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Abstract

Digital innovations and an increasingly integrated global economy are transforming man-
ufacturing systems—complex sociotechnical arrangements that integrate technology, infor-
mation systems, and human labor. For European industry in particular, the COVID-19
pandemic, supply chain disruptions, and trade tensions have heightened uncertainty and
exposed vulnerabilities in conventional production models. Besides, manufacturing is un-
dergoing rapid transformation amid an aging workforce, prompting a shift toward Industry
5.0’s human-centric vision. This paradigm seeks to harmonize advanced technologies with
inclusive design, worker empowerment, and well-being, addressing widening skill gaps and
the need for resilient, sustainable operations. Within this context, cognitive augmenta-
tion technologies—such as video-based instruction, virtual reality (VR), and Al-enabled
humanoid social robots—offer new pathways to support learning and day-to-day opera-
tions, but also introduce mental workload demands that must be carefully measured and
managed.

Comparative studies show that augmentation yields the greatest value when systems are
designed for accessibility, usability, and well-being. Video instruction proved most cogni-
tively efficient for onboarding; VR delivered superior spatial understanding but imposed
the highest mental workload; Al-driven humanoid social robots occupied a middle ground.
Overreliance on Al guidance increased mental workload and error risk, underscoring the
need for calibrated assistance, transparent interaction, and thoughtful human—AI task allo-
cation. Human-centered interface design, clear information pacing, and adaptive guidance
emerged as key levers to reduce unnecessary complexity, support universal design demands,
and enhance satisfaction and motivation.

The thesis demonstrates that a mixed-measures approach—integrating subjective ratings
(e.g., NASA-TLX, RSME), physiological signals (e.g., HRV), and performance indicators
(completion time, error rate)—provides a robust basis for quantifying mental workload and
comparing modalities. Triangulation enabled detection of overload and underload, informed
iterative interface refinements, and supported closed-loop adaptations in future research
(e.g., tuning information density and pacing, simplifying interaction flows, switching assis-
tance modality) to maintain workload within an optimal band.

Conceptually, the work reframes Industry 5.0 as a human-centric ecosystem where tech-
nologies symbiotically augment and empower workers, supporting dignity, wellbeing, and
inclusion. Methodologically, it contributes a validated pipeline for mental workload assess-
ment in real manufacturing contexts based operations. Practically, it offers guidance for
technology development and adoption in adaptive and inclusive systems for universal de-
sign for vulnerable groups, which is also the future direction to continue after the licentiate
study. Together, these contributions lay a foundation for resilient, inclusive, and sustainable
manufacturing aligned with the goals of Industry 5.0.

Keywords: Human-centricity, Cognitive Augmentation, Mental Workload, Interaction De-
sign, Virtual reality, Social Robots
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Definition

XR

VR

AR

MR

Mental workload

Learning

Cognitive augmentation

Cogpnitive augmentation
technology

ICF catagorization

Human-centric techniques

Extended Reality (XR) is the umbrella term for technolo-
gies that act as interfaces between the real and virtual
worlds. The term includes Virtual Reality (VR), Mixed Re-
ality (MR), and Augmented Reality (AR) (Fast-Berglund
et al., 2018).

Virtual reality applications completely immerse the user

in a virtual world, usually using a head-mounted display
(HMD) or projections that encapsulate the users with a full
visual experience of a virtual world (Fast-Berglund et al.,
2018).

Augmented reality technology allows us to remain in the

real world while overlaying digital information and aug-
mented visuals on top of our perception of the real world(Fast-
Berglund et al., 2018).

Mixed reality technology can help us to mix and overlay
3D elements from both the real and virtual worlds in the
same experience and environment. Usually, this is done via
an HMD in combination with visual inputs from the real
world using cameras or AR headsets with a transparent
display (Fast-Berglund et al., 2018).

Identified as the amount of mental resources and cognitive
effort required by an individual to accomplish a task at a
given time (Realyvdsquez-Vargas et al., 2023).

Refers to the process through which an individual acquires,
organizes, and applies new knowledge or skills (Realyvisquez-
Vargas et al., 2023).

Implies the extension of cognition, such as the ability to
memorize, problem-solve, perceive, cooperate, and perform
efficiently.

Technology that is added to a sociotechnical system to
enhance operators’ cognitive capability.

The International Classification of Functioning, Disability
and Health (ICF) provides a standardized way to describe
health and health-related states at individual and popula-
tion levels, and was endorsed by WHO Member States for
universal application across contexts (WHO, 2001).

The technologies that helps and angments the users’ tal-
ents for decision-making, problem-fixing, and creativity
(Rajkumar et al., 2024).
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CHAPTER 1

Introduction

1.1 Background

Digital innovations and an increasingly integrated global economy are driving sig-
nificant changes in manufacturing systems, which are a complex fusion of technol-
ogy, information systems, and human labor (Johansson et al., 2024). Particularly
in European industry, recent challenges—such as the COVID-19 pandemic, sup-
ply chain interruptions, and trade tensions—have increased uncertainty and ex-
posed weaknesses in traditional production (Marta Pinzone et al., 2024). Within
the framework of the Industry 5.0 revolution, there is growing emphasis on re-
designing manufacturing to be more robust, sustainable, and, most importantly,
human-centric (Breque et al., 2021), as illustrated in Figure 1.1. The application
of human-centricity is a crucial component of this change. To fully realize human-
centricity in Industry 5.0, several key imperatives must be prioritized (Ghosh et
al., 2024).

The ongoing digital transformation in industry is shaped by major global trends
such as the COVID-19 pandemic and geopolitically induced uncertainty, including
supply chain tensions, tariffs, and difficulties in global collaboration (Amankwah-
Amoah et al., 2021). The emergence of a contested, increasingly inward-looking,
and unstable multipolar world has been paralleled by profound technological
change and the deepening digitalization of economies and societies (Szczepanski,
2024). Technology has become a battleground in the geopolitical quest for power,
and the accelerated adoption of advanced digital technologies has increased the
demand for digital proficiency to advance the “Made in Europe” partnership (Mc-
Cormack and commission, 2020).



Chapter 1 Introduction

Industry 5.0

.. promotes talents, diversity
and empowerment

*
SUSTAINABLE
... is agile and resilient with flexible ... leads action on sustainability
and adaptable technologies and respects planetary boundaries

Figure 1.1: Industrial revolution - Industry 5.0 (Breque et al., 2021)

However, as the workforce ages and digitalization accelerates, significant skill
gaps are emerging (Greta Braun, 2023). According to the OECD, the labor force
participation rate of workers aged 50-64 in 27 European Union countries increased
from 37.9% in 2000 to 67% in 2023, with Sweden ranked highest globally at 87.4%
(OECD, 2023). A work environment that does not accommodate age-related
cognitive decline can exacerbate health problems among older workers, negatively
affecting their well-being and productivity (Lilah Rinsky-Halivni et al., 2022).
Thus, effective management of mental workload remains critical.

The emergence of profound technological change and growing dependence on
digitalization has brought challenges not only for aging workers but also for people
with visual impairments (Kerdar et al., 2024), neurodiverse populations (Adler,
2024), people with hearing impairments (Balcevics and Aravind, 2023), and people
with cognitive impairments (Van Holstein et al., 2021) due to the lack of universal
design. For example, as Adler notes, digital applications with cluttered interfaces
can overwhelm users with ADHD, while platforms that rely heavily on text-based
instruction can make it harder for individuals with dyslexia to process information.

As global attention intensifies on geopolitical uncertainty, aging trends, climate
change, and resource depletion, the manufacturing sector faces pressure to tran-
sition to operations that are sustainable, resilient, and fundamentally human-
centric, embracing ethics, inclusivity, and empowerment (Rajkumar et al., 2024).
While the Industry 5.0 vision aspires to harmonize advanced digital technologies,
effective information systems, skilled workforces, and sustainable practices within
a human-centric framework, a significant gap persists between this ideal and cur-
rent industrial realities (De J Pacheco and Iwaszczenko, 2024). The research
problem, therefore, is to bridge this gap by identifying and addressing the chal-
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lenges that hinder the adoption of emerging digitalization technologies, adaptive
information systems, upskilling pathways, and sustainability initiatives within a
human-centric production ecosystem (Bucci et al., 2024).

1.2 Research gaps

Based on that research problem, we need to identify the challenges further to
specify the gaps between ideal and current industrial realities and to specify the
research initiatives.

Lack of Human Factors in Industry 4.0
Cross-domain knowledge gap between the
research areas of human factors,
engineering and cognitive augmentation

Uncertainty raised from
geopolitics and the pandemic
COVID, supply chain tension, tariff; > iy
difficulty in global collaboration

. . . Mental workload is ambiguous and
Aging population and skill gaps Research not measured as a KPI
Learning outlc)omes artla imp;lcteg 2 cha“enges topic Gaps 2] Quantitative study involving
y mental workloa physiological data, performance-based

Cognitive assessment, and subjective self-report

augmentation

Human-cyber physical systems Industrial User Interfaces

Challenges in the universal design of > £ are not human-centric
human-centric technologies, like the Improve the usability through the
user interface for better usability standardized and optimized user

interface of XR tools

Figure 1.2: Problem structure

To address these research problems and challenges, as illustrated in Figure 1.2,
this research focuses on digitalization, human—technology interaction, and cog-
nitive enhancement. The aim is to empower the workforce through advanced
cognitive acceleration technologies for human-centric production.

The first gap identified in this study is the cross-domain knowledge gap among
human factors, manufacturing, and cognitive augmentation. The emergence of
Industry 5.0 has shifted workplace dynamics, requiring workers to make rapid
decisions using real-time data while overseeing collaborative robots (cobots) and
advanced digital technologies such as XR, Al, and digital twins (Ricci et al.,
2025). As aresult, workers’ mental workload has intensified, necessitating constant
adaptation to evolving technologies, and it can significantly correlate with physical
fatigue and human error (Arturo Realyvdsquez-Vargas et al., 2023).

Current approaches lack robust, quantitative methods for measuring mental
workload in empirical manufacturing environments to assess digital and virtual
training. There is a need for integrated studies that combine physiological data,
performance-based assessment, and subjective self-report to better understand and
manage cognitive demands. In addition, affordable, portable, and flexible equip-
ment is needed to collect physiological data suited to industrial work environments
(Lucchese et al., 2025).

Previous studies show that virtual training environments are often used when
real-world training is impractical due to high costs, safety risks, time constraints,
or substantial resource requirements (Moskaliuk et al., 2013). This digital ap-
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proach reduces reliance on physical machinery and equipment, supporting the
transition toward more sustainable industrial practices. Virtual reality (VR), in
particular, offers features that can help manage cognitive overload and tailor ex-
periences to users’ needs (Ratmono et al., 2024).

However, a key barrier to broader adoption is that VR tools can impose higher
mental workload, often resulting in dizziness, navigational challenges, and poor
learning outcomes—especially among novice users. Moreover, most extended re-
ality (XR) applications to date remain confined to single use cases and lack scala-
bility, which significantly hinders practical adoption. Transitions between tasks or
technologies often require costly configuration changes and force users to relearn
interaction methods (Memmesheimer and Ebert, 2022). Addressing these issues
requires the development of standardized, universally designed, and optimized
user interfaces for VR tools to enhance usability and support effective learning
(H. Cao, Rivera, et al., 2025).

Human-centric technologies are designed to augment rather than replace human
capabilities to create more adaptive and responsive systems.
—Ben Shneiderman (Shneiderman, 2022)

1.3 Vision,Mission and Aim

Instead of focusing on what humans can do with new technology, Industry 5.0
asks what technology can do for humans?
—FEuropean commissioning, Industry 5.0

The vision of the research is a future industry where a human-centric paradigm
for Industry 5.0 has been adopted, where technology and production processes
have been designed to adapt to the diverse needs of the workforce, rather than
requiring workers to adapt to them (Ghosh et al., 2024).

1.3.1 Mission

The shift requires more natural, adaptive, and effective human-technology interac-

tions, augmenting and empowering operators to work alongside advanced systems.
This vision manifests in three core imperatives as missions:

e Transition from smart to cognitive technology: Develop and imple-

ment sophisticated digital technologies with intuitive, natural, and adaptive

user interfaces that can be flexible for complex human needs and contexts.
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« Empower the workforce: Equip employees with essential digital profi-
ciency, cognitive and emotional intelligence, and foster continuous learning
within flexible work environments. By upskilling shop floor workers and
supporting diverse learning pathways, the workforce becomes ready for the
demands of Industry 5.0 and can bridge emerging skill gaps.

o« Enhance worker well-being and resilience: Prioritize the physical and
mental health of employees by implementing comprehensive safety measures,
reducing injury risks, and ensuring dignity and data privacy. The aim is to
leverage digital solutions and create workplaces that are safe, satisfying, and
resilient, supporting both individual and organizational well-being.

The research aims to leverage cognitive augmentation technologies—including
VR, Al agents, social robots, and video instructions—to empower shop floor work-
ers and enhance cognitive ergonomics in digital proficiency upskilling processes.

Human-technology
interaction - intuitive,
natural and adaptive

b

From Smart to

Human-machine
synchronization

Sophisticated digital cognitive -Operators are upskilled to
technologies with intuitive user technology in bridge the skill gap
interface manufacturing

Digital proficiency
Continuous learning

A i lex h:
daptive to complex human Flexible work environment

needs and contexts
Cognitive

ergonomics ?

Well-being

2

Empowerment

Physical/Mental health
Significant injury reduction - safety measures Enhanced worker well-being and
Dignity of workers and data privacy resilience

Figure 1.3: Mission—the three core imperatives

1.3.2 Research Questions (RQs)

To advance the mission of evolving industrial systems from smart to cognitive—with
human well-being achieved through augmentation and empowerment—cognitive
augmentation technologies are proposed as a research focus to realize this vision.

The cognitive augmentation technologies examined include video instruction,
VR, and humanoid social robots for Industry 5.0. To enact the vision through the
mission pathways, the research questions are formulated. The first research ques-
tion (RQ1) establishes a basis for understanding the impact of current cognitive
augmentation technologies on users in the context of Industry 5.0:
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RQ1 How do cognitive augmentation technologies influence shop floor work-
ers during the learning and operational phase in the Industry 5.0 manufacturing
context?

Cognitive augmentation technologies—such as VR, robotic assistants, and ad-
vanced visualization tools—promise to enhance human performance by offloading,
supporting, or amplifying cognitive processes. “Learning phase” refers to guided
instruction with the augmentation tool, whereas “operational phase” denotes un-
aided task execution. However, these systems can also introduce novel mental
demands, making it imperative to objectively quantify the workload they impose.
Mental workload reflects the interplay between task requirements and an individ-
ual’s cognitive capacity and influences usability, performance, and user acceptance
(S. G. Hart and Staveland, 1988). A triangulated evaluation (subjective, physio-
logical, and performance) is used as the methodological spine for RQ2 to capture
complementary facets of mental workload and to reduce single-measure bias. Re-
search Question 2, therefore, asks:

RQ2 How can quantification of mental workload be utilized for improvement of
cognitive augmentation technologies?

This thesis examines how these technologies are applied in instructional design
during both the learning and operational phases, as well as the development of user
interfaces that prioritize intuitive and effective human—technology interaction.

1.4 Scope and Delimitation

Although a cross-discipline view are emphasized, the thesis is limited to the fol-
lowing:

e The cognitive augmentation technology application and adoption scenario
are focused in a factory setting in manufacturing. The layout planning,
design review, and instruction design are mainly studied use cases in this
thesis; other use cases, like human-robot interaction or data monitoring and
visualization, are briefly discussed but without an empirical study.

e The thesis is based on the full design and evaluation cycle of the digital
platform development in VR, Humanoid social and Video, other cognitive
augmentation technologies like AR are delimitated.

e The thesis provides a focused angle in mental workload assessment and
regards it as an indicator for usability; a more holistic or comprehensive
understanding of trust, satisfaction, and engagement is briefly discussed
but not quantitatively measured.

¢ The triangulation of measurement modalities focuses on physiological, per-
formance based, and subjective data. At the same time, in each category,
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the metrics are selected based on the feasibility, availability, portability, and
the optimal indicator discussion, which are briefly included.

o The main users studied in this licentiate thesis are novice/expert operators
and engineers from manufacturing companies. The sampling in the experi-
ment has a mixed testing group from both students and citizens, novice and
experienced operators/engineers from manufacturing companies in Sweden,
to represent the operator; the personas’ representation is briefly discussed.

¢ The mental workload studied in this study focused on an ultra-short phase
of experience; the corresponding technologies, longitudinal studies, or mo-
tivation of users are not currently studied in this thesis.

1.5 Thesis Qutline

The theoretical framework are outlined in Chapter 2, followed by a description of
the research approach and methods in Chapter 3. The summary of the appended
papers is presented in Chapter 4. Chapter 5 provides a discussion of the results
to answer RQ1 and RQ2, while Chapter 6 offers a summary of the main findings
and conclusions. As shown in Table 1.1, the disposition of the thesis is presented.

Table 1.1: Overview of the chapters in this thesis

Chapters

Description

Key deliverables

1. Introduction

The chapter introduces
the topic, background,
aim and research ques-
tions of this thesis.

Background: Industry 5.0 aims
to bridge the gap between its
human-centric vision and cur-
rent industrial practices.

RQ1: How do cognitive aug-
mentation technologies influence
shop floor workers during the
learning and operational phase
in the Industry 5.0 manufactur-
ing context?

RQ2: How can quantification of
mental workload be utilized for
improvement of cognitive aug-
mentation technologies?

Scope: Evaluates cognitive tech
in manufacturing via mental
workload for training and design.

Continued on next page




Chapter 1 Introduction

Table 1.1: Overview of the chapters in this thesis (continued)

Chapters Description Key deliverables
2. Theoretical The chapter introduces | Human-Technology Interaction:
Framework key concepts and theo- | Designing for human capabilities

ries used to support the
research. Providing con-
textualization and the-
ory in the intersection
between manufacturing,
XR and learning theo-
ries.

Mental Workload:
task demand
Cognitive Augmentation: Tech-
nology enhancing human cogni-
tion

VR: Immersive training and sim-
ulation

Social Robots:
manoid assistant

Cognitive

Al-driven hu-

3. Research
Approach and
Methods

The chapter explains
the wunderlying world-
views and academic

perspectives that have
framed the research as
well as the methods
used in answering the
research questions.

Research philosophy:
Pragmatic-empiricist, criti-
cal realist.

Research process:  Prototype-

based experiments, comparative
studies, mixed-methods analy-
sis.

Research method: Quantitative
(performance, physiological,
subjective metrics) and qualita-
tive (thematic) analysis.

4.Summary of
the Appended
Papers

The chapter provides
an overview of the ap-
pended papers, focus-
ing on the main results
and contributions rele-
vant for this thesis in
answering the stated re-
search questions.

Paper 1: Summary of method,
main results and discussion of
Paper 1.
Paper 2: Summary of method,
main results and discussion of
Paper 2.
Paper 3: Summary of method,
main results and discussion of
Paper 3.
Paper 4: Summary of method,
main results and discussion of
Paper 4.

Continued on next page




1.5 Thesis Outline

Table 1.1: Overview of the chapters in this thesis (continued)

Chapters

Description

Key deliverables

5. Discussion

The chapter combines
findings from the ap-
pended paper, and ad-
ditional work, to an-
swer the two research
questions and forming
the contribution of this
thesis. Furthermore,
this chapter also dis-
cusses the methods used
and future research di-
rections.

RQ1: Findings and discussion
regarding RQ1.

RQ2: Findings and discussion
regarding RQ2.

Contributions: Highlighting and
discussing the scientific and
practical contribution of this
thesis.
Limitations: Discussion on the
scientific quality and limitation
of the thesis.

Future work: Proposed future
work and studies as part of the
authors continued PhD studied.

6. Conclusion

The chapter offers a
summary of the thesis,
focusing on providing an
overview of the problem
formulation, key contri-
butions and answers to
the research questions.

Summary of the key takeaways
and contributions of the thesis.







CHAPTER 2

Theoretical Framework

This chapter orients the reader to the theoretical foundations that underpin cogni-
tive augmentation in modern manufacturing. It begins by mapping the evolution
from Industry 4.0’s digitally connected, automation-focused systems to Industry
5.0’s human-centric vision, highlighting how the role of technology shifts from
replacing to empowering workers. It then frames human-technology interaction
through cognitive ergonomics, explaining why mental workload is a pivotal lens
for designing interfaces and workflows that are usable, inclusive, and efficient.
Building on this, the chapter outlines how mental workload can be assessed with
complementary subjective, physiological, and performance-based methods, and
shows how these insights inform the design and deployment of augmentation tech-
nologies—such as XR and humanoid social robots. The aim is to provide a co-
herent narrative linking concepts, measures, and technologies so that subsequent
sections can focus on how to augment skills, support learning and collaboration,
and sustain well-being and resilience on the shop floor.

2.1 Transformation from Industry 4.0 to 5.0

Industry 4.0 foregrounded tightly integrated cyber—physical systems that link sen-
sors, actuators, and embedded computation with cloud/edge analytics to enable
real-time monitoring, control, and autonomous optimization across production
networks (Da Xu et al., 2018; Zubrzycki et al., 2021). In contrast, Industry 5.0
reframes this digital foundation toward a human-centric paradigm that prioritizes
empowerment, well-being, resilience, and sustainability, adapting technology to
workers’ needs and elevating human creativity and decision-making rather than
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Chapter 2 Theoretical Framework

replacing it (Breque et al., 2021). Representative Industry 4.0 technologies include
CPS/CPPS, IIoT, edge—cloud computing, big-data/AlI analytics, and digital twins
(Da Xu et al., 2018). Representative Industry 5.0 technologies emphasize collabo-
rative robots (cobots), human-digital twins, Al copilots/assistants, XR for train-
ing and support, and ergonomic, adaptive HMIs that augment skills and enable
inclusive, resilient operations (Breque et al., 2021; Oeij et al., 2024).

Industry 5.0 aims to create a more harmonious relationship between humans
and technology to address challenges arising from increasing reliance on automa-
tion and digitalization (Erlantz Loizaga et al., 2023). It seeks to promote worker
well-being and establish sustainable, resilient systems through human-centered
strategies that incorporate virtual reality (VR), artificial intelligence (AI), robotics,
and digitalization (Joel Alves et al., 2023). However, interactive systems in au-
tomotive manufacturing settings have yet to catch up with consumer products
in terms of interaction quality and user experience (Mucha et al., 2018). In the
era of Industry 5.0, mental-workload optimization offers opportunities to boost
shop-floor performance and efficiency while enhancing collaboration, well-being,
and job satisfaction (Eva Geurts et al., 2022).

Industry4.0 to 5.0

Human-
computer
interaction

Cognitive
augmentation
technologies

Mental
workload
assessment,

categorizatio:

User-
centric
design

oftware developme;

Figure 2.1: Theoretical framework
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2.2 Human-technology Interaction

2.2 Human-technology Interaction

Industry 5.0 makes human—computer interaction the conduit for its human-centric
vision, turning interfaces, guidance, and feedback into the means by which ad-
vanced automation actively augments human judgment, creativity, and well-being
on the shop floor (Lihui Wang, 2021). Human-system interaction demands co-
ordination of perceptual, cognitive, and motor functions (Neumann et al., 2020).
Cognitive ergonomics addresses four major difficulties in human—computer inter-
action (HCI): long task completion times, low user satisfaction, high error rates,
and extended response times (Caifias, 2008). Human factors and ergonomics re-
search can improve system performance and well-being in manufacturing compa-
nies (Arto Reiman et al., 2021).

This changing landscape ushers in new challenges and opportunities, particu-
larly in workforce development and lifelong learning, while raising new ethical
considerations. Industry 5.0’s digital-twin technology underscores the importance
of human expertise in the creation and application of these systems. Notably, not
all industries and factories need to be fully automated or unmanned; technical
and economic viability should also be considered when promoting intelligent man-
ufacturing. For example, unlike the automotive industry, the aviation, aerospace,
shipping, and construction sectors—owing to the complexity of their tasks and pro-
cesses—have not yet realized full automation and unmanned production. They
remain largely dependent on human—machine cooperation, the accumulation of
human knowledge and experience, and human self-motivation (Neumann et al.,
2020).

Emerging technologies—including the Internet of Things, AI, machine learning,
collaborative robots, and virtual/augmented reality—have been crucial in shaping
human-centered intelligent manufacturing (HCIM) (Neumann et al., 2020). Yet
traditional industrial robots still struggle to meet new demands, largely due to
inadequate human-machine interaction design (Neumann et al., 2020).

The human-technology interaction enabled by augmentation technologies in-
cludes real-time auditory feedback (Bustoni, 2025), tactile feedback, and visual
interaction, which requires rapid information processing and can therefore impose
a higher mental workload (Y.-T. Huang et al., 2025). The application of augmen-
tation technology to empower users is associated with high intrinsic motivation
and deep comprehension. This grants users full decision authority for critical
task evaluation, meaningful choice, and autonomous expertise development and
flexibility (Pan, 2022).
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2.3 Mental Workload

Mental Workload can be defined as “the ratio of demand to allocated resources”
(Luong et al., 2020). It is an essential metric for evaluating the impact of per-
forming tasks and predicting operators’ performances and technology adoption
(Canas, 2008). Optimizing mental workload has been proven to reduce human
errors, improve system safety, increase productivity, and enhance operators’ sat-
isfaction with their working experience (Luong et al., 2020).

Cognitive load is a common word used interchangeably with mental workload.
Longo and Orrii (2022) contend that while they may come from various fields, they
are essentially the same (Luca Longo and Orrt, 2020). Cognitive load is mostly
associated with educational psychology (Sweller et al., 1998), whereas mental
workload is associated with ergonomics, human factors (MacDonald, 2003), psy-
chology (Hancock et al., 2021), and aviation (Sandra G. Hart, 2006).

Mental workload can be measured in multiple ways, including subjective (or self-
report), physiological, and task performance measures (Emmie Fogelberg, Peter
Thorvald, et al., 2024). Self-report methods can be categorized into multidimen-
sional or unidimensional scales (Luong et al., 2020). One of the most recognized
and commonly used standardized multidimensional scales is the NASA-Task Load
Index (TLX) (S. G. Hart and Staveland, 1988). Performance measures mainly de-
pend on the type of task, and error rate and completion time are the common mea-
sures (Emmie Fogelberg, Peter Thorvald, et al., 2024). The physiological measures
can be assessed through signals like electroencephalogram (EEG), pupillometry,
heart rate variability (HRV)(Tao et al., 2019), etc.

Excessive levels of mental workload have been shown to alter physiological pro-
cesses, including hormonal regulation. Similar to stress, high mental workload
triggers elevated secretion of the hormone cortisol (Nomura et al., 2009). In ad-
dition, Kusnanto et al. (2020) found that blood sugar increases in correlation
with mental workload (Kusnanto et al., 2020). Other associated symptoms are
poorer body postures (Adams and Nino, 2024), fatigue, drowsiness (Borghini et
al., 2012), and decreased HRV (Yannakakis et al., 2016).

2.3.1 Mental workload assessment

Mental workload can be understood as the balance between task complexity and
an individual’s cognitive capacity to meet those demands (MacDonald, 2003; B.
Wang et al., 2024), although the lack of a universal definition makes it difficult
to claim exact boundaries of the construct. When this balance aligns with an
individual’s skills, studies report better performance along with higher motivation
and productivity (Bartram and Turley, 2009; L. Longo et al., 2022; Venkatesh
and Ram, 2015). Conversely, when mental workload is either too high or too
low, performance suffers (Xie and Salvendy, 2000; Young et al., 2015). Elevated
workload, in particular, is associated with increased errors and longer response
times (Foy and Chapman, 2018; Ryu and Myung, 2005).
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2.8 Mental Workload

Assessment methods are commonly grouped into three categories: subjective,
physiological, and performance-based (Matthews, De Winter, et al., 2020). Over
the past three decades, multimethod assessments have become more prevalent (Di
Stasi, ’Alvarez-Valbuena, et al., 2009), and several authors recommend combining
instruments because single measures cannot capture signals outside their own
scope (Veltman and Gaillard, 1998).

Subjective measures rely on self-ratings of perceived workload and are popular
because they are easy to administer (Zarjam et al., 2015), relatively insensitive
to time constraints (Marino et al., 2021), able to capture small variations (Paas
et al., 2016), show strong validity (Grandi et al., 2022; Torres et al., 2021), are
non-interruptive (Bommer and Fendley, 2018; Grandi et al., 2022; Torres et al.,
2021), and are low cost (Arana-De las Casas et al., 2023; Bommer and Fendley,
2018; Grandi et al., 2022; Torres et al., 2021). Widely used scales include NASA-
TLX (S. G. Hart and Staveland, 1988), the Cooper—Harper Rating Scale (Cooper
and Harper, 1969), and the RSME (Zijlstra and Van Doorn, 1985).

Physiological assessments are increasingly popular because they provide “hard”
evidence via traceable bodily and neural changes (Annett, 2002; Fairclough and
Houston, 2004), and they have become more accessible due to improvements in
device cost and size (Guzik and Malik, 2016). Common measures include eye
tracking (Hertzum and Holmegaard, 2013)—such as pupil diameter (Argyle et al.,
2021; Batmaz and Ozturk, 2008) and blink frequency (Faure et al., 2016)—skin
conductance (Lagomarsino et al., 2022; Shimomura et al., 2008), neural activity
(Wilson and Eggemeier, 2020), heart rate (HR) (Argyle et al., 2021; Henelius et al.,
2009), and heart rate variability (HRV) (Delliaux et al., 2019; Grandi et al., 2022).
When used for workload, HRV serves as an indicator of cardiovascular responses
to heightened demands (Miyake, 2001). Unlike HR, which is measured in beats
per minute, HRV captures fluctuations in the intervals between heartbeats (Mec-
Craty and Shaffer, 2015; Shao et al., 2020), can be measured non-intrusively, and
can be computed in under two minutes (Bldsing and Bornewasser, 2020). HRV is
often collected via photoplethysmography (PPG), which detects changes in blood
volume in the microvasculature (Allen, 2007), with signals obtainable from multi-
ple body sites such as fingers and earlobes (Kiselev et al., 2016). With lightweight
sensors, participants can, for example, assemble a drone without meaningful re-
strictions from instrumentation. HRV is the variation in the length of heartbeat
intervals (Malik et al., 1996). HRV represents the heart’s ability to respond to a
wide range of physiological and environmental stimuli (Acharya et al., 2006). Low
HRV indicates a monotonously regular heart rate. Furthermore, reduced HRV is
linked to decreased regulatory and homeostatic autonomic nerve system (ANS)
activities, reducing the body’s ability to deal with internal and external stimuli.

Performance-based assessments focus on observable actions and execution and
help quantify how individuals allocate limited cognitive resources and differ in
performance profiles (Butmee et al., 2018). Typical industrial assembly metrics
include speed, accuracy, time, reaction time, and error counts (Drouot et al., 2022;
Lagomarsino et al., 2022). These variables can be measured in the main task to
check goal success or in a secondary task to see how much mental capacity remains.
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2.4 The International Classification of Functioning

The International Classification of Functioning, Disability and Health (ICF) pro-
vides a standardized way to describe health and health-related states at individual
and population levels, and was endorsed by WHO Member States for universal ap-
plication across contexts (WHO, 2001). It conceptualizes functioning as a dynamic
interaction between health conditions and contextual factors, allowing description
in both neutral (functioning) and negative (disability) terms (WHO, 2001; Bat-
tistella and De Brito, 2002).

ICF comprises three coded components—Body Functions and Structures, Ac-
tivities and Participation, and Environmental Factors—plus Personal Factors as
contextual elements, with components operationalized using qualifiers such as ca-
pacity and performance for activities/participation (WHO, 2001; Battistella and
De Brito, 2002). The unit of classification is domains within these components;
importantly, ICF “does not classify people,” but describes each person’s situation
across domains (WHO, 2001).

ICF’s body functions explicitly include mental functions, aligning the frame-
work with cognitive ergonomics and mental workload constructs in which working
memory limits, task demands, and environmental conditions jointly shape per-
formance (Battistella and De Brito, 2002; L. Longo et al., 2022). Building on
ICF, the analysis connects mental workload and users’ cognitive functions (body
functions) with task performance (activities/participation) and the digital work
environment (environmental factors).

Body functions are the physiological functions of body systems (including men-
tal functions), and body structures are anatomical parts such as organs and limbs
(WHO, 2001). Activities and participation span learning, general tasks and de-
mands, communication, mobility, self-care, domestic life, relationships, major life
areas, and community life, assessed via capacity and performance qualifiers (WHO,
2001; Battistella and De Brito, 2002). Environmental factors cover the physical,
social, and attitudinal environment, and are explicitly coded as facilitators or
barriers that influence functioning (WHO, 2001; Battistella and De Brito, 2002).

Personal factors (e.g., age, lifestyle, coping habits) are included conceptually as
contextual elements but are not formally classified in ICF due to cultural vari-
ability and scope concerns; their assessment is left to users and domain-specific
applications (WHO, 2001). Scholarly work discusses ongoing efforts to structure
personal factors (e.g., self-efficacy, attitudes, motivation) while emphasizing the
need for conceptual clarity to avoid overlap with other components (Fehrmann et
al., 2022). But in this thesis, the personal factors are delimited from the discussion
of mental workload, as a more objective perspective of mental workload imposed
by digitalization tools is raised, but not the motivation or lifestyle of each user.
But we acknowledge the importance of personal factors regarding future universal
design.
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2.5 Cognitive Augmentation Technology

2.5 Cognitive Augmentation Technology

Cognitive enhancement—understood as the augmentation of brain processes—has
been a prominent topic in academic and public debates about increasing physical
and mental capabilities (Nitish Singh Jangwan et al., 2022). In recent years,
numerous recommendations have been proposed for improving cognitive functions,
and physical and behavioral treatments have been investigated in the context of
cognitive enhancement (Nitish Singh Jangwan et al., 2022).

Cognitive augmentation can be framed in four compact dimensions: spatial
cognition (where the assembly is), memory cognition (what the assembly /parts
are), comprehension cognition (how the assembly state is), and decision-making
cognition (how to perform the operation). These dimensions cooperate to support
the task flow from locating and recognizing to understanding and acting (Pang
et al., 2024).

Cognitive augmentation technologies are designed to provide rich feedback with
reduced mental workload, making them well suited for progressive learning and
symbiosis between working systems and operators (Lucchese et al., 2025). The
technologies serve to support and empower the workforce, fostering more high
quality jobs and prosperity beyond efficiency. By relieving individuals of physical
and cognitive strain, stress, and workplace risks, these technologies offer effec-
tive means to support and amplify human capabilities on the modern shop floor
(HORIZON, 2025). In manufacturing, cognitive enhancement technologies aim
to improve human perception, cognition, and decision-making by integrating ad-
vanced digital tools—such as extended reality (XR), Al agents, social robots, and
digital twins—into industrial environments (Lihui Wang, 2021).

2.5.1 VR as cognitive augmentation technology

VR systems represent innovative solutions that merge technological advances with
human centric design, aligning with Industry 5.0 principles (Escallada et al., 2025).
However, despite progress in VR technologies and hardware, if a VR task is not
designed with an appropriate level of mental workload that matches users’ exper-
tise, both task performance and technology utilization can be constrained (Zhang
et al., 2016).

In manufacturing, VR is a key enabler supporting layout planning, design re-
views, virtual prototyping, machine/robot interaction, ergonomics assessment,
and virtual training (Erlantz Loizaga et al., 2023). Enhancing the cognitive er-
gonomics of VR application interfaces aims to align technology with human needs
and capabilities, promoting efficiency, effectiveness, and user satisfaction in man-
ufacturing processes.

The gamified multi-user VR, experience described here combines essential tech-
nology components and approaches established in current research. The Unity 3D
game engine (Unity Engine 2025) is one of the platforms used to construct XR
applications in this study, and its customization and adaptability make it suitable
for industrial and academic applications (Tytarenko, 2023). The integration of
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Photon Networking for multi-user capabilities aligns with established practices in
collaborative VR. Furthermore, implementing VR Builder for task sequencing and
interaction design is consistent with documented methodologies for constructing
instructional VR training applications without substantial C programming (Soder-
lund et al., 2024).

As another gamified platform, Unreal Engine (Unreal Engine 2025) can bridge
gaps by providing more realistic environmental rendering, detailed avatar cus-
tomization, and seamless communication for user enhancement and social inter-
action in immersive worlds. This platform can address issues such as Al inte-
gration, improved haptic feedback, and optimization of large-scale VR projects
(Berrezueta-Guzman and Wagner, 2025).

For engineering and industrial application design, commercial software such as
IC.IDO (IC.IDO, 2025)—which combines high-end visualization with real-time
physics simulation to enable authentic human-centered process validation—can
also be used. The fundamental architecture of VR prototypes is based on estab-
lished CAD data formats, specifically the JT (Jupiter Tessellation) format, an
ISO-standardized solution for 3D data interchange and visualization.

VR prototypes frequently use head mounted displays (HMDs), such as the Meta
Quest series, which hold over 70% market share due to their wireless capabilities
and mixed-reality features (Wheeler, 2024). The wireless operating mode elimi-
nates tethering restrictions while preserving high-fidelity rendering via a streaming
architecture that separates computational processing from display hardware (Pe-
tersen, 2024).
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2.5 Cognitive Augmentation Technology

2.5.2 Humanoid social robots

A humanoid social robot (HSR) is defined as “human-made technologies that can
take physical or digital form, resemble people in form or behavior to some degree,
and are designed to interact with people” (Fox and Gambino, 2021). This defi-
nition emphasizes that HSRs exhibit both form anthropomorphism (human-like
voice or appearance) and behavioral anthropomorphism (gestures, spoken mes-
sages, nonverbal expressions) (Fox and Gambino, 2021). To enhance the social-
interaction functionality and social capital of humanoid social robots, a natural
language model can be introduced to enable fluent communication, and computer
vision can be used to enable eye contact and facial expression (Dogan, 2021).

The HSR demo in this study is built on a tabletop humanoid social robot from
Furhat (Furhat, 2025). The back-projected face technology used by Furhat robots
creates lifelike expressions by projecting animated faces onto a translucent mask.
The Furhat OS platform offers speech, facial-animation, and gesture-control APIs.
The HSR can be customized with context, sequential assembly instructions, and
other task information by connecting to the GPT-40 API via Python for external
integration. In addition, it can function as a virtual mentor—presenting with a
human persona, voice, and face—and deliver customized teaching based on the
operator’s skill level.

2.5.3 Mental workload in VR and humanoid social robots

Navigation in VR can impose substantial mental load on users, affecting short-term
memory, attention, perception, and response time (Han et al., 2021). Elevated
mental workload during visuomotor adaptation in immersive VR has been asso-
ciated with poorer long-term motor memory and reduced context transfer (Ju-
liano et al., 2021). Increases in mental load also manifest in ocular metrics—such
as larger relative pupil size and fewer fixations—indicating impacts on attention
(Schirm et al., 2023). Collectively, these effects can degrade overall user experience
and the effectiveness of VR applications.

Users frequently experience higher mental workload during complex motor tasks
in head- mounted displays compared with traditional computer screens (Bernal,
Jung, et al., 2024). Moreover, higher cognitive and affective load during VR
navigation can diminish navigational performance (Parsons et al., 2023). With-
out mitigation, these mental-load factors can adversely affect collaborative ac-
tivities in virtual environments—such as layout planning, design reviews, and
remote assistance. It is therefore crucial to leverage user cognitive psychology and
interface/scene-design features early in the VR design phase to improve informa-
tion acquisition and task execution, enhance user experience, and reduce mental
workload (Fu et al., 2024; H. Cao, Rivera, et al., 2025).
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CHAPTER 3

Research Approach and Methods

This chapter describes the research approach, methods, and techniques used to
achieve the research aim and mission. First, the research activities are presented
with papers.

Observation Hypothesis Design Experimentation Data Analysis Add to Theory

Figure 3.1: General scientific methods steps, adapted from (Pruzan, 2016)

3.1 The design of research

Scientists share certain beliefs in common: that scientific disciplines are reliant on
evidence, the use of hypotheses and theories, and the logic used (AAAS, 1990).
Science does not have a unified epistemology, but the overarching technique gives
a consistent criterion of validity for all hypotheses. Inadequate data collection
and processing might lead to subjective outcomes, thus it is crucial to evaluate
different participants using consistent criteria (Harold, 1983).

My research is grounded in a pragmatic-empiricist worldview that privileges
direct measurement and statistical validation to illuminate human-technology in-
teractions. By systematically quantifying mental workload across objective (per-
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formance, physiological) and subjective (self-report) domains, this epistemological
stance asserts that reliable knowledge emerges from observable, reproducible data
rather than intuition or expert conjecture alone. In adopting mixed-methods
mental workload assessments, the study embodies a critical realist approach: it
assumes that cognitive phenomena and user experience are real and measurable,
yet acknowledges that no single metric can fully capture their complexity. This
synthesis of quantitative rigor with complementary qualitative insights enables
the empirical demonstration of how technology can symbiotically empower, aug-
ment, and include users. Ultimately, this philosophy holds that ambiguity in
human—technology symbiosis is best resolved through transparent experiment de-
sign and comparative data analysis, yielding actionable, generalizable insights into
usability and cognitive impact.

The term of ’scientific method’ refers to a systematic procedure for carrying
out a scientific investigation and justifying the privileged status of the research
findings (Pruzan, 2016). The delineation introduces a step-by-step of an apparent
logical and/or chronological progression in research activities; however, it is not
always linear or sequential (Pruzan, 2016). The adapted scientific research meth-
ods steps are illustrated in the Figure 3.1. Objectivity, curiosity, creativity, and
interpretation give the research process repeatability and transparency while also
advancing our understanding of the hard and soft science socio-technical system
sector.

3.2 Experimental approaches

3.2.1 Prototype-based experiment Method

There are various modeling and analytic methods for complex experimental setups.
The use of quantitative data to compare and reveal significant differences between
subjects can provide us with a clear picture of the usability of technology as well
as quantify the interaction between humans and technology. It is difficult to
determine the interaction between humans and technology without measuring or
relying solely on qualitative data, as subjective assessments may not accurately
reflect reality (Emmie Fogelberg, Peter Thorvald, et al., 2024), and expert opinion
is not reliable in this new sector. The primary unique working methods used in this
study were to quantify the user experience through mental workload assessment.
How to understand the symbiosis, empowerment, augmentation, and inclusion
of technology from a cognitive perspective? Mixed mental workload evaluation
methods could be a feasible solution to demonstrate the significance of ambiguity
and personalization by scientific comparison experiment design and data analysis.

A sandbox can be classified as either a technological sandbox or a regulatory
sandbox (OECD, 2025). The former emphasizes responsible decision-making,
safety risk simulation, norms, ethics, and training procedures. Technological sand-
box, the latter, focuses on technical or production-related faults and system flu-
ency while studying tools, systems, and innovation for training reasons. This
research aims to identify the two sandbox types that have a measurable mental
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3.2 Ezxperimental approaches

workload. In this instance, we pay particular attention to the cycles of technology
adoption and development as well as the cognitive strain and stress that shop floor
operators experience.

The Stena Industry Innovation Lab (SII-Lab), a learning factory in Gothenburg,
Sweden, serves as the basis for the research. By offering a controlled environment
for experimenting with Industry 5.0 background, drone factories, assembly jobs,
and human-centric digital tools, regulatory sandboxes are investigated as a tan-
gible framework. For a limited period and in a restricted portion of a sector
or area, the sandboxes are intended to provide a real-world setting for testing
the uptake and usability of innovative technologies, products, services, or ap-
proaches—particularly in the context of digitalization—under regulatory supervi-
sion, guaranteeing that the necessary safeguards are in place. In order to validate
the proof of concept of the digital tools for cognitive augmentation, the sandboxes
primarily rely on experimentation to produce qualitative and quantitative study
results.

This research employs prototype-based experiments to evaluate cognitive aug-
mentation technologies, including VR, video instruction, and Al-driven social
robots in realistic Industry 5.0 manufacturing settings. Besides, the research
assessed the human-technology interaction and user interface of VR regarding
mental workload.

3.2.2 Comparative Experiments

To answer RQ1 and illustrate the probable causality of an independent variable
on a dependent variable, studies are frequently structured in such a way that the
findings of an experimental sampling may be compared to one or more controlled
samples (Pruzan, 2016).

A between-subjects 3x4 factorial design is a study where participants are ran-
domly assigned to the control or the experimental group, with three subjects on
four measurements. This study B aims to assess three common digital instruc-
tional tools - video instruction, VR, and Al-integrated humanoid social robotsus-
ing a triangular combination of mental workload assessment measurement modal-
ities (Emmie Fogelberg, Huizhong Cao, et al., 2025). The assessment incorporates
four measurements - heart rate variability (HRV) as a physiological measure, the
Rating Scale Mental Effort (RSME) for subjective evaluation, and performance-
based metrics of completion time and error rate. By integrating these diverse
measures, the study seeks to provide a holistic understanding of how different in-
structional methods impact learners during both the learning and operation phases
of an assembly task in manufacturing. Evaluating mental workload through sub-
jective assessments, physiological data, and performance-based metrics provides
a comprehensive approach to understanding how different instructional methods
affect learners.
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3.2.3 Personas and Participants

Personas are imagined profiles that reflect the diversity of users or learners. A
typical persona includes the user group’s needs and goals, background information
on the user group, and a picture of the group’s representative (Weinhandl et al.,
2023). In this research, the participants represent industrial practitioners ranging
from novices to professionals, as well as students with little job experience. The
following information has been collected with informed consent approved by the
Chalmers Institutional Ethical Advisory Board (IEAB): gender, age, native lan-
guage, level of education, occupation, VR experience and humanoid conversational
robot experience in both Study B and C.

Participants were randomly divided into three groups, in which one group par-
ticipated in a training session by watching the segmented videos on a 2D LCD
screen, another group participated in a training session using HMD VR, and the
last group participated in a training session with a humanoid social robots, as
shown in Figure 3.2.

& = b4

Humanoid
social robot

Drone assembly line in the learning factory
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5

Touchable 2D screen Meta Quest 3 Furhat robotics + GPT 40 API
t I N

Figure 3.2: The experiment apparatus of three subjects—the simulated drone fac-
tory and its instruction station, equipped with 2D screens, a humanoid
social robot, and a VR headset.

3.2.4 Hypothesis testing

In Paper 2 (instruction modality), the hypothesis is that instruction modality—video,
VR, and humanoid social robots—elicits different mental workload profiles across
learning and operation, leading to measurable differences in perceived effort (RSME),
completion time, and errors during an industrial assembly task.

In Paper 3 (measure triangulation), the hypothesis is that Mental workload
indicators from different classes—error rate and completion time (performance),
RSME (subjective), and HRV (physiological)—correlate during assembly.

WHile in Paper 4 (VR mini-map Ul features), the hypothesis is that three
mini-map design features—portability, dimensionality (2D vs 3D), and tangibil-
ity—exert different, measurable effects on mental workload (NASA-TLX sub-
scales) and spatial performance (navigation, layout perception, collaboration, time)
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in collaborative industrial VR; portability will yield the strongest workload reduc-
tion and performance gains.

The criteria for hypothesis testing in this thesis are defined by the study de-
sign, measurement scales, and model assumptions, and are operationalized via
nonparametric omnibus tests with corrected post-hoc comparisons (Paper 2), cor-
relation analysis with power considerations (Paper 3), and mixed-effects ANOVA
with predefined alpha and effect size reporting (Paper 4).

3.2.5 Data analysis methods

Answering RQ2 requires integrating multiple assessment methods—subjective self-
reports, performance-based metrics, and physiological measures—to capture dis-
tinct facets of workload. By systematically comparing these measures under vary-
ing augmentation conditions, we aim to determine which metrics best reflect cog-
nitive demands and how technology design features modulate perceived and actual
mental effort. This quantitative triangulation lays the foundation for evidence-
based guidelines in designing augmentation systems that optimize cognitive sup-
port without overburdening users.

Due to the fact that the studies involve inclusive representation of participant
groups (both industrial/academic participants), paired/nested observations, and
a mix of ordinal and continuous measures, the licentiate adopts analysis methods
that fit each dataset rather than a single generic test. In practice, this means
choosing robust non-parametric tests for ordinal or non-normal data, mixed-effects
models to handle dependencies and unbalanced samples, and clear visualizations
to expose how the data are distributed.

3.2.5.1 Non-parametric analysis

Non-parametric analysis refers to statistical methods that do not assume a specific
probability distribution for the data, making them well suited for ordinal mea-
sures, small samples, or when normality assumptions are violated (Guitton and
Siegel, 1958). These techniques operate on data ranks rather than raw values, pro-
viding robust inference under broader conditions. Common non-parametric tests
include the Mann—Whitney U test for comparing two independent groups and the
Kruskal-Wallis H test for three or more groups (Kruskal and Wallis, 1952). In
paper 2, non-parametric analyses were employed to compare subjective workload
ratings (RSME) across the video, VR, and humanoid robot conditions, ensuring
valid results despite the ordinal scale and potential skewness of the self-report
data.

3.2.5.2 Mixed effect ANOVA test

The mixed effects modeling provides an ideal framework for our study as it com-
bines the strengths of both fixed (design features) and random (user type vari-
ability) effects analysis, accommodating the nested structure of our data where
observations were collected from participants working in pairs, creating inherent
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dependencies (Badr and De Amicis, 2023). As noted by Moseley et al., “Mixed
models can accommodate unbalanced data patterns and use all available observa-
tions and patients in the analysis” (Badr and De Amicis, 2023), which is partic-
ularly valuable given the different sample sizes, measurement quantities, and VR,
experience backgrounds between student and industrial practitioner groups.

Statistical analyses were implemented using Python for the mixed design ANOVA
calculations. The significance level (type I error) was set to 0.05 (Giovanni Di Leo
and Francesco Sardanelli, 2020).

The mixed-design ANOVA enables us to:

o Assess the main effects of each design feature across all participants, iden-
tifying universal design principles that transcend user groups.

o Examine potential interactions between design features and user groups,
illuminating whether certain features are particularly beneficial for specific
user populations.

¢ Maintain focus on design elements rather than group differences, while still
accounting for group-level variance in the statistical model.

3.2.5.3 Density plot

A density plot is a graphical representation that illustrates the distribution of
a continuous variable. The probability density function depicts a smooth curve,
making it easy to determine where data points are concentrated, spot several peaks
(modes), and compare distributions without the abrupt bins found in histograms
(GeeksforGeeks, 2025). Density plots employ a technique known as kernel density
estimation (KDE), which results in a fluid, continuous representation of the data
distribution. The area under the density curve always equals one, indicating the
entire probability (GeeksforGeeks, 2025).

3.2.5.4 Thematic analysis

Thematic analysis is a flexible, qualitative method for identifying, analyzing, and
reporting patterns (“themes”) within textual data. Rather than testing hypothe-
ses, it explores participants’ perspectives to reveal shared experiences and mean-
ings. Braun and Clarke’s (2006) approach, widely adopted in HCI and ergonomics
research, unfolds in five iterative phases (Virginia Braun and Victoria Clarke,
2006):

1. Familiarization — Immersing in the data by reading and re-reading partici-
pants’ narratives.

2. Generating initial codes — Labeling meaningful segments of text (codes) that
capture features of the data relevant to the research question.

3. Searching for themes — Grouping related codes into broader candidate themes
that represent patterned responses.

4. Reviewing themes — Refining candidate themes by checking their coherence
against the coded extracts and the full data set.
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5. Defining and naming themes — Finalizing clear definitions and names for
each theme, ensuring they tell a compelling story about the data.

3.2.6 Statistical significance

To assess statistical significance rigorously and transparently, subsection 3.2.4
specifies the hypothesis tests used, their assumptions, and decision criteria (includ-
ing p-value thresholds and multiple-comparison controls), ensuring that inferences
reflect the data’s scale and distribution rather than relying on a single omnibus
procedure. The following methods are used to test the statistical significance of
the comparison results.

Kruskal-Wallis H test: The Kruskal-Wallis H test is a nonparametric al-
ternative to one-way ANOVA, used when the assumption of normally distributed
residuals is violated or when dealing with ordinal data. It evaluates whether three
or more independent groups originate from the same distribution by comparing
the ranks of the combined data rather than their raw values (Kruskal and Wal-
lis, 1952). In practice, each observation is replaced by its rank across all groups,
and the test statistic H measures the degree to which these ranks differ between
groups. A significant H indicates that at least one group’s median differs from the
others, though it does not specify which groups differ; post-hoc pairwise compar-
isons (e.g., Dunn’s test with Bonferroni correction) are then required to identify
specific contrasts. In our study, the Kruskal-Wallis H test was applied to compare
mental workload scores across the video, VR, and humanoid robot conditions, ac-
commodating the ordinal nature and potential non-normality of the subjective
workload data.

Dunn’s post-hoc test with Bonferroni correction: When the Kruskal-
Wallis’s test indicated a significant group effect, Dunn’s post-hoc test was applied
to perform pairwise comparisons between instructional methods. The Bonferroni
correction was used to adjust for multiple comparisons and control the family-wise
error rate (ref). Statistical significance was set at p<0.05.

Pearson Correlation: Pearson’s correlation coefficient (r) measures the strength
and direction of a linear relationship between two continuous variables, ranging
from -1 (perfect negative) through 0 (none) to +1 (perfect positive) (LaMorte,
2021).

3.2.7 Statistical power

Paper 3 report p-values to indicate statistical significance, representing the like-
lihood that observed differences occurred by chance rather than due to our ma-
nipulated variables. The mean and standard deviation were calculated for all
dependent variables. Additionally, we report partial eta squared (n?) as our pri-
mary effect size measure, following conventional guidelines where n? values of
approximately 0.01 indicate small effects, 0.06 medium effects, and 0.14 or greater
large effects (Muller and Jacob Cohen, 1989).
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Table 3.1: Methods adopted in the selected papers
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Table 3.1: Methods adopted in the selected papers (continued)
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3.3 Project overview

The research program comprises several ongoing projects that shape the exper-
iments, paper themes, application domains, and overall publication trajectory;
collectively, they also steer the thesis’s future direction. In particular, the project
portfolio has informed study design choices, target user groups, and methodolog-
ical emphasis across the included works. The licentiate and the author’s research
over the past two years have been funded by these initiatives. Specifically, Papers
1 and 4 are supported by the PLENUM project (PLENUM, 2022), while Papers
2 and 3 are supported by the DIGITALIS project (DIGITALIS, 2022).

PLENUM is envisioned as a cost-effective, accessible, and sustainable multi-user
platform aimed at transforming 3D factory design, simulation, and operator up-
skilling. Seamlessly working in distributed environments, it leverages mature tech-
nologies for 3D scanning, multi-user functionality, and XR demonstration with the
Unity platform to bring design guidelines to industrial software IPS. PLENUM’s
broader objectives include enhancing training effectiveness using real factory data,
promoting inclusive factory design, and ensuring workforce productivity and sus-
tainability. Moreover, it advocates for a reduction in travel needs by enabling
meetings in digital twins of production system environments. User telemetry data
collection, mirroring online games, can further refine IPS simulation models, en-
hancing overall platform efficiency through Unity for quick iteration for proof of
concept.

The DIGITALIS project explores the intersection of cognitive science, informa-
tion design, and XR, Al, and social robots within automotive manufacturing. It
aims to enhance quality and efficiency through developing cognitive support sys-
tems and improved information design methods for XR and social robots applica-
tions. The DIGITAIS project incorporates cognitive task analysis to understand
the cognitive processes involved in machine/robot interaction. Design thinking
will be employed to create intuitive and effective XR/social robots interfaces for
these interactions.

During the kappa’s development, SkillAIbility (SkillAIbility, 2025) has accom-
panied the work and helped clarify the thesis’s future direction. It aims to build
human-centric pathways to future skills and jobs in manufacturing by co-designing
education, training, and augmentation tools with workers—especially vulnerable
groups—to enable an inclusive, resilient, and equitable twin transition through
complementary strengths of AI, automation, and human task redesign.
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Summary of the Appended Papers

Research activities in papers RQs RQ1 RQ2

Use cases of XR for manufacturing, Focused use
case in instruction design, virtual training and
cognitive support

Instruction methods comparison between VR,
social robot and video instructions, preliminary
universal design guidelines

Mental workload assessment methods - Journal
triangulation between subjective, physiological PAPER3
and performance-based

Strategies to improve the cognitive ergonomics of
VR on design features - user interface design

Journal

Figure 4.1: Research activities in this thesis connected to contributions to research
questions and papers

Figure 4.2 provides a summary of the research activities. The activities clearly
outline the research methodologies employed in each publication, which is a mixed
research design that primarily uses prototype-based experimental research and
integrates quantitative and qualitative research. A summary of the appended
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papers is presented in the following sections, formatted as Background — Methods
— Results — Discussion. The purpose of this section is to give a brief review of the
attached paper with key references, and main findings with inspiring discussions.
The relationship of each paper and the connection to vision/RQs will be elaborated
in Chapter 4.

4.1 Paper 1

Ezxploring the current applications, limitations, and potential of ex-
tended reality for sustainability in manufacturing

4.1.1 Background

Manufacturing companies are facing increasing pressure to integrate sustainable
and human-centric solutions to remain competitive, which aligns with the vision
of Industry 5.0. This paradigm emphasizes resilient, smart, and sustainable pro-
duction systems that balance economic, social, and environmental goals (Ren et
al., 2019; Leng et al., 2022; European Commission, 2022). XR, encompassing VR,
MR, and AR, has gained attention as a key enabling technology for this transition.
XR has been shown to strengthen decision-making, improve knowledge transfer,
and foster human-technology collaboration, thereby directly supporting social and
economic sustainability dimensions (Fast-Berglund et al., 2018). However, its con-
tributions toward environmental sustainability remain less systematically studied
and often only indirectly demonstrated (Beier et al., 2020; Thiede et al., 2022).

4.1.2 Methods

Paper 1 presented real-world use cases of XR in manufacturing, highlighting how
these technologies serve as both guidance and inspiration for future research and
industrial implementation. 30 relevant papers were selected. Data from each was
recorded in a spreadsheet, capturing XR technologies used, sustainability impacts,
and evidence. Each use case was mapped to sustainability pillars (environmen-
tal, economic, social) based on NIST indicators. Impacts were classified as direct
(quantitative evidence) or indirect (qualitative claims). This analysis highlighted
how XR technologies contribute to different sustainability goals within manufac-
turing environments.

To measure sustainability within manufacturing processes, the U.S. National
Institute of Standards and Technology (NIST) has established 213 sustainabil-
ity indicators, of which 77 are specifically related to environmental performance
(Joung et al., 2013; NIST, 2021; Kim et al.,, 2012). These indicators address
crucial areas such as emissions reduction, energy and resource use, and waste
minimization. While manufacturers and researchers can employ these metrics to
track the ecological impact of production systems, the explicit ways in which XR,
technologies affect these indicators remain underexplored.
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4.1.3 Results

The analysis of literature identified seven generic categories of XR use cases in
manufacturing, covering a wide range of cross-industry applications. These cate-
gories demonstrate XR’s capacity to support both operational efficiency and sus-
tainability objectives.

Virtual prototyping showcases how XR can reduce the need for physical pro-
totypes by enabling collaborative design and simulation with customers and en-
gineers, thus minimizing material waste (Royo-Vela et al., 2022; Violante et al.,
2019). Production and layout planning emphasize XR’s ability to visualize and
validate workstation and cell designs before implementation, helping avoid costly
errors and optimize material and energy flows (Torokovd and Torok, 2021; Husar
et al., 2022; Thiede et al., 2022; Abdelkhalik and Elngar, 2020). Ergonomic
assessment illustrates XR’s use with motion capture and digital human models
to identify ergonomic risks early, improving worker safety and reducing redesign
needs (Dreesbach et al., 2020; Hovanec et al., 2014).

Training applications indicate that XR supports improved learning outcomes,
inclusivity, and skill transfer, with additional potential to integrate sustainabil-
ity awareness into training programs (Gabajova et al., 2019; Araujo et al., 2019;
Thiede et al., 2022). Machine/robot interaction demonstrates XR-based human-
machine interfaces that improve efficiency and reduce risks during robot collabora-
tion (Schmidt et al., 2022). Cognitive support/instruction highlights XR-enabled
on-the-job support through AR devices, improving quality assurance and reduc-
ing unnecessary operator travel (J. Alves, Marques, et al., 2021; Kontovourkis
et al., 2019; Lund and Ortova, 2022). Finally, data monitoring/analysis shows
how XR, in combination with digital twins and sensing technologies, can visualize
energy flows, emissions, and operational anomalies, contributing to environmental
monitoring and worker safety (Thiede et al., 2022; Damiani et al., 2020).

Collectively, these use cases demonstrate XR'’s versatility and confirm its poten-
tial role in advancing environmentally sustainable manufacturing.

4.1.4 Discussion and Conclusion

The use cases show concrete pathways for XR’s sustaiable contributions. Virtual
prototyping reduces waste and physical iterations (Chen et al., 2021; Royo-Vela
et al., 2022; Violante et al., 2019). Production and layout planning ensure re-
source optimization and lower environmental risks (Thiede et al., 2022; Muifloz
et al., 2019). Ergonomic assessments contribute to safer, more sustainable work-
ing conditions (Peruzzini, Grandi, et al., 2018; Hovanec et al., 2014). Training
simulations minimize unnecessary resource expenditures and embed sustainability
awareness (Thiede et al., 2022; Palmarini et al., 2018). Further, machine/robot
interaction, cognitive support/instruction, and data monitoring/analysis illustrate
XR’s ability to optimize energy flows, reduce errors, and present actionable envi-
ronmental data (Schmidt et al., 2022; Sidiropoulos et al., 2021; J. Alves, Marques,
et al., 2021; Lund and Ortova, 2022; Fukuda et al., 2019).
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e Virtual prototyping uses XR as a co-creation testbed to
involve customers and engineers to reduce real material
for tests and prototypes[18][19].

Im e  The production and layout planning use cases manifest
production cells, warkstation design, and digital factory
layout to avoid costly mistakes in the design e.g.
collisions, etc[10][20][21][22].

Ergonomics Assessment

e+ The ergonomic assessment use cases focus on
leveraging XR technology during the design and
validation of workstation and assembly tasks[12][23].

03

@

The training use cases can be applied in maintenance,
assembly, quality, and logistics [9][11][21].
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XR use cases for sustainable manufacturing

Figure 4.2: XR use case categorizations
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4.2 Paper 2

Cognitive Augmentation in Industry 5.0: Comparing Mental Workload
in VR, Humanoid Conversational Robot, and Video Learning

4.2.1 Background

As European industry and society confront persistent staffing shortages, a skilled
and adaptable workforce is essential to sustain productivity and human-centric
transformation in Industry 5.0 (M. Pinzone et al., 2024; Breque et al., 2021;
Da Xu et al., 2018). Unlike Industry 4.0’s emphasis on automation and connec-
tivity, Industry 5.0 prioritizes robustness, sustainability, and worker well-being,
spotlighting the need for optimized training—especially for novices—to acceler-
ate upskilling without increasing cognitive strain (Breque et al., 2021; Da Xu
et al., 2018; Romero and Stahre, 2021). Evidence shows 62% of manufacturers
report competency shortages, while traditional training disrupts production and
suffers from poor transfer, challenges amplified by an aging workforce and dig-
italization pressures (M. Pinzone et al., 2024; Greta Braun, 2023; G. Braun et
al., 2024; L. Rinsky-Halivni et al., 2022). Cognitive augmentation—via XR, Al
agents, social robots, and digital twins—seeks to enhance perception, cognition,
and decision-making; yet multimodal, real-time interactions can elevate mental
workload if timing and presentation are not cognitively aligned (Lucchese2025;
L. Wang, 2021; N. S. Jangwan et al., 2022; Bustoni, 2025; Y. Huang et al., 2025;
H. Cao, Rivera, et al., 2025). Mental workload, defined as the cognitive resources
required to meet task demands, is tightly linked to performance, errors, and adop-
tion outcomes; excessive load signals misaligned instruction or task design (A.
Realyvéasquez-Vargas et al., 2023; Galy, 2018; Galy et al., 2012). Triangulating
subjective, physiological, and performance measures enables robust evaluation of
instructional media—VR, Al-enabled humanoid robots, and video—to identify
approaches that reduce workload while preserving consistency and fidelity in in-
dustrial assembly (Lindblom and P. Thorvald, 2014; L. Longo et al., 2022; Jafari
et al., 2020; Di Stasi, Alvarez-Valbuena, et al., 2009).

4.2.2 Methods

Paper 2 used a between-subject 3x4 factorial design to compare the mental
workload of three digital instructional methods—video instruction, VR, and Al-
integrated humanoid social robots—used for training novice participants in a drone
assembly task, as shown in Figure 4.3. Conducted in a realistic manufacturing
lab, participants (N=37) were randomly assigned to one of the three instructional
groups.

Prototypes were designed to reflect realistic industry practices while minimiz-
ing confounds. VR training (Meta Quest 3) provided an interactive digital twin
of the assembly environment with step-mapped stations, collision notifications,
haptic interaction cues, and constrained object interactions to prevent incorrect
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sequences. The humanoid social robots (Furhat) delivered context-aware, step-by-
step oral guidance with facial expressions and adjustable explanation granularity
via a Python bridge to a large language model. Video instruction comprised seg-
mented, first-person recordings of the same assembly sequence, accessed through
an interactive interface enabling pause, replay, and step navigation.

5

Drone prototype _ Humanoid social robot

Figure 4.3: The experiment apparatus of three subjects—the simulated drone fac-
tory and its instruction station, equipped with 2D screens, a humanoid
social robot, and a VR headset
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Figure 4.4: Experiment process of Paper 2 and Paper 3

Volunteers (n=37; 36 analyzed for performance; 28 for HRV after data qual-
ity screening) were primarily students/novices. Ethical procedures followed the
Swedish Ethical Review Authority’s guidance; informed consent and demographics
were collected, and a 5-minute seated rest established individual HRV baselines.
The learning phase proceeded with the assigned modality; the operation phase
required unaided assembly. HRYV, time, and errors were recorded; RSME was
collected after both phases. The process is illustrated in Figure 4.4.
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Figure 4.5: HRV collection equipment and development process

HRV was captured via ear-clip PPG to derive inter-beat intervals, transmitted
to a PC, preprocessed to remove artifacts, and summarized using RMSSD with
threshold-based correction windows. Nonparametric statistics evaluated group
differences: Kruskal-Wallis tests for HRV, RSME, time, and errors; significant
effects were followed by Dunn’s post hoc comparisons with Bonferroni correction
(alpha = 0.05).

Kruskal-Wallis H test: For each outcome variable (HRV, completion time,
error rate, RSME), the Kruskal-Wallis H test was used to determine whether
statistically significant differences existed among the three instruction groups.
This test is appropriate for comparing more than two independent groups when
the data do not meet the assumptions of normal distribution characteristics.

4.2.3 Results

Statistical analysis included Kruskal-Wallis H tests and Dunn’s post-hoc tests with
Bonferroni correction due to the small sample size and non-normal data distribu-
tion. This combination of methods enabled a comprehensive evaluation of how
different instructional technologies affect mental workload and task performance
in manufacturing training.
Subjective Mental Workload (RSME)

To evaluate subjective mental workload, RSME scores were analyzed across the
learning and operational phases for the three instruction types: video, robot, and
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VR. Figure 4.6 presents box plots illustrating the distribution of RSME scores by
condition.

Learning Phase: RSME scores varied across instruction types, with robot-based
teaching producing the highest median mental effort (46.00), followed by video
(26.00) and VR (25.50). Despite these differences, the Kruskal-Wallis test re-
vealed no significant group effect (H = 5.35, p = 0.0688), with post-hoc analyses
confirming no significant pairwise differences.

Operational Phase: VR instruction generated significantly higher mental work-
load (median = 77.50) compared to video (25.50) and robot (46.50) conditions.
The Kruskal-Wallis test confirmed significant differences between groups (H =
11.93, p = 0.0026). Dunn’s post-hoc testing revealed VR differed significantly
from video (p = 0.0018), while robot instruction showed no significant differences
from either condition.
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Figure 4.6: RSME (Rating Scale Mental Effort) scores across the learning and
operational phases

Task Performance
To assess the impact of instruction modality on task performance of efficiency
and accuracy, we analyzed Completion Time and Error Rate across three groups:
Video, Robot, and VR. Figure 4.7 presents box plots summarizing these perfor-
mance metrics.

Completion Time: Video instruction produced the fastest completion times (me-
dian = 165.50s), followed by robot (171.00s) and VR (490.00s). Significant group
differences emerged (H = 12.54, p = 0.0019), with VR significantly slower than
both video (p = 0.0027) and robot (p = 0.0130) conditions.

Error Rate: Video and robot groups demonstrated superior accuracy (median
= 0.00 errors), while VR instruction resulted in substantially higher error rates
(median = 8.00). Statistical analysis confirmed significant differences (H = 17.53,
p = 0.0002), with VR significantly different from both video (p = 0.00063) and
robot (p = 0.00080).
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Figure 4.7: Task performance (completion time and error rate) metrics by instruc-
tion type scores across operational phases

Heart Rate Variability
HRYV ratios showed no significant differences across instruction types during either
learning (H = 0.60, p = 0.7396) or operational phases (H = 0.18, p = 0.9124),
contrasting with subjective workload assessments as shown in Figure 4.8.
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Figure 4.8: HRV ratio divided by HRV baseline during learning and operational
phases. A higher ratio (above 1) means an HRV elevation from the
baseline, indicating a lower stress level, mental resilience, and a lower
mental workload imposed by the task.

4.2.4 Discussion and Conclusion

As shown in Figure 4.9, the mental workload assessment for video, the humanoid
social robot, and VR instruction during learning and operational phases is com-
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Figure 4.9: Mental workload assessment comparison during learning and opera-
tional phases across instruction types

Video-based instruction delivered the most efficient and cognitively economical
learning, combining the lowest perceived effort during both learning and opera-
tion (RSME medians 26.00 and 25.50), the fastest completion time (165.50 s), and
near-perfect accuracy (median errors = 0). Moderate HRV ratios in both phases
suggest stable autonomic responses consistent with low cognitive strain. This pro-
file likely reflects the video’s visual clarity, procedural transparency, and natural
compatibility with hands-on practice in low-to-moderate complexity tasks.

Humanoid social robots guidance offered a balanced alternative: moderate, sta-
ble RSME (46.00 learning; 46.50 operation), slightly longer times than video
(171.00 s), and equally low errors. Elevated HRV during learning normalized
in operation, indicating engaged but manageable cognitive/physiological demand.
The interactive, social framing seems to deepen engagement without harming per-
formance, making it suitable where timely feedback and dialogue add value.

VR showed a paradox: low perceived effort during learning (RSME 25.50) but
the poorest operational outcomes—slowest times (490.00 s), most errors (8.00),
and consistently low HRV ratios—signaling high cognitive/attentional costs once
support is removed. Likely drivers include interface novelty, divided attention, and
weaker hands-on transfer compared with video and robot. This pattern aligns with
habituation and testing-effect perspectives: initial immersive appeal masks later
recall and execution challenges when learners must perform independently. Prac-
tically, a modality hierarchy emerges: use video for efficient procedural uptake,
robots for interactive guidance with preserved performance, and VR selectively,
paired with adaptive pacing, repeated practice, and tightly synchronized, just-in-
time micro-instructions to curb extraneous load.
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4.3 Paper 3

Cognitive ergonomics: Triangulation of physiological, subjective, and
performance-based mental workload assessments

4.3.1 Backgound

Paper 3 developed a multifaceted framework for assessing mental workload in man-
ufacturing, triangulating physiological, subjective, and performance-based mea-
sures. Paper 3, while using a similar task and setup to Paper 2, shifts its focus to-
ward identifying correlations among the mental workload measures (HRV, RSME,
completion time, and error rate). It also uses a between-subject factorial design,
but centers mostly on the operational phase, where participants perform the as-
sembly task without instructional support. The study tests one main hypothesis,
that the mental workload measures are interrelated, even if not linearly.

Paper 3 addresses the gap that single measures miss complementary facets in
realistic tasks and that cross-class correlations are underreported, while also re-
vealing constraints of short, naturalistic tasks and wearables on physiological sen-
sitivity (Jafari et al., 2020; Matthews, Reinerman-Jones, et al., 2015; Argyle et al.,
2021).

4.3.2 Methods

Density plot

Density plots are used in Paper 3 to compare the distributions of mental work-
load and performance outcomes—such as RSME (subjective workload rating),
error rate, completion time, and HRV — across three instructional delivery meth-
ods.

Density plots enable us to:

e Visually assess and compare how each modality’s results are distributed
(e.g., are completion times more spread out in VR than with a robot?).

o Identify which method yields the highest or lowest mental workload (RSME),
the tightest or broadest range of completion times, or the most/least user
erTors.

« Spot differences in data patterns (e.g., if error rates are bimodal under video
but unimodal under VR).

e Present these comparisons intuitively, letting readers immediately see clus-
tering, outliers, or skewness according to instructional condition.

By plotting each group (VR, robot, video) on the same axes for variables like
RSME, error rate, completion time, and HRV, the figures provide a clear picture
of which instructional method imposes more cognitive or physiological workload
and affects user performance. For example, if the VR group’s density for RSME is
shifted toward higher values, one can immediately conclude VR elicited a higher
workload. Similarly, if the robot condition’s error rate density is sharply peaked at
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lower values, it indicates participants made fewer mistakes using that instruction
method.

Pearson Corelation In Paper 3, multiple Pearson correlations among comple-
tion time, error rate, RSME, and HRV were ran, then plotted in a color-coded
matrix. For example, in paper 3, RSME correlated strongly with completion time
(r = 0.70) and moderately with error rate (r = 0.51), while error rate and time
were moderately linked (r = 0.57). HRV showed very weak associations (|r| <
0.2). A prior power analysis (power = 0.283) highlighted that the study was un-
derpowered for detecting physiological relationships. These correlations illustrate
which workload measures align and underscore the need for larger samples when
using HRV.

4.3.3 Results

RSME correlated strongly with completion time (ra0.70, p<0.001) and moder-
ately with error rate (r~0.51, p<0.002); time and errors were moderately corre-
lated (r=~0.57, p<0.001), indicating convergent sensitivity of subjective and perfor-
mance measures to elevated workload (Matthews, Reinerman-Jones, et al., 2015;
DiDomenico and Nussbaum, 2011). HRV showed very weak relationships with
RSME, time, and errors (|r|<0.2), with low statistical power ( 0.283) and high
inter-individual variability likely contributing to null findings in short operational
windows (Georgiou et al., 2018; Ishaque et al., 2021; Bourdillon et al., 2022). De-
scriptively, VR produced higher RSME;, longer times, and more errors than video
and robot in operation (Argyle et al., 2021).

4.3.4 Discussion and Conclusion

Triangulating RSME with time/errors provides convergent, practical signals of
workload in assembly and supports multidimensional assessment in Industry 5.0
(L. Longo et al., 2022; Van Acker et al., 2018; Tsang and Velazquez, 1996). Current
short-duration, PPG-based HRV capture may lack sensitivity and robustness in
naturalistic tasks; longer windows, higher-fidelity sensing (e.g., ECG), and larger
samples are recommended (Georgiou et al., 2018; Hoover et al., 2012). Practically,
use RSME plus time/errors for rapid iteration of instructions and U, and apply
physiology cautiously or with enhanced protocols on the shop floor (Lindblom and
P. Thorvald, 2014; Matthews, Reinerman-Jones, et al., 2015).

4.4 Paper 4

Human-centered design of VR interface features to support mental
workload and spatial cognition during collaboration tasks in manufac-
turing

42



4.4 Paper 4

4.4.1 Background

Industry 5.0 calls for human-centric, cognitively efficient VR interfaces that ac-
tively support collaboration and reduce unnecessary navigation and attentional
demand in industrial contexts (J. Alves, Lima, et al., 2023; E. Loizaga et al., 2023;
A. Reiman et al., 2021). While VR is increasingly adopted for layout planning,
design reviews, and training, fragmented UI conventions and suboptimal naviga-
tion assistance can elevate mental, physical, and temporal demands—particularly
in multi-user settings where spatial cognition, layout perception, and coordination
are critical (Escallada et al., 2025; Reiners et al., 2021; Thorp et al., 2024). Prior
work shows that immersive presence alone does not guarantee better learning or
lower workload; design choices around guidance, maps, and interaction framing
strongly mediate mental workload and transfer (Makransky et al., 2017; Skul-
mowski and Xu, 2021; Freina and Ott, 2015). Empirical studies link map and
landmark aids, egocentric analytics, and menu design to differences in user per-
formance, workload, and Visuospatial processing in VR (Cheng et al., 2022; Kuo
et al., 2022; Sorger et al., 2021). At the same time, workload assessment requires
multi-method evidence, with NASA-TLX widely validated alongside physiological
and performance measures for sensitivity and comparability across tasks (S. G.
Hart and Staveland, 1988; Said et al., 2020; A. Cao et al., 2009). Together,
this literature motivates a user-centered, standardizable set of VR interface fea-
tures—such as portable, cognitively light mini-maps—to reduce extraneous load
and improve collaboration, aligning industrial VR with Industry 5.0’s human-
centric agenda (H. Cao, S"oderlund, et al., 2024; E. Geurts et al., 2022; Peruzzini,
Pellicciari, et al., 2019).

4.4.2 Methods

Paper 4 evaluated five different mini map designs in a collaborative VR manufac-
turing task to understand how design features—portability, dimensionality, and
tangibility—impact mental workload and spatial performance. After identifying
mini map types through literature review, five prototypes were developed and in-
tegrated into a gamified maintenance task using Unity3D and Photon for a shared
VR environment. Participants included 18 students and 12 industry practition-
ers, divided into pairs. Students tested three random maps; practitioners tested
all five, resulting in 114 valid task sessions. Participants used the mini maps to
carry out navigation-based tasks, completing surveys and the NASA-TLX mental
workload assessment after each session.

The study used mixed-effect ANOVA to analyze how map design and user ex-
perience levels affected workload and performance. A thematic analysis of open-
ended feedback added qualitative insight, revealing themes like usability, visibility,
and collaboration. This hybrid approach combined quantitative and qualitative
data to assess the effectiveness of mini map features in VR.

Mixed effect ANOVA test

Mixed-effect ANOVA test is a type of mixed effects modeling, which offers
particular advantages for Study C (paper 4). The participants are divided into
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two persona profiles, and exposed to unbalanced conditions of trying mini maps
(cao-2025).

To examine the impact of mini map design features on mental workload and
spatial cognition, Paper 4 employed a mixed-design ANOVA approach that ac-
commodated our unique experimental structure with different participant groups
experiencing varying numbers of mini maps. The analysis accounted for our un-
balanced design where industrial practitioners (n = 12, 6 pairs) experienced all
five mini map prototypes (contributing 60 valid data collection sessions), whereas
students (n = 18, 9 pairs) encountered three randomized mini map prototypes
(contributing 54 valid data collection sessions). Although NASA-TLX scores are
formally discrete ratings, they were treated as continuous data in accordance with
common research practice, enabling the application of parametric tests.

Thematic analysis

In Paper 4, which evaluates VR mini map designs via portable, 2D, 3D, and
tangible prototypes, thematic analysis was applied to participants’ open-ended
feedback collected after each condition. This integration enabled the study to:

1. Capture usability issues (e.g., “easy to bring map into focus” vs. “hard to
toggle with controller”) by coding comments on handling and control.

2. Elucidate navigation challenges (e.g., “difficult to orient myself in 3D”) by
clustering orientation-related codes.

3. Highlight visibility concerns (e.g., “map too small,” “visual clutter”) through
iterative theme review and refinement.

4. Surface collaboration dynamics (e.g., “helpful to see teammate’s location”)
by grouping feedback on shared use.

By systematically coding and clustering qualitative insights alongside the quan-
titative measures (NASA-TLX scores, spatial cognition tasks), thematic analysis
in Paper 4 reveals rich, context-sensitive understandings of how design features af-
fect user experience, complementing statistical findings with nuanced explanations
of why certain mini map attributes succeed or fail.

4.4.3 Results

We evaluated assisted navigation features for collaborative industrial VR through
a mixed-methods, user-centered protocol grounded in Industry 5.0 and HCI princi-
ples. Three mini-map attributes—portability (carried vs fixed), tangibility (grab-
bable/manipulable vs static), and dimensionality (2D vs 3D)—were operational-
ized across interactive prototypes and tested in a multi-user virtual factory layout
scenario. Participants (students and industry practitioners) performed standard-
ized navigation and layout-perception tasks designed to elicit spatial cognition,
coordination, and decision-making demands representative of planning workflows
in manufacturing (H. Cao, S"oderlund, et al., 2024; Peruzzini, Pellicciari, et al.,
2019; A. Reiman et al., 2021).

Quantitative outcomes included task completion time, navigation efficiency (path
length, detours), layout perception accuracy (object/zone recall), and error rates.
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Subjective workload was captured with the raw NASA-TLX, given its widespread
use, sensitivity across varied interaction tasks, and practical software support for
collection and postprocessing (S. G. Hart and Staveland, 1988; A. Cao et al.,
2009; Said et al., 2020). To complement metrics, post-task interviews and brief
open-ended prompts probed clarity, cognitive effort, collaboration fluency, and
mini-map usefulness; qualitative data were analyzed using thematic analysis to
surface design implications (V. Braun and V. Clarke, 2006). Procedures empha-
sized comparable task flows and instructions across prototypes to isolate Ul effects
and reduce extraneous cognitive load (Skulmowski and Xu, 2021; Makransky et
al., 2017). Given known impacts of landmarks and map aids on spatial processing
in VR, environmental cues were included to enhance ecological validity (Cheng et
al., 2022; Kuo et al., 2022). Statistical analysis applied appropriate nonparametric
tests and effect sizes common in HCI evaluation; interpretation triangulated per-
formance, workload, and qualitative themes to derive standardizable guidance for
cognitively light, portable mini-maps aligned with Industry 5.0’s human-centric
agenda (E. Fogelberg et al., 2024; G. Di Leo and F. Sardanelli, 2020; J. Cohen,
1988; J. Alves, Lima, et al., 2023).

4.4.4 Discussion and Conclusion

Findings indicate that assisted navigation design can meaningfully lower cogni-
tive demands in collaborative industrial VR when features are tuned for human-
centered use. Portable mini-maps consistently supported quicker, less effortful
navigation and more accurate layout perception, suggesting that reducing ac-
cess cost to spatial aids curbs extraneous load and improves team fluency—an
alignment with Industry 5.0’s emphasis on cognitively efficient, worker-supportive
interfaces (J. Alves, Lima, et al., 2023; E. Geurts et al., 2022). This comple-
ments evidence that presence alone does not ensure learning or performance gains;
workload-sensitive guidance and interface scaffolds are decisive (Makransky et al.,
2017; Skulmowski and Xu, 2021). The mixed-methods triangulation further un-
derscores that subjective workload (NASA-TLX), task metrics, and qualitative
insights converge on a practical principle: navigation aids must be immediately
available, easy to manipulate, and visually minimal to avoid attentional tunneling
and map-world mismatches (S. G. Hart and Staveland, 1988; Said et al., 2020).

For standardization, the results extend earlier calls to codify user-centered VR
components for industrial planning and reviews—positioning portable mini-maps
as a transferable pattern for multi-user workflows (H. Cao, S"oderlund, et al., 2024;
Peruzzini, Pellicciari, et al., 2019). Practically, teams should: (i) prefer portable
over fixed maps for continuous access, (ii) keep interaction manipulable but low-
friction, and (iii) tailor visual density to task complexity. Future studies should
quantify effects across expertise levels and disturbances (e.g., time pressure), inte-
grate physiological load indicators, and explore interoperability with digital twins
to sustain human-centricity at scale (A. Reiman et al., 2021; Escallada et al., 2025;
Reiners et al., 2021).
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Discussion

The research is led by two research questions:

RQ1 How do cognitive augmentation technologies influence shop floor workers
during the learning and operational phase in the Industry 5.0 manufacturing con-
text?

Cognitive augmentation technologies significantly influence shop floor workers
during both the learning and operational phases within the Industry 5.0 manufac-
turing context, primarily by aiming to enhance human capabilities while managing
the associated mental workload (H. Cao, Rivera, et al., 2025; Emmie Fogelberg,
Huizhong Cao, et al., 2025; Nitish Singh Jangwan et al., 2022; Lucchese et al.,
2025). Industry 5.0 marks a shift from the automation-focused Industry 4.0 to-
wards a human-centric, sustainable, and resilient manufacturing paradigm, where
human creativity, ingenuity, and innovation are enhanced by technology, rather
than replaced (Breque et al., 2021; Lihui Wang, 2021).

A central concept for understanding this influence is mental workload, defined
as the amount of mental resources and cognitive effort required to complete a
task (L. Longo et al., 2022). Mental workload is a crucial indicator for moni-
toring stress, maintaining mental health, and objectively assessing factors linked
to productivity, error reduction, and overall performance in technology adoption
(Galy, 2018; Young et al., 2015). Both excessive mental workload, which can lead
to errors and slower response times, and underload from monotonous tasks can
negatively impact performance (Xie and Salvendy, 2000).

This thesis focuses on the following three cognitive augmentation technologies:
VR, humanoid social robots (HSR), and video as shown in Table 5.1.
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Table 5.1: Cognitive augmentation technologies and mental workload optimization
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Table 5.1: Cognitive augmentation technologies and mental workload optimization
metrics (continued)
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VR:

VR provides immersive and interactive training at a lower cost, re-
ducing travel and waste as documented in Paper 1. However, it also
imposes a substantially higher workload compared to the other modal-
ities, which negatively affects task efficiency once instructional support
is removed (Papers 2 and 3).

Interestingly, while VR appears less effortful during the learning phase,
this initial ease does not translate into operational effectiveness. The
paradox suggests that the true cognitive load emerges when users need
to perform tasks independently, underscoring potential issues in trans-
fer from guided to autonomous performance.

Elevated workload in VR has been linked to the novelty of interac-
tion schemes, lack of haptic feedback, and interface complexity (Paper
4; (Y.-T. Huang et al., 2025; Han et al., 2021)). Navigation chal-
lenges and rich visual environments can amplify cognitive demands,
occasionally causing disorientation (H. Cao, Rivera, et al., 2025; Han
et al., 2021; Parsons et al., 2023). These findings align with the "test
effect,” which suggests that excessive guidance in learning phases may
create an illusion of mastery but hinder recall and long-term learning
(Oden et al., 2024).

o Humanoid social robots (HSRs):

HSR-based instruction represents a middle ground between video and
VR, balancing engagement with moderate cognitive demands (Papers
2 and 3).

Unlike VR, workload in HSR-based instruction appears stable across
both learning and operational phases, indicating sustained but man-
ageable engagement. Learners also maintain high accuracy, albeit at
slightly slower speeds compared to video-based instruction. Additional
physiological signals suggest that robots might evoke deeper engage-
ment without tipping into cognitive overload.

Nevertheless, over-reliance on interactive robotic guidance could in-

crease task dependency and cognitive strain, as hinted by qualitative
feedback from Study B.

e Video-based instruction:

Video consistently supports the most efficient task performance with
low mental workload (Paper 2). Compared to HSR and VR, it re-
sults in faster task execution and fewer errors, making it particularly
effective for procedural or low-complexity tasks.

Its effectiveness stems from simplicity, visual clarity, and alignment
with hands-on practice. However, it is not without drawbacks, as
segmented clip formats or requirements for physical mockups may slow
down learning in more complex scenarios.



RQ2 How can quantification of mental workload be utilized for improvement of
cognitive augmentation technologies?

Assessing mental workload typically involves a triangular combination of sub-
jective, physiological, and performance-based measures because such assessment
is much stronger than the single instruments, but it is not necessary in all cases,
and it is definitely not widely done (Emmie Fogelberg, Peter Thorvald, et al.,
2024). The correlation of the triangulation combination of metrics is tested in
Paper 3, and from the study, it seems the physiological data requires accurate and
high-fidelity equipment for a longer testing period to get a strong and significant
correlation with the other two metrics.

ICF categorization Vision
Subjective assessment ————— Environmental factors Transform from smart to
(Trust, satisfaction) a cognitive system
Performance-based \—————— Task/participation Empowerment
(Use cases)
Physiological data ———  — Body structure ———  Well-being

(Human factors)

Figure 5.1: Vision and the multi-model triangulation of mental workload metrics

The triangulation observed across multi-modal mental workload metrics in Fig-
ure 5.1 aligns with the ICF’s biopsychosocial model, where functioning emerges
from interactions among body functions/structures, activities/participation, and
environmental factors (WHO, 2001; Battistella and De Brito, 2002). Physiological
indicators (e.g., HRV) index body functions/structures and capture cognitive func-
tions from a human-factors perspective, supporting the thesis vision of well-being
through measurable changes in mental functioning. Performance-based outcomes
correspond to Activities/Participation by expressing capacity and performance
in realistic work tasks; selecting or designing suitable digitalization tools thereby
enhances task execution and perceived empowerment on the shop floor. Subjec-
tive assessments reflect Environmental Factors by evaluating facilitation, trust,
and satisfaction as perceived barriers or facilitators, which in turn motivate the
progression from “smart” toward cognitive systems in practice.

Quantifying mental workload provides direct, actionable insights to improve
these technologies for Industry 5.0. As shown in Paper 3, RSME (subjective as-
sessment), error rate, and completion time (performance-based) statistically signif-
icantly correlate during the same phase, either in learning or operation. Previous
literature has stressed that a multi-dimensional tool to detect multiple mental
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workload signals is needed to cover the complexity of the phenomenon. As from
study B (papers 2 and 3), the HRV did not show statistical significance result due
to the ultra-short phase and equipment accuracy, but it does show the concept of
real-time monitoring in a longer phase as indicated in the literature (Shao et al.,
2020).

As shown in Study B (papers 2 and 3), the parallel comparison of the mental
workload imposed by the cognitive augmentation technologies—VR, humanoid so-
cial robots, and video instruction—helps to understand the relation between the
functioning of humans and the technology and builds a new way of interpreting
human-computer interaction. Measuring mental workload can help create adap-
tive learning environments that customize experiences, provide a more just-in-time
instruction design, and optimize cognitive resource allocation. Though the HRV
did not show a strong statistically significant correlation to the other metrics, it
shows the potential in a longer testing phase with higher accuracy, or using other
physiological metrics like eye tracking or ECG (Emmie Fogelberg, Huizhong Cao,
et al., 2025), the real-time monitoring to matech modality to task and learners’
need is potential. Real-time monitoring of the mental load imposed by the digital
technologies, and provide sensitive feedback to accelerate design iteration. Focus
on designing user-friendly and intuitive interfaces, particularly in VR, to avoid
unnecessary complexity, as shown in Paper 4. For example, portable mini-maps
in VR significantly reduce mental, physical, and temporal demands and frustra-
tion, while improving navigation and layout perception (H. Cao, S"oderlund, et
al., 2024). This suggests that user-controlled interfaces that offer immediate avail-
ability, low friction, and minimal visual density are crucial (H. Cao, S"oderlund,
et al., 2024).

Findings suggest that 3D maps, as opposed to 2D, improved layout perception
and reduced completion time, indicating that appropriate contextual representa-
tion might be more critical than absolute visual simplicity, as shown in Paper
4. Through the subjective assessment (NASA-TLX, spatial navigation metrics)
and performance-based assessment (completion time, error rate) in Paper 4, we
could see the positive correlation between the user experience and productivity
while they navigate and collaborate in the virtual environment. By identifying
portability as the design feature that could lower the mental workload, the design
of the user interface is thus optimized and aimed at a better user experience. By
measuring mental workload, designers can identify and adjust overwhelming in-
formation presentation to better reduce the burden on limited-capacity working
memory (Paas et al., 2016).

The purpose of quantifying mental workload is to provide a comprehensive un-
derstanding of the cognitive aspects of human factors. The goal is not necessarily
to reduce mental workload, but rather to align individuals’ capabilities with ap-
propriate technologies and minimize unnecessary extraneous demands. Moreover,
integrating real-time monitoring into the human digital twin within factory plan-
ning can generate valuable insights to support truly human-centric production.
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In conclusion, the systematic quantification and evaluation of mental workload,
through a multi-modal assessment approach, is fundamental for iteratively im-
proving cognitive augmentation technologies. This data-driven approach allows
for the creation of systems that are not only technologically advanced but also
truly human-centric, ensuring efficiency, effectiveness, and user well-being in the
evolving industrial and learning landscapes of Industry 5.0.

5.1 Contributions of This Thesis

The thesis advances a human-centric, cognitively efficient approach to industrial
training and collaboration aligned with Industry 5.0, operationalizing “augment,
not overload” across Papers 1-4 through validated measurement, comparative
modality analysis, and actionable design patterns.

Academic contribution:

e Quantifies mental workload via triangulated measures (physiology, perfor-
mance, and subjectives) and models its relationship to learning transfer,
error rates, and task efficiency across training and collaborative planning
tasks.

o Compares instructional modalities (video, VR, humanoid social robots) un-
der matched objectives to derive modality—task fit rules of thumb and bound-
ary conditions, informing selection and sequencing for skill acquisition and
retention.

o Translates cognitive ergonomics into reusable VR interface and workflow
patterns for collaborative planning, with principles for reducing extraneous
load, scaffolding germane load, and preserving situation awareness in multi-
user contexts.

e Demonstrates an ICF-informed mapping from mental functions to activi-
ties/participation and contextual factors, providing a theoretically grounded
lens that links cognitive workload to real-world performance and well-being
outcomes.

Industrial contribution:

e Provides a practical playbook for selecting and configuring digitalization
tools (video, VR, humanoid social robots) to accelerate onboarding and up-
skilling while controlling cognitive load, including readiness checks, modality
selection criteria, and roll-out steps.

e Delivers shop-floor—tested VR interface patterns and collaboration work-
flows that reduce time-to-competence and rework, with guidelines for task
chunking, feedback timing, and attention management in constrained envi-
ronments.

o Establishes a lightweight measurement toolkit (HRV, performance teleme-
try, brief subjective scales) that production teams can deploy to monitor
cognitive strain during training and continuous improvement activities.
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e Supplies decision support for human—technology allocation in Industry 5.0
initiatives, clarifying when to automate, augment, or re-sequence work so
operators remain empowered, safe, and in control.

¢ Codifies change-management and adoption guidance—stakeholder mapping,
trust-building through transparent feedback, and iterative pilots—so inter-
ventions scale from pilot cells to lines without overload.

Overall, the mission was met to a strong degree: the work provides evidence-
based design principles, validated measures and protocols, and concrete impli-
cations for deployment in real industrial contexts. Research questions were ad-
dressed through controlled experiments, mixed-method evaluations, and design-
science contributions. Sustainability is supported indirectly by improving training
efficiency, reducing rework and errors, and enabling remote collaboration.

5.2 Reflection on methodology

This work stems from a long-standing fascination with the rules, regularities,
and underlying simplicity that mathematics reveals, and with the aesthetic of
scientific, universal methods that make such structure visible. This orientation
has consistently shaped the research stance adopted here: a commitment to clear
hypothesis formation grounded in real-world norms, and to rigorous sampling
and comparative experimentation capable of identifying meaningful, statistically
and practically significant differences. The trajectory of the project—and the
development of the researcher—has been guided by these principles, for which
there is strong cause for gratitude and reflection.

The central contribution of this thesis lies less in any single domain-specific re-
sult than in the methodology itself. The research demonstrates that a carefully
integrated, multidisciplinary approach can be made operational in manufacturing
contexts, bringing together cognitive science, architecture, human—computer inter-
action (HCI), and software engineering within the emerging paradigm of Industry
5.0. In doing so, it reframes manufacturing not merely as a site of production
optimization, but as a design space where human cognition, spatial and material
constraints, interaction modalities, and software-intensive systems co-evolve.

Methodologically, the study shows how quantitative and qualitative strands
can be productively intertwined to reveal regularities that neither approach alone
would surface. Quantitative methods—through controlled comparisons, sampling
strategies, and inferential analyses—yielded measurable effects and patterns (Pruzan,
2016), while qualitative inquiry—through observation, elicitation, and interpre-
tive synthesis—contextualized those patterns, explained outliers, and uncovered
latent mechanisms (V. Braun and V. Clarke, 2006). The result is a mixed-methods
framework capable of formulating and testing hypotheses that are both empirically
robust and experientially grounded.
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5.8 Reflections on Research Quality and Ethics

Two implications follow:

First, for Industry 5.0, which emphasizes human-centricity, resilience, and sus-
tainability (Breque et al., 2021), the integration of cognitive science and HCI into
manufacturing research is not optional but necessary. It supports the design of sys-
tems that are not only efficient but also learnable, error-tolerant, and aligned with
human decision-making and perceptual limits (Lihui Wang, 2021). Architecture
contributes by situating these systems in spatial and organizational configura-
tions that afford safe, intelligible, and adaptable workflows. Software engineering
connects these human and spatial insights to implementable, maintainable, and
scalable solutions.

Second, for universal design, the findings indicate that mixed-methods inquiry
can accelerate the articulation of cross-context “rules” and design regularities. By
iterating between numerical evidence of effect and qualitative accounts of experi-
ence and use, the research identifies design constraints and affordances that travel
across settings and user groups, thereby advancing generalizable design principles
without erasing contextual nuance.

Taken together, these results suggest a pathway toward a methodology-driven
science of manufacturing for Industry 5.0: one that treats methodological rigor
and integrative design as mutually reinforcing. The thesis argues that this ap-
proach—rooted in hypothesis discipline, comparative experimentation, and mixed-
methods triangulation—constitutes its primary contribution. It demonstrates that
a universalist aspiration in design need not conflict with local specificity; rather,
it can emerge from systematic, transparent integration of quantitative regularities
with qualitative understanding. This integration yields not only better explana-
tions of current systems but also a principled basis for guiding future interventions
in human-centric, software-intensive, and spatially situated manufacturing envi-
ronments.

The experiments could be further improved by adopting the following strategies:

o Increasing practitioner diversity and sample size; balancing gender repre-
sentation.

o Expanding task complexity, incorporating disturbances, and adding team-
based trials.

¢ Running within-subject or longitudinal designs to capture habituation, re-
tention, and transfer.

o Augmenting workload batteries with additional physiological (where fea-
sible and privacy-preserving), behavioral (micro-interactions), and secondary-
task probes; preregistering analyses when appropriate.

5.3 Reflections on Research Quality and Ethics
The research followed core principles of informed, voluntary, and documented

consent; participants received clear information on aims, procedures, risks, data
handling, and withdrawal rights before any activity. Recruitment targeted adult
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Chapter 5 Discussion

volunteers without known contraindications for immersive or sensor-based studies,
and participation could be discontinued at any time without penalty. Procedures
minimized burden by using short sessions, familiarization where appropriate, and
debriefing. Personal data were collected only to the extent necessary for research
objectives and handled according to institutional guidance, with anonymization
in analysis and reporting. Future work should further scrutinize privacy and
data protection in sensor-rich settings (e.g., video, voice, physiological signals),
clarify secondary use, retention, and cross-border data processing, and strengthen
processes for participant comprehension across languages and accessibility needs.

Research quality and usefulness: The work answers well-defined questions with
convergent evidence, yields actionable design guidance (e.g., just-in-time, cogni-
tively light interfaces; portable navigation aids), and contributes to VR HCI and
industrial ergonomics by connecting measurable workload effects to concrete inter-
face features. The results are useful for practitioners who must balance cognitive
demands, clarity, and efficiency in digital work instructions and collaborative VR.

Future directions: Address ethical and privacy issues around sensing in opera-
tional contexts; develop robust, real-time workload inference models across tasks
and populations; evaluate hybrid instruction ecosystems (video, social robots, VR)
in varied industrial applications; and integrate IoT and smart manufacturing data
streams for adaptive, human-centric systems.
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5.4 Future Research

The study further addresses accessibility issues and regards it as a future direction:
individuals with hearing impairments may struggle with audio-based instructions
from social robots, making VR a more suitable alternative for them; in contrast,
social robots may be preferable for users with vision impairments. Overall, video
instruction emerges as the most universally accessible digital tool, yet the research
emphasizes the importance of improving user experience and accessibility in both
Al-driven social robots and VR by applying universal design principles. For fu-
ture work, the study will be extended to universal design and the prototyping
development of more cognitive augmentation technologies for prescriptive studies:

Consider personal factors, including disabled and aging people’s special de-
mand for universal design of cognitive augmentation technologies.

Understand the vulnerable groups’ needs, such as disabled, aging, or novice
workers, and provide guidelines for different cognitive augmentation tech-
nologies’ development.

Prototype development for a humanoid social robots, with more interaction
techniques like facial expression, dialect, information density in instruction,
and camera feed for better engagement.

Real-time workload inference and closed-loop adaptation. Explore a more
accurate HRV method, and use it as the dynamic input to manage the
mental workload of a digital system.

Broader industrial applications, integration with IoT /DT pipelines, and sus-
tainability metrics (e.g., rework, travel, and material waste reductions).

Longitudinal and within-subject studies to capture habituation, retention,
and transfer.

In sum, the thesis fulfills its vision and mission to a high degree: it connects
rigorous workload evidence to actionable design choices for human-centric digital-
ization, providing a practical roadmap for Industry 5.0 training and collaborative
cognitive system.
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CHAPTER 6

Conclusion

This thesis investigated the role of cognitive augmentation technologies on the
Industry 5.0 shop floor with a dual focus on human-centric value and measurable
cognitive impact.

The results show that these technologies can meaningfully augment rather than
replace human capabilities—improving learning effectiveness, operational perfor-
mance, and inclusion—when they are designed and deployed with attention to
ethics, accessibility, and well-being. Across modalities, human-centered user in-
terface design emerges as a primary lever to reduce unnecessary complexity, ac-
commodate diverse worker needs, and sustain motivation and satisfaction in daily
operations. Properly configured, adaptive, natural, and cognitive systems can
empower vulnerable groups, support lifelong learning, and improve job quality.

Furthermore, the research demonstrates that a mixed-measures approachinte-
grating subjective ratings, physiological signals, and performance metrics—provides
a reliable basis for quantifying workload and guiding design decisions. In prac-
tice, triangulating instruments (e.g., NASA-TLX, HRV, RSME, error rates, and
completion time) enables detection of overload or underload, comparison between
modalities, and iterative tuning of interfaces and training protocols. This evi-
dence can be operationalized through adaptive interventions: adjusting informa-
tion density and pacing with segments, simplifying interaction flows, or switching
the assistance modality, like proper Ul to keep workload within an optimal band.
Such closed-loop, data-informed adjustments improve learning efficiency, reduce
errors, and enhance operational satisfaction.
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Chapter 6 Conclusion

The key findings of the licentiate are as follows:

VR provides immersion and ecological validity but imposes the highest men-
tal workload, reducing effectiveness during operational tasks.

Humanoid social robots achieve a middle ground, offering interactive en-
gagement with moderate and stable workload.

Video instruction supports the fastest, most accurate, and cognitively ef-
ficient task execution, making it the most reliable modality for procedural
training.

Triangulated workload measurement (subjective, physiological, performance-
based) strengthens evaluation but requires careful implementation, espe-
cially with physiological signals.

Applying workload metrics enables actionable design refinements, such as
portable VR mini-maps and user-controlled interaction features.

The thesis operationalizes the principle of “augment, not overload” by link-
ing workload assessment directly to instructional design guidelines.

Taken together, the thesis concludes that cognitive augmentation for Industry
5.0 is most effective when it (i) centers human agency for inclusion, empowerment,
symbiosis, and augmentation, (ii) matches modality to task and user profile, and
(iil) uses validated, multimodal workload assessment to drive continuous refine-

ment. These principles offer a practical pathway to productivity gains and digital
proficiency that also protect dignity, well-being, and long-term resilience on the
shop floor.
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