiment design and data analysis.

A sandbox can be classified as either a technological sandbox or a regulatory sandbox (OECD, 2025). The former emphasizes responsible decision-making, safety risk simulation, norms, ethics, and training procedures. Technological sandbox, the latter, focuses on technical or production-related faults and system fluency while studying tools, systems, and innovation for training reasons. This research aims to identify the two sandbox types that have a measurable mental

workload. In this instance, we pay particular attention to the cycles of technology adoption and development as well as the cognitive strain and stress that shop floor operators experience.

The Stena Industry Innovation Lab (SII-Lab), a learning factory in Gothenburg, Sweden, serves as the basis for the research. By offering a controlled environment for experimenting with Industry 5.0 background, drone factories, assembly jobs, and human-centric digital tools, regulatory sandboxes are investigated as a tangible framework. For a limited period and in a restricted portion of a sector or area, the sandboxes are intended to provide a real-world setting for testing the uptake and usability of innovative technologies, products, services, or approaches—particularly in the context of digitalization—under regulatory supervision, guaranteeing that the necessary safeguards are in place. In order to validate the proof of concept of the digital tools for cognitive augmentation, the sandboxes primarily rely on experimentation to produce qualitative and quantitative study results.

This research employs prototype-based experiments to evaluate cognitive augmentation technologies, including VR, video instruction, and AI-driven social robots in realistic Industry 5.0 manufacturing settings. Besides, the research assessed the human-technology interaction and user interface of VR regarding mental workload.

3.2.2 Comparative Experiments

To answer RQ1 and illustrate the probable causality of an independent variable on a dependent variable, studies are frequently structured in such a way that the findings of an experimental sampling may be compared to one or more controlled samples (Pruzan, 2016).

A between-subjects 3x4 factorial design is a study where participants are randomly assigned to the control or the experimental group, with three subjects on four measurements. This study B aims to assess three common digital instructional tools - video instruction, VR, and AI-integrated humanoid social robotsusing a triangular combination of mental workload assessment measurement modalities (Emmie Fogelberg, Huizhong Cao, et al., 2025). The assessment incorporates four measurements - heart rate variability (HRV) as a physiological measure, the Rating Scale Mental Effort (RSME) for subjective evaluation, and performance-based metrics of completion time and error rate. By integrating these diverse measures, the study seeks to provide a holistic understanding of how different instructional methods impact learners during both the learning and operation phases of an assembly task in manufacturing. Evaluating mental workload through subjective assessments, physiological data, and performance-based metrics provides a comprehensive approach to understanding how different instructional methods affect learners.

3.2.3 Personas and Participants

Personas are imagined profiles that reflect the diversity of users or learners. A typical persona includes the user group's needs and goals, background information on the user group, and a picture of the group's representative (Weinhandl et al., 2023). In this research, the participants represent industrial practitioners ranging from novices to professionals, as well as students with little job experience. The following information has been collected with informed consent approved by the Chalmers Institutional Ethical Advisory Board (IEAB): gender, age, native language, level of education, occupation, VR experience and humanoid conversational robot experience in both Study B and C.

Participants were randomly divided into three groups, in which one group participated in a training session by watching the segmented videos on a 2D LCD screen, another group participated in a training session using HMD VR, and the last group participated in a training session with a humanoid social robots, as shown in Figure 3.2.

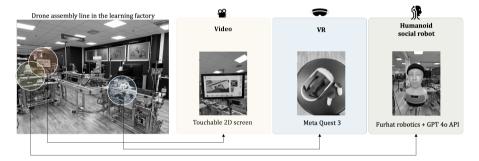


Figure 3.2: The experiment apparatus of three subjects—the simulated drone factory and its instruction station, equipped with 2D screens, a humanoid social robot, and a VR headset.

3.2.4 Hypothesis testing

In Paper 2 (instruction modality), the hypothesis is that instruction modality—video, VR, and humanoid social robots—elicits different mental workload profiles across learning and operation, leading to measurable differences in perceived effort (RSME), completion time, and errors during an industrial assembly task.

In Paper 3 (measure triangulation), the hypothesis is that Mental workload indicators from different classes—error rate and completion time (performance), RSME (subjective), and HRV (physiological)—correlate during assembly.

WHile in Paper 4 (VR mini-map UI features), the hypothesis is that three mini-map design features—portability, dimensionality (2D vs 3D), and tangibility—exert different, measurable effects on mental workload (NASA-TLX subscales) and spatial performance (navigation, layout perception, collaboration, time)

in collaborative industrial VR; portability will yield the strongest workload reduction and performance gains.

The criteria for hypothesis testing in this thesis are defined by the study design, measurement scales, and model assumptions, and are operationalized via nonparametric omnibus tests with corrected post-hoc comparisons (Paper 2), correlation analysis with power considerations (Paper 3), and mixed-effects ANOVA with predefined alpha and effect size reporting (Paper 4).

3.2.5 Data analysis methods

Answering RQ2 requires integrating multiple assessment methods—subjective self-reports, performance-based metrics, and physiological measures—to capture distinct facets of workload. By systematically comparing these measures under varying augmentation conditions, we aim to determine which metrics best reflect cognitive demands and how technology design features modulate perceived and actual mental effort. This quantitative triangulation lays the foundation for evidence-based guidelines in designing augmentation systems that optimize cognitive support without overburdening users.

Due to the fact that the studies involve inclusive representation of participant groups (both industrial/academic participants), paired/nested observations, and a mix of ordinal and continuous measures, the licentiate adopts analysis methods that fit each dataset rather than a single generic test. In practice, this means choosing robust non-parametric tests for ordinal or non-normal data, mixed-effects models to handle dependencies and unbalanced samples, and clear visualizations to expose how the data are distributed.

3.2.5.1 Non-parametric analysis

Non-parametric analysis refers to statistical methods that do not assume a specific probability distribution for the data, making them well suited for ordinal measures, small samples, or when normality assumptions are violated (Guitton and Siegel, 1958). These techniques operate on data ranks rather than raw values, providing robust inference under broader conditions. Common non-parametric tests include the Mann–Whitney U test for comparing two independent groups and the Kruskal–Wallis H test for three or more groups (Kruskal and Wallis, 1952). In paper 2, non-parametric analyses were employed to compare subjective workload ratings (RSME) across the video, VR, and humanoid robot conditions, ensuring valid results despite the ordinal scale and potential skewness of the self-report data.

3.2.5.2 Mixed effect ANOVA test

The mixed effects modeling provides an ideal framework for our study as it combines the strengths of both fixed (design features) and random (user type variability) effects analysis, accommodating the nested structure of our data where observations were collected from participants working in pairs, creating inherent

dependencies (Badr and De Amicis, 2023). As noted by Moseley et al., "Mixed models can accommodate unbalanced data patterns and use all available observations and patients in the analysis" (Badr and De Amicis, 2023), which is particularly valuable given the different sample sizes, measurement quantities, and VR experience backgrounds between student and industrial practitioner groups.

Statistical analyses were implemented using Python for the mixed design ANOVA calculations. The significance level (type I error) was set to 0.05 (Giovanni Di Leo and Francesco Sardanelli, 2020).

The mixed-design ANOVA enables us to:

- Assess the main effects of each design feature across all participants, identifying universal design principles that transcend user groups.
- Examine potential interactions between design features and user groups, illuminating whether certain features are particularly beneficial for specific user populations.
- Maintain focus on design elements rather than group differences, while still
 accounting for group-level variance in the statistical model.

3.2.5.3 Density plot

A density plot is a graphical representation that illustrates the distribution of a continuous variable. The probability density function depicts a smooth curve, making it easy to determine where data points are concentrated, spot several peaks (modes), and compare distributions without the abrupt bins found in histograms (GeeksforGeeks, 2025). Density plots employ a technique known as kernel density estimation (KDE), which results in a fluid, continuous representation of the data distribution. The area under the density curve always equals one, indicating the entire probability (GeeksforGeeks, 2025).

3.2.5.4 Thematic analysis

Thematic analysis is a flexible, qualitative method for identifying, analyzing, and reporting patterns ("themes") within textual data. Rather than testing hypotheses, it explores participants' perspectives to reveal shared experiences and meanings. Braun and Clarke's (2006) approach, widely adopted in HCI and ergonomics research, unfolds in five iterative phases (Virginia Braun and Victoria Clarke, 2006):

- Familiarization Immersing in the data by reading and re-reading participants' narratives.
- 2. Generating initial codes Labeling meaningful segments of text (codes) that capture features of the data relevant to the research question.
- 3. Searching for themes Grouping related codes into broader candidate themes that represent patterned responses.
- 4. Reviewing themes Refining candidate themes by checking their coherence against the coded extracts and the full data set.

5. Defining and naming themes – Finalizing clear definitions and names for each theme, ensuring they tell a compelling story about the data.

3.2.6 Statistical significance

To assess statistical significance rigorously and transparently, subsection 3.2.4 specifies the hypothesis tests used, their assumptions, and decision criteria (including p-value thresholds and multiple-comparison controls), ensuring that inferences reflect the data's scale and distribution rather than relying on a single omnibus procedure. The following methods are used to test the statistical significance of the comparison results.

Kruskal-Wallis H test: The Kruskal-Wallis H test is a nonparametric alternative to one-way ANOVA, used when the assumption of normally distributed residuals is violated or when dealing with ordinal data. It evaluates whether three or more independent groups originate from the same distribution by comparing the ranks of the combined data rather than their raw values (Kruskal and Wallis, 1952). In practice, each observation is replaced by its rank across all groups, and the test statistic H measures the degree to which these ranks differ between groups. A significant H indicates that at least one group's median differs from the others, though it does not specify which groups differ; post-hoc pairwise comparisons (e.g., Dunn's test with Bonferroni correction) are then required to identify specific contrasts. In our study, the Kruskal-Wallis H test was applied to compare mental workload scores across the video, VR, and humanoid robot conditions, accommodating the ordinal nature and potential non-normality of the subjective workload data.

Dunn's post-hoc test with Bonferroni correction: When the Kruskal-Wallis's test indicated a significant group effect, Dunn's post-hoc test was applied to perform pairwise comparisons between instructional methods. The Bonferroni correction was used to adjust for multiple comparisons and control the family-wise error rate (ref). Statistical significance was set at p<0.05.

Pearson Correlation: Pearson's correlation coefficient (r) measures the strength and direction of a linear relationship between two continuous variables, ranging from -1 (perfect negative) through 0 (none) to +1 (perfect positive) (LaMorte, 2021).

3.2.7 Statistical power

Paper 3 report p-values to indicate statistical significance, representing the likelihood that observed differences occurred by chance rather than due to our manipulated variables. The mean and standard deviation were calculated for all dependent variables. Additionally, we report partial eta squared (η^2) as our primary effect size measure, following conventional guidelines where η^2 values of approximately 0.01 indicate small effects, 0.06 medium effects, and 0.14 or greater large effects (Muller and Jacob Cohen, 1989).

Table 3.1: Methods adopted in the selected papers

Study		Analysis methods	Significance	Subject variables	Measurables
A	1	Literature review, catego- rization	30 full papers reviewed	7 types of use cases among 3 pillars of sustainable production	NIST sustainability KPIs
В	2	Between- subject 3x4 factorial design, Non- parametric analysis	Kruskal- Wallis H test, and Dunn's post-hoc test with Bonferroni correction	Between- subjects factors (video instruction, VR, and humanoid social robots)	Subjective assessment (RSME and user surveys), physiological instruments (HRV), and performance- based methods (completion time and error rate)
В	3	Density plot	Pearson correlation coefficient	Independent Variable (Between- subjects): VR, humanoid social robots, video instruction	Four validated mental workload instruments across three measurement classes: Error rate, Completion time, RSME, HRV

Continued on next page

Table 3.1: Methods adopted in the selected papers (continued)

Study	Paper	Analysis methods	Significance	Subject variables	Measurables
C	4	Literature review, Prototype-based experiment, Mixed effect ANOVA test, Thematic analysis	P-value to indicate statistical significance, partial eta squared(η^2) as our primary effect size measure	Within- subjects factors (design features: portability, dimension- ality, and tangibility). Between- subjects factors (student vs. practitioner groups)	NASA-TLX metrics (Mental Demand, Physical Demand, Temporal Demand, Performance, Effort, and Frustration) and spatial cognition measures (Layout Perception, Navigation, Collaboration, and Time)

3.3 Project overview

The research program comprises several ongoing projects that shape the experiments, paper themes, application domains, and overall publication trajectory; collectively, they also steer the thesis's future direction. In particular, the project portfolio has informed study design choices, target user groups, and methodological emphasis across the included works. The licentiate and the author's research over the past two years have been funded by these initiatives. Specifically, Papers 1 and 4 are supported by the PLENUM project (PLENUM, 2022), while Papers 2 and 3 are supported by the DIGITALIS project (DIGITALIS, 2022).

PLENUM is envisioned as a cost-effective, accessible, and sustainable multi-user platform aimed at transforming 3D factory design, simulation, and operator upskilling. Seamlessly working in distributed environments, it leverages mature technologies for 3D scanning, multi-user functionality, and XR demonstration with the Unity platform to bring design guidelines to industrial software IPS. PLENUM's broader objectives include enhancing training effectiveness using real factory data, promoting inclusive factory design, and ensuring workforce productivity and sustainability. Moreover, it advocates for a reduction in travel needs by enabling meetings in digital twins of production system environments. User telemetry data collection, mirroring online games, can further refine IPS simulation models, enhancing overall platform efficiency through Unity for quick iteration for proof of concept.

The DIGITALIS project explores the intersection of cognitive science, information design, and XR, AI, and social robots within automotive manufacturing. It aims to enhance quality and efficiency through developing cognitive support systems and improved information design methods for XR and social robots applications. The DIGITAIS project incorporates cognitive task analysis to understand the cognitive processes involved in machine/robot interaction. Design thinking will be employed to create intuitive and effective XR/social robots interfaces for these interactions.

During the kappa's development, SkillAIbility (SkillAIbility, 2025) has accompanied the work and helped clarify the thesis's future direction. It aims to build human-centric pathways to future skills and jobs in manufacturing by co-designing education, training, and augmentation tools with workers—especially vulnerable groups—to enable an inclusive, resilient, and equitable twin transition through complementary strengths of AI, automation, and human task redesign.

CHAPTER 4

Summary of the Appended Papers

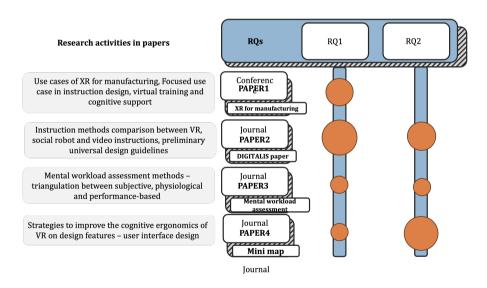


Figure 4.1: Research activities in this thesis connected to contributions to research questions and papers

Figure 4.2 provides a summary of the research activities. The activities clearly outline the research methodologies employed in each publication, which is a mixed research design that primarily uses prototype-based experimental research and integrates quantitative and qualitative research. A summary of the appended

papers is presented in the following sections, formatted as Background \rightarrow Methods \rightarrow Results \rightarrow Discussion. The purpose of this section is to give a brief review of the attached paper with key references, and main findings with inspiring discussions. The relationship of each paper and the connection to vision/RQs will be elaborated in Chapter 4.

4.1 Paper 1

Exploring the current applications, limitations, and potential of extended reality for sustainability in manufacturing

4.1.1 Background

Manufacturing companies are facing increasing pressure to integrate sustainable and human-centric solutions to remain competitive, which aligns with the vision of Industry 5.0. This paradigm emphasizes resilient, smart, and sustainable production systems that balance economic, social, and environmental goals (Ren et al., 2019; Leng et al., 2022; European Commission, 2022). XR, encompassing VR, MR, and AR, has gained attention as a key enabling technology for this transition. XR has been shown to strengthen decision-making, improve knowledge transfer, and foster human-technology collaboration, thereby directly supporting social and economic sustainability dimensions (Fast-Berglund et al., 2018). However, its contributions toward environmental sustainability remain less systematically studied and often only indirectly demonstrated (Beier et al., 2020; Thiede et al., 2022).

4.1.2 Methods

Paper 1 presented real-world use cases of XR in manufacturing, highlighting how these technologies serve as both guidance and inspiration for future research and industrial implementation. 30 relevant papers were selected. Data from each was recorded in a spreadsheet, capturing XR technologies used, sustainability impacts, and evidence. Each use case was mapped to sustainability pillars (environmental, economic, social) based on NIST indicators. Impacts were classified as direct (quantitative evidence) or indirect (qualitative claims). This analysis highlighted how XR technologies contribute to different sustainability goals within manufacturing environments.

To measure sustainability within manufacturing processes, the U.S. National Institute of Standards and Technology (NIST) has established 213 sustainability indicators, of which 77 are specifically related to environmental performance (Joung et al., 2013; NIST, 2021; Kim et al., 2012). These indicators address crucial areas such as emissions reduction, energy and resource use, and waste minimization. While manufacturers and researchers can employ these metrics to track the ecological impact of production systems, the explicit ways in which XR technologies affect these indicators remain underexplored.

4.1.3 Results

The analysis of literature identified seven generic categories of XR use cases in manufacturing, covering a wide range of cross-industry applications. These categories demonstrate XR's capacity to support both operational efficiency and sustainability objectives.

Virtual prototyping showcases how XR can reduce the need for physical prototypes by enabling collaborative design and simulation with customers and engineers, thus minimizing material waste (Royo-Vela et al., 2022; Violante et al., 2019). Production and layout planning emphasize XR's ability to visualize and validate workstation and cell designs before implementation, helping avoid costly errors and optimize material and energy flows (Töröková and Török, 2021; Husár et al., 2022; Thiede et al., 2022; Abdelkhalik and Elngar, 2020). Ergonomic assessment illustrates XR's use with motion capture and digital human models to identify ergonomic risks early, improving worker safety and reducing redesign needs (Dreesbach et al., 2020; Hovanec et al., 2014).

Training applications indicate that XR supports improved learning outcomes, inclusivity, and skill transfer, with additional potential to integrate sustainability awareness into training programs (Gabajová et al., 2019; Araujo et al., 2019; Thiede et al., 2022). Machine/robot interaction demonstrates XR-based human-machine interfaces that improve efficiency and reduce risks during robot collaboration (Schmidt et al., 2022). Cognitive support/instruction highlights XR-enabled on-the-job support through AR devices, improving quality assurance and reducing unnecessary operator travel (J. Alves, Marques, et al., 2021; Kontovourkis et al., 2019; Lund and Ortova, 2022). Finally, data monitoring/analysis shows how XR, in combination with digital twins and sensing technologies, can visualize energy flows, emissions, and operational anomalies, contributing to environmental monitoring and worker safety (Thiede et al., 2022; Damiani et al., 2020).

Collectively, these use cases demonstrate XR's versatility and confirm its potential role in advancing environmentally sustainable manufacturing.

4.1.4 Discussion and Conclusion

The use cases show concrete pathways for XR's sustaiable contributions. Virtual prototyping reduces waste and physical iterations (Chen et al., 2021; Royo-Vela et al., 2022; Violante et al., 2019). Production and layout planning ensure resource optimization and lower environmental risks (Thiede et al., 2022; Muñoz et al., 2019). Ergonomic assessments contribute to safer, more sustainable working conditions (Peruzzini, Grandi, et al., 2018; Hovanec et al., 2014). Training simulations minimize unnecessary resource expenditures and embed sustainability awareness (Thiede et al., 2022; Palmarini et al., 2018). Further, machine/robot interaction, cognitive support/instruction, and data monitoring/analysis illustrate XR's ability to optimize energy flows, reduce errors, and present actionable environmental data (Schmidt et al., 2022; Sidiropoulos et al., 2021; J. Alves, Marques, et al., 2021; Lund and Ortova, 2022; Fukuda et al., 2019).

Virtual Prototyping

 Virtual prototyping uses XR as a co-creation testbed to involve customers and engineers to reduce real material for tests and prototypes[18][19].

 The production and layout planning use cases manifest production cells, workstation design, and digital factory layout to avoid costly mistakes in the design e.g. collisions, etc[10][20][21][22].

Ergonomics Assessment

 The ergonomic assessment use cases focus on leveraging XR technology during the design and validation of workstation and assembly tasks[12][23].

Training

 The training use cases can be applied in maintenance, assembly, quality, and logistics [9][11][21].

Machine/Robot interaction

 The machine/robot interaction use cases use XR technology as a medium and interface between our human operators and the machines or robots as part of our production system[24].

Cognitive support/instruction

 The Cognitive support/instruction use cases leverage primarily AR technology to augment our workforce's cognitive ability by displaying instructions or providing remote guidance to our operators[16][17][25].

Data monitoring/instructions

 The data monitoring/analysis use cases analyze the production system and its ecosystem and present that information back to a user via XR technology.[21][26].

XR use cases for sustainable manufacturing

Figure 4.2: XR use case categorizations

4.2 Paper 2

Cognitive Augmentation in Industry 5.0: Comparing Mental Workload in VR, Humanoid Conversational Robot, and Video Learning

4.2.1 Background

As European industry and society confront persistent staffing shortages, a skilled and adaptable workforce is essential to sustain productivity and human-centric transformation in Industry 5.0 (M. Pinzone et al., 2024; Breque et al., 2021; Da Xu et al., 2018). Unlike Industry 4.0's emphasis on automation and connectivity, Industry 5.0 prioritizes robustness, sustainability, and worker well-being, spotlighting the need for optimized training—especially for novices—to accelerate upskilling without increasing cognitive strain (Breque et al., 2021; Da Xu et al., 2018; Romero and Stahre, 2021). Evidence shows 62% of manufacturers report competency shortages, while traditional training disrupts production and suffers from poor transfer, challenges amplified by an aging workforce and digitalization pressures (M. Pinzone et al., 2024; Greta Braun, 2023; G. Braun et al., 2024; L. Rinsky-Halivni et al., 2022). Cognitive augmentation—via XR, AI agents, social robots, and digital twins—seeks to enhance perception, cognition, and decision-making; yet multimodal, real-time interactions can elevate mental workload if timing and presentation are not cognitively aligned (Lucchese 2025; L. Wang, 2021; N. S. Jangwan et al., 2022; Bustoni, 2025; Y. Huang et al., 2025; H. Cao, Rivera, et al., 2025). Mental workload, defined as the cognitive resources required to meet task demands, is tightly linked to performance, errors, and adoption outcomes; excessive load signals misaligned instruction or task design (A. Realyvásquez-Vargas et al., 2023; Galy, 2018; Galy et al., 2012). Triangulating subjective, physiological, and performance measures enables robust evaluation of instructional media—VR, AI-enabled humanoid robots, and video—to identify approaches that reduce workload while preserving consistency and fidelity in industrial assembly (Lindblom and P. Thorvald, 2014; L. Longo et al., 2022; Jafari et al., 2020; Di Stasi, Álvarez-Valbuena, et al., 2009).

4.2.2 Methods

Paper 2 used a between-subject 3×4 factorial design to compare the mental workload of three digital instructional methods—video instruction, VR, and AI-integrated humanoid social robots—used for training novice participants in a drone assembly task, as shown in Figure 4.3. Conducted in a realistic manufacturing lab, participants (N=37) were randomly assigned to one of the three instructional groups.

Prototypes were designed to reflect realistic industry practices while minimizing confounds. VR training (Meta Quest 3) provided an interactive digital twin of the assembly environment with step-mapped stations, collision notifications, haptic interaction cues, and constrained object interactions to prevent incorrect

sequences. The humanoid social robots (Furhat) delivered context-aware, step-bystep oral guidance with facial expressions and adjustable explanation granularity via a Python bridge to a large language model. Video instruction comprised segmented, first-person recordings of the same assembly sequence, accessed through an interactive interface enabling pause, replay, and step navigation.

Figure 4.3: The experiment apparatus of three subjects—the simulated drone factory and its instruction station, equipped with 2D screens, a humanoid social robot, and a VR headset

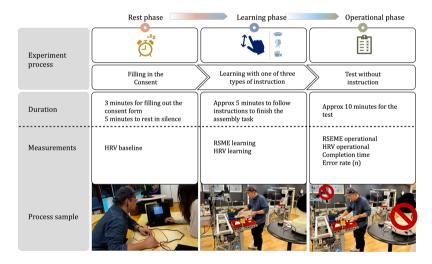


Figure 4.4: Experiment process of Paper 2 and Paper 3

Volunteers (n=37; 36 analyzed for performance; 28 for HRV after data quality screening) were primarily students/novices. Ethical procedures followed the Swedish Ethical Review Authority's guidance; informed consent and demographics were collected, and a 5-minute seated rest established individual HRV baselines. The learning phase proceeded with the assigned modality; the operation phase required unaided assembly. HRV, time, and errors were recorded; RSME was collected after both phases. The process is illustrated in Figure 4.4.

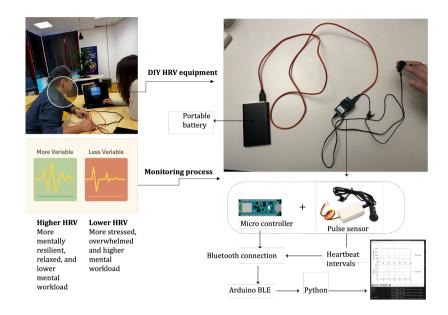


Figure 4.5: HRV collection equipment and development process

HRV was captured via ear-clip PPG to derive inter-beat intervals, transmitted to a PC, preprocessed to remove artifacts, and summarized using RMSSD with threshold-based correction windows. Nonparametric statistics evaluated group differences: Kruskal–Wallis tests for HRV, RSME, time, and errors; significant effects were followed by Dunn's post hoc comparisons with Bonferroni correction (alpha = 0.05).

Kruskal-Wallis H test: For each outcome variable (HRV, completion time, error rate, RSME), the Kruskal-Wallis H test was used to determine whether statistically significant differences existed among the three instruction groups. This test is appropriate for comparing more than two independent groups when the data do not meet the assumptions of normal distribution characteristics.

4.2.3 Results

Statistical analysis included Kruskal-Wallis H tests and Dunn's post-hoc tests with Bonferroni correction due to the small sample size and non-normal data distribution. This combination of methods enabled a comprehensive evaluation of how different instructional technologies affect mental workload and task performance in manufacturing training.

Subjective Mental Workload (RSME)

To evaluate subjective mental workload, RSME scores were analyzed across the learning and operational phases for the three instruction types: video, robot, and

VR. Figure 4.6 presents box plots illustrating the distribution of RSME scores by condition.

Learning Phase: RSME scores varied across instruction types, with robot-based teaching producing the highest median mental effort (46.00), followed by video (26.00) and VR (25.50). Despite these differences, the Kruskal-Wallis test revealed no significant group effect (H = 5.35, p = 0.0688), with post-hoc analyses confirming no significant pairwise differences.

Operational Phase: VR instruction generated significantly higher mental workload (median = 77.50) compared to video (25.50) and robot (46.50) conditions. The Kruskal-Wallis test confirmed significant differences between groups (H = 11.93, p = 0.0026). Dunn's post-hoc testing revealed VR differed significantly from video (p = 0.0018), while robot instruction showed no significant differences from either condition.

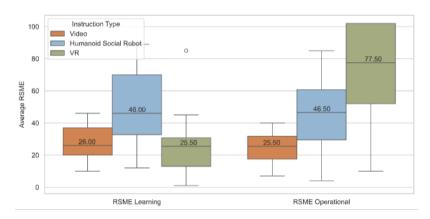


Figure 4.6: RSME (Rating Scale Mental Effort) scores across the learning and operational phases

Task Performance

To assess the impact of instruction modality on task performance of efficiency and accuracy, we analyzed Completion Time and Error Rate across three groups: Video, Robot, and VR. Figure 4.7 presents box plots summarizing these performance metrics.

Completion Time: Video instruction produced the fastest completion times (median = 165.50s), followed by robot (171.00s) and VR (490.00s). Significant group differences emerged (H = 12.54, p = 0.0019), with VR significantly slower than both video (p = 0.0027) and robot (p = 0.0130) conditions.

Error Rate: Video and robot groups demonstrated superior accuracy (median = 0.00 errors), while VR instruction resulted in substantially higher error rates (median = 8.00). Statistical analysis confirmed significant differences (H = 17.53, p = 0.0002), with VR significantly different from both video (p = 0.00063) and robot (p = 0.00080).

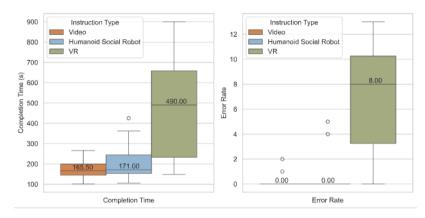


Figure 4.7: Task performance (completion time and error rate) metrics by instruction type scores across operational phases

Heart Rate Variability

HRV ratios showed no significant differences across instruction types during either learning (H = 0.60, p = 0.7396) or operational phases (H = 0.18, p = 0.9124), contrasting with subjective workload assessments as shown in Figure 4.8.

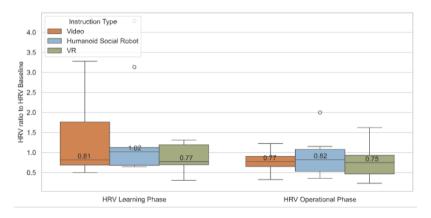


Figure 4.8: HRV ratio divided by HRV baseline during learning and operational phases. A higher ratio (above 1) means an HRV elevation from the baseline, indicating a lower stress level, mental resilience, and a lower mental workload imposed by the task.

4.2.4 Discussion and Conclusion

As shown in Figure 4.9, the mental workload assessment for video, the humanoid social robot, and VR instruction during learning and operational phases is com-

pared.

	RSME (Learning)	RSME (Operational)	Completion time	Error rate	HRV (Learning)	HRV (Operational)
Video instruction	A tighter range centered around a median of 26.00	Lowest RSME scores during operation (median = 25.50)	Completing tasks fastest (median = 165.5 seconds)	Minimal errors (median = 0)	Median ratio of 0.81	Median ratios of 0.77
Humanoid social robot	The most mental effort, with a median score of 46.00 and a broad interquartile range.	Subjective RSME workload was moderate (median = 46.50)	Completion times were slightly longer than Video (median = 171 seconds)	Error rates remained low (median = 0) with more outliers	Median ratio of 1.02, indicating slight elevation above baseline	Median ratios of 0.82
VR	Lowest with a medium RSME score of 25.50	Highest subjective workload (median = 77.50).	Slowest completion times (median = 490 seconds)	Highest error rates (median = 8)	Highest mental workload increase with median ratio of 0.77	Highest mental workload increase with median ratio of 0.75
Statistical Significance	No	VR and Video conditions differed significantly (p = 0.0018)	VR was significantly different from both Video (p = 0.0027) and Robot (p = 0.0130)		No	No

Figure 4.9: Mental workload assessment comparison during learning and operational phases across instruction types

Video-based instruction delivered the most efficient and cognitively economical learning, combining the lowest perceived effort during both learning and operation (RSME medians 26.00 and 25.50), the fastest completion time (165.50 s), and near-perfect accuracy (median errors = 0). Moderate HRV ratios in both phases suggest stable autonomic responses consistent with low cognitive strain. This profile likely reflects the video's visual clarity, procedural transparency, and natural compatibility with hands-on practice in low-to-moderate complexity tasks.

Humanoid social robots guidance offered a balanced alternative: moderate, stable RSME (46.00 learning; 46.50 operation), slightly longer times than video (171.00 s), and equally low errors. Elevated HRV during learning normalized in operation, indicating engaged but manageable cognitive/physiological demand. The interactive, social framing seems to deepen engagement without harming performance, making it suitable where timely feedback and dialogue add value.

VR showed a paradox: low perceived effort during learning (RSME 25.50) but the poorest operational outcomes—slowest times (490.00 s), most errors (8.00), and consistently low HRV ratios—signaling high cognitive/attentional costs once support is removed. Likely drivers include interface novelty, divided attention, and weaker hands-on transfer compared with video and robot. This pattern aligns with habituation and testing-effect perspectives: initial immersive appeal masks later recall and execution challenges when learners must perform independently. Practically, a modality hierarchy emerges: use video for efficient procedural uptake, robots for interactive guidance with preserved performance, and VR selectively, paired with adaptive pacing, repeated practice, and tightly synchronized, just-intime micro-instructions to curb extraneous load.

4.3 Paper 3

Cognitive ergonomics: Triangulation of physiological, subjective, and performance-based mental workload assessments

4.3.1 Backgound

Paper 3 developed a multifaceted framework for assessing mental workload in manufacturing, triangulating physiological, subjective, and performance-based measures. Paper 3, while using a similar task and setup to Paper 2, shifts its focus toward identifying correlations among the mental workload measures (HRV, RSME, completion time, and error rate). It also uses a between-subject factorial design, but centers mostly on the operational phase, where participants perform the assembly task without instructional support. The study tests one main hypothesis, that the mental workload measures are interrelated, even if not linearly.

Paper 3 addresses the gap that single measures miss complementary facets in realistic tasks and that cross-class correlations are underreported, while also revealing constraints of short, naturalistic tasks and wearables on physiological sensitivity (Jafari et al., 2020; Matthews, Reinerman-Jones, et al., 2015; Argyle et al., 2021).

4.3.2 Methods

Density plot

Density plots are used in Paper 3 to compare the distributions of mental workload and performance outcomes—such as RSME (subjective workload rating), error rate, completion time, and HRV — across three instructional delivery methods.

Density plots enable us to:

- Visually assess and compare how each modality's results are distributed (e.g., are completion times more spread out in VR than with a robot?).
- Identify which method yields the highest or lowest mental workload (RSME), the tightest or broadest range of completion times, or the most/least user errors.
- Spot differences in data patterns (e.g., if error rates are bimodal under video but unimodal under VR).
- Present these comparisons intuitively, letting readers immediately see clustering, outliers, or skewness according to instructional condition.

By plotting each group (VR, robot, video) on the same axes for variables like RSME, error rate, completion time, and HRV, the figures provide a clear picture of which instructional method imposes more cognitive or physiological workload and affects user performance. For example, if the VR group's density for RSME is shifted toward higher values, one can immediately conclude VR elicited a higher workload. Similarly, if the robot condition's error rate density is sharply peaked at

lower values, it indicates participants made fewer mistakes using that instruction method.

Pearson Corelation In Paper 3, multiple Pearson correlations among completion time, error rate, RSME, and HRV were ran, then plotted in a color-coded matrix. For example, in paper 3, RSME correlated strongly with completion time (r=0.70) and moderately with error rate (r=0.51), while error rate and time were moderately linked (r=0.57). HRV showed very weak associations (|r|<0.2). A prior power analysis (power = 0.283) highlighted that the study was underpowered for detecting physiological relationships. These correlations illustrate which workload measures align and underscore the need for larger samples when using HRV.

4.3.3 Results

RSME correlated strongly with completion time ($r\approx0.70$, p<0.001) and moderately with error rate ($r\approx0.51$, p<0.002); time and errors were moderately correlated ($r\approx0.57$, p<0.001), indicating convergent sensitivity of subjective and performance measures to elevated workload (Matthews, Reinerman-Jones, et al., 2015; DiDomenico and Nussbaum, 2011). HRV showed very weak relationships with RSME, time, and errors (|r|<0.2), with low statistical power (0.283) and high inter-individual variability likely contributing to null findings in short operational windows (Georgiou et al., 2018; Ishaque et al., 2021; Bourdillon et al., 2022). Descriptively, VR produced higher RSME, longer times, and more errors than video and robot in operation (Argyle et al., 2021).

4.3.4 Discussion and Conclusion

Triangulating RSME with time/errors provides convergent, practical signals of workload in assembly and supports multidimensional assessment in Industry 5.0 (L. Longo et al., 2022; Van Acker et al., 2018; Tsang and Velazquez, 1996). Current short-duration, PPG-based HRV capture may lack sensitivity and robustness in naturalistic tasks; longer windows, higher-fidelity sensing (e.g., ECG), and larger samples are recommended (Georgiou et al., 2018; Hoover et al., 2012). Practically, use RSME plus time/errors for rapid iteration of instructions and UI, and apply physiology cautiously or with enhanced protocols on the shop floor (Lindblom and P. Thorvald, 2014; Matthews, Reinerman-Jones, et al., 2015).

4.4 Paper 4

Human-centered design of VR interface features to support mental workload and spatial cognition during collaboration tasks in manufacturing

4.4.1 Background

Industry 5.0 calls for human-centric, cognitively efficient VR interfaces that actively support collaboration and reduce unnecessary navigation and attentional demand in industrial contexts (J. Alves, Lima, et al., 2023; E. Loizaga et al., 2023; A. Reiman et al., 2021). While VR is increasingly adopted for layout planning, design reviews, and training, fragmented UI conventions and suboptimal navigation assistance can elevate mental, physical, and temporal demands—particularly in multi-user settings where spatial cognition, layout perception, and coordination are critical (Escallada et al., 2025; Reiners et al., 2021; Thorp et al., 2024). Prior work shows that immersive presence alone does not guarantee better learning or lower workload; design choices around guidance, maps, and interaction framing strongly mediate mental workload and transfer (Makransky et al., 2017; Skulmowski and Xu, 2021; Freina and Ott, 2015). Empirical studies link map and landmark aids, egocentric analytics, and menu design to differences in user performance, workload, and Visuospatial processing in VR (Cheng et al., 2022; Kuo et al., 2022; Sorger et al., 2021). At the same time, workload assessment requires multi-method evidence, with NASA-TLX widely validated alongside physiological and performance measures for sensitivity and comparability across tasks (S. G. Hart and Staveland, 1988; Said et al., 2020; A. Cao et al., 2009). Together, this literature motivates a user-centered, standardizable set of VR interface features—such as portable, cognitively light mini-maps—to reduce extraneous load and improve collaboration, aligning industrial VR with Industry 5.0's humancentric agenda (H. Cao, S"oderlund, et al., 2024; E. Geurts et al., 2022; Peruzzini, Pellicciari, et al., 2019).

4.4.2 Methods

Paper 4 evaluated five different mini map designs in a collaborative VR manufacturing task to understand how design features—portability, dimensionality, and tangibility—impact mental workload and spatial performance. After identifying mini map types through literature review, five prototypes were developed and integrated into a gamified maintenance task using Unity3D and Photon for a shared VR environment. Participants included 18 students and 12 industry practitioners, divided into pairs. Students tested three random maps; practitioners tested all five, resulting in 114 valid task sessions. Participants used the mini maps to carry out navigation-based tasks, completing surveys and the NASA-TLX mental workload assessment after each session.

The study used mixed-effect ANOVA to analyze how map design and user experience levels affected workload and performance. A thematic analysis of openended feedback added qualitative insight, revealing themes like usability, visibility, and collaboration. This hybrid approach combined quantitative and qualitative data to assess the effectiveness of mini map features in VR.

Mixed effect ANOVA test

Mixed-effect ANOVA test is a type of mixed effects modeling, which offers particular advantages for Study C (paper 4). The participants are divided into two persona profiles, and exposed to unbalanced conditions of trying mini maps (cao-2025).

To examine the impact of mini map design features on mental workload and spatial cognition, Paper 4 employed a mixed-design ANOVA approach that accommodated our unique experimental structure with different participant groups experiencing varying numbers of mini maps. The analysis accounted for our unbalanced design where industrial practitioners ($n=12,\ 6$ pairs) experienced all five mini map prototypes (contributing 60 valid data collection sessions), whereas students ($n=18,\ 9$ pairs) encountered three randomized mini map prototypes (contributing 54 valid data collection sessions). Although NASA-TLX scores are formally discrete ratings, they were treated as continuous data in accordance with common research practice, enabling the application of parametric tests.

Thematic analysis

In Paper 4, which evaluates VR mini map designs via portable, 2D, 3D, and tangible prototypes, thematic analysis was applied to participants' open-ended feedback collected after each condition. This integration enabled the study to:

- 1. Capture usability issues (e.g., "easy to bring map into focus" vs. "hard to toggle with controller") by coding comments on handling and control.
- Elucidate navigation challenges (e.g., "difficult to orient myself in 3D") by clustering orientation-related codes.
- 3. Highlight visibility concerns (e.g., "map too small," "visual clutter") through iterative theme review and refinement.
- 4. Surface collaboration dynamics (e.g., "helpful to see teammate's location") by grouping feedback on shared use.

By systematically coding and clustering qualitative insights alongside the quantitative measures (NASA-TLX scores, spatial cognition tasks), thematic analysis in Paper 4 reveals rich, context-sensitive understandings of how design features affect user experience, complementing statistical findings with nuanced explanations of why certain mini map attributes succeed or fail.

4.4.3 Results

We evaluated assisted navigation features for collaborative industrial VR through a mixed-methods, user-centered protocol grounded in Industry 5.0 and HCI principles. Three mini-map attributes—portability (carried vs fixed), tangibility (grab-bable/manipulable vs static), and dimensionality (2D vs 3D)—were operationalized across interactive prototypes and tested in a multi-user virtual factory layout scenario. Participants (students and industry practitioners) performed standardized navigation and layout-perception tasks designed to elicit spatial cognition, coordination, and decision-making demands representative of planning workflows in manufacturing (H. Cao, S"oderlund, et al., 2024; Peruzzini, Pellicciari, et al., 2019; A. Reiman et al., 2021).

Quantitative outcomes included task completion time, navigation efficiency (path length, detours), layout perception accuracy (object/zone recall), and error rates.

Subjective workload was captured with the raw NASA-TLX, given its widespread use, sensitivity across varied interaction tasks, and practical software support for collection and postprocessing (S. G. Hart and Staveland, 1988; A. Cao et al., 2009; Said et al., 2020). To complement metrics, post-task interviews and brief open-ended prompts probed clarity, cognitive effort, collaboration fluency, and mini-map usefulness; qualitative data were analyzed using thematic analysis to surface design implications (V. Braun and V. Clarke, 2006). Procedures emphasized comparable task flows and instructions across prototypes to isolate UI effects and reduce extraneous cognitive load (Skulmowski and Xu, 2021; Makransky et al., 2017). Given known impacts of landmarks and map aids on spatial processing in VR, environmental cues were included to enhance ecological validity (Cheng et al., 2022; Kuo et al., 2022). Statistical analysis applied appropriate nonparametric tests and effect sizes common in HCI evaluation; interpretation triangulated performance, workload, and qualitative themes to derive standardizable guidance for cognitively light, portable mini-maps aligned with Industry 5.0's human-centric agenda (E. Fogelberg et al., 2024; G. Di Leo and F. Sardanelli, 2020; J. Cohen, 1988; J. Alves, Lima, et al., 2023).

4.4.4 Discussion and Conclusion

Findings indicate that assisted navigation design can meaningfully lower cognitive demands in collaborative industrial VR when features are tuned for human-centered use. Portable mini-maps consistently supported quicker, less effortful navigation and more accurate layout perception, suggesting that reducing access cost to spatial aids curbs extraneous load and improves team fluency—an alignment with Industry 5.0's emphasis on cognitively efficient, worker-supportive interfaces (J. Alves, Lima, et al., 2023; E. Geurts et al., 2022). This complements evidence that presence alone does not ensure learning or performance gains; workload-sensitive guidance and interface scaffolds are decisive (Makransky et al., 2017; Skulmowski and Xu, 2021). The mixed-methods triangulation further underscores that subjective workload (NASA-TLX), task metrics, and qualitative insights converge on a practical principle: navigation aids must be immediately available, easy to manipulate, and visually minimal to avoid attentional tunneling and map—world mismatches (S. G. Hart and Staveland, 1988; Said et al., 2020).

For standardization, the results extend earlier calls to codify user-centered VR components for industrial planning and reviews—positioning portable mini-maps as a transferable pattern for multi-user workflows (H. Cao, S"oderlund, et al., 2024; Peruzzini, Pellicciari, et al., 2019). Practically, teams should: (i) prefer portable over fixed maps for continuous access, (ii) keep interaction manipulable but low-friction, and (iii) tailor visual density to task complexity. Future studies should quantify effects across expertise levels and disturbances (e.g., time pressure), integrate physiological load indicators, and explore interoperability with digital twins to sustain human-centricity at scale (A. Reiman et al., 2021; Escallada et al., 2025; Reiners et al., 2021).

CHAPTER 5

Discussion

The research is led by two research questions:

RQ1 How do cognitive augmentation technologies influence shop floor workers during the learning and operational phase in the Industry 5.0 manufacturing context?

Cognitive augmentation technologies significantly influence shop floor workers during both the learning and operational phases within the Industry 5.0 manufacturing context, primarily by aiming to enhance human capabilities while managing the associated mental workload (H. Cao, Rivera, et al., 2025; Emmie Fogelberg, Huizhong Cao, et al., 2025; Nitish Singh Jangwan et al., 2022; Lucchese et al., 2025). Industry 5.0 marks a shift from the automation-focused Industry 4.0 towards a human-centric, sustainable, and resilient manufacturing paradigm, where human creativity, ingenuity, and innovation are enhanced by technology, rather than replaced (Breque et al., 2021; Lihui Wang, 2021).

A central concept for understanding this influence is mental workload, defined as the amount of mental resources and cognitive effort required to complete a task (L. Longo et al., 2022). Mental workload is a crucial indicator for monitoring stress, maintaining mental health, and objectively assessing factors linked to productivity, error reduction, and overall performance in technology adoption (Galy, 2018; Young et al., 2015). Both excessive mental workload, which can lead to errors and slower response times, and underload from monotonous tasks can negatively impact performance (Xie and Salvendy, 2000).

This thesis focuses on the following three cognitive augmentation technologies: VR, humanoid social robots (HSR), and video as shown in Table 5.1.

 ${\bf Table~5.1:}~ {\bf Cognitive~ augmentation~ technologies~ and~ mental~ workload~ optimization~ metrics \\$

	metrics	D	I_		
Technology	Use case	Productivity and Design mental guidelines workload		Comparison results	Significance
VR	Training	Test effect, habituation theory	Avoid too much guidance, encourage active information recalling, analysis, and hands-on experience	Contrast results during learning and operational phase: RSME and learning outcome	RSME operational phase, completion time and error rates
VR	Layout plan- ning and design reviews	Cognitive ergonomics enhance productiv- ity	Portability can mediate the mental workload	Portability is more impactful compared to tangibility and dimen- sionality	p<0.05
Humanoid social robots	Training	Over- reliance on AI reduce productiv- ity, moderate	Critical reflection on AI in- structions, more per- sonalized interaction	Moderate in the triangulation modalities, HRV learning is higher than the other types without significance (p>0,5)	Completion time and error rate, significantly lower than VR

Continued on next page

Table 5.1: Cognitive augmentation technologies and mental workload optimization metrics (continued)

Technology	Use case	Productivity and mental workload	y Design guidelines	Comparison results	Significance
Video	Training	Simplified and cognitive efficient	Segmented sessions	Relatively lowest mental workload	RSME operational, completion time and error rate, significantly lower than VR

• VR:

- VR provides immersive and interactive training at a lower cost, reducing travel and waste as documented in Paper 1. However, it also imposes a substantially higher workload compared to the other modalities, which negatively affects task efficiency once instructional support is removed (Papers 2 and 3).
- Interestingly, while VR appears less effortful during the learning phase, this initial ease does not translate into operational effectiveness. The paradox suggests that the true cognitive load emerges when users need to perform tasks independently, underscoring potential issues in transfer from guided to autonomous performance.
- Elevated workload in VR has been linked to the novelty of interaction schemes, lack of haptic feedback, and interface complexity (Paper 4; (Y.-T. Huang et al., 2025; Han et al., 2021)). Navigation challenges and rich visual environments can amplify cognitive demands, occasionally causing disorientation (H. Cao, Rivera, et al., 2025; Han et al., 2021; Parsons et al., 2023). These findings align with the "test effect," which suggests that excessive guidance in learning phases may create an illusion of mastery but hinder recall and long-term learning (Oden et al., 2024).

• Humanoid social robots (HSRs):

- HSR-based instruction represents a middle ground between video and VR, balancing engagement with moderate cognitive demands (Papers 2 and 3).
- Unlike VR, workload in HSR-based instruction appears stable across both learning and operational phases, indicating sustained but manageable engagement. Learners also maintain high accuracy, albeit at slightly slower speeds compared to video-based instruction. Additional physiological signals suggest that robots might evoke deeper engagement without tipping into cognitive overload.
- Nevertheless, over-reliance on interactive robotic guidance could increase task dependency and cognitive strain, as hinted by qualitative feedback from Study B.

Video-based instruction:

- Video consistently supports the most efficient task performance with low mental workload (Paper 2). Compared to HSR and VR, it results in faster task execution and fewer errors, making it particularly effective for procedural or low-complexity tasks.
- Its effectiveness stems from simplicity, visual clarity, and alignment with hands-on practice. However, it is not without drawbacks, as segmented clip formats or requirements for physical mockups may slow down learning in more complex scenarios.

RQ2 How can quantification of mental workload be utilized for improvement of cognitive augmentation technologies?

Assessing mental workload typically involves a triangular combination of subjective, physiological, and performance-based measures because such assessment is much stronger than the single instruments, but it is not necessary in all cases, and it is definitely not widely done (Emmie Fogelberg, Peter Thorvald, et al., 2024). The correlation of the triangulation combination of metrics is tested in Paper 3, and from the study, it seems the physiological data requires accurate and high-fidelity equipment for a longer testing period to get a strong and significant correlation with the other two metrics.

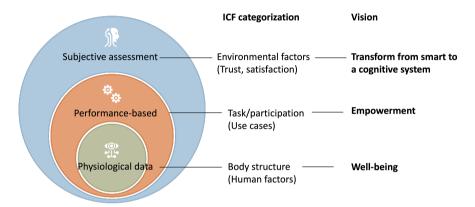


Figure 5.1: Vision and the multi-model triangulation of mental workload metrics

The triangulation observed across multi-modal mental workload metrics in Figure 5.1 aligns with the ICF's biopsychosocial model, where functioning emerges from interactions among body functions/structures, activities/participation, and environmental factors (WHO, 2001; Battistella and De Brito, 2002). Physiological indicators (e.g., HRV) index body functions/structures and capture cognitive functions from a human-factors perspective, supporting the thesis vision of well-being through measurable changes in mental functioning. Performance-based outcomes correspond to Activities/Participation by expressing capacity and performance in realistic work tasks; selecting or designing suitable digitalization tools thereby enhances task execution and perceived empowerment on the shop floor. Subjective assessments reflect Environmental Factors by evaluating facilitation, trust, and satisfaction as perceived barriers or facilitators, which in turn motivate the progression from "smart" toward cognitive systems in practice.

Quantifying mental workload provides direct, actionable insights to improve these technologies for Industry 5.0. As shown in Paper 3, RSME (subjective assessment), error rate, and completion time (performance-based) statistically significantly correlate during the same phase, either in learning or operation. Previous literature has stressed that a multi-dimensional tool to detect multiple mental

workload signals is needed to cover the complexity of the phenomenon. As from study B (papers 2 and 3), the HRV did not show statistical significance result due to the ultra-short phase and equipment accuracy, but it does show the concept of real-time monitoring in a longer phase as indicated in the literature (Shao et al., 2020).

As shown in Study B (papers 2 and 3), the parallel comparison of the mental workload imposed by the cognitive augmentation technologies—VR, humanoid social robots, and video instruction—helps to understand the relation between the functioning of humans and the technology and builds a new way of interpreting human-computer interaction. Measuring mental workload can help create adaptive learning environments that customize experiences, provide a more just-in-time instruction design, and optimize cognitive resource allocation. Though the HRV did not show a strong statistically significant correlation to the other metrics, it shows the potential in a longer testing phase with higher accuracy, or using other physiological metrics like eye tracking or ECG (Emmie Fogelberg, Huizhong Cao, et al., 2025), the real-time monitoring to matech modality to task and learners' need is potential. Real-time monitoring of the mental load imposed by the digital technologies, and provide sensitive feedback to accelerate design iteration. Focus on designing user-friendly and intuitive interfaces, particularly in VR, to avoid unnecessary complexity, as shown in Paper 4. For example, portable mini-maps in VR significantly reduce mental, physical, and temporal demands and frustration, while improving navigation and layout perception (H. Cao, S'oderlund, et al., 2024). This suggests that user-controlled interfaces that offer immediate availability, low friction, and minimal visual density are crucial (H. Cao, S'oderlund, et al., 2024).

Findings suggest that 3D maps, as opposed to 2D, improved layout perception and reduced completion time, indicating that appropriate contextual representation might be more critical than absolute visual simplicity, as shown in Paper 4. Through the subjective assessment (NASA-TLX, spatial navigation metrics) and performance-based assessment (completion time, error rate) in Paper 4, we could see the positive correlation between the user experience and productivity while they navigate and collaborate in the virtual environment. By identifying portability as the design feature that could lower the mental workload, the design of the user interface is thus optimized and aimed at a better user experience. By measuring mental workload, designers can identify and adjust overwhelming information presentation to better reduce the burden on limited-capacity working memory (Paas et al., 2016).

The purpose of quantifying mental workload is to provide a comprehensive understanding of the cognitive aspects of human factors. The goal is not necessarily to reduce mental workload, but rather to align individuals' capabilities with appropriate technologies and minimize unnecessary extraneous demands. Moreover, integrating real-time monitoring into the human digital twin within factory planning can generate valuable insights to support truly human-centric production.

In conclusion, the systematic quantification and evaluation of mental workload, through a multi-modal assessment approach, is fundamental for iteratively improving cognitive augmentation technologies. This data-driven approach allows for the creation of systems that are not only technologically advanced but also truly human-centric, ensuring efficiency, effectiveness, and user well-being in the evolving industrial and learning landscapes of Industry 5.0.

5.1 Contributions of This Thesis

The thesis advances a human-centric, cognitively efficient approach to industrial training and collaboration aligned with Industry 5.0, operationalizing "augment, not overload" across Papers 1–4 through validated measurement, comparative modality analysis, and actionable design patterns.

Academic contribution:

- Quantifies mental workload via triangulated measures (physiology, performance, and subjectives) and models its relationship to learning transfer, error rates, and task efficiency across training and collaborative planning tasks.
- Compares instructional modalities (video, VR, humanoid social robots) under matched objectives to derive modality—task fit rules of thumb and boundary conditions, informing selection and sequencing for skill acquisition and retention.
- Translates cognitive ergonomics into reusable VR interface and workflow patterns for collaborative planning, with principles for reducing extraneous load, scaffolding germane load, and preserving situation awareness in multiuser contexts.
- Demonstrates an ICF-informed mapping from mental functions to activities/participation and contextual factors, providing a theoretically grounded lens that links cognitive workload to real-world performance and well-being outcomes.

Industrial contribution:

- Provides a practical playbook for selecting and configuring digitalization tools (video, VR, humanoid social robots) to accelerate onboarding and upskilling while controlling cognitive load, including readiness checks, modality selection criteria, and roll-out steps.
- Delivers shop-floor-tested VR interface patterns and collaboration workflows that reduce time-to-competence and rework, with guidelines for task chunking, feedback timing, and attention management in constrained environments.
- Establishes a lightweight measurement toolkit (HRV, performance telemetry, brief subjective scales) that production teams can deploy to monitor cognitive strain during training and continuous improvement activities.

- Supplies decision support for human—technology allocation in Industry 5.0 initiatives, clarifying when to automate, augment, or re-sequence work so operators remain empowered, safe, and in control.
- Codifies change-management and adoption guidance—stakeholder mapping, trust-building through transparent feedback, and iterative pilots—so interventions scale from pilot cells to lines without overload.

Overall, the mission was met to a strong degree: the work provides evidence-based design principles, validated measures and protocols, and concrete implications for deployment in real industrial contexts. Research questions were addressed through controlled experiments, mixed-method evaluations, and design-science contributions. Sustainability is supported indirectly by improving training efficiency, reducing rework and errors, and enabling remote collaboration.

5.2 Reflection on methodology

This work stems from a long-standing fascination with the rules, regularities, and underlying simplicity that mathematics reveals, and with the aesthetic of scientific, universal methods that make such structure visible. This orientation has consistently shaped the research stance adopted here: a commitment to clear hypothesis formation grounded in real-world norms, and to rigorous sampling and comparative experimentation capable of identifying meaningful, statistically and practically significant differences. The trajectory of the project—and the development of the researcher—has been guided by these principles, for which there is strong cause for gratitude and reflection.

The central contribution of this thesis lies less in any single domain-specific result than in the methodology itself. The research demonstrates that a carefully integrated, multidisciplinary approach can be made operational in manufacturing contexts, bringing together cognitive science, architecture, human-computer interaction (HCI), and software engineering within the emerging paradigm of Industry 5.0. In doing so, it reframes manufacturing not merely as a site of production optimization, but as a design space where human cognition, spatial and material constraints, interaction modalities, and software-intensive systems co-evolve.

Methodologically, the study shows how quantitative and qualitative strands can be productively intertwined to reveal regularities that neither approach alone would surface. Quantitative methods—through controlled comparisons, sampling strategies, and inferential analyses—yielded measurable effects and patterns (Pruzan, 2016), while qualitative inquiry—through observation, elicitation, and interpretive synthesis—contextualized those patterns, explained outliers, and uncovered latent mechanisms (V. Braun and V. Clarke, 2006). The result is a mixed-methods framework capable of formulating and testing hypotheses that are both empirically robust and experientially grounded.

Two implications follow:

First, for Industry 5.0, which emphasizes human-centricity, resilience, and sustainability (Breque et al., 2021), the integration of cognitive science and HCI into manufacturing research is not optional but necessary. It supports the design of systems that are not only efficient but also learnable, error-tolerant, and aligned with human decision-making and perceptual limits (Lihui Wang, 2021). Architecture contributes by situating these systems in spatial and organizational configurations that afford safe, intelligible, and adaptable workflows. Software engineering connects these human and spatial insights to implementable, maintainable, and scalable solutions.

Second, for universal design, the findings indicate that mixed-methods inquiry can accelerate the articulation of cross-context "rules" and design regularities. By iterating between numerical evidence of effect and qualitative accounts of experience and use, the research identifies design constraints and affordances that travel across settings and user groups, thereby advancing generalizable design principles without erasing contextual nuance.

Taken together, these results suggest a pathway toward a methodology-driven science of manufacturing for Industry 5.0: one that treats methodological rigor and integrative design as mutually reinforcing. The thesis argues that this approach—rooted in hypothesis discipline, comparative experimentation, and mixed-methods triangulation—constitutes its primary contribution. It demonstrates that a universalist aspiration in design need not conflict with local specificity; rather, it can emerge from systematic, transparent integration of quantitative regularities with qualitative understanding. This integration yields not only better explanations of current systems but also a principled basis for guiding future interventions in human-centric, software-intensive, and spatially situated manufacturing environments.

The experiments could be further improved by adopting the following strategies:

- Increasing practitioner diversity and sample size; balancing gender representation.
- Expanding task complexity, incorporating disturbances, and adding teambased trials.
- Running within-subject or longitudinal designs to capture habituation, retention, and transfer.
- Augmenting workload batteries with additional physiological (where feasible and privacy-preserving), behavioral (micro-interactions), and secondary-task probes; preregistering analyses when appropriate.

5.3 Reflections on Research Quality and Ethics

The research followed core principles of informed, voluntary, and documented consent; participants received clear information on aims, procedures, risks, data handling, and withdrawal rights before any activity. Recruitment targeted adult

volunteers without known contraindications for immersive or sensor-based studies, and participation could be discontinued at any time without penalty. Procedures minimized burden by using short sessions, familiarization where appropriate, and debriefing. Personal data were collected only to the extent necessary for research objectives and handled according to institutional guidance, with anonymization in analysis and reporting. Future work should further scrutinize privacy and data protection in sensor-rich settings (e.g., video, voice, physiological signals), clarify secondary use, retention, and cross-border data processing, and strengthen processes for participant comprehension across languages and accessibility needs.

Research quality and usefulness: The work answers well-defined questions with convergent evidence, yields actionable design guidance (e.g., just-in-time, cognitively light interfaces; portable navigation aids), and contributes to VR HCI and industrial ergonomics by connecting measurable workload effects to concrete interface features. The results are useful for practitioners who must balance cognitive demands, clarity, and efficiency in digital work instructions and collaborative VR.

Future directions: Address ethical and privacy issues around sensing in operational contexts; develop robust, real-time workload inference models across tasks and populations; evaluate hybrid instruction ecosystems (video, social robots, VR) in varied industrial applications; and integrate IoT and smart manufacturing data streams for adaptive, human-centric systems.

5.4 Future Research

The study further addresses accessibility issues and regards it as a future direction: individuals with hearing impairments may struggle with audio-based instructions from social robots, making VR a more suitable alternative for them; in contrast, social robots may be preferable for users with vision impairments. Overall, video instruction emerges as the most universally accessible digital tool, yet the research emphasizes the importance of improving user experience and accessibility in both AI-driven social robots and VR by applying universal design principles. For future work, the study will be extended to universal design and the prototyping development of more cognitive augmentation technologies for prescriptive studies:

- Consider personal factors, including disabled and aging people's special demand for universal design of cognitive augmentation technologies.
- Understand the vulnerable groups' needs, such as disabled, aging, or novice workers, and provide guidelines for different cognitive augmentation technologies' development.
- Prototype development for a humanoid social robots, with more interaction techniques like facial expression, dialect, information density in instruction, and camera feed for better engagement.
- Real-time workload inference and closed-loop adaptation. Explore a more accurate HRV method, and use it as the dynamic input to manage the mental workload of a digital system.
- Broader industrial applications, integration with IoT/DT pipelines, and sustainability metrics (e.g., rework, travel, and material waste reductions).
- Longitudinal and within-subject studies to capture habituation, retention, and transfer.

In sum, the thesis fulfills its vision and mission to a high degree: it connects rigorous workload evidence to actionable design choices for human-centric digitalization, providing a practical roadmap for Industry 5.0 training and collaborative cognitive system.

CHAPTER 6

Conclusion

This thesis investigated the role of cognitive augmentation technologies on the Industry 5.0 shop floor with a dual focus on human-centric value and measurable cognitive impact.

The results show that these technologies can meaningfully augment rather than replace human capabilities—improving learning effectiveness, operational performance, and inclusion—when they are designed and deployed with attention to ethics, accessibility, and well-being. Across modalities, human-centered user interface design emerges as a primary lever to reduce unnecessary complexity, accommodate diverse worker needs, and sustain motivation and satisfaction in daily operations. Properly configured, adaptive, natural, and cognitive systems can empower vulnerable groups, support lifelong learning, and improve job quality.

Furthermore, the research demonstrates that a mixed-measures approachinte-grating subjective ratings, physiological signals, and performance metrics—provides a reliable basis for quantifying workload and guiding design decisions. In practice, triangulating instruments (e.g., NASA-TLX, HRV, RSME, error rates, and completion time) enables detection of overload or underload, comparison between modalities, and iterative tuning of interfaces and training protocols. This evidence can be operationalized through adaptive interventions: adjusting information density and pacing with segments, simplifying interaction flows, or switching the assistance modality, like proper UI, to keep workload within an optimal band. Such closed-loop, data-informed adjustments improve learning efficiency, reduce errors, and enhance operational satisfaction.

The key findings of the licentiate are as follows:

- VR provides immersion and ecological validity but imposes the highest mental workload, reducing effectiveness during operational tasks.
- Humanoid social robots achieve a middle ground, offering interactive engagement with moderate and stable workload.
- Video instruction supports the fastest, most accurate, and cognitively efficient task execution, making it the most reliable modality for procedural training.
- Triangulated workload measurement (subjective, physiological, performancebased) strengthens evaluation but requires careful implementation, especially with physiological signals.
- Applying workload metrics enables actionable design refinements, such as portable VR mini-maps and user-controlled interaction features.
- The thesis operationalizes the principle of "augment, not overload" by linking workload assessment directly to instructional design guidelines.

Taken together, the thesis concludes that cognitive augmentation for Industry 5.0 is most effective when it (i) centers human agency for inclusion, empowerment, symbiosis, and augmentation, (ii) matches modality to task and user profile, and (iii) uses validated, multimodal workload assessment to drive continuous refinement. These principles offer a practical pathway to productivity gains and digital proficiency that also protect dignity, well-being, and long-term resilience on the shop floor.

References

- AAAS (1990). The Liberal Art of Science: Agenda for Action. Tech. rep.
- Abdelkhalik, R. and A. Elngar (2020). "Costs management of research and development in the factories of the future using virtual reality". In: International Conference on Advances in Computing and Communication Engineering.
- Acharya, U. Rajendra et al. (Nov. 2006). "Heart rate variability: a review". In: Medical Biological Engineering Computing 44.12, pp. 1031–1051. DOI: 10.1007/s11517-006-0119-0.
- Adams, Rodrick and Valentina Nino (July 2024). "Work-Related psychosocial factors and their effects on mental workload perception and body postures". In: *International Journal of Environmental Research and Public Health* 21.7, p. 876. DOI: 10.3390/ijerph21070876.
- Adler, Rachel F. (Sept. 2024). Power of Neurodiversity: Why Software needs a Revolution.
- Allen, J. (2007). "Photoplethysmography and its application in clinical physiological measurement". In: Physiological Measurement 28.3, R1. DOI: 10.1088/0967-3334/28/3/R01.
- Alves, J., T. M. Lima, and P. Gaspar (2023). "Is Industry 5.0 a Human-Centred Approach? A Systematic Review". In: *Processes* 11.1, p. 193. DOI: 10.3390/pr11010193.
- Alves, J., B. Marques, et al. (2021). "Using augmented reality for industrial quality assurance: a shop floor user study". In: International Journal of Advanced Manufacturing Technology 115, pp. 105–117.
- Alves, Joel, Tânia M. Lima, and Pedro D. Gaspar (Jan. 2023). "Is Industry 5.0 a Human-Centred Approach? A systematic review". In: *Processes* 11.1, p. 193. DOI: 10.3390/pr11010193.
- Amankwah-Amoah, Joseph et al. (Aug. 2021). "COVID-19 and digitalization: The great acceleration". In: *Journal of Business Research* 136, pp. 602-611. DOI: 10.1016/j.jbusres.2021.08.011.
- Annett, J. (2002). "Subjective rating scales: science or art?" In: Ergonomics 45.14, pp. 966–987. DOI: 10.1080/00140130210166951.
- Arana-De las Casas, N. I. et al. (2023). "Cognitive Analyses for Interface Design Using Dual N-Back Tasks for Mental Workload (MWL) Evaluation". In: International Journal of Environmental Research and Public Health 20.2, p. 1184. DOI: 10.3390/ijerph20021184.

- Araujo, T., F. Oliveira, and C. Costa (2019). "Creating job opportunities in computer assembly line for people with disabilities through augmented reality". In: *IEEE Frontiers in Education Conference*.
- Argyle, E. M. et al. (2021). "Physiological indicators of task demand, fatigue, and cognition in future digital manufacturing environments". In: *International Journal of Human-Computer Studies* 145, p. 102522. DOI: 10.1016/j.ijhcs.2020.102522.
- Badr, Arash Shahbaz and Raffaele De Amicis (Jan. 2023). "An empirical evaluation of enhanced teleportation for navigating large urban immersive virtual environments". In: Frontiers in Virtual Reality 3. DOI: 10.3389/frvir.2022.1075811.
- Balcevics, Martins and Mavnoor Srinivas Aravind (2023). Digital accessibility and IoT: Reach of Digital Technology to hearing-impaired elderly people.
- Bartram, D. and G. Turley (2009). "Managing the causes of work-related stress". In: *In Practice* 31.8, pp. 400–405. DOI: 10.1136/inpract.31.8.400.
- Batmaz, I. and M. Ozturk (2008). "Using pupil diameter changes for measuring mental workload under mental processing". In: *Journal of Applied Sciences* 8.1, pp. 68–76.
- Battistella, Linamara Rizzo and Christina May Moran De Brito (Jan. 2002). "International Classification of Functioning Disability and Health (ICF)". In: *Acta Fisiátrica* 9.2. DOI: 10.5935/0104-7795.20020003.
- Beier, G. et al. (2020). "A green digitalized economy? Challenges and opportunities for sustainability". In: IASS Fact Sheet 1.
- Bernal, G., H. Jung, et al. (2024). "Unraveling the Dynamics of Mental and Visuospatial Workload in Virtual Reality Environments". In: Computers 13.10, p. 246. DOI: 10.3390/ computers13100246.
- Berrezueta-Guzman, Santiago and Stefan Wagner (Jan. 2025). "Immersive Multiplayer VR: Unreal Engine's strengths, limitations, and future prospects". In: *IEEE Access*, p. 1. DOI: 10.1109/access.2025.3570166.
- Bläsing, D. and M. Bornewasser (2020). "Influence of complexity and noise on mental work-load during a manual assembly task". In: Human Mental Workload: Models and Applications: 4th International Symposium, H-WORKLOAD 2020, Granada, Spain, December 3-5, 2020, Proceedings 4. Springer International Publishing, pp. 147–174. DOI: 10.1007/978-3-030-62302-9_10.
- Bommer, S. C. and M. Fendley (2018). "A theoretical framework for evaluating mental work-load resources in human systems design for manufacturing operations". In: *International Journal of Industrial Ergonomics* 63, pp. 7–17.
- Borghini, Gianluca et al. (Oct. 2012). "Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness". In: Neuroscience Biobehavioral Reviews 44, pp. 58–75. DOI: 10.1016/j.neubiorev.2012.10.003.
- Bourdillon, N. et al. (2022). "RMSSD is more sensitive to artifacts than Frequency-Domain parameters". In: *Journal of Sports Science and Medicine* 21, pp. 260–266.
- Braun, G. et al. (2024). "Bridging Skill Gaps A Systematic Literature Review of Strategies for Industry". In: Advances in Transdisciplinary Engineering. Vol. 52, pp. 687–696. DOI: 10.3233/ATDE240209.
- Braun, Greta (2023). Towards bridging skill gaps for the future industrial workforce.

- Braun, V. and V. Clarke (2006). "Using Thematic Analysis in Psychology". In: Qualitative Research in Psychology 3.2, pp. 77–101. DOI: 10.1191/1478088706qp063oa.
- Braun, Virginia and Victoria Clarke (Jan. 2006). "Using thematic analysis in psychology". In: Qualitative Research in Psychology 3.2, pp. 77–101. DOI: 10.1191/1478088706qp063oa.
- Breque, M., L. de Nul, and A. Petridis (2021). Industry 5.0 Towards a sustainable, humancentric and resilient European industry. Policy Brief. European Commission.
- Bucci, Ilaria, Virginia Fani, and Romeo Bandinelli (Dec. 2024). "Towards Human-Centric Manufacturing: Exploring the Role of Human Digital Twins in Industry 5.0". In: Sustainability 17.1, p. 129. DOI: 10.3390/su17010129.
- Bustoni, Isna Alfi (2025). "Toward manipulating user perceptions of objects by altering interaction sounds". MPhil(R) thesis. University of Glasgow.
- Butmee, Totsapon, Terry C. Lansdown, and Guy H. Walker (Aug. 2018). "Mental Workload and Performance Measurements in Driving Task: A review literature". In: Advances in intelligent systems and computing, pp. 286–294. DOI: 10.1007/978-3-319-96074-6\{_}31.
- Cañas, José (Aug. 2008). "Cognitive Ergonomics in Interface Development Evaluation". In: Zenodo (CERN European Organization for Nuclear Research). DOI: 10.3217/jucs-014-16-2630.
- Cao, A., K. Chintamani, A. Pandya, et al. (2009). "NASA TLX: Software for Assessing Subjective Mental Workload". In: Behavior Research Methods 41, pp. 113–117. DOI: 10. 3758/BRM.41.1.113.
- Cao, H., F. G. Rivera, et al. (2025). "Human-centered design of VR interface features to support mental workload and spatial cognition during collaboration tasks in manufacturing". In: Cognition Technology & Work. DOI: 10.1007/s10111-025-00809-6.
- Cao, H., H. S"oderlund, M. Despeisse, et al. (2024). "VR Interaction for Efficient Virtual Manufacturing: Mini Map for Multi-User VR Navigation Platform". In: Advances in Transdisciplinary Engineering. DOI: 10.3233/ATDE240178.
- Chen, X. et al. (2021). "Implications of virtual reality on environmental sustainability in manufacturing industry: a case study". In: 54th CIRP Conference on Manufacturing Systems.
- Cheng, B., A. Wunderlich, K. Gramann, et al. (2022). "The Effect of Landmark Visualization in Mobile Maps on Brain Activity During Navigation: A Virtual Reality Study". In: Frontiers in Virtual Reality. DOI: 10.3389/frvir.2022.981625.
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum Associates.
- Cooper, G. E. and R. P. Harper (1969). The use of pilot rating in the evaluation of aircraft handling qualities. Tech. rep. National Aeronautics and Space Administration.
- Da Xu, L., E. L. Xu, and L. Li (2018). "Industry 4.0: state of the art and future trends". In: International Journal of Production Research 56.8, pp. 2941–2962. DOI: 10.1080/00207543.2018.1444806.
- Damiani, L., R. Revetria, and E. Morra (2020). "Safety in industry 4.0: the multi-purpose applications of augmented reality in digital factories". In: Advances in Science, Technology and Engineering Systems.

- De J Pacheco, Diego A. and Bartosz Iwaszczenko (Sept. 2024). "Unravelling human-centric tensions towards Industry 5.0: Literature review, resolution strategies and research agenda". In: Digital Business, p. 100090. DOI: 10.1016/j.digbus.2024.100090.
- Delliaux, S. et al. (2019). "Mental workload alters heart rate variability, lowering non-linear dynamics". In: Frontiers in Physiology 10, p. 565. DOI: 10.3389/fphys.2019.00565.
- Di Leo, G. and F. Sardanelli (2020). "Statistical Significance: p Value, 0.05 Threshold, and Applications to Radiomics". In: *European Radiology Experimental* 4.1, p. 18. DOI: 10.1186/s41747-020-0145-y.
- Di Leo, Giovanni and Francesco Sardanelli (Mar. 2020). "Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach". In: European Radiology Experimental 4.1. DOI: 10.1186/s41747-020-0145-y.
- Di Stasi, L. L., V. 'Alvarez-Valbuena, et al. (2009). "Risk behaviour and mental workload: Multimodal assessment techniques applied to motorbike riding simulation". In: Transportation Research Part F: Traffic Psychology and Behaviour 12.5, pp. 361–370. DOI: 10.1016/j.trf.2009.02.004.
- Di Stasi, L. L., V. Álvarez-Valbuena, et al. (2009). "Risk behaviour and mental workload: Multimodal assessment techniques applied to motorbike riding simulation". In: Transportation Research Part F: Traffic Psychology and Behaviour 12.5, pp. 361-370. DOI: 10.1016/j.trf.2009.02.004.
- DiDomenico, A. and M. A. Nussbaum (2011). "Effects of different physical workload parameters on mental workload and performance". In: *International Journal of Industrial Ergonomics* 41.3, pp. 255–260. DOI: 10.1016/j.ergon.2011.01.008.
- DIGITALIS (2022). DIGITAL Work InStructions for Cognitive Work DIGITALIS | VInnova.
- Dogan, Fethiye Irmak (Jan. 2021). "Social robots that understand natural language instructions and resolve ambiguities". In: *Robotics: Science and Systems*.
- Dreesbach, T. et al. (2020). "Mixed mock-up meets ergocam: feasibility study for prospective ergonomic evaluation of manual assembly processes in real-time using augmented reality and markerless posture analysis". In: Lecture Notes in Computer Science.
- Drouot, M. et al. (2022). "Augmented reality on industrial assembly line: Impact on effectiveness and mental workload". In: *Applied Ergonomics* 103, p. 103793.
- Escallada, O. et al. (2025). "Assessing Human Factors in Virtual Reality Environments for Industry 5.0: A Comprehensive Review of Factors, Metrics, Techniques, and Future Opportunities". In: *Information* 16.1, p. 35. DOI: 10.3390/info16010035.
- European Commission (2022). What is Industry 5.0? https://research-and-innovation. ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en. Accessed: 26 April 2023.
- Fairclough, S. H. and K. Houston (2004). "A metabolic measure of mental effort". In: Biological Psychology 66.2, pp. 177–190. DOI: 10.1016/j.biopsycho.2003.10.001.
- Fast-Berglund, Åsa, Li Gong, and Danyang Li (2018). "Testing and validating extended reality (XR) technologies in manufacturing". In: Proceedings of the 8th Swedish Production Symposium.
- Faure, V., R. Lobjois, and N. Benguigui (2016). "The effects of driving environment complexity and dual tasking on drivers' mental workload and eye blink behavior". In: Trans-

- portation Research Part F: Traffic Psychology and Behaviour 40, pp. 78-90. DOI: 10.1016/j.trf.2016.04.007.
- Fehrmann, Elisabeth et al. (Jan. 2022). "Do the WHO-ICF personal factors "age" and "sex" impact limited activity and restricted participation category profiles differently between younger and older women and men in multimodal chronic back pain rehabilitation?" In: Disability and Rehabilitation 45.1, pp. 41–50. DOI: 10.1080/09638288.2021.2023665.
- Fogelberg, E., P. Thorvald, and A. Kolbeinsson (2024). "Mental Workload Assessments in the Assembly Industry and the Way Forward: A Literature Review". In: *International Journal of Human Factors and Ergonomics* 11.4, pp. 412–438. DOI: 10.1504/IJHFE. 2024.144213.
- Fogelberg, Emmie, Huizhong Cao, and Peter Thorvald (June 2025). "Cognitive ergonomics: Triangulation of physiological, subjective, and performance-based mental workload assessments". In: Frontiers in Industrial Engineering 3. DOI: 10.3389/fieng.2025.1605975.
- Fogelberg, Emmie, Peter Thorvald, and Ari Kolbeinsson (Jan. 2024). "Mental workload assessments in the assembly industry and the way forward: a literature review". In: International Journal of Human Factors and Ergonomics 11.4, pp. 412–438. DOI: 10.1504/ijhfe.2024.144213.
- Fox, Jesse and Andrew Gambino (Jan. 2021). "Relationship Development with Humanoid Social Robots: Applying Interpersonal Theories to Human-Robot Interaction". In: Cyberpsychology Behavior and Social Networking 24.5, pp. 294-299. DOI: 10.1089/cyber. 2020.0181.
- Foy, H. J. and P. Chapman (2018). "Mental workload is reflected in driver behaviour, physiology, eye movements and prefrontal cortex activation". In: Applied Ergonomics 73, pp. 90-99. DOI: 10.1016/j.apergo.2018.06.006.
- Freina, L. and M. Ott (2015). "A Literature Review on Immersive Virtual Reality in Education: State of the Art and Perspectives". In: eLearning Software for Education. DOI: 10.12753/2066-026X-15-020.
- Fu, Q., Q. Liu, and T. Hu (2024). "Multi-Objective Optimization Research on VR Task Scenario Design Based on Cognitive Load". In: Facta Universitatis, Series: Mechanical Engineering, pp. 1–22. DOI: 10.2190/fume240122029f.
- Fukuda, T. et al. (2019). "An indoor thermal environment design system for renovation using augmented reality". In: Journal of Computational Design and Engineering 6, pp. 179– 188.
- Furhat (2025). Furhat Robotics.
- Gabajová, G. et al. (2019). "Virtual training application by use of augmented and virtual reality under university technology enhanced learning in Slovakia". In: Sustainability 11.
- Galy, E. (2018). "Consideration of several mental workload categories: perspectives for elaboration of new ergonomic recommendations concerning shiftwork". In: Theoretical Issues in Ergonomics Science 19.4, pp. 483–497. DOI: 10.1080/1463922X.2017.1381777.
- Galy, E., M. Cariou, and C. Mélan (2012). "What is the relationship between mental workload factors and cognitive load types?" In: *International Journal of Psychophysiology* 83.3, pp. 269–275. DOI: 10.1016/j.ijpsycho.2011.09.023.
- GeeksforGeeks (July 2025). Difference between Histogram and Density Plot.
- Georgiou, K. et al. (2018). "Can wearable devices accurately measure heart rate variability? A systematic review". In: Folia Medica 60.1, pp. 7–20. DOI: 10.2478/folmed-2018-0012.

- Geurts, E., G. R. Ruiz, K. Luyten, et al. (2022). "HCI and Worker Well-Being in Manufacturing Industry". In: Proceedings of the 2022 International Conference on Advanced Visual Interfaces, pp. 1–2. DOI: 10.1145/3531073.3535257.
- Geurts, Eva et al. (June 2022). "HCI and worker well-being in manufacturing industry". In: Proceedings of the 2022 international conference on advanced visual interfaces, pp. 1–2. DOI: 10.1145/3531073.3535257.
- Ghosh, Sudipta, Ankur Basu, and Ajay Deshmukh (2024). Three imperatives to drive human-centricity in the manufacturing landscape. Immersive Outlook: Driving human-centric transformation. PwC India.
- Grandi, F. et al. (2022). "Creation of a UX index to design human tasks and workstations". In: International Journal of Computer Integrated Manufacturing 35.1, pp. 4–20. DOI: 10.1080/0951192X.2021.1972470.
- Guitton, Henri and S. Siegel (July 1958). "Nonparametric statistics for the behavioral sciences". In: Revue économique 9.4, p. 675. DOI: 10.2307/3498751.
- Guzik, P. and M. Malik (2016). "ECG by mobile technologies". In: *Journal of Electrocardiology* 49.6, pp. 894-901. DOI: 10.1016/j.jelectrocard.2016.07.030.
- Han, J., Q. Zheng, and Y. Y. Ding (2021). "Lost in Virtual Reality? Cognitive Load in High Immersive VR Environments". In: Journal of Advances in Information Technology 12.4, pp. 302–310. DOI: 10.2720/jait.12.4.302-310.
- Hancock, G.M. et al. (Aug. 2021). "Mental workload". In: Handb. Hum. factors Ergon, pp. 203–226. DOI: 10.1002/9781119636113.ch7.
- Harold, Jeffreys (1983). "The theory of probability". In: Oxford, UK: Oxford University Press.
- Hart, S. G. and L. E. Staveland (1988). "Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research". In: Advances in Psychology. Vol. 52. North-Holland, pp. 139–183. DOI: 10.1016/S0166-4115(08)62386-9.
- Hart, Sandra G. (Oct. 2006). "NASA-Task Load Index (NASA-TLX); 20 years later". In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50.9, pp. 904–908. DOI: 10.1177/154193120605000909.
- Henelius, A. et al. (2009). "Mental workload classification using heart rate metrics". In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 1836–1839. DOI: 10.1109/IEMBS.2009.5332602.
- Hertzum, M. and K. D. Holmegaard (2013). "Perceived time as a measure of mental work-load: Effects of time constraints and task success". In: *International Journal of Human-Computer Interaction* 29.1, pp. 26–39. DOI: 10.1080/10447318.2012.676538.
- Hoover, A. et al. (2012). "Real-time detection of workload changes using heart rate variability". In: Biomedical Signal Processing and Control 7.4, pp. 333–341. DOI: 10.1016/j.bspc.2011.07.004.
- HORIZON, Europe (Apr. 2025). Physical and cognitive augmentation in advanced manufacturing (Made in Europe Partnership) (RIA) | Programme | HORIZON | CORDIS | European Commission.
- Hovanec, M. et al. (2014). "Proactive ergonomics based on digitalization using 3D scanning and workplace modeling in Tecnomatix Jack with augmented reality". In: Naše More.

- Huang, Yi-Ting, Chih-Chieh Hsu, and Tzu-Hsuan Wang (May 2025). "Effects of interactive loading interfaces for virtual reality game environments on time perception, cognitive load, and emotions". In: Frontiers in Virtual Reality 6. DOI: 10.3389/frvir.2025. 1540406.
- Huang, Y., C. Hsu, and T. Wang (2025). "Effects of interactive loading interfaces for virtual reality game environments on time perception, cognitive load, and emotions". In: Frontiers in Virtual Reality 6. DOI: 10.3389/frvir.2025.1540406.
- Husár, Jaromír et al. (2022). "The design of workplaces with augmented reality in engineering education". In: Lecture Notes in Mechanical Engineering.
- IC.IDO (2025). Enhance Product Design and Manufacturing with Immersive VR and IC.IDO.
- Ishaque, S., N. Khan, and S. Krishnan (2021). "Trends in heart-rate variability signal analysis". In: Frontiers in Digital Health 3, p. 639444. DOI: 10.3389/fdgth.2021.639444.
- Jafari, M. J. et al. (2020). "Assessment and monitoring of mental workload in subway train operations using physiological, subjective, and performance measures". In: *Human Factors and Ergonomics in Manufacturing & Service Industries* 30.3, pp. 165–175. DOI: 10.1002/hfm.20831.
- Jangwan, N. S. et al. (2022). "Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects". In: Frontiers in Systems Neuroscience 16, p. 1000495. DOI: 10.3389/fnsys.2022.1000495.
- Jangwan, Nitish Singh et al. (Sept. 2022). "Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects". In: Frontiers in Systems Neuroscience 16. DOI: 10.3389/fnsys.2022.1000495.
- Johansson, Björn et al. (Aug. 2024). "Challenges and opportunities to advance manufacturing research for sustainable battery life cycles". In: Frontiers in Manufacturing Technology 4. DOI: 10.3389/fmtec.2024.1360076.
- Joung, C. B. et al. (2013). "Categorization of indicators for sustainable manufacturing". In: Ecological Indicators 24, pp. 148–157.
- Juliano, J. M., N. Schweighofer, and S.-L. Liew (2021). "Increased Cognitive Load in Immersive Virtual Reality During Visuomotor Adaptation Is Associated with Decreased Long-Term Retention and Context Transfer". In: Journal of NeuroEngineering and Rehabilitation 18.1, p. 152. DOI: 10.1186/s12984-022-01084-6.
- Kerdar, Sara Hamideh, Liane Bächler, and Britta Marleen Kirchhoff (Aug. 2024). "The accessibility of digital technologies for people with visual impairment and blindness: a scoping review". In: Deleted Journal 27.1. DOI: 10.1007/s10791-024-09460-7.
- Kim, D. B., S. Leong, and Chia-Shin Chen (2012). "An overview of sustainability indicators and metrics for discrete part manufacturing". In: Proceedings of the ASME International Manufacturing Science and Engineering Conference. Vol. 2.
- Kiselev, A. R. et al. (2016). "A comprehensive assessment of cardiovascular autonomic control using photoplethysmograms recorded from the earlobe and fingers". In: *Physiological Measurement* 37.4, p. 580. DOI: 10.1088/0967-3334/37/4/580.
- Kontovourkis, O. et al. (2019). "Implementing augmented reality for the holographic assembly of a modular shading device". In: Education and Research in Computer Aided Architectural Design in Europe / XXIII Iberoamerican Society of Digital Graphics Conference.

- Kruskal, William H. and W. Allen Wallis (Dec. 1952). "Use of ranks in One-Criterion variance analysis". In: Journal of the American Statistical Association 47.260, p. 583. DOI: 10.2307/2280779.
- Kuo, T. Y., Y. J. Chang, and H. K. Chu (2022). "Investigating Four Navigation Aids for Supporting Navigator Performance and Independence in Virtual Reality". In: *Interna*tional Journal of Human-Computer Interaction 39.12, pp. 2524–2541. DOI: 10.1080/ 10447318.2022.2078926.
- Kusnanto, Kusnanto et al. (Jan. 2020). "Mental Workload and Stress with Blood Glucose Level: A Correlational Study among Lecturers who are Structural Officers at the University". In: Systematic Reviews in Pharmacy 11.7, pp. 253–257. DOI: 10.31838/srp.2020. 7.40.
- Lagomarsino, M. et al. (2022). "An online framework for cognitive load assessment in industrial tasks". In: Robotics and Computer-Integrated Manufacturing 78, p. 102380. DOI: 10.1016/j.rcim.2022.102380.
- LaMorte, Wayne W. (2021). Correlation and regression.
- Leng, J. et al. (2022). "Industry 5.0: Prospect and retrospect". In: Journal of Manufacturing Systems 65, pp. 279–295.
- Lindblom, J. and P. Thorvald (2014). "Towards a framework for reducing cognitive load in manufacturing personnel". In: Advances in Cognitive Engineering and Neuroergonomics. Vol. 11, pp. 233–244.
- Loizaga, E. et al. (2023). "A Comprehensive Study of Human Factors, Sensory Principles, and Commercial Solutions for Future Human-Centered Working Operations in Industry 5.0". In: IEEE Access 11, pp. 53806–53829. DOI: 10.1109/ACCESS.2023.3280071.
- Loizaga, Erlantz et al. (Jan. 2023). "A Comprehensive study of human factors, sensory principles, and Commercial Solutions for Future Human-Centered Working Operations in Industry 5.0". In: *IEEE Access* 11, pp. 53806–53829. DOI: 10.1109/access.2023.3280071.
- Longo, L. et al. (2022). "Human mental workload: A survey and a novel inclusive definition". In: Frontiers in Psychology 13, p. 883321. DOI: 10.3389/fpsyg.2022.883321.
- Longo, Luca and Giuliano Orrú (Dec. 2020). "Evaluating instructional designs with mental workload assessments in university classrooms". In: Behaviour and Information Technology 41.6, pp. 1199–1229. DOI: 10.1080/0144929x.2020.1864019.
- Lucchese, A., A. Padovano, and F. Facchini (Jan. 2025). "Comprehensive Systematic Literature review on cognitive workload: trends on methods, technologies, and case studies". In: IET Collaborative Intelligent Manufacturing 7.1. DOI: 10.1049/cim2.70025.
- Lund, G. and M. Ortova (2022). "A spontaneous adoption of AR technology in a manufacturing industrial context". In: IFIP Advances in Information and Communication Technology.
- Luong, Tiffany et al. (Mar. 2020). "Introducing mental workload assessment for the design of virtual reality training scenarios". In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 3, pp. 662–671. DOI: 10.1109/vr46266.2020.00089.
- MacDonald, Wendy (Jan. 2003). "The impact of job demands and workload on stress and fatigue". In: Australian Psychologist 38.2, pp. 102–117. DOI: 10.1080/00050060310001707107.
- Makransky, G., T. S. Terkildsen, and R. E. Mayer (2017). "Adding Immersive Virtual Reality to a Science Lab Simulation Causes More Presence but Less Learning". In: Learning and Instruction 60, pp. 225–236. DOI: 10.1016/j.learninstruc.2017.12.007.

- Malik, M. et al. (Mar. 1996). "Heart rate variability: Standards of measurement, physiological interpretation, and clinical use". In: *European Heart Journal* 17.3, pp. 354–381. DOI: 10.1093/oxfordjournals.eurheartj.a014868.
- Marino, E. et al. (2021). "An Augmented Reality inspection tool to support workers in Industry 4.0 environments". In: Computers in Industry 127, p. 103412. DOI: 10.1016/j. compind.2021.103412.
- Matthews, G., J. De Winter, and P. A. Hancock (2020). "What do subjective workload scales really measure? Operational and representational solutions to divergence of workload measures". In: *Theoretical Issues in Ergonomics Science* 21.4, pp. 369–396. DOI: 10.1080/1463922X.2018.1547459.
- Matthews, G., L. E. Reinerman-Jones, et al. (2015). "The psychometrics of mental workload: multiple measures are sensitive but divergent". In: *Human Factors* 57.1, pp. 125–143. DOI: 10.1177/0018720814539505.
- McCormack, Sarah and European commission (2020). 'Made in Europe': the future of European manufacturing?
- McCraty, R. and F. Shaffer (2015). "Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk". In: Global Advances in Health and Medicine 4.1, pp. 46–61. DOI: 10.7453/gahmj.2014.073.
- Memmesheimer, Vera Marie and Achim Ebert (Jan. 2022). "Scalable Extended Reality: a future research agenda". In: Big Data and Cognitive Computing 6.1, p. 12. DOI: 10.3390/ bdcc6010012.
- Miyake, S. (2001). "Multivariate workload evaluation combining physiological and subjective measures". In: *International Journal of Psychophysiology* 40.3, pp. 233–238. DOI: 10.1016/S0167-8760(00)00191-4.
- Moskaliuk, Johannes, Joachim Bertram, and Ulrike Cress (2013). "Training in Virtual Environments: Putting Theory into Practice". In: *Ergonomics* 56.2, pp. 195–204. DOI: 10.1080/00140139.2012.745623.
- Mucha, Henrik et al. (Oct. 2018). "The Industrial Internet of Things". In: Companion of the 2018 ACM conference on computer supported cooperative work and social computing, pp. 393–400. DOI: 10.1145/3272973.3273009.
- Muller, Keith and Jacob Cohen (Nov. 1989). "Statistical Power Analysis for the Behavioral Sciences". In: Technometrics 31.4, p. 499. DOI: 10.2307/1270020.
- Muñoz, A. et al. (2019). "Mixed reality-based user interface for quality control inspection of car body surfaces". In: Journal of Manufacturing Systems 53, pp. 75–83.
- Neumann, W. Patrick et al. (Nov. 2020). "Industry 4.0 and the human factor A systems framework and analysis methodology for successful development". In: *International Journal of Production Economics* 233, p. 107992. DOI: 10.1016/j.ijpe.2020.107992.
- NIST (2021). Sustainable Manufacturing Indicator Repository (SMIR). https://www.nist.gov/services-resources/software/sustainable-manufacturing-indicator-repository-smir. Accessed: 26 April 2023.
- Nomura, Shusaku et al. (June 2009). "Salivary Cortisol as a New Biomarker for a Mild Mental Workload". In: international conference on biometrics and kansei engineering. DOI: 10.1109/icbake.2009.32.

- Oden, Patrick et al. (Jan. 2024). "Too much guidance? A brief review of how cognitive support affects learning motor skills and implications for VR/XR technologies". In: Lecture notes in computer science, pp. 305–315. DOI: 10.1007/978-3-031-71704-8\{_}\25.
- OECD (2023). OECD data: Labour force participation rate.
- (July 2025). Regulatory Sandbox Toolkit Technical Paper A Comprehensive Guide for Regulators to Establish and Manage Regulatory Sandboxes Effectively. Tech. rep. Project "Advancing Regulatory Policy in Croatia through Innovation and Digitalisation" in collaboration with the Ministry of Economy, Croatia; funded by the European Union via the Technical Support Instrument; implemented by the OECD, in co-operation with the European Commission; approved and declassified by the Regulatory Policy Committee, 6 June 2025.
- Oeij, P. et al. (2024). "A Conceptual Framework for Workforce Skills for Industry 5.0: Implications for Research, Policy and Practice". In: Journal of Industrial Engineering and Management 12, pp. 205–233.
- Paas, F. et al. (2016). "Cognitive load measurement as a means to advance cognitive load theory". In: Cognitive Load Theory. Routledge, pp. 63–71. DOI: 10.4324/9780203764770– 8.
- Palmarini, R. et al. (2018). "A systematic review of augmented reality applications in maintenance". In: Robotics and Computer-Integrated Manufacturing 49, pp. 215–228.
- Pan, Xiaoquan (Nov. 2022). "Examining the influencing factors and the functioning mechanism of online learning supporting learners' empowerment". In: Frontiers in Psychology 13. DOI: 10.3389/fpsyg.2022.1028264.
- Pang, Jiazhen et al. (Aug. 2024). "Towards cognition-augmented human-centric assembly: A visual computation perspective". In: Robotics and Computer-Integrated Manufacturing 91, p. 102852. DOI: 10.1016/j.rcim.2024.102852.
- Parsons, T. D., J. Asbee, and C. G. Courtney (2023). "Interaction of Cognitive and Affective Load Within a Virtual City". In: *IEEE Transactions on Affective Computing* 14, pp. 2768–2775. DOI: 10.1109/TAFFC.2022.3220953.
- Peruzzini, M., F. Grandi, et al. (2018). "A mixed-reality digital set-up to support design for serviceability". In: Procedia Manufacturing. Vol. 17, pp. 499–506.
- Peruzzini, M., M. Pellicciari, and M. Gadaleta (2019). "A Comparative Study on Computer-Integrated Set-Ups to Design Human-Centred Manufacturing Systems". In: Robotics and Computer-Integrated Manufacturing. DOI: 10.1016/j.rcim.2018.03.009.
- Petersen, Klaus (Mar. 2024). LPVR-AIR for Immersive Collaborative Industrial Design.
- Pinzone, M., G. Braun, and J. Stahre (2024). "Contemporary and Future Manufacturing Unveiling the Skills Palette for Thriving in Industry 5.0". In: IFIP Advances in Information and Communication Technology, pp. 444–456. DOI: 10.1007/978-3-031-65894-5_31.
- Pinzone, Marta, Greta Braun, and Johan Stahre (Jan. 2024). Contemporary and Future Manufacturing Unveiling the skills Palette for Thriving in Industry 5.0, pp. 444–456. DOI: 10.1007/978-3-031-65894-5\{_}31.
- PLENUM (2022). PLENUM PLENary multi-User developMent arena for industrial workspaces / Vinnova.
- Pruzan, Peter (Jan. 2016). Research methodology. DOI: 10.1007/978-3-319-27167-5.

- Rajkumar, N. et al. (Nov. 2024). Industry 5.0: The human-centric future of manufacturing, pp. 562–567. DOI: 10.1201/9781003559085-97.
- Ratmono, Dwi et al. (Feb. 2024). "Virtual reality and perceived learning effectiveness in accounting studies: The mediating role of Task-technology fit". In: Cogent Business & amp; Management 11.1. DOI: 10.1080/23311975.2024.2316890.
- Realyvásquez-Vargas, A. et al. (2023). "Effects of mental workload on manufacturing systems employees: A mediation causal model". In: Work 76.1, pp. 323–341. DOI: 10.3233/WOR-220148.
- Realyvásquez-Vargas, Arturo et al. (Feb. 2023). "Effects of mental workload on manufacturing systems employees: A mediation causal model". In: Work 76.1, pp. 323–341. DOI: 10.3233/wor-220148.
- Reiman, A. et al. (2021). "Human Factors and Ergonomics in Manufacturing in the Industry 4.0 Context—A Scoping Review". In: Technology in Society 65, p. 101572. DOI: 10.1016/ j.techsoc.2021.101572.
- Reiman, Arto et al. (Mar. 2021). "Human factors and ergonomics in manufacturing in the industry 4.0 context – A scoping review". In: Technology in Society 65, p. 101572. DOI: 10.1016/j.techsoc.2021.101572.
- Reiners, D., M. R. Davahli, W. Karwowski, et al. (2021). "The Combination of Artificial Intelligence and Extended Reality: A Systematic Review". In: Frontiers in Virtual Reality. DOI: 10.3389/frvir.2021.721933.
- Ren, Shouyang et al. (2019). "A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: a framework, challenges and future research directions". In: *Journal of Cleaner Production* 210, pp. 1343–1365.
- Ricci, Alessia et al. (Feb. 2025). "Understanding the Unexplored: A Review on the Gap in Human Factors Characterization for Industry 5.0". In: Applied Sciences 15.4, p. 1822. DOI: 10.3390/app15041822.
- Rinsky-Halivni, L. et al. (2022). "Aging workforce with reduced work capacity: From organizational challenges to successful accommodations sustaining productivity and well-being". In: Social Science & Medicine 312, p. 115369. DOI: 10.1016/j.socscimed.2022. 115369.
- Rinsky-Halivni, Lilah et al. (Sept. 2022). "Aging workforce with reduced work capacity: From organizational challenges to successful accommodations sustaining productivity and well-being". In: Social Science Medicine 312, p. 115369. DOI: 10.1016/j.socscimed. 2022.115369.
- Romero, D. and J. Stahre (2021). "Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems". In: *Procedia CIRP*. Vol. 104, pp. 1089–1094. DOI: 10.1016/j.procir.2021.11.183.
- Royo-Vela, Marcelo, Grzegorz Leszczyński, and M. Velasquez Serrano (2022). "Sustainable value co-production and co-creation in virtual reality: an exploratory research on business-to-business interactions". In: Sustainability 14.7754.
- Ryu, K. and R. Myung (2005). "Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic". In: International Journal of Industrial Ergonomics 35.11, pp. 991–1009. DOI: 10.1016/j.ergon.2005.04.005.

- Said, S., M. Gozdzik, T. R. Roche, et al. (2020). "Validation of the Raw NASA-TLX Questionnaire to Assess Perceived Workload in Patient Monitoring Tasks: Pooled Analysis Study Using Mixed Models". In: Journal of Medical Internet Research. DOI: 10.2196/19472.
- Schirm, J., A. R. Gómez-Vargas, M. Perusquía-Hernandez, et al. (2023). "Identification of Language-Induced Mental Load from Eye Behaviors in Virtual Reality". In: Sensors 23.15, p. 6667. DOI: 10.3390/s23156667.
- Schmidt, B. et al. (2022). "Augmented reality approach for a user interface in a robotic production system". In: Swedish Production Symposium.
- Shao, S. et al. (2020). "Research of HRV as a measure of mental workload in human and dualarm robot interaction". In: *Electronics* 9.12, p. 2174. DOI: 10.3390/electronics9122174.
- Shimomura, Y. et al. (2008). "Use of frequency domain analysis of skin conductance for evaluation of mental workload". In: *Journal of Physiological Anthropology* 27.4, pp. 173–177. DOI: 10.2114/jpa2.27.173.
- Shneiderman, Ben (Jan. 2022). *Human-Centered AI*. DOI: 10.1093/oso/9780192845290.001.0001.
- Sidiropoulos, V., D. Bechtsis, and D. Vlachos (2021). "An augmented reality symbiosis software tool for sustainable logistics activities". In: Sustainability 13.
- SkillAIbility (Sept. 2025). Home Skillaibility.
- Skulmowski, A. and K. M. Xu (2021). "Understanding Cognitive Load in Digital and Online Learning: A New Perspective on Extraneous Cognitive Load". In: Educational Psychology Review 34.1, pp. 171–196. DOI: 10.1007/s10648-021-09624-7.
- Söderlund, Henrik et al. (Apr. 2024). The creation of a Multi-User virtual training environment for operator training in VR. DOI: 10.3233/atde240163.
- Sorger, J., A. Arleo, P. K'an, et al. (2021). "Egocentric Network Exploration for Immersive Analytics". In: Computer Graphics Forum. DOI: 10.1111/cgf.14417.
- Sweller, John, Jeroen J. G. Van Merrienboer, and Fred G. W. C. Paas (Jan. 1998). "Cognitive architecture and instructional design". In: Educational Psychology Review 10.3, pp. 251–296. DOI: 10.1023/a:1022193728205.
- Szczepański, Marcin (2024). The geopolitics of technology: Charting the EU's path in a competitive world | Think Tank | European Parliament.
- Tao, Da et al. (July 2019). "A Systematic review of physiological measures of mental work-load". In: International Journal of Environmental Research and Public Health 16.15, p. 2716. DOI: 10.3390/ijerph16152716.
- Thiede, Sebastian, R. Damgrave, and D. Lutters (2022). "Mixed reality towards environmentally sustainable manufacturing overview, barriers and design recommendations". In: 29th CIRP Life Cycle Engineering Conference.
- Thorp, S. O., L. M. Rimol, S. Lervik, et al. (2024). "Comparative Analysis of Spatial Ability in Immersive and Non-Immersive Virtual Reality: The Role of Sense of Presence, Simulation Sickness, and Cognitive Load". In: Frontiers in Virtual Reality. DOI: 10.3389/ frvir.2024.1343872.
- Töröková, M. and J. Török (2021). "Simulation of a production workplace using virtual reality". In: *TEM Journal*, pp. 1390–1397.

- Torres, Y., S. Nadeau, and K. Landau (2021). "Evaluation of fatigue and workload among workers conducting complex manual assembly in manufacturing". In: IISE Transactions on Occupational Ergonomics and Human Factors 9.1, pp. 49–63. DOI: 10.1080/24725838. 2021.1997835.
- Tsang, P. S. and V. L. Velazquez (1996). "Diagnosticity and multidimensional subjective workload ratings". In: Ergonomics. Vol. 39, 3, pp. 358–381.
- Tytarenko, Maksym (Oct. 2023). "Optimizing Immersion: Analyzing graphics and performance considerations in Unity3D VR development". In: Asian Journal of Research in Computer Science 16.4, pp. 104–114. DOI: 10.9734/ajrcos/2023/v16i4374.
- Unity Engine (2025).
- Unreal Engine (2025).
- Van Acker, B. B. et al. (2018). "Understanding mental workload: from a clarifying concept analysis toward an implementable framework". In: Cognition, Technology and Work 20, pp. 351–365. DOI: 10.1007/s10111-018-0481-3.
- Van Holstein, Ellen et al. (Jan. 2021). "People with intellectual disability and the digitization of services". In: Geoforum 119, pp. 133-142. DOI: 10.1016/j.geoforum.2020.12.022.
- Veltman, J. A. and A. Gaillard (1998). "Physiological workload reactions to increasing levels of task difficulty". In: Ergonomics 41.5, pp. 656–669. DOI: 10.1080/001401398186829.
- Venkatesh, B. and N. Ram (2015). "Eustress: A unique dimension to stress management". In: Voice of Research 4.2, pp. 26–29.
- Violante, Massimiliano et al. (2019). "Emotional design and virtual reality in product lifecycle management (PLM)". In: Smart Innovation, Systems and Technologies.
- Wang, B. et al. (2024). "Human Digital Twin in the context of Industry 5.0". In: Robotics and Computer-Integrated Manufacturing 85, p. 102626. DOI: 10.1016/j.rcim.2023. 102626.
- Wang, L. (2021). "A futuristic perspective on human-centric assembly". In: Journal of Manufacturing Systems 62, pp. 199–201. DOI: 10.1016/j.jmsy.2021.11.001.
- Wang, Lihui (Dec. 2021). "A futuristic perspective on human-centric assembly". In: *Journal of Manufacturing Systems* 62, pp. 199–201. DOI: 10.1016/j.jmsy.2021.11.001.
- Weinhandl, Robert et al. (Dec. 2023). "Using student personas when developing digital mathematics learning resources to improve teacher training". In: *Journal of Digital Learning in Teacher Education* 40.1, pp. 57–72. DOI: 10.1080/21532974.2023.2291370.
- Wheeler, Kitty (2024). How Meta is dominating the AR/VR market amid global demand.
- WHO (2001). International Classification of Functioning, Disability and Health (ICF).
- Wilson, G. F. and F. T. Eggemeier (2020). "Psychophysiological assessment of workload in multi-task environments". In: Multiple Task Performance, pp. 329–360. DOI: 10.1201/ 9781003069447-15.
- Xie, B. and G. Salvendy (2000). "Review and reappraisal of modelling and predicting mental workload in single- and multi-task environments". In: Work Stress 14.1, pp. 74–99. DOI: 10.1080/026783700417249.
- Yannakakis, Georgios N., Hector P. Martinez, and Maurizio Garbarino (Jan. 2016). Psychophysiology in games, pp. 119–137. DOI: 10.1007/978-3-319-41316-7\{_}\frac{1}{2}.

- Young, M. S. et al. (2015). "State of science: mental workload in ergonomics". In: Ergonomics 58.1, pp. 1–17.
- Zarjam, P., J. Epps, and N. H. Lovell (2015). "Beyond subjective self-rating: EEG signal classification of cognitive workload". In: IEEE Transactions on Autonomous Mental Development 7.4, pp. 301–310.
- Zhang, L. et al. (2016). "Cognitive Load Measurement in a Virtual Reality-Based Driving System for Autism Intervention". In: *IEEE Transactions on Affective Computing* 8.2, pp. 176–189. DOI: 10.1109/TAFFC.2016.2582490.
- Zijlstra, F. R. H. and L. Van Doorn (1985). The Construction of a Scale to Measure Perceived Effort. Technical Report. Delft University of Technology.
- Zubrzycki, J. et al. (2021). Cyber-Physical Systems Technologies as a Key Factor in Industry 4.0 and Smart Manufacturing. Acta Mechanica et Automatica. doi:10.23743/acs-2021-31.