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A B S T R A C T

The Amazon is the largest continuous area of tropical forest on Earth, yet it remains under significant threat from 
deforestation, degradation, wildfires, and the expansion of agriculture, livestock, and illegal mining. While 
optical and radar-based monitoring systems provide accurate long-term data, such as Land Use and Land Cover 
(LULC) and deforestation alerts, their effectiveness is largely confined to the dry season, with some requiring 
extensive manual effort to detect forest disturbances. This study aims to improve LULC and deforestation 
monitoring by developing deep learning (DL) classifiers using Synthetic Aperture Radar (SAR) coherent features. 
The models were trained on three distinct Amazonian landscapes, such as flat, undulated, and hilly, through 
Sentinel-1 data with a 30 m minimum mapping unit and 12-day revisit time. U-Net, Semantic Flow Network (SF- 
Net), and Long Short-Term Memory (LSTM) architectures were adapted and enhanced with residual learning, 
dilated convolutions, attention mechanisms, and squeeze-and-excitation blocks, with hyperparameter tuning 
conducted via the Optuna framework. The model Sentinel 1 scene 54 622/627, U-Net model, and 4 classes 
reached the highest overall accuracy and intersection over-union (IoU) in order of 0.95 and 0.66, respectively. 
The less precise mapping was noticed by Sentinel 1 scene 83 617/622, LSTM model, and 4 classes with a global 
accuracy of 0.61 and IoU of 0.36. The deep learning model that achieved the lowest error was U-Net, with an 
RMSE of 0.43 and a standard deviation of 0.43, and it was considered a random error. On the contrary, the SF- 
Net and LSTM showed systematic error, which reached RMSE between 0.38 and 0.83 and a standard deviation 
between 56.53 and 114.69. The most precise LULC classes were provided by Forest (Fo) and Deforestation (De), 
which achieved the highest values of F1-Score with 0.97 and 0.92, respectively. On the opposite way, it was the 
Non-Forest (NF) and Water (Wa) classes that obtained a lower F1-score in order of 0.51 and 0.72, respectively. 
Taylor and Target diagram analyses indicated that scene 83 617/622 was particularly well-suited for U-Net- 
based DL modeling, aligning closely with Ground Control Points (GCPs). This research introduces a novel DL 
approach leveraging Sentinel-1 coherent features for effective LULC mapping across varied terrain in the 
southern Amazon during the dry season.

1. Introduction

Deforestation and forest degradation negatively affect carbon stock, 

biodiversity, and the provision of ecosystem services, leading to land
scape vulnerability and less resilience to climate change (Ometto et al., 
2022). The world’s forest cover is estimated at an absolute area of 40.1 
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million km2, which is 31 % of Earth’s land surface and provides direct 
dependence on the resources for 1.3 billion people (FAO, 2024). It is 
estimated that 4.2 million km2 of forest cover were lost between 1990 
and 2020, and the land use and land cover (LULC) have been changing 
under deforestation rates in the order of 102 thousand km2.yr− 1 in the 
last 5 years (FAO and UNEP, 2020). The highest deforestation rates are 
observed in Africa, followed by South America and Asia.

There are several initiatives with reliable results to monitor the 
processes of LULC and deforestation in the world, such as optical-based 
systems like the Global Land-Cover Classification (Zhang et al., 2021), 
Global Forest Change (Hansen et al., 2013a, 2013b), Global Land Cover 
Facility (Song et al., 2018). The more recent mapping services are 
forthcoming with highly detailed spatial resolutions with 5 up to 30 m 
and high performances of global accuracy between 0.59 and 0.98 that 
are Deter by Diniz et al. (2015), ESA World Cover by Zanaga et al. (2022)
and Global Watch Forest by CTREE (2024), and also, the promising 
radar-based systems like CESBIO/TropiSCO by Mermoz et al. (2021), the 
RADD by Reiche et al. (2021) and JJ-Fast by Watanabe et al. (2021) with 
performances of global accuracy between 0.26 and 0.91. These 
long-term optical monitoring services are majorly based on Terra, Aqua, 
Amazonia, CBERS, Landsat, Sentinel 2, and PlanetScope, and the 
radar-based monitoring services use Sentinel 1 and Also-2. They have 
been achieving high precision in detecting small disturbances in the 
forest with minimum mapping unit (MMU) in the order of 0.1–25 ha, 
quick revisit times of 5–42 days, and coming up with several classes (2 
up to 30) like deforestation and degradation. In addition, there are new 
geospatial tools to recognize the regrowth of natural forests (Hoekman 
et al., 2020). However, they are more effective in the dry season (June 
up to October), they have difficulty mapping close to the Equator line 
(around − 4 to +4◦), in complex landscapes with steeper slopes or 
flooded plains, and some of them demand extensive human labor to 
generate training data.

Amazon is the largest continuous area of tropical forest in terms of 
worldwide coverage and biodiversity (FAO, 2020), which has estimated 
ecosystem services with a maximum contribution of around 57 to 737 
USD.ha− 1.yr− 1 in forest remnants (Strand et al., 2018). The Project for 
Monitoring Deforestation in the Legal Amazon by Satellite (PRODES) by 
INPE (2024) is the major monitoring service for Amazon that has been 
continuously measuring deforestation by visual interpretation for 36 
years in an approximated area of 5 million km2, it indicates a total 
deforestation of 850.5 thousand km2, which is lost proportionally to 
16.96 % of the Brazilian Legal Amazon (INPE, 2024). Recently, Map
biomas by Souza et al. (2020) handed in the yearly LULC maps for the 
entire Brazil using optical images and semi-automated classification. 
Although Brazilian institutional efforts culminated in drastic reductions 
by 2012, reaching a deforestation rate of 4571 km2 yr− 1, recently, the 
deforestation rate increased in 2022 to 11 594 km2 yr− 1, which is very 
far from the target established in the Paris Agreement by 2020, that rate 
was 3925 km2 yr− 1 (MMA, 2022).

Amazon demands special attention due to the growing pressure 
exerted by demographic, economic, and social changes, especially by 
the expansion of agriculture and livestock, new roads, energy projects, 
and spontaneous or subsidized migrations (Barreto et al., 2008). The 
significance of the Amazon lies in its social, economic, and ecosystem 
aspects, and on the other hand, the challenges of monitoring and sur
veillance are in its territorial extension, severe cloudiness, and landscape 
complexity (Ab’Saber, 2002). The main commitment of Brazil is to 
achieve the reduction of deforestation rates in forested areas which 
collaborates with life on land (fifteenth sustainable goal development 
from United Nations).

Synthetic Aperture Radar (SAR) is an active remote sensing tech
nology that uses microwave illumination, enabling data acquisition 
under all-day and nearly all weather conditions. Depending on the 
wavelength, SAR signals can penetrate clouds, forest canopies, soil, and 
even ice. Coherent SAR systems capture both amplitude and phase in
formation, enabling techniques based on predictable interference 

patterns that allow persistent monitoring (Sullivan, 2004; Woodhouse, 
2017). The high temporal consistency of SAR imagery is particularly 
valuable for Earth observation (EO) in tropical forest environments such 
as the Amazon.

Over the past four decades, more than 30 SAR satellite missions have 
been launched, mainly by agencies in North America, Europe, and 
Japan. This number continues to grow due to advances in lighter pay
loads, tandem configurations, and improved spatial resolution, swath 
width, and imaging modes (Ouchi, 2013; Song et al., 2024). The 
Copernicus program, through missions like ERS-1/2, Envisat-ASAR, and 
Sentinel-1A/B, has provided over 30 years of consistent C-band SAR 
data with global coverage and fixed acquisition geometry (ESA, 2024a), 
supporting long-term environmental monitoring.

SAR systems operating at longer wavelengths (L- and P-band) and 
equipped with polarimetric capabilities are particularly effective for 
forests. These systems can penetrate dense vegetation canopies, retrieve 
structural information, and distinguish scattering mechanisms through 
polarimetric decompositions. The detection of forest disturbances and 
structural variation is enhanced by derived metrics such as entropy, 
anisotropy, and the alpha angle, along with coherence-based indices 
decompositions (Estimates, 2021; Lee and Pottier, 2017; van Der San
den, 1997). In contrast, short-wavelength SAR systems (X- and C-band) 
are susceptible to noise and offer limited canopy penetration but are 
highly sensitive to surface and upper canopy changes. They are espe
cially effective for identifying abrupt forest disturbances such as defor
estation, selective logging, and fire scars. Moreover, their high revisit 
frequency and temporal coherence make them well-suited for 
time-series analysis and near-real-time monitoring (Flores-Anderson 
et al., 2019).

Recent advancements in SAR technology have significantly 
expanded its utility. New-generation SAR systems now achieve revisit 
times of just a few hours and spatial resolutions as fine as 0.2 m. These 
platforms support advanced imaging techniques such as interferometry, 
polarimetry, radargrammetry, and tomography, greatly enhancing EO 
capabilities (Ouchi, 2013; Paradella et al., 2012). Emerging coherent 
SAR techniques such as SweepSAR, Terrain Observation with Progres
sive Scans SAR (TopSAR), dwell mode, Polarimetric Interferometric SAR 
(PolInSAR), Small Baseline Subset (SBAS), and Permanent Scatterer (PS) 
offer prompt capabilities for subtle change detection and large-scale 
monitoring. For forests, these techniques allow enhanced speckle 
reduction, wider swath coverage, improved geometric stability, signal 
coherence, terrain models, height canopy, and greater sensitivity to 
vegetation structure and vertical complexity (De Zan and Monti Guar
nieri, 2006; Freeman et al., 2009; Hussain et al., 2025; Vehmas et al., 
2024).

New missions such as NISAR and Biomass will extend capabilities 
using S-, L-, and P-band sensors, with spatial resolutions of 3–60 m and 
revisit times of 12–17 days (ESA, 2024a; Rosen and Kumar, 2021). In 
Brazil, the Lessônia nanosatellite constellation in operation since 2025, 
it consists of in X-band with 3–15 m resolution and 17-day revisit, 
covering 250 000 km2 monthly which means about 5 % of the Amazon 
(FAB, 2022).

The usage of SAR data over forests has contributed to several key 
findings such as: i) SAR observables, including backscatter intensity, 
coherence, polarimetric parameters, texture, and elevation that have 
improved forest mapping accuracy, though their effectiveness often 
depends on the spectral band (X, C, L), polarization (single, dual, quad), 
high spatial resolution (1–6 m) and short revisit cycles (hours to 6 days), 
which may limit their application across different landscapes or mini
mum mapping units (1–10 ha) (Altarez et al., 2023; Guimarães et al., 
2018; Jin et al., 2014; Sugimoto et al., 2022; Vaglio Laurin et al., 2013; 
Watanabe et al., 2021); ii) SAR process chain, is essential in reducing 
noise and ambiguity, which speckle filtering preserves texture and 
nonlinear scattering behavior in heterogeneous forested regions (Dasari 
et al., 2022; Dong et al., 2016; Kang et al., 2023; Quegan and Yu, 2001), 
and also, by SAR-optical fusion improves classification outcome, 
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although it remains challenging in persistently cloud-covered environ
ments (Reis et al., 2020; Tavares et al., 2019; Vaglio Laurin et al., 2013); 
iii) Time-series approaches, Bayesian inference and recurrent neural 
networks have demonstrated strong potential for forest disturbance, but 
they often rely on dense temporal observations, thresholds investiga
tion, and auxiliary data such as masks, thematic maps, and digital sur
face models (DSM) (Ballère et al., 2021; Doblas et al., 2020; Koyama 
et al., 2019; Mermoz et al., 2021; Nicolau et al., 2021; Reiche et al., 
2018); iv) Classification performance, it has improved through machine 
learning and deep learning methods, especially in terms of overall ac
curacy (>0.80) and minimum mapping unit (<5 ha) (Fu et al., 2017; 
Kuck et al., 2021; Maretto et al., 2021; Matosak et al., 2022; Mullissa 
et al., 2023; Solórzano et al., 2021; Zhao et al., 2022); and finally, v) 
Biomass estimation, it is the most promising product for carbon stock 
that can be supported by LULC maps. Still, these models require precise 
location of forest/non forest, canopy height data and detailed forest 
inventories and are often limited in spatial scope (Narvaes et al., 2023; 
Persson and Huuva, 2024; Pourshamsi et al., 2021; Quegan et al., 2019; 
Soja et al., 2018, 2021a, 2025). These findings collectively emphasize 
the need for forest monitoring frameworks that ensure transferability 
across regions, several scales, and remote sensing data sources using 
their space features.

The DL algorithms are changing EO which outcomes in massive re
sults in remote sensing providing high accuracies, improved models, 
large areas mapped, and detailed change detections. Since SAR images 
have higher ambiguity in the backscattering, it is essential to exploit the 

spatial context and the time series of the amplitude signal instead of 
usage only the statistical behavior (Ma et al., 2017, 2019). In addition, 
several SAR studies corroborate using coherent features to improve 
classifier performance (Parikh et al., 2020; Passah et al., 2022; Shafique 
et al., 2022; Zhou et al., 2016). There are still challenges to overcome in 
DL applications such as self-supervised training, handling complex 
numbers, overfitting, class imbalance, and vanishing or exploding 
gradients.

It is mandatory to amplify the spatial-temporal context on Amazon, 
which means increasing the dataset with annotations. There may be 
increased uncertainty and decreased assertiveness in recognizing targets 
due to Amazon’s landscape and its environment. The development of 
ML/DL classifiers demands knowledge of state-of-the-art techniques 
from computer sciences, but it is crucial to understand remote sensing 
besides explainable geophysical conditions. (Joshi et al., 2016; Maxwell 
et al., 2018; Shafique et al., 2022; Tuia et al., 2025). The opportunity 
here is given by the Sentinel 1 in C-band dual-polarization from (ESA, 
2024) in its better update frequency of 12 days and 20 m of spatial 
resolution that was used to discriminate LULC classes and subtle changes 
in the Amazonian landscape.

This study proposed to map LULC in the Amazon focused on defor
estation. It employed a Sentinel 1 SAR process chain and implemented 
DL models for training and inference based on intensity, interferometric 
coherence, and polarimetric decomposition. It is supposed that the 
classifiers’ errors vary with each Sentinel 1 scene, which presents 
different landscapes. In this sense, Sentinel 1 scenes in the southern 

Fig. 1 - a. ) The study area is located in South America; b) the Amazon biome and its Legal Amazon (Brazilian territory) observed by the Sentinel 1 acquisition 
scenario available by (ESA, 2024); c) the three path/frames of the Sentine1 descending orbit located on the southern of Amazon. Sentinel 1 multitemporal color 
composition was elaborated to enhance landscape changes, and it is composed of Covariance (Cov) in Red, Minimum (Min) in Green, and Gradient (Grad) in Blue 
(SARMAP, 2016a).
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Amazon were mapped and evaluated under deforestation pressure 
during the dry season.

2. Study area

Southern Amazon has been chosen as the study area (Fig. 1) because 
it is under pressure as a new hotspot of deforestation with 35 % of all 
new alerts in the Amazon, which is driven by the advance of livestock 
and construction of highways (Chaves et al., 2024). Also, the location is 
between − 5◦ and − 12◦ of latitude which increases the chances to obtain 
Sentinel 1 and 2 in co-orbital arrangement without cloud for training 
and evaluation of the models. The study area was defined by 6 scenes of 
Sentinel 1, considering the default arrangement for Sentinel 1 as 
path/frame (250 km × 170 km) that were acquired during one passing 
in July/2022 for training, and another in July/2024 for inference, 
totalizing 12 images. These 6 scenes were rearranged into three path/
frames composed of 2 scenes in the descending orbit in each. The three 
path/frames of the study area together cover an area of 810 km × 350 
km and are located at the southern border of the Amazon, which 
recently had high rates of deforestation and wildfires (INPE, 2024; 
MapBiomas, 2024).

There are three main roads in the study area called BR-319, BR-230, 
and BR-163 which cross in the SW-NE and S-N directions and are the 
main vectors of regional population and economy. Despite the area of 
interest having protected areas of 49.70 %, the pressure of deforestation 
occurs along the roads and in the surroundings. The relief and slopes 
vary significantly from flat, undulated, plateau, cliffs up to hilly areas 
where the altimetric quota is between 48 and 752 m, and the slope 
average of 7.88◦, both auxiliary information observed in the Shuttle 
Radar Topography Mission (SRTM). The environmental characteristics 
of the three path/frames, like LULC and landscape description, are in 
Table 1.

The LULC mapping has focused on describing Deforestation, Forest, 
Non-Forest, and Water, following the method stated by (INPE, 2024). 

From the optical and SAR images, these four LULC classes compiled from 
INPE’s method were recognized according to their physical coverage 
using visual interpretation based on color, tonality, texture, form, and 
context, as presented in Table 2. In this research, it was necessary to 
create a visual interpretation key based on the features of Sentinel 1 like 
intensity, coherence, and Cloude-Pottier dual-pol decompositions. 
Similar studies created key interpretations for LULC and Geomorpho
logical maps, as stated by Diniz et al. (2015) and Guimarães et al. (2017, 
2020) respectively. This manual collection provided Ground Control 
Points (GCP) for Random Forest (RF) classification and testing samples 
for cross-validation.

3. Method

This research uses three deep neural network classifiers with su
pervised learning approaches. Two of them are based on convolutional 
neural networks (CNN): U-Net, and Semantic Flow (SF-Net), while one is 
based on Recurrent Neural Networks (RNN): Long-Short-Term Memory 
(LSTM). These algorithms have elaborated to train and infer the LULC 
classes based on SAR backscattering intensity, interferometric coher
ence, and Cloude-Pottier dual-polarized decomposition products.

The procedures can be synthesized in: i) sampling strategy was used 
to obtain GCP from the PlanetScope images and use them to elaborate a 
RF classification as continuous sampling for the entire path/frame based on 
Sentinel 1 and 2 in co-orbital arrangement (Chatziantoniou et al., 2017; 
Tavares et al., 2019); ii) SAR processing chain for the estimation of 
backscattering intensity, coherence, and polarimetric attributes was 
developed based on ESA (2024c), Ferretti et al. (2007), Guimarães et al. 
(2017, 2018, 2020), Lee and Pottier, (2017b) and SARMAP (2016); iii) 
DL classification pipelines consisted of the U-Net (Maretto et al., 2019; 
Ronneberger et al., 2015), SF-Net (Li et al., 2020, 2024) and LSTM 
(Ienco et al., 2017; Matosak et al., 2022, 2023) models, which mapped 
the Amazon environments following some previous studies as Altarez 
et al. (2023), Jin et al. (2014), Liesenberg et al. (2016) and Whyte et al. 

Tables 1 
It describes the environmental features for the three path/frames in the study area.

Environmental Characteristics Sentinel 1 Path/Frame1

54 622/627 83 617/627 141 613/617
Date Training July 23, 2022 July 01, 2022 July 20, 2022

Inference July 24, 2024 June 08, 2024 July 29, 2024
Area (km2) 87 077.61 69 757.42 85 458.23
Alerts1 (%) 0.48 0.61 0.49
Deforestation1 (%) 24.88 35.71 14.09
Forest1 73.42 57.01 84.66
Non-Forest1 0.84 5.06 0.80
Water1 0.87 2.22 0.46
Geology2 Major 

Units
Iça, Solimões, Mutum-Paraná 
formations

Jamari and Nova Monte Verde complex, Iça, 
Palmeiral and Roosevelt formations, intrusive 
suites

Xingu complex, Aruri, Salustiano and Triunfo, 
formations, Beneficente, Gorortire and Iriri groups, 
intrusive suites

Minor 
Units

alluvial fans and terraces, detrital- 
lateritic cover

alluvial fans and terraces, detrital-lateritic 
cover

alluvial fans and terraces, detrital-lateritic cover

Geomorphology2 Major 
Units

Amazon plain and depression, 
basin and deposits sedimentary

Amazon plain and depression, residual 
plateau, basin and deposits sedimentary

Amazon plain and depression, residual plateau, basin 
and deposits sedimentary

Minor 
Units

residual plateau, floodplain, 
unconsolidated sedimentary 
deposits

floodplain, terraces, unconsolidated 
sedimentary deposits

Cachimbo plateau, Pardo ridge, floodplain, 
unconsolidated sedimentary deposits

Soil2 Major 
Units

yellowish red, yellow and red 
latosol

yellowish red, yellow and red latosol, ultisol, 
spodosols

ultisol yellowish red, yellow and red latosol,

Minor 
Units

gleisoil, plinthosols gleisoil, plinthosols, leptosols, clay loam gleisoil, plinthosols, leptosols, clay loam

Vegetation2 Major 
Units

lowlands ombrophilous forest with 
bamboo/palm trees

ombrophilous, open submontane, and bush 
forests

dense submontane and ombrophilous forest

Minor 
Units

submontane and alluvial forests 
and meadow with grass

savannah, meadow, lowlands, alluvial forests 
and grass

lowlands and alluvial forests

Average Altitude3 (m) 186.5 128.69 259.85
Average Slope3 (◦) 3.33 (undulated) 2.48 (flat) 5.82 (hilly)
Rain4 (mm. 

month¡1)
Rainy 264.80 270.85 551.98
Dry 54.67 45.53 80.37

Source: 1 ESA (2024), INPE (2024), 2 IBGE (2012, 2020, 2020), 3 USGS (2020) 4INMET (2024)
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Table 2 
The visual interpretation key was created to recognize manually GCP in Amazon trough Sentinel 1 and 2. The LULC classes that were observed on the sigma nought (σ0), interferometric coherence (γ), and the Cloude- 
Pottier dual-pol decompositions with Entropy (DPolH) and Alpha (DPolα).

LULC Sentinel 1 Sentinel 2 PlanetScope SAR Recognition

VH VV RCov GMin BGrad RSwir GNir BRed RRed GGreen BBlue Elements and 
Patterns

Features

Deforestation 
(De)

Color: black, dark to 
moderate gray 
Tonality: very low 
to medium 
Texture: very 
smooth to smooth, 
slightly 
heterogenous, 
homogenous 
Shape: geometric, 
regular, strips, 
elongated to 
compact patches 
Context: borders 
well defined, bare 
soil with forest, 
connected 
with previous 
deforestation

σ0: very weak to weak 
signal, specular and 
diffuse scattering, low 
penetrability, 
polarized targets 
γ: partially coherent 
to coherent, moderate 
to high 
PolH: slight to 
moderate 
randomness, partially 
pure targets 
Polα: low, slight high, 
specular and surface 
backscattering

Forest (Fo) Color: dark, light 
and very light gray 
Tonality: medium 
to high 
Texture: moderate 
to strong rough, 
heterogenous 
Shape: irregular, 
large and random 
geometries, 
contiguous patches 
Context: large 
areas, borders well 
defined with rivers 
and deforestation, 
controlled by relief

σ0: moderate to 
strong signal, 
penetrability, 
volumetric scattering, 
depolarized targets 
γ: uncoherent, very 
weak 
PolH: moderate to 
severe randomness, 
partially to high 
distributed targets 
Polα: intermediate, 
surface and 
volumetric 
backscattering

Non-Forest 
(NF)

Color: dark and 
light gray 
Tonality: low to 
medium 
Texture: smooth to 
moderate rough, 
homogeneous 
Shape: irregular, 
patches, large, 
random, contiguous 
Context: random 
variations in large 
areas, borders well 
defined with rivers, 

σ0: very weak to 
moderate signal, 
depolarized targets, 
intermediate 
penetrability 
γ: partially coherent, 
weak to moderate 
PolH: low to moderate 
randomness, partially 
distributed targets 
Polα: low to 
intermediate, surface 
to volumetric 
backscattering

(continued on next page)
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(2018); and iv) thematic accuracy assessment used the confusion matrix, 
F1-score, dice score and intersection over-union (IoU), statistical tests, 
Shapley Additive exPlanations (SHAP), and Taylor and Target diagrams 
(Congalton and Green, 2019; Lundberg and Lee, 2017; Taylor, 2001). 
The procedures conducted in this research are shown below in Fig. 2.

The procedures in the workflow were carried out in Python scripts 
considering several geospatial libraries to handle and pre-process the 
datasets, PyTorch and Optuna frameworks to design and fine-tune the 
DL models, and the SNAP Toolbox platform which processed the images 
and generated the features (ESA, 2024c). The script implementation 
used the Anaconda environment and Spyder graphic interface. The main 
repositories for coding were DeepGeo, Satellite Image Deep Learning, 
and AI4EO, all of them available on GitHub. All models were carried out 
in an RTX 3080 GPU with 16 GB memory.

3.1. Sampling for training, validation and testing

The manual mapping with GCP was the primary source of reliable 
ground information observed in PlanetScope images that were provided 
by Nicfi and F (2024) and Planet Labs PBC (2024), and also, Sentinel 2 
provided by (ESA, 2024). These optical datasets were critical to gener
ating samples for training, fine-tuning during the validation, and 
assessing the DL model’s performance during the testing. PlanetScope 
was obtained at 3A level (orthorectified and atmospheric corrected) 
with 4 spectral bands in the visible and near-infrared, and 4.77 m of the 
ground sample. Sentinel 2 was acquired in Level 2A (atmospheric cor
rected) with 13 bands in the visible, near-infrared, and shortwave 
infrared with different spatial resolutions as 10, 20, and 60 m.

Three random stratified disproportional samplings were carried out 
to obtain 44 984 points split into 50 % for train, 25 % for validation, and 
25 % for testing. Sentinel 2 had a critical role in improving the contin
uous sampling, which provided the spectral bands resampled to 10 m 
and was collocated with Sentinel 1, adding detailed spatial context and 
dimensionality in the input channels. The sampling strategy followed 
the assumptions of randomness, independence, good spatial distribu
tion, and an error expected at least three times more accurate than the 
data to be tested. Both optical images allowed us to achieve better 
remote sensing parameters in recognizing LULC classes, given the 
spectral and spatial resolution compared to Sentinel 1 which has 2 
channels and spatial resolution at 20 m (Olofsson et al., 2014).

The SAR image was defined by the availability criteria in the co- 
orbital arrangement between Sentinel 1 and 2, the shortest timespan 
with 3 days, less than 2 % cloudiness, and during the dry season. This 
procedure was useful for achieving continuous sampling over SAR data 
and RF classification, as stated by Chatziantoniou et al. (2017) and 
Tavares et al. (2019).

Despite the emergence of numerous DL approaches, traditional ML 
techniques such as RF still perform reliably for LULC mapping using 
Sentinel-1 and Sentinel-2 data (Joshi et al., 2016; Maxwell et al., 2018). 
RF is an ensemble learning method that employs bootstrap aggregation 
(bagging) to generate multiple decision trees by sampling random sub
sets of the training data with replacement. These individual trees are 
then combined through majority voting to produce the final classifica
tion. To estimate generalization error, RF uses the out-of-bag (OOB) 
samples, those not included in a particular bootstrap sample, which 
serve as an internal validation mechanism (Belgiu and Drăgu, 2016; 
Breiman, 2001). It was considered 15 000 GCP per Sentinel 1 path/
frame, the bootstrapped approach had 65 % for training and the 
out-of-bag had the remaining 35 % for cross-validation. The number of 
trees in the forest (Ntree) was chosen as 1000 and the number of vari
ables at each node of the tree (Mtry) was 5 (square root of input chan
nels), and the maximum depth was 300, according to Guimarães et al. 
(2020) and Tavares et al. (2019).

The continuous samples given by RF were significantly important to 
the DL pipelines when they passed through down-sampling kernels, 
providing a detailed spatial context. The RF classifier consumed the Ta
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training and validation GCP, and the Sentinel 1 and 2 images to yield a 
continued LULC map which conceded samples in the DL pipeline. On the 
other hand, the testing GCPs were associated with segments to assess the 
DL models as a cross-validation dataset. The multiresolution segmen
tation has set parameters such as 15 of scale, 0.1 of shape, and 0.5 
compacity.

The GCP and the RF LULC maps are shown in Fig. 3. The RF classi
fication had previous accuracies between 0.94 and 0.97, and the seven 
most important features were shortwave infrared, near-infrared, Red, 
VV channel, VH channel, interferometric coherence, and isotropic 
decomposition. The GCPs were collected in proportion to 33.34 % of 
Deforestation, 33.34 % of Forest, 13.33 % of Non-Forest, and 19.98 % of 
Water.

3.2. SAR processing chain

Sentinel 1 processing chain has been carried out to ensure a com
parable and stable signal over time and its coherent features, as well as 
precise image alignment and coverage in the same path/frame following 
a previous study by Guimarães et al. (2020). The parameters of the SAR 
chain are shown in Table 3 with Equations (1)–(3) to obtain the 
amplitude, coherence, and polarimetric decomposition, respectively. 
The SAR images were geocoded using a pixel spacing at 30 m, and the 
cartography projection as Lat/Long and WGS-84 reference system.

The dimensionality of the Sentinel 1 images was increased by the 
interferometric coherence and H-α dual polarimetric decomposition, 
according to previous studies such as Canisius et al. (2019) and Shuai 
et al. (2019). Coherence measures the similarity of the target, it con
siders the complex cross-correlation by the amplitude and phase of each 

Fig. 2. The workflow shows the three main procedures carried out: i) the sampling strategy with manual GCP which used optical images from Sentinel 2 and 
PlanetScope for training and evaluation of the LULC maps; ii) the SAR processing chain used to obtain backscattering and the coherent features; and iii) the pipeline 
to training and finetuning the models and inferring the LULC predictions.

Fig. 3. It shows the spatial distribution of the GCP for training, validation, and testing where they were obtained through the PlanetScope images. Afterward, the 
GCP and the Sentinel 1 and 2 in the co-orbital arrangement were used to classify the LULC in the three path/frame by RF.
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pixel in the master and slave images through a moving window operator, 
it varies between [0, 1] where 1 means high coherent behavior observed 
in the image pair. H-α polarimetric decomposition explains the 
randomness (H) and type of the scattering (α). The entropy (H) means if 
the signal is homogenous with 0 value or heterogenous with 1 value, low 
entropy indicates a dominant scatter as a pure signal (isotropic 
behavior) like a double-bounce target, and oppositely, high entropy 
signifies a random mixture of scatterers like a forest target. The alpha (α) 
describes the mechanism of scattering such as surface in around 
0◦ values, volumetric and di-pole behavior with intermediate values of 
45◦, and double bounce in around 90◦ values.

3.3. DL pipelines for training and inference

The DL pipelines were designed to handle data preparation, model 
configuration, training, hyperparameter tuning, and inference. A total of 
18 models were trained using three architectures, three Sentinel-1 path/ 
frame combinations, and two LULC classification schemes.

3.3.1. Data preparation and patch generation
The dataset preparation included loading and preprocessing 

Sentinel-1 images and their corresponding LULC annotations. Images 
were read at their original 32-bit float scale, with spatial metadata 
(height, width, channels, EPSG) extracted from GeoTIFF files. Annota
tions were derived from shapefiles containing class-labeled polygons, 
then rasterized and aligned with the input images using geospatial 
functions for reprojection, resampling, and validation.

To ensure consistency, “no data” and NaN values were removed, and 
pixel values were clipped at the 99th percentile to reduce outliers 
typically caused by edge effects or thermal noise (ESA, 2024c). The data 
was then normalized using min-max scaling to [0, 1], improving sta
bility and convergence during training (Montavon et al., 2012).

Due to the high-dimensional space feature and large spatial extent of 
Sentinel-1 data, processing entire scenes at once was impractical. To 
reduce memory usage, each image was divided into overlapping 64 ×
64-pixel patches (Maretto et al., 2019). Patch generation included 
functions to extract image and label pairs and prepare them for batch 
processing and reassembly.

3.3.2. Model architectures
U-Net is a symmetric convolutional neural network widely used for 

semantic segmentation, consisting of an encoder–decoder structure with 
skip connections (Ronneberger et al., 2015). The encoder extracts 
spatial features such as textures, edges, and shapes through successive 
convolutions and pooling, while the decoder reconstructs the original 
resolution using transposed convolutions and combines low- and 
high-level features via skip connections that retain meaningful infor
mation. The U-Net model developed in this research is shown in Fig. 4.

To enhance feature extraction from SAR data, the U-Net was 
extended with residual blocks and optional modules including attention 
mechanisms, squeeze-and-excitation (SE) blocks, and dilated convolu
tions (Clark et al., 2023; Ramos and Sappa, 2025; Yu et al., 2021). These 
components improved convergence and spatial awareness without 
requiring deeper layers.

Residual learning improves gradient flow by enabling the model to 
learn residuals instead of direct mappings, thus preventing performance 
degradation (He et al., 2015). The attention mechanism highlights 
relevant spatial features, especially in the decoder, by refining skip 
connections to emphasize important regions (Vaswani et al., 2017). SE 
blocks enhance channel-wise feature representation by learning the 
relative importance of each channel, suppressing irrelevant ones and 
amplifying critical ones (Hu et al., 2019). Dilated convolutions expand 
the receptive field by inserting gaps into the kernel, allowing multi-scale 
context aggregation without reducing spatial resolution (Yu and Koltun, 

Table 3 
The parameters applied in the SAR process chain and features obtained from Sentinel 1.

SNAP’s Tools1 Parameters Attribute

Slice Assembly 2 Adjacent Frames in the Path ​ ​
Apply Orbit Files Sentinel Precise ​ ​
Calibrate Sigma Nought; 

Complex Output

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ0
vh =

Ps

Pi
Aσ

σ0
vv =

Ps

Pi
Aσ

(1)

Split IW 1, IW 2, IW 3; 18 Bursts ​ ​
Back Geocoding Copernicus DEM 30 m; 

21-Points Truncate
​ ​

Enhanced Spectral Diversity Coherence 0.3 ​ ​
Deburst VV, VH ​ ​
Merge IW 1, IW 2, IW 3; VV, VH ​ ​
Coherence Estimation 8 x 2 Window Size ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γvh =
〈x1x2

*〉
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈|x1|
2〉〈|x2|

2〉
√

γvv =
〈x1x2

*〉
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈|x1|
2〉〈|x2|

2〉
√

(2)

Polarimetric Matrix T2 Matrix ​ ​
Polarimetric Decomposition Refined Lee; H-α Dual-Pol ⎧

⎪⎪⎨

⎪⎪⎩

PolH = −
∑3

i=1
pi log3(pi); pi =

λi
∑3

k=1 λk

Polα =
∑3

i=1
piαi

(3)

Multilook 8 x 2 Window Size; Intensity ​ ​
Speckle Filtering Gamma Map; 3 x 3 ​ ​
Stack Master; Orbit ​ ​
Terrain Correction Copernicus DEM 30 m; 

Bilinear; 30 m
​ ​

Source: 1 ESA (2024c). Where σ0 is complex radar signal calibrated and projected on the ground range as sigma nought for two polarizations (σvh0, σvv0). Ps and Pi are 
the scattered and incident power respectively, and they are usually related with the digital number, and also Aσ is the reference area projected in the ground range that 
is usually given by a constant; γ is complex cross-correlation applied on both polarizations that estimates the conjugated mean in each pixel 〈x1x2*〉, and the root 
square of the standard deviation 〈|x1|2〉〈|x2|2〉 by a moving window; PolH/α are the features based on Cloud-Potier dual-polarization decomposition, pi is the pseudo- 
probability of the eigenvalue and λi is the eigenvalue in the possible set λk which they are given by the coherence matrix (T2).

U.S. Guimarães et al.                                                                                                                                                                                                                          Science of Remote Sensing 12 (2025) 100279 

8 



2015).
Each input patch, composed of batch size, channels, height, and 

width, passes through a sequence of convolutions, normalization, 
dropout, residual and optional blocks, followed by downsampling, 
upsampling, and activation functions. The final convolution layer out
puts logits, which are transformed into class probabilities using a soft
max function.

SF-Net is a semantic segmentation model designed to fuse multi-scale 
features extracted at different resolutions and abstraction levels. It in
troduces a flow alignment module, which estimates pixel-wise flow 
fields to warp spatial features across scales, enhancing semantic coher
ence in the feature map (Li et al., 2020, 2024). SF-Net adopts the same 
U-Net backbone with optional blocks, differing mainly in the integration 
of the alignment and warping components (Fig. 5).

RNN algorithms, particularly LSTM, have shown strong performance 
in LULC mapping and change detection (Ienco et al., 2017; Matosak 
et al., 2023; Zhu et al., 2021). LSTM is well-suited for handling 

long-term dependencies in time series by using gated mechanisms to 
control the flow of information across forward and backward directions, 
allowing it to retain, update, or discard temporal abstractions (Greff 
et al., 2015). It has proven effective in multi-class change detection and 
forest disturbance analysis (Liu et al., 2025; Zhu et al., 2024), though it 
remains computationally demanding and prone to overfitting and 
fine-tuning challenges.

A short-time series composed of three Sentinel-1 acquisition dates 
and their coherent features was used as input. The LSTM architecture 
included residual learning and optional modules such as attention and 
SE blocks. In contrast to the CNN models, it excluded dilated convolu
tions and incorporated a bidirectional block. The model processed input 
patches as sequences shaped by batch size, sequence length, and feature 
dimension. These passed through a temporal modeling layer followed by 
four fully connected layers, each with normalization, dropout, and ReLU 
activation, concluding with a softmax layer for probability estimation 
(Fig. 6). The training and retraining procedures followed the same 

Fig. 4. In the U-Net architecture, where the input is a Sentinel 1 image with coherent features that go through the encoding and decoding path up to the final 
convolution, the output is a LULC map with logits and probabilities.

Fig. 5. The SF-Net architecture developed for Sentinel 1 and coherent attributes, the pipeline has a symmetric encoding and decoding path connected to a semantic 
alignment block, and the final convolution provides a LULC map with logits and probabilities.
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structure and hyperparameter strategy as used in the CNN pipelines.

3.3.3. Training, optimization, and hyperparameters
Model performance was influenced by a set of hyperparameters, 

which were initially defined empirically (Diaz et al., 2017) and later 
optimized using Optuna. This framework applies a Bayesian optimiza
tion strategy via Tree-structured Parzen Estimators (Akiba et al., 2019), 
using IoU as the objective function. The tuning process included 25 trials 
of 10 training epochs each, followed by a retraining phase with 50 
epochs for the top three models ranked by IoU.

Optuna was used to search across categorical and continuous 
hyperparameter spaces, covering shared and architecture-specific pa
rameters for all three models. The full set of configurations is summa
rized in Table 4.

3.4. Thematic accuracy and evaluation

The classes of LULC were defined in previous studies and current 
mapping projects in Brazil (INPE, 2024). However, the training samples 
were studied to understand the statistical behavior and the separability 
between the LULC classes. It was performed the coefficient of variation 
(CV) the number of equivalent looks (NEL), and the interquartile boxplot 
(Q1-Q3) to understand the dispersion, the level of averaging assuming 
independence, and statistical behavior, respectively. The 
Mann-Whitney-Wilcoxon and Levene tests were carried out to compare 
the average and variance of the datasets at 5 % confidence respectively, 
and the training samples were assumed to be non-parametric behavior, 
considering as well, a small and unbalanced group.

Statistical tests supported understanding the thematic error through 
precision and accuracy, whereas models with higher biases were not 
considered for the separability or importance of the variables. The 

Fig. 6. The LSTM architecture developed for Sentinel 1 in a time series and their coherent attributes, the pipeline concatenates the input channels to pass through the 
temporal modeling and dense layers up to the final dense layer that provides a LULC map with logits and probabilities.

Table 4 
The parameter and hyperparameters have been set for the U-Net, SF-Net, and LSTM.

Parameters Values

U-Net and SF-Net LSTM

Training Loop 25 Trials, 10 Epochs
Retraining Loop 50 Epochs
Batch Size [64, 128, 256]
Base Channels [32, 144]
Dropout [0.1, 0.5]
Learning Rate [0.000001, 0.01]
Weight Decay [0.000001, 0.01]
Optimizer Adaptive Moment Estimation (Adam), Root Mean Squared Propagation (RMSprop), Stochastic Gradient Descent (SGD)
Scheduler Step Learning (StLR), Reduce Learning on Plateau (ReLRP), Cosine Annealing Warm Restarts (CAWR)
Loss Function Cross Entropy (CrE), Sparse Categorical Focal Loss (Focal), Dice Loss (Dice), Focal CrE (FCrE), Dice (DCrE)
Inputs and Outputs 10 channels, 4 to 5 Classes 15 channels, 4 to 5 Classes
Normalization Convolutions Layers Dense Layers
Architecture Encoder 32, 64, 128, 256, 512 Temporal Modelling 3 LSTM

Down Sampling Max Pooling 2x2 Layers [2, 7]
Bottleneck 1024 Dense Layers 3
Decoder 512, 256, 128, 64, 32 Hidden Size [32, 144]
Up Sampling Transpose 2x2 Bidirectional [True, False]

Activation Backbone ReLU Sigmoid, Tanh
Residual ReLU ReLU
Attention ReLU, Sigmoid, [True, False] ReLU, Sigmoid, [True, False]
SE ReLU, Sigmoid, [True, False] ReLU, Sigmoid, [True, False]
Output Softmax Softmax
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Jeffries Matusita distance was used to observe the binary separability 
between the classes of LULC, in which the values are estimated between 
[0, 2], values below 1 are considered partial separable, and values above 
1 are more distinct as close to 2. The importance of SAR coherent fea
tures has been analyzed to ratify properly the dimensionality in the DL 
models, which is expected to decrease the redundancy (Rostami and 
Kaveh, 2021). SHAP explains the variables and predictions in the DL 
model which estimates a benchmark baseline without any contribution 
of inputs, and after that includes the features using possible combina
tions to observe the results. The SHAP function has been set with 30 
patches randomly sampled and non-additive real numbers that are 
comparable only relatively. Positive values mean better predictions and 
negative values the opposite (Lundberg and Lee, 2017).

The evaluation of 18 DL models was carried out using training and 
inference accuracy, which focused on the testing dataset (reference) and 
predictions through the confusion matrix, IoU, and Taylor’s and Target’s 
diagrams. The confusion matrix consists of the cross-tabulation between 
samples of predicted (classified) and observed (reference) elements 

which have matched against each other to provide the matrix’s counters 
such as true positive (TP), false negative (FN), false positive (FP) and 
true negative (TN). The IoU was in charge of guiding the training loop as 
outcome feedback about the performance. The Taylor and Target dia
grams were used to oversee the similarity, precision, and accuracy of the 
DL models based on unbiased errors. This approach followed good 
practices to assess the dataset based on a benchmark with less error, 
PlanetScope image has higher spectral and spatial resolution (Olofsson 
et al., 2014).

The assessment of the DL models’ performances served as an aid in 
choosing the DL technique better adjusted to the Amazon environments 
and the usage of Sentinel 1 for mapping LULC in three different land
scapes. The testing dataset had 11 244 GCP from the PlanetScope images 
manually classified as deforestation, forest, non-forest, and water. The 
reference GCP, predictions, and counters of the confusion matrix have 
allowed computing all thematic accuracy metrics as presented in 
Table 5.

Table 5 
The assessment metrics used in the DL models and their respective equations. In addition, some figures synthesize the usage and application of thematic accuracy.

Assessment 
Metrics

Equations Figure

Confusion 
Matrix

{
Mi,j =

∑N
k=1

1
(
yk = i⋀ŷk = j

)

M1,1 = TP;M1,0 = FN;M0,1 = FP;M0,0 = TN

(4)

Recall
Recall =

∑
TP

∑
TP +

∑
FN

(5)

Precision Precision =

∑
TP

∑
TP +

∑
FP

(6)

F-Score Fscore = 2 x
Recall x Precision
Recall + Precision

(7)

Root Mean 
Squarer Error RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
k=1

(
yk − ŷk

)2
√ (8)

Intersection 
Over-Union

IoU =
TP

FP + TP + FN
(9)

Normalized 
Standard 
Deviation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y =
1
N

∑N
k=1

yk; ŷ =
1
N

∑N
k=1

ŷk

σy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
k=1

(
yk − y

)2
;

√

σŷ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
k=1

(
ŷk − ŷ

)2
√

σ* =
σŷk

σyk

(10)

Correlation

ρ =

1
N

∑N
k=1

(
yk − y

)(
ŷk − ŷ

)

σyσŷ

(11)

Normalized 
Bias B* =

ŷ − y
σy

(12)

Unbiased 
Root Mean 
Squarer Error

uRMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RMSE2 − B2

√ (13)

Source: Congalton and Green (2019), Garcia-Garcia et al. (2018). Where Mi,j is an element in the confusion matrix given a row (i) and column (j) that match the 
reference and predicted annotations respectively. N is the number of samples, yk is a sample of reference, ŷk is a sample of the prediction. Recall, Precision, Fscore, 
RMSE, IoU are metrics based on the information provided by the confusion matrix. the normalized standard deviation (σ*) is measured by the mean (y‾) and standard 
deviation (σy) of reference, and the mean (ŷ‾) and standard deviation (σŷ) of predicted. The correlation (ρ) is measured through the covariance of reference and 
prediction and their respective standard deviation. The σ* and ρ are used in the Taylor’s diagram. The normalized bias (B*) is the difference between the means of 
prediction and reference divided by the standard deviation of reference. uRMSE measures the variability between the reference and predictions after removing the bias 
(B). The B* and uRMSE are used in the Target’s diagram.
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4. Results and discussions

Sentinel 1 has been proven to distinguish the LULC classes regarding 
the dual-pol backscattering 

(
σ0

vh, σ0
vv
)
, moderate spatial resolution (30 

m), and incidence angle (35.5◦), during the dry season which was 
demonstrated in the experiments.

4.1. Statistical behavior of backscattering by LULC class

The Forest (Fo) class was the most distinguishable, followed by 
Deforestation (De), while the Non-Forest (NF) class posed the greatest 
classification challenge due to its spectral similarity with other classes. 
This pattern, evident in the backscatter statistics (Table 6), suggests the 
need to mask or further decompose the NF class to improve class 
separability.

Across all path/frame scenes, the dual-pol backscattering followed a 
similar pattern which is low in VH and higher in VV, nevertheless 
exhibited ambiguous signals for several LULC types. Water showed the 
lowest backscatter values and the highest standard deviation, high
lighting its heterogeneity and the relevance of the VV channel in 
detecting specular reflection. Deforestation had the second-lowest VH 
and VV signals but displayed more consistent (homogeneous) behavior 
compared to Water, supporting its separability from Forest and NF. 
While Forest and NF classes were nearly indistinguishable in VV polar
ization, the VH channel revealed a more pronounced contrast, making it 
a key feature for differentiation.

Additional statistical measures such as the coefficient of variation 
(CV) and the number of looks (NEL) support these observations. Forest 
exhibited the lowest CV values, indicating homogeneity, except in VH 
for path/frame 83 617/622. Water, particularly in VV, had the highest 
CV, reflecting greater variability. NEL values further confirmed that 
Forest provided the most stable and reliable backscatter signal, while 
Water and NF had lower NELs, indicating noisier and less consistent 

signals that complicate classification.
The statistical distribution of backscatter signals observed in this 

study highlighted both similarities and discrepancies among LULC 
classes, and it is consistent with findings from other studies using C-band 
and dual-polarization SAR systems. For example, Huang et al. (2023), 
using Gaofen-3 in a monsoonal tropical region, reported similar back
scatter values for Farmland, Urban Area, and Forest, with Water being 
the most distinguishable class. Similarly, Hansen et al. (2020) evaluated 
Sentinel-1 data and found that Forest generally exhibited higher in
tensity values than Non-Forest, regardless of the biome being tropical, 
subtropical, or polar. Liao et al. (2021) studied the class overlap in SAR 
images and ratified the need to understand separability, rearranging 
classes. These studies reinforce the challenges in LULC classification 
using backscatter intensity alone, particularly when spectral signatures 
overlap. To enhance separability, especially in short-term SAR acquisi
tions, the integration of coherent attributes, selection of shallow inci
dence angles, and focus on dry-season imagery have been emphasized as 
critical factors (Guimarães et al., 2017, 2020). These considerations are 
essential to mitigate signal ambiguity and improve mapping reliability.

4.2. Statistical tests and separability

The Mann-Whitney-Wilcoxon, Levene, and Jeffries-Matusita tests 
were applied to evaluate the LULC training datasets in terms of central 
tendency, variance, and class separability, respectively (Table 7). These 
tests revealed statistical similarities between class pairs that are more 
difficult for classifiers to distinguish, particularly the pairs Forest/Non- 
Forest and Deforestation/Non-Forest.

Sentinel 1 dual polarization and its coherent features improved the 
classification with limited distinguishing for LULC. In cases where Forest 
shows ambiguous separability, radar vegetation indices derived from 
polarimetric features may help enhance discrimination (Hu et al., 2024; 
Narvaes et al., 2023). To improve separability, Dabboor et al. (2014)

Table 6 
Sentinel 1 dual polarization scenes were described statistically by σ0

vh, σ0
vv and LULC, at 35.5◦ incidence angle and during the dry season.
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suggest the usage of complex Wishart models provided by full polari
metric SAR acquisitions.

The separability distance indicated that the Water class was the 
easiest to classify, particularly in the Forest/Water class pair, with clear 
distinction observed in path/frames 54 622/627 and 83 617/622. In 
contrast, the most challenging scene in terms of separability was 141 
613/617. Among all classes, the Non-Forest class consistently exhibited 
the lowest separability, especially in the Forest/Non-Forest pair, sug
gesting significant overlap. Other class combinations showed only par
tial separability. Notably, none of the scenes achieved high separability 
values (≥1.5), which would indicate well-distinct classes. To better 
visualize the class relationships, a multidimensional scaling approach 
was employed to project the Jeffries–Matusita distances into two di
mensions, as proposed by Buja et al. (2008), and presented in Fig. 7.

Previous studies of SAR image separability stated that the back
scatter intensity has constraints to distinguish several LULC classes 
(Hansen et al., 2020; Liao et al., 2021). It is due to the inherent design of 
the SAR signal that focuses on the electric-geometric properties of tar
gets, it is ambiguous in range and azimuth directions, it has a tradeoff 
between spatial resolution and swath, and, it has the speckle multipli
cative noise in the resolution cell (Song et al., 2024). Sentinel 1 

separability was studied also by Cremer et al. (2020), this study noticed 
that in backscattering time series, the VH channel is more discernible 
than the VV channel observing deforestation and stable forests. The 
improvement in recognition and separability requires the usage of time 
series, coherence, full polarimetric, high resolution and revisit, and 
flexible acquisition geometries.

The classes should behave differently regarding mean and variance 
for reliable LULC mapping. If the classes have a slight difference in 
average and high dispersion with overlap, this brings problems to the 
mapping. Some studies solve this problem by increasing the features, 
most using optical features by fusion (Reiche et al., 2018; Reis et al., 
2020; Solórzano et al., 2023; Tavares et al., 2019). SAR-based systems 
have been overwhelming these classification issues by exploiting 
advanced techniques such as interferometry, polarimetry, and tomog
raphy (D’Hondt et al., 2018; Guimarães et al., 2020; Hariharan et al., 
2016; Sugimoto et al., 2022).

4.3. Importance of SAR coherent features

The importance of SAR coherent features was further corroborated 
through SHAP-based explanations, applied across three distinct scenes 

Table 7 
The Mann-Whitney-Wilcoxon and Lavene statistical tests displayed the p-values in bold that are considered statistically similar (p-value ≥ 0.05) at a 95 % confidence 
level. The Jeffries Matusita distance has estimated the binary separability, where values below 1 are partially distinct, and values above 1 (in bold) and as close as 2 are 
more distinctive.

Sentinel 1 Mann-Whitney-Wilcoxon Levene Jeffries Matusita

De Fo NF Wa De Fo NF Wa De Fo NF Wa

54 622/627 VH De – 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.45 0.22 0.61
Fo 0.00 – 0.26 0.00 0.00 – 0.00 0.00 0.45 – 0.10 1.13
NF 0.00 0.26 – 0.00 0.00 0.00 – 0.00 0.22 0.10 – 0.87
Wa 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.61 1.13 0.87 –

VV De – 0.00 0.00 0.00 – 0.00 0.04 0.00 – 0.61 0.19 0.71
Fo 0.00 – 0.00 0.00 0.00 – 0.00 0.00 0.61 – 0.16 1.18
NF 0.00 0.00 – 0.00 0.04 0.00 – 0.00 0.19 0.16 – 0.86
Wa 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.71 1.18 0.86 –

83 617/622 VH De – 0.00 0.02 0.00 – 0.00 0.07 0.00 – 0.32 0.00 0.74
Fo 0.00 – 0.00 0.00 0.00 – 0.00 0.00 0.32 – 0.36 1.17
NF 0.02 0.00 – 0.00 0.07 0.00 – 0.00 0.00 0.36 – 0.72
Wa 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.74 1.17 0.72 –

VV De – 0.00 0.88 0.00 – 0.00 0.02 0.00 – 0.39 0.00 0.88
Fo 0.00 – 0.00 0.00 0.00 – 0.00 0.00 0.39 – 0.40 1.24
NF 0.88 0.00 – 0.00 0.02 0.00 – 0.00 0.00 0.40 – 0.85
Wa 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.88 1.24 0.85 –

141 613/617 VH De – 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.54 0.48 0.24
Fo 0.00 – 0.00 0.00 0.00 – 0.00 0.00 0.54 – 0.08 0.91
NF 0.00 0.00 – 0.00 0.00 0.00 – 0.00 0.48 0.08 – 0.80
Wa 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.24 0.91 0.80 –

VV De – 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.58 0.38 0.39
Fo 0.00 – 0.00 0.00 0.00 – 0.00 0.00 0.58 – 0.07 0.98
NF 0.00 0.00 – 0.00 0.00 0.00 – 0.00 0.38 0.07 – 0.78
Wa 0.00 0.00 0.00 – 0.00 0.00 0.00 – 0.39 0.98 0.78 –

Fig. 7. Multidimensional scaling graphic to depict the Jeffries Matusita distance between the classes (Deforestation, Forest, Non-Forest and Water) in each polar
ization (VH, VV).
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or landscapes (Fig. 8). Among the evaluated attributes, Entropy consis
tently showed the highest positive contribution to the model’s predictive 
performance across all path/frame combinations. This was followed by 
Anisotropy, VV intensity, and VH coherence, which also had positive but 
comparatively lower contributions. In contrast, features such as Alpha, 
VV coherence, and VV intensity demonstrated negative impacts on model 
inference in some cases, with their influence fluctuating across the 
feature ranking depending on the scene. These results highlight the 
critical role of coherent metrics in improving class discrimination and 
provide insights into the relative importance of individual SAR-derived 
features.

Several studies with SAR applied for deforestation in cloud compu
tation do not consider coherent features that could have a big impact on 
the models (Doblas et al., 2020; Kilbride et al., 2023; Mullissa et al., 
2024). The role of SAR coherent features is valuable in mapping and 
change detection (Guimarães et al., 2020; Jin et al., 2014; Maxwell et al., 
2018). The focus on applying coherent features shall be on diminishing 
errors from meteorological and topographic artifacts, removing re
dundancies in variables, and exploiting new variables set by solving a 
specific scenario like water/forest or forest/non-forest.

4.4. LULC mapping and evaluation

Sentinel-1 coherent features that were derived from VH and VV 
backscattering, interferometric coherence, and Cloude-Pottier polari
metric decomposition, enabled LULC mapping with accuracies ranging 
from 0.61 to 0.95 along the southern border of the Amazon. These re
sults were obtained under a minimum mapping unit (MMU) of 0.0030 
ha, across different landscapes (flat, undulated, and hilly reliefs), and 
during the dry season (Table 8). Agreement metrics, including overall 
accuracy and the Kappa coefficient, were computed from the confusion 
matrix using high-resolution optical imagery from PlanetScope as a 
reference. Additionally, error metrics were employed to assess both the 
magnitude and the dispersion of classification errors.

A total of 18 DL models were developed, based on three architec
tures, U-Net, SF-Net, and LSTM, using two LULC classification schemes 
(3 or 4 classes), and three Sentinel-1 path/frame combinations. The best 
overall performance was achieved by U-Net models, with accuracies 
ranging from 0.69 to 0.95. In contrast, LSTM models exhibited higher 
errors, with RMSE values between 0.56 and 0.83. Among the scenes, 
classification was more accurate in path/frame 54 622/627, which had 
fewer Non-Forest areas, while the most challenging was 83 617/622 due 
to its large Non-Forest extent.

The error analysis revealed mean errors ranging from − 0.08 to 71.95 
and standard deviations between 0.28 and 114.69. Systematic errors 
were more prominent than random errors, particularly in the SF-Net and 
LSTM models. Based on these results in Table 8, the DL models were 

grouped according to their dominant error type. Models with random 
error dominance, such as U-Net 3C and 4C, exhibited mean errors below 
0.27 and SD errors below 0.83. In contrast, systematic error dominance 
was observed in all LSTM and SF-Net models, which showed mean errors 
above 23.71 and SD errors exceeding 76.58. These findings suggest the 
need for larger and more diverse training datasets (in time and space) 
and greater training iterations (patch size and epochs) to improve per
formance, especially for more complex architectures.

Neves et al. (2023) investigated two dates (before, after), which had 
undetectable deforestation features and showed bitemporal scenarios 
worse than multitemporal. And Ienco et al. (2017) employed very few 
time sequence points which found better results considering hybrid 
models. These findings suggest the need for larger and more diverse 
training datasets (in time and space) and greater training iterations 
(patch size and epochs) to improve performance, especially for more 
complex architectures.

Despite the accuracy being satisfactory [0.61, 0.95], it was very 
significant to look at the errors to reconfirm the importance of SAR 
geometry definition to balance the sources of error that come up with 
the topography, landscape, and seasonality as stated by Guimarães et al. 
(2020) and Koyama et al. (2019). This tradeoff between incidence an
gles, temporal decorrelation, rainfall, and seasonal timing in LULC 
mapping was prior studied by Bouvet et al. (2018), and Morishita and 
Hanssen (2015).

The majority of high-performance DL models were set with three 
classes (Deforestation, Forest, and Water), except for the U-Net 4C 
model applied to path/frame 54 622/627, which included a fourth class 
of Non-Forest (Fig. 9). This exception highlights the persistent challenge 
of accurately mapping the Non-Forest class, and also, the bad definition 
of a single class that physically matches different targets. Visually, the 
LULC maps produced by LSTM models exhibited higher noise levels, 
indicating less spatial coherence. In particular, the U-Net 3C model 
struggled to delineate Water in scene 83 617/622. Deforestation was 
also misclassified in areas of high elevation and steep terrain, especially 
in scene 141 613/617.

DL algorithms yielded highly precise LULC maps in tropical areas, 
with an overall accuracy of around [0.97, 0.99] (Dalagnol et al., 2023; 
Doblas et al., 2020; Mullissa et al., 2023; Wagner et al., 2023). That is an 
impressive achievement for deforestation mapping, nevertheless, the 
mapping was simplified where the datasets do not cover different sorts 
of classes (2 and 3), landscapes (flat relief or sub-tropical areas), usage of 
masks, and mapping during the dry season. These previous studies that 
support online platforms of LULC monitoring should have handed in the 
polygons, promoting cross-validation.

IoU was the primary evaluation metric used during DL model 
development, serving as the optimization criterion in the training phase, 
as supported by recent multi-class segmentation studies (Ramos and 

Fig. 8. Sentinel 1 Coherent features ranked by importance in the DL model prediction. The red bars displayed features that were more important to bring the model 
upward to the baseline, and the blue bars showed the features that moved the model downward to the baseline.
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Sappa, 2025; Tadesse et al., 2024; Wang et al., 2022).
The models achieved promising IoU values, with class-wise averages 

of 0.76 for Forest, 0.54 for Deforestation, 0.22 for Water, and only 0.11 
for Non-Forest (Fig. 10). Model-wise, the mean IoUs were 0.51 for U- 
Net, 0.45 for SF-Net, and 0.34 for LSTM. Forest showed the highest 

precision, likely due to its spatial homogeneity and stability. Defores
tation also performed well (IoU: 0.27–0.84), though results could be 
improved by expanding training samples or further decomposing it into 
subclasses like urban areas, bare soil, and secondary vegetation. Non- 
Forest was the least accurate, acting as the primary source of 

Table 8 
The evaluation was carried out in 18 DL models, regarding the technique (U-Net, SF-Net, and LSTM), the number of LULC classes (3 or 4), and the 3 different Sentinel 1 
path/frames. The metrics of agreement and error were used, all of them obtained by the confusion matrix. The values in bold are the highest in each path/frame.

Evaluation Metrics Classes 54 622/627 83 617/622 141 613/617

U-Net SF-Net LSTM U-Net SF-Net LSTM U-Net SF-Net LSTM

Accuracy 3 0.91 0.89 0.74 0.83 0.79 0.68 0.93 0.86 0.67
4 0.95 0.88 0.73 0.69 0.73 0.61 0.88 0.74 0.66

Kappa 3 0.76 0.71 0.44 0.67 0.58 0.39 0.67 0.55 0.26
4 0.87 0.71 0.44 0.41 0.50 0.30 0.36 0.38 0.27

Mean Error 3 0.07 13.30 44.29 ¡0.08 23.45 42.77 0.05 23.71 71.95
4 0.01 14.85 44.81 0.18 35.68 50.43 0.08 25.81 38.59

SD Error 3 0.30 56.53 96.47 0.48 73.46 95.06 0.28 73.96 114.69
4 0.34 59.54 96.89 0.78 88.19 101.22 0.38 76.58 91.05

RMSE 3 0.31 0.38 0.56 0.48 0.50 0.60 0.29 0.42 0.61
4 0.34 0.43 0.60 0.80 0.70 0.83 0.39 0.63 0.72

Fig. 9. The most accurate LULC maps encountered on each Sentinel 1 path/frames, DL models, and different numbers of classes.
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classification errors which suggests the need for masking or breaking it 
down into more distinct types such as grasslands, shrublands, swamps, 
or sandbars. Water was also difficult to map accurately, likely due to its 
reduced extent during the Amazonian dry season.

The major sources of error were noticed in the Water and Non-Forest 
classes, this is similar to previous studies conducted in X-band and L- 
band which joined the classes in the same class and used coherence 
properties and an updated DSM to improve the classification (Martone 
et al., 2018; Shimada et al., 2014). It is clear the need for extra side 
features capable of distinguishing firstly the forest class and after that 
non-forest using time-series (>5 dates), coherence (≥ 6 days), DSM 
(high-resolution), and longer wavelengths (L and P-bands).

The IoU has been very appropriate to quantify the performance of the 
LULC segmentation emphasizing the weakness and strength of the al
gorithm based on agreement and shape of features (Lee et al., 2020; 
Tadesse et al., 2024). This research found low values for IoU, which 
suggests the need to have extra effort in the next initiatives for training 
samples and stricter DL parameters for a single model which be focused 
on a robust model with higher performance, scale, and generalization. It 
is recommended to widen the usage of IoU for the assessment of 
multi-class segmentation models, addressing the discussion in mapping 
and change detection, allowing comparison, and also improving reli
ability and reproducibility.

Fig. 11 presents the F1-score, precision, and recall metrics per scene 

and LULC class. In scene 54 622/627, the U-Net model achieved the 
highest F1-scores, ranging from 0.20 to 0.97, and precision values from 
0.05 to 0.97. Forest consistently recorded the highest precision and 
recall, ranging from 0.71 to 0.97 and 0.66 to 0.99, respectively It in
dicates that it was the most stable and easily learnable class due to its 
homogeneous characteristics in SAR data.

Deforestation showed moderate performance, with precision be
tween 0.28 and 0.98 and recall between 0.27 and 0.91. Conversely, 
Water and Non-Forest classes exhibited weak to moderate precision 
(0.01–0.75) and recall (0.01–0.83), highlighting classification chal
lenges. These results suggest the need for additional annotated samples 
and refined model training strategies, particularly through stricter reg
ularization and parameter tuning. These procedures shall reduce false 
negatives and mitigate overfitting for these less stable classes.

The systematic error has overtaken the random errors considering 
the SF-Net and LSTM models in this research, and many studies applied 
to LULC mapping do not show all errors encountered. However, it is 
possible to discuss some aspects by the comparison between convolu
tional and recurrent neural networks in which simpler models can 
converge learning first the complex models (Wang et al., 2016, 2022). As 
stated by (Dal Molin and Rizzoli, 2022) the gain in performance may be 
reached by the attempts to find the proper parameters given by a mul
tiscale approach based on different patches, epochs, batch sizes, and 
time span of the imagery.

Fig. 10. The most accurate LULC maps are based on the Sentinel 1 path/frame, DL models, and different numbers of classes.

Fig. 11. The metrics of the agreement were handed in by F-1 Score, Precision, and Recall, arranged by Sentinel 1 path/frame and LULC classes.
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Taylor and Target diagrams were employed to evaluate the DL 
models in terms of dispersion, correlation, bias, and overall error 
magnitude, specifcally highlighting models with minimal systematic 
error, in this research, the U-Net models (Fig. 12). In the Taylor diagram 
(Fig. 12a), the U-Net 3C model for scene 83 617/622 achieved the 
closest distance to the GCP, with a normalized standard deviation (σ*) of 
1.73 and a moderate correlation coefficient (ρ) of 0.43. This indicates 
that the model effectively captured the variability of the scene, leading 
to consistent predictions across repeated measurements, though not 
necessarily close to the true values.

Although the correlation for 83 617/622 was lower than for models 
in scene 54 622/627, dispersion (rather than correlation) had a stronger 
influence on model performance—largely due to the larger extent of the 
Non-Forest class in 83 617/622. The largest σ* values (ranging from 2.48 
to 3.28) were observed for scene 141 613/617, indicating greater de
viation from the reference and lower precision, despite moderate ρ 
values between 0.38 and 0.65. These difficulties are attributed to the 
more rugged topography of the 141 613/617 scene, which complicates 
learning.

In the Target diagram (Fig. 12b), most U-Net models exhibited a 
tendency to overestimate LULC class predictions, with normalized bias 
(B*) values between 0.01 and 0.18. An exception was the 83 617/622 U- 
Net 3C model, which underestimated class proportions (B* = − 0.08). 
Models such as 83 617/622 U-Net 4C and 141 613/617 U-Net 4C 
showed the largest error magnitudes, with normalized unbiased RMSE 
(uRMSE*) values near 0.78, positioning them farthest from the GCP. 
Conversely, the best-performing models in terms of bias and error 
magnitude were the U-Net 4C and 3C models from scene 54 622/627, 
and the U-Net 3C from scene 83 617/622. Their superior performance is 
associated with a reduced presence of the Non-Forest class and flatter 
topography, which simplified classification.

In general, the 54 622/627 U-Net 4C model alternated the lower and 
higher positions on Taylor and Target diagrams. However, it accom
plished the best ranking if compared to the other scenes and models. 
Conversely, it appears that 141 613/617 U-Net 4C yielded the weakest 
correlation and highest values of error. Several DL studies pointed out 
that it must prioritize the variability of the dataset and after that, there 

are some techniques focused on improving borders, contours, and lines 
such as conditional random field, multi-scale, multi-patches, pixel-wise 
segmentation, and the promising complex numbers for DL (Huang et al., 
2020; Liu et al., 2023; Ren et al., 2023; Wang et al., 2021).

Therefore, if the goal is to move ρ and σ* forward to the GCP and to 
decrease the impact from bias and uRMSE*, then robust learning is 
needed based on stricter hyperparameters after longer training loops 
and precise acquisition geometry fitted to temporal and spatial sort of 
landscapes considering shallow incidences angles and multiple SAR 
passes.

This research has brought to discussion the significance of the EO 
system, the landscape, and the algorithms developed to map defores
tation and/or LULC, which depicts the trends for remote sensing, tech
niques, and performances (it may be overall accuracy, precision, recall 
and coefficient of determination) (Table 10). Specifically, it has high
lighted Sentinel 1 and its coherent features have accomplished perfor
mance among fair to excellent, using training and inference of DL 
modeling for a sample of Amazon with a high diversity of landscapes. It 
is noticed that previous studies can be organized into two groups: i) 
optical-based EO systems using high-resolution and DL models 
(Dalagnol et al., 2023; Hansen et al., 2016; Maretto et al., 2021; Wagner 
et al., 2023); and ii) radar-based EO systems using probabilistic and 
Bayesian techniques (Ballère et al., 2021; Doblas et al., 2020; Mermoz 
et al., 2021; Watanabe et al., 2018), except by Mullissa et al. (2024)
which has been using LSTM model. There are available precise and high 
spatial resolutions LULC mappings based on optical systems, however, 
they are not validated in areas between − 4 up to 4◦.

It is interesting to note in Table 10 that several studies mapped large 
areas of coverage (>1 million km2), and high-performance levels 
(>0.83) were obtained. The higher revisit time is given by radar-based 
EO systems between 6 up to 12 days, and the majority of MMUs are 
equal to or larger than 0.1 ha, except by Mullissa et al. (2024). This 
research elaborated a robust DL method and reached a thematic per
formance equivalent to the current most precise radar-based algorithms 
to map deforestation as noticed in the studies from Doblas et al. (2020), 
Hoekman et al. (2020), Mermoz et al. (2021), Mullissa et al. (2024); 
Reiche et al. (2021). There is potential to achieve a reliable change 
detection approach, which might employ simpler techniques like 

Fig. 12. The Taylor (a) and the Target (b) diagrams for Sentinel 1 scenes and U-Net models revealed the position per correlation and error regarding the GCP 
observed in optical images.

U.S. Guimarães et al.                                                                                                                                                                                                                          Science of Remote Sensing 12 (2025) 100279 

17 



subtraction and radar change ratio. Furthermore, the SLC signal allows 
exploiting new SAR techniques such as time series, tomography, and 
polarimetric-interferometry (Fig. 13).

In most previous studies in Table 9, the validation datasets do not 
have better error conditions. Cross-validation uses previous mapping, in 
which the error is not well-known, nor synchronized in the time spans 
and without better spatial resolution. In these cases, the error is prop
agated between the datasets, specifically in areas with high geometric 
and radiometric error and outdated DEM. It ratifies the significance of 
developing more ML/DL algorithms regarding the new upcoming SAR 
systems (Sentinel 1C, Nisar, Alos-4, Biomass), which may support 
alternative SAR tools by coherence features to estimate forest distur
bance, regrowth, biomass, and updated DSM (Guimarães et al., 2018; 
Soja et al., 2018, 2021b, 2025).

5. Conclusions

The Sentinel 1 C-band SAR dataset provided the LULC mapping of 
the southern Amazon, and it achieved satisfactory reliability at three 
different levels of landscape (path/frames), under high deforestation 
pressure. 18 DL models were elaborated using the backscattering and 
coherent features (interferometric coherence and dual-polarization 
decomposition), small temporal decorrelation (12 days), and moderate 
incidence angle (35◦), besides the moderate spatial resolution (30 m). It 
was accepted the assumption that the DL models had the thematic error 
lying in the location of the scenes and the kind of LULC class, during the 
dry season. The highest mapping accuracy (0.95) and IoU (0.66) was 
reached by Sentinel 1 scene 54 622/627, U-Net model, and 4 classes, and 
the lowest mapping accuracy (0.61) and IoU (0.36) was noticed by 
Sentinel 1 scene 83 617/622, LSTM model and 4 classes.

The focus of this research was elaborating a robust DL method for 
Sentinel 1 rather than obtaining robust models, although the perfor
mances were equivalent to studies on the same theme. The limitation of 
DL models relies on the employment of the inference in different 
Sentinel 1 scenes on Amazon that are out of the study area. The DL 
model shall be improved to achieve better scales, generalization, and 
performance by increasing spatial (scenes) and time (acquisition dates) 

context.
The LULC classes were described by backscattering coefficient which 

shared a lot of ambiguity and combined with high relative dispersion, as 
in the worst case noticed in the Non-Forest class, which made the 
mapping difficult to obtain separability and high thematic precision 
(omissions and commissions errors). The Forest and Deforestation were 
more discernible LULC classes, and the flat to undulated relief corrob
orated with their mapping.

It is important to emphasize five aspects: i) Sentinel 1 path/frame 
have behaved differently regarding the thematic error where the pre
cision is higher in flat to undulated topography without non-forest areas 
like savannahs, shrub forests and/or grassland; ii) The interface between 
land and water are difficult to map in the occasion of low levels of water 
(droughts), and it shall be considered a mask; iii) increase the samples in 
the training modeling using more diversity in the landscape and sea
sonality (dry and rainy); iv) the U-Net model have caught the variability 
of datasets straightforward in the training modeling trough the low 
values set in batch size, patch size and epochs, conversely the SF-Net and 
LSTM models had strong ambiguity to classify LULC using the same 
hyperparameters, which suggests more tests for the complex models and 
giving more time to obtain convergence and avoid overfitting; v) non
conformities from LULC mapping shall be minimized by the usage of 
shallow incidence angles (>45◦), orbital passing in descending and 
ascending, usage of updated DSM (yearly) and finer spatial resolution 
(3–6 m), radar vegetation index, texture in dual channels, and longer 
time series (scenes>15). The main effort in this study was to elaborate 
training and inference models that apply Sentinel 1 in LULC mapping.

New initiatives in the Amazon shall consider the newer SAR systems 
with longer wavelengths (S, L, and P), better temporal decorrelation 
(less than 12 days), and full polarimetric channels (quad-pol), and firstly 
to improve the mapping focused on the steady tropical forest. It is 
possible to achieve a detailed level to detect deforestation under a high 
diversity of landscapes through coherent features. It is expected to in
crease the SAR dataset samples providing a longer time sequence, and 
this will increase the thematic performance for generalization, scal
ability, and mapping the forest disturbance in the Amazon.

Fig. 13. The map of deforestation yielded through Sentinel 1 (a) shows areas of clear cutting (orange). The right upper part (b) depicts the true positive features 
checked in Sentinel 2 and Sentinel 1, and the bottom part is a false positive (dashed red).
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D’Hondt, O., Hänsch, R., Wagener, N., Hellwich, O., 2018. Exploiting SAR tomography 
for supervised land-cover classification. Remote Sens (Basel) 10, 1742. https://doi. 
org/10.3390/rs10111742.

Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H., 2017. An effective 
algorithm for hyperparameter optimization of neural networks. IBM J. Res. Dev. 61 
(9), 1–9. https://doi.org/10.1147/JRD.2017.2709578, 11. 

Diniz, C.G., Souza, A.A.D.A., Santos, D.C., Dias, M.C., Luz, N.C. Da, Moraes, D.R.V. De, 
Maia, J.S.A., Gomes, A.R., Narvaes, I.D.S., Valeriano, D.M., Maurano, L.E.P., 
Adami, M., 2015. DETER-B: the new Amazon near real-time deforestation detection 
System. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8, 3619–3628. https://doi.org/ 
10.1109/JSTARS.2015.2437075.

Doblas, J., Shimabukuro, Y., Sant’Anna, S., Carneiro, A., Aragão, L., Almeida, C., 2020. 
Optimizing near real-time detection of deforestation on tropical rainforests using 
Sentinel-1 data. Remote Sens (Basel) 12, 3922. https://doi.org/10.3390/ 
rs12233922.

Dong, X., Zhang, D., Cui, K., Hu, C., Lv, X., 2016. Spatial filtering strategies on 
deforestation detection using SAR image textures. In: 2016 CIE International 
Conference on Radar (RADAR). IEEE, pp. 1–4. https://doi.org/10.1109/ 
RADAR.2016.8059472.

ESA, European Space Agency), 2024a. Earth Observation Portal [WWW Document]. 
European Space Agency. https://www.esa.int/Applications/Observing_the_Earth. 
accessed 10.25.24. 

ESA, (European Space Agency), 2024. Sentinels Scientific Data Hub [WWW Document]. 
European Space Agency accessed 12.14.24. 

ESA, European Space Agency), 2024c. Sentinel’s Application Plataform - SNAP.
Estimates, P., 2021. Polarimetric synthetic aperture radar. Remote Sensing and Digital 

Image Processing. Springer International Publishing, Cham. https://doi.org/ 
10.1007/978-3-030-56504-6. 
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Guimarães, U.S., Narvaes, I.D.S., Galo, M. de L.B.T., 2017. Aplicação de dados ERS, 
Envisat e Sentinel para detecção de mudanças nos ambientes costeiros amazônicos. 
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Toman, M., 2018. Spatially explicit valuation of the Brazilian amazon Forest’s 
ecosystem services. Nat. Sustain. 1, 657–664. https://doi.org/10.1038/s41893-018- 
0175-0.

Sugimoto, R., Kato, S., Nakamura, R., Tsutsumi, C., Yamaguchi, Y., 2022. Deforestation 
detection using scattering power decomposition and optimal averaging of volume 
scattering power in tropical rainforest regions. Remote Sens. Environ. 275, 113018. 
https://doi.org/10.1016/j.rse.2022.113018.

Sullivan, R.J., 2004. Radar Foundations for Imaging and Advanced Concepts. Institution 
of Engineering and Technology. https://doi.org/10.1049/SBRA030E.

Tadesse, G.A., Robinson, C., Mwangi, C., Maina, E., Nyakundi, J., Marotti, L., 
Hacheme, G.Q., Alemohammad, H., Dodhia, R., Ferres, J.M.L., 2024. Local Vs. 
Global: Local Land-Use and Land-Cover Models Deliver Higher Quality Maps.
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