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ABSTRACT

Particle deposition on an object from a turbulent flow is of considerable interest in many applications. Numerical predictions using
conventional computational fluid dynamics (CFD) are challenging due to that a large number of individual deposition events must be
observed over a long time for the deposition statistics to converge. Here, we investigate the potential for using recurrence CFD (rCFD) to
efficiently and accurately predict particle deposition on a cylinder for Reynolds numbers (Re) in the interval 20 < Re < 10000. We quantify
the front- and back-side deposition efficiencies independently, analyze the locations and timings of deposition events, and benchmark the
computational performance. We find that rCFD predicts deposition efficiencies with similar accuracy as the corresponding CFD simulations,
but at a fraction of the computational cost. The most significant deposition occurs on the front side of the cylinder and is very well described
for all Reynolds numbers investigated. For Re = 10 000, we observe a dependence on the rCFD database length in the prediction of the much
less effective back-side deposition, as the database only contains a limited subset of the more rare flow behaviors responsible for this deposi-
tion. These results can be used to accelerate particle deposition studies by several orders of magnitude, which would bring significant benefits
for computationally challenging applications, such as sensor soiling in the car industry, icing on aircraft, and ash build-up in boilers.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0283431

l. INTRODUCTION The comparative strength of the two processes depends mainly on par-
ticle inertia, with heavier particles directly impacting the wall, whereas
lighter and smaller particles depend on diffusion processes in order to
deposit.”

To properly capture these near-wall events in numerical simula-
tions, the carrier fluid must be very accurately described close to the

Particle deposition studies are important for both academic and
industrial applications. In academia, there is interest in understanding
the underlying mechanisms responsible for particle dispersion and
deposition on surfaces." * In industry, there is often system-specific
interest in predicting how a particular design would perform in a given
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operating environment.” In these two points, a common view is that surface.” Especially, features such as turbulence must be adequately
high-resolution simulations are needed for properly resolving the captured in order to properly describe the process of transporting par-
behavior of depositing particles close to the surface. ticles from the near-wall accumulation region all the way to the sur-
The process of initially suspended particles depositing on the sur- face.” Describing turbulence can be done either by solving for all of the
face of a submerged object in a turbulent fluid flow can be generalized ~ turbulent structures or by modeling them. The former is very compu-
into a few steps.” First, the particles are brought to an accumulation tationally demanding, the latter is theoretically challenging and, using
region close to the surface by some feature of the flow, known as in-  currently available methods, not nearly as accurate.'’ "’
sweeps.”” This near-surface region exhibits high particle concentra- Long-term predictions of particle deposition phenomena from
tions, but an additional process is needed to bring the particles all the turbulent flows are further complicated by the large span of temporal
way to the surface. This final part is due to either of two contributions: scales involved. An individual deposition event may require the com-
deposition due to particle inertia, or deposition due to diffusion. bined action of several coherent structures in the turbulent flow field,
Phys. Fluids 37, 093320 (2025); doi: 10.1063/5.0283431 37, 093320-1
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implying that a fine temporal resolution is needed for its description.
At the same time, enough deposition events must be simulated for
long-term statistics of the process to be accurately determined.

High-fidelity simulation of the carrier fluid can be performed
using, for example, direct numerical simulation (DNS) techniques.l"”'L
These provide fully resolved flow fields from the Navier-Stokes equa-
tions, but suffer from exceptionally high computational costs.
Generally, only small-scale problems can be studied using DNS.'*"®
To reduce the computational requirements, several alternative solution
techniques have been developed that focus on modeling parts of the
small-scale turbulence, rather than resolving it. Two common model-
ing approaches are known as large eddy simulation (LES)'”'® and
Reynolds-averaged Navier-Stokes (RANS).'”*" In the former, most of
the turbulence is resolved, but the smallest scales are modeled. This
simplification reduces computational cost but also sacrifices some
accuracy. In the latter method, the underlying Navier-Stokes equations
are time-averaged, which reduces computational cost, but unfortu-
nately also accuracy, even further.

To try to overcome some of the limitations in these two
approaches, sometimes hybrid LES/RANS methods, such as detached
eddy simulation (DES),”" are used. This method combines the LES
and RANS methods by modeling the large-scale structures using the
LES approach and the small-scale, near-wall turbulence using RANS.
This way, a mix of turbulence-resolving and turbulence-modeling can
be used in the same simulation, combining the properties of the two
approaches. DES simulations are often used in industrial settings, such
as in the automotive’””” and aerospace””” industries. In this work, we
will use the DES method due to the favorable combination of accuracy
and computational performance for external flows at industrially rele-
vant Reynolds numbers.

Unfortunately, even with these simplifications of the solution
technique, the computational requirements are still very high, espe-
cially for complex, real-world flow systems. Further improvements are
therefore needed to reduce computational cost. The most simple and
straightforward simplification is to use time-averaged flow fields. This
works well for some types of studies, but is inaccurate for investiga-
tions that depend on transient flow effects. Particle deposition on a
submerged body, such as the cylindrical geometry of interest in this
work, is an inherently transient process that depends on the unsteady
vortex shedding behind the cylinder.”**” It should be noted that these
transient effects impact both the front-side deposition (via boundary-
layer fluctuations) as well as the backside deposition (via intermittent
wall-normal fluid motion in the vortical structures).' Therefore, time
averaging of the fluid flow fields cannot be expected to represent a suc-
cessful approach here.

Another strategy for reducing the computational cost is to use
reduced-order methods, where the most important degrees of freedom
are computed using, for example, proper orthogonal decomposition
(POD)* or dynamic mode decomposition (DMD).”” The POD strat-
egy decomposes the flow field evolution into discrete modes, with
varying energy levels. The superposition of the most energetic modes
can be used to reconstruct an approximation of the original flow fields,
reducing the complexity from the full problem description. A disad-
vantage with this method is that it suffers from stability problems for
long time frames. Methods for mitigating these shortcomings have
been developed, but they rely on stabilizing the predictions using
conventional computational fluid dynamics (CFD), which are
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computationally expensive. Novel reduced-order approaches based on
machine learning, such as f-variational autoencoders, are also being
currently researched.”” While promising, they too produce predictions
that diverge over time as small initial fluctuations in the model accu-
mulate. It remains to be investigated whereas the long-term predic-
tions obtained by these approaches are of sufficient quality to
accurately predict two-phase flow phenomena such as particle
deposition.

Instead, in this work, we use the recurrence computational fluid
dynamics (rCFD) framework’*” for generating approximate solutions
to the flow fields. This method is useful for generating long-term
approximations to flow fields that exhibit some degree of periodicity in
time. In the rCFD method, a small database of CFD snapshots is used
to characterize the flow. Then, these snapshots are rearranged and
reused to create a recurrence path that extrapolates the evolution of
the flow fields far beyond the range of the database. Since this method
only uses flow field snapshots that come directly from a highly resolved
CFD simulation, we get very high spatial resolution in the approxima-
tion as well. Stability is also guaranteed since (i) the generated recur-
rence path only consists of previously seen CFD snapshots and (ii) the
temporal average and variance of the extrapolated series are the same
as those of the database.” Furthermore, if an aerodynamics characteri-
zation has already been performed using conventional CFD for the
system in question, the database contents exist already and no specific
training of the rCFD model is required.

When using the rCFD method, a challenge manifests itself in the
form of the discrete temporal jumps that are an inherent part of the
method. These jumps introduce discontinuities in the flow fields that
the particles will experience, potentially leading to unphysical behavior.
More specifically, the rCFD approximation may deteriorate the spatio-
temporal correlation of the coherent events in the fluid flow descrip-
tion, such that the simulation of the particle deposition process (bulk
turbulence, in-sweep, interactions of near-wall fluctuations, and parti-
cle inertia) is corrupted. It is therefore not clear a priori that rCFD can
accurately predict all relevant particle deposition statistics (deposition
efficiencies, locations, and temporal correlation).

In this work, we demonstrate the potential for using rCFD to
facilitate particle deposition simulations using the example case of par-
ticle-laden flow around a cylinder. Both laminar two-dimensional and
turbulent three-dimensional flows are considered, with Reynolds num-
bers ranging between 20 and 10 000. We show that the impact efficien-
cies computed using rCFD provide accurate approximations of the
efficiencies computed using traditional CFD, while deposition loca-
tions and temporal correlations exhibit sensitivity to the rCFD data-
base length. Additionally, we show that the rCFD deposition efficiency
approximations can be computed at a fraction of the computational
cost of conventional methods.

Il. THEORETICAL BACKGROUND

In Secs. [T A-II E, we present necessary theoretical considerations
for modeling the carrier fluid and the suspended particles. The process
of particle deposition is also discussed. Finally, a description of how
the rCFD method works is provided.

A. Fluid description

The fluid description for the carrier phase is based on the incom-
pressible Navier-Stokes equations,

Phys. Fluids 37, 093320 (2025); doi: 10.1063/5.0283431
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S (g V) = iv;; £V (vg[Vuy + (Vup)t). @
where uy is the fluid velocity, p; is fluid density, p is pressure, and
Ve = v+ vy is the effective viscosity. Here, v = pi;/p; is the kine-
matic viscosity, v; is the eddy kinematic viscosity, and g is the fluid
dynamic viscosity. In this work, vs is obtained using the delayed
detached eddy simulation (DDES) method.” DDES represents a mod-
ification of the original DES method and improves the handling of
thick boundary layers and counteracts the issues of grid-induced sepa-
ration found in traditional DES. The flow in this work is simulated
using the OpenFOAM v2313k — o shear-stress transport (SST)
DDES solver implementation.”*

Flow around a cylinder is a well-researched problem, with an
abundance of studies characterizing the flow behavior.'"**"* Tt is
known that the external flow is inherently time-dependent for all
except the smallest values of the Reynolds number

_ U.D

Re , (3)
14

where Uy, is the fluid free-stream velocity and D is the cylinder diame-
ter. Steady flows are found for Re < 40.”* Above this limit, the system
exhibits an unsteady behavior with regular vortex shedding in the
wake. The shedding frequency is often characterized using the
Strouhal number, which is defined by

D

Str = UL 4)
where fis the vortex shedding frequency.

Since vortex shedding is a time-dependent flow phenomenon, a
time-dependent mathematical description of the fluid is necessary in
order to properly capture the flow behavior. Transient simulations are
therefore needed to accurately capture the interaction between the
oscillating carrier fluid and the dispersed particles.

B. Particle description

In this work, the Lagrangian particle tracking framework is used.
In this description, particles are treated as spherical point particles
with mass m, and their trajectory (using the acceleration vector a) is
computed using Newton’s second law of motion,

F = ma. (5)

The particle force vector F is, in general, expressed as a sum of several
contributing forces, such as drag, lift, and gravity. We are primarily
interested in small, non-Brownian particles that are significantly
heavier than the carrier fluid; hence, we consider only the effects of the
drag force, which is the dominating force at these conditions.' The par-
ticle Reynolds numbers are consistently lower than unity, so the effects
of the lift force can be neglected.””*’
The drag force contribution is defined using

1
Fp = Epfurel‘urel|CDA7 (6)

pubs.aip.org/aip/pof

where u,,; = u; — u, represents the relative velocity between the fluid
and the particle (u,), Cp is the drag coefficient, and A is the projected
area of the particle into the flow. For the special case of the drag force
on a sphere, such as for the particles used in this study, the value of Cp
is defined by"'**

24 1
Cp=—|1+-R 2/3) 7
D Rep( +6 ep ) ( )
where
We|d
Re, = M (8)
Hy

is the particle Reynolds number.

The point-particle approximation used in the Lagrangian frame-
work simplifies both the mathematical description and the simulation
methodology. For example, if the particle is small compared to the
fluid spatial scales, then the fluid properties can be assumed constant
over the entire particle surface. It is then enough to track the particle
center of mass, rather than resolving the entire fluid-particle interface.
This simplification then reduces the computational requirements
significantly.

However, a downside of this approximation is that it is only valid
under certain conditions. Mainly, it is only valid for particles that are
small compared to the spatial scales of the fluid. Comparatively large
particles cannot be accurately modeled with this approximation since
the fluid properties changeover the particle surface. Computationally
expensive boundary-resolving methods are then needed for high-
accuracy simulations. In this work, we assume that all particles are
small enough to justify the point-particle approximation. This is
indeed a reasonable assumption for most studies of particle deposition
on bluff bodies in industrial settings.

Even with the point-particle approximation, some of the neces-
sary calculations require a corresponding particle diameter, namely the
drag force calculation and the particle-wall collision detection mecha-
nism. All particles, therefore, have an associated diameter that is used
only by these stages of the simulation.

For the high-Reynolds cases (Re > 1685), turbulent fluctuations are
present in the carrier fluid, which affects the suspended particles." Since
the DDES solution methodology used in this work models some of the
turbulence, rather than resolves it, a turbulent dispersion model is needed
to account for the effects of unresolved turbulence on the particle trajecto-
ries. This work uses the OpenFOAM StochasticDispersionRAS
model, which is an eddy interaction model that assumes that the turbu-
lence is isotropic. This model works by superposing the effects of a syn-
thetic eddy on each particle by adding a random velocity fluctuation to
the fluid velocity seen by the particle.” Each particle is affected by exactly
one such eddy at a time and the effect is constant within a certain time
interval. Once this time has passed, a new synthetic eddy is generated.
This time, called the interaction time, T, is the minimum of the eddy
lifetime 7, and the transit time tg, which represents the time required for
the particle to cross the eddy. Therefore,

k e

Tint = min(TE7 TR)7 Te = 27 TR

(©)

N ‘urel|7

where € = C ko is the turbulence dissipation. The eddy length scale is
defined as
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C3/4 13/2
Je =, (10)
€
where C,, = 0.09. During this time interval, the particles experience
random velocity fluctuation

u = Jf|]\]w|dh (11)

where 6y = /2k/3 is the root mean square of the velocity fluctuations
and N,, is a random variable following the standard normal distribu-
tion A(0,1) with mean 0 and standard deviation 1. The random
direction vector

acosf 0= w27
d, = | asin0 |, u=2w,—1 (12)

u a=+V1-—u?

represents the direction of the instantaneous velocity fluctuation due
to the turbulent dispersion. Here, two additional random variables are
defined, w,; and @,,, which are sampled from the standard uniform
distribution U(0, 1).

This work uses a fine mesh, which means that most of the turbu-
lence is resolved, rather than modeled. Thus, the turbulent dispersion
model only has a marginal impact on the computed deposition rates.
This has been confirmed by simulations, where marginally lower
impact efficiencies are found on the back of the cylinder when the tur-
bulent dispersion model is disabled. No differences were found for the
front-side deposition rates. In order to account for the small fraction of
modeled turbulence, the turbulent dispersion model is enabled in all
results presented in this work.

In order to compare results at different levels of particle inertia,
we use the Stokes number St, which is defined as

2
_P Usod,

St
9D,Uf ’

13)

where p, is the particle density. The Stokes number represents the
ratio of the particle response time and a corresponding fluid response
time. Intuitively, large values of this parameter represent particles with
high inertia that travel straight ahead, irrespective of the local flow field
behavior. Low values, on the other hand, represent tracer-like particles
with low inertia that follow the flow almost perfectly.

In this work, we assume that the particle volume fraction is low,
so that the fluid affects the particles, but the particles do not affect the
fluid. Additionally, the particles do not interact with each other. This
one-way coupling approach also simplifies the interpretation of con-
vergence tests, as the fluid can then be analyzed for convergence inde-
pendently of the particles.

C. Particle deposition

An important aspect of particle deposition studies is the fraction
of particle impacts that lead to deposition. To simplify the description,
in this work, we assume that all particle-wall impacts lead to deposi-
tion, as is done in similar studies."”"* A collision is triggered when the
center of mass of a spherical particle is closer to the cylinder surface
than the particle radius. Once a collision has occurred, the particle
deposition location is registered and the particle trajectory is thereafter
terminated. A deposited particle becomes completely passive and does
not affect any other transport or deposition processes.

ARTICLE pubs.aip.org/aip/pof

The main particle deposition metric used in this work is the
impact efficiency, which is defined as
Nionoci
_ deposited . (14)
N injected
where Nyeposited 15 the number of particles that have deposited on the
surface and Nipjected is the number of particles that have been injected
upstream in the projected area of the deposition surface. This efficiency
is highly dependent on particle inertia, so it is computed individually
for each particle size.

D. Recurrence CFD (rCFD)

There are two main versions of the rCFD method: flow-based
and transport-based rCED. In the flow-based version, the fields in the
CED snapshots in the database are played back in an order that
approximates the long-term evolution of the flow fields. The evolution
of particles and passive scalar fields can then be calculated as if they
had been calculated at the same time as the CFD fields. Transport-
based rCFD, on the other hand, considers the transport of information
between (possibly distant) cells with large time steps, without having
to play back the complete field evolution within each step.”’ In this
work, we use the flow-based version of rCFD due to the straightfor-
ward implementation of particle inertia effects, which play an impor-
tant role in deposition studies. For the application of the transport-
based variant, one would have to describe the particle dynamics from
an Eulerian perspective with a passive transport equation. Taking into
account the drift relative to the gas flow would be much more chal-
lenging and less accurate than for the Lagrangian formulation, which
we employ in the present study.

The rCFD method relies on recurrence statistics, which are con-
structed from pairwise similarity measurements between snapshots in
the rCFD database. Several similarity metrics are available, with the
choice of measure being up to the user. In this study, we use a distance
measure defined by the following equation:” "

D(t, ) = GJ (u(r, 1) — u(r, )’ dr3)1/2, (15)

where

N= max (J (u(r,t) —u(r, t’))2 dr3) (16)
is a normalization factor. In these equations, the difference squared of
a fluid vector quantity, such as velocity u, is integrated over the volume
of the system. Notice that the difference is between fields at different
times ¢ and ¢'. The integration must then be performed for all unique
combinations of t and ' in a CFD database of flow field snapshots to
yield the complete distance matrix.

The database consists of a short CFD simulation in which the
flow fields have been regularly sampled and saved. The sampling
should be frequent enough that the fields do not change drastically
between sampling points. The length of the sampling should be long
enough that the main flow features are captured. This is generally the
case once a few oscillation periods have been sampled. A crucial trade-
off between storage space, computational requirements, and resulting
rCFD approximation accuracy depends on the construction of a high-
quality database.
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FIG. 1. Schematic illustration of a recurrence matrix. The value of each matrix ele-
ment Dj represents the dissimilarity between states i and j in a CFD database
according to the chosen difference metric.

Using the distance measure and database above, a recurrence
matrix such as the one schematically illustrated in Fig. 1 can be con-
structed. Here, the i and j indices on the coordinate axes represent the
rCFD snapshots in the database at discrete times ¢ and #/, respectively.
The numerical values between 0 and 1 of each distance matrix element
D;j; represent the degree of likeness between the two CFD snapshots i
and j. A distance value of Dj; = 0 represents the case when the two
snapshots are identical, which is true by definition on the main diago-
nal, where i = j. The matrix element with Dj; = 1 represents the most
dissimilar pair of states i and j in the database. The range of matrix ele-
ment values is kept between 0 and 1 by the normalization factor in Eq.
(16). The presence of clear off diagonal bands in the recurrence matrix
indicates that the system exhibits clear recurrent behavior in time. In
Fig. 1, we see the main diagonal, one clear off diagonal band, and a
small part of a second off diagonal band in the lower right corner of
the plot. This structure indicates that this recurrence matrix is associ-
ated with a CFD database of almost two complete flow oscillations.
Other systems may exhibit similarity between two snapshots without
the clear off diagonal structure, which indicates that there are similari-
ties, but not a clear recurring pattern.

E. rCFD recurrence path

Once the recurrence matrix has been constructed, we can gener-
ate a recurrence path, which is a time-extrapolated approximation of
what the complete solution to the carrier phase flow fields would look
like. A flow chart of the path generation algorithm is presented in
Fig. 2.

First, the method starts by initializing an empty recurrence path.
In terms of implementation, this can be an empty array. Then, a refer-
ence to the first element in the CFD database is added to the list, which
can be an integer index, with the number 0 indicating the first element
in the database. After this, a random segment length is selected. The
length represents the number of snapshots from the database that will
be added in direct sequence for a particular segment of the rCFD path.
This length can at most be until the end of the available database, or to
a particular maximum set by the user. Once the current segment
length has been chosen, all CED snapshots from the database in this
identified segment are added to the recurrence path. Again, the
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|
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](—

FIG. 2. Flowchart of the rCFD path generation process.

[ End

recurrence path can, for example, be an integer array and then the
snapshots are added by appending the snapshot database indices to
the array. We have now generated a short recurrence sequence. If this
sequence is long enough for the studies we want to run, then we end
here. If not, then we find the snapshot that is as similar to our current
ending snapshot as possible. This new snapshot is selected from the
opposite side of the database. In other words, if we end the segment in
the second half of the database, we look for similar segments in the first
half of the database, and vice versa. This avoids certain database sam-
pling issues, such as the recurrence path only sampling the end of the
database. Once the new starting point has been found, we go back to
the step “generate randomized segment length” and continue looping
until the requested recurrence path length has been reached.

The algorithm can be further illustrated by walking through the
recurrence matrix plot (Fig. 1). The path generation process is initial-
ized at the database starting point @. A random segment length is gen-
erated, which puts the segment ending point at @. We test if we have
reached the desired recurrence path length, which we, in this example,
have not. Therefore, since we stopped in the first half of the database,
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we look for the most similar CFD snapshot in the second half of the
database. We find the most similar snapshot ® by minimizing Dj;
along the horizontal dashed line, on the opposite side of the matrix.
Taking note of the snapshot time, we set @ as the starting point for the
next segment. The process is then continued until the desired recur-
rence path length has been reached. In this case, we get the recurrence
path

D-2,0-0, 00, .., 17)

where the arrows represent all the intermediate CFD snapshots and
the commas indicate jumps in the recurrence path. The jumps might
be noticed as small twitches in the resulting approximated flow fields
due to minor differences between the ending snapshot in the first seg-
ment and the starting snapshot in the second segment. These artifacts
appear because the minimized distance metric is a global measure and
not necessarily a local one.

Finally, once the path has been generated, it must be translated
into a form that is readable by the chosen simulation package. This
involves translating the array of snapshot indices into a sequence of
simulation data files on computer storage. Further details are software-
specific and, therefore, omitted here for brevity.

I1l. METHOD AND COMPUTATIONAL SETUP

In the following two subsections, we describe problem-specific
parameters used in this study, first for the fluid and then for the
particles.

A. Fluid setup

In order to properly describe the motion of depositing particles
close to the surface, the displacement thickness J; must be properly
resolved.”*° Literature results indicate that using 4-10 grid cells
within this thickness should be enough to resolve this part of the
bounda{y layer.”*” A previous study suggests a first-cell radial size of
at most”

- 0.3240
“4-+/Re

However, for the simulations in this work, a smaller first-cell radial
size of

A

D. (18)

~ %

A= 5 (19)
was required, where d,, represents the diameter of the smallest particle
size used in any given simulation. This corresponds to approximately

A= 0.3240 D. 20)
32-VRe
The boundary layer cell size grading is fixed at 10% per cell layer,
ensuring that the suggested number of cells in the J, layer is achieved.
The computational domain is large enough to prevent domain edge
effects from affecting the results.

In terms of discretization schemes, in general, second-order
schemes are used for time and space discretization. However, to
improve stability, a second-order scheme with a limiter is used for the
divergence term in the Navier-Stokes equations. This term then
achieves between the first and second order accuracy.
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FIG. 3. Simulation domain used in this study. Distances in terms of cylinder diame-
ters D.

The simulation domain spans 30, 20, and 6D in the x, y, and z
directions, respectively, see Fig. 3. The cylinder is centered 10D down-
stream of the inlet in the x direction, centered in the y direction, and
spanning the entire z direction. The inlet has a fixed fluid velocity in
the x direction, such that there are no turbulent velocity fluctuations
on the inlet boundary. At the outlet, we prescribe a gauge pressure of
zero. The side walls act as symmetry planes to minimize boundary
effects. The mesh is fine enough that wall functions are not necessary
close to the cylinder surface.

This study uses a three-dimensional hexahedral mesh (Fig. 4)
with approximately 9.6 x 10° cells. All cases use the same base mesh
to simplify comparisons. The cylinder boundary layers are slightly dif-
ferent in each case to account for the condition in Eq. (20).
Additionally, the two-dimensional cases use a mesh that is based on a
plane cut of the three-dimensional version. The two-dimensional
mesh is then very similar in structure to the three-dimensional one,
but with a thickness of only a single cell, and consisting of approxi-
mately 55 000 cells.

The fluid solver uses the PISO algorithm with a fixed nondimen-
sional time step of AtU, /D = 3.125 x 1073, which maintains the
Courant number at a value less than one. This time step is small
enough to accurately capture the particle response time, with at least
seven CFD time steps within the shortest particle response time.
Additionally, the particle phase solver uses substepping for the time
step, which means that the particle equations are solved with a
time step that is at most 0.3 of the CFD time step. The particles are
then resolved with at least 23 particle time steps within the shortest
particle response time. In total, the simulation is run for tU, /D =
300 time units, of which the first tU,, /D = 100 are discarded to elimi-
nate the effects of the startup transients. The rCFD simulations do not
have a startup transient, so these simulations skip this initial part. The
fluid density is constant (p,/p; = 1000), and the fluid kinematic vis-
cosity is adjusted for each case to give the desired Reynolds number,
keeping all other properties constant.

In this work, we use very well-resolved DDES, where most of the
turbulent kinetic energy is resolved, rather than modeled. This is nec-
essary in order to assure that we have an accurate baseline when com-
pared to literature studies using highly resolved flow simulations. The
fraction of resolved turbulent kinetic energy is consistently over 99%."*
The following Reynolds numbers are simulated in the present work:
20, 100, 1685, 6600, and 10 000.
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FIG. 4. Cutting plane of the fluid mesh used in this work. Flow is from left to right.

1. Fluid convergence tests

In order to assure proper convergence of the simulations of the
carrier fluid phase, mesh convergence tests and comparisons to litera-
ture values are performed. The results are assessed using the drag and
lift coefficients, as well as the Strouhal number, for the cylinder.

A comparison of the values obtained in this study to values found
in the literature is presented in Table I. The present results agree well
with the literature data. The values reported for this study were
obtained by averaging over 60 vortex shedding periods. Worth noting
is that the C;, rms (root mean square) results depend strongly on the
aspect ratio of the cylinder, explaining the rather large span of values
in previous studies. Given the good agreement between our results and
literature values, we consider the carrier fluid simulation setup to be
adequate.

B. Particle setup

For the particles, we need to specify several properties such as the
number of particles to inject, their diameters, and where to inject
them. The particles are injected randomly in the plane of the projected
cylinder’s frontal surface area, located 5D upstream of the cylinder, see
Fig. 3. In this region, the fluid flow lines, and hence particle paths, are
undisturbed by the presence of the cylinder. Particles are injected over
a time span of tUy /D =50 time units, which represent approxi-
mately ten vortex shedding periods. Particle injection begins at time
tUy, /D =100, after the startup transients have subsided.
Consequently, particle injection stops at time U, /D = 150, and the
existing particles are allowed to propagate freely until the simulation
ends at tU,/D = 300. The particle density is chosen so that
Pp/ Py = 1000, as this density ratio is relevant to both air-water sys-
tems and many industrial gas—particle systems. For these reasons, this

TABLE I. Comparison of nondimensional fluid flow quantities at Re = 10 000.

density ratio is also consistent with most previous studies from the
literature.

Particle sizes are determined using the Stokes number in Eq. (13).
Numerical values of the Stokes number in particle deposition studies
often span in the range of 0.01-10."*"” Some studies, especially experi-
mental ones, investigate Stokes numbers outside this range, both lower
and higher values.” In this study, we limit the Stokes number to the
range of 0.045-2. This range captures the main flow behavior, while at
the same time minimizing the computational cost.

The required number of injected particles is based on the expected
number of impacts for a certain particle size. As the expected impact
efficiency for a certain particle size depends on the Stokes number, liter-
ature values for the expected impact efficiencies' may be used to esti-
mate the required number of injected particles. In this study, we aim
for at least 100 particle hits on the front side of the cylinder for each
Stokes number. Equation (14) can then be used to estimate Nipjected by
using the values Neposied = 100 and 1 taken from literature. Note that
using this estimation procedure does not influence the final computed
results for #. The estimation only minimizes the computational effort
required to achieve the target Nyeposieda = 100 particle impacts per
Stokes number needed for good statistics. Based on this estimation pro-
cedure, a total of 6 x 10° particles are injected during the course of the
simulation. A larger number would lead to a finer sampling of the flow
fields with respect to deposition events, but at the cost of increased
computational effort. Moreover, to further reduce computational costs,
particles are removed from the domain once they pass a fluid cross sec-
tion plane located behind the cylinder at x = 4D, also illustrated in
Fig. 3. Here, the fluid is moving strictly away from the cylinder (in the
positive x direction), so there are no flow structures that are capable of
transporting particles back to the cylinder. The particles can then be
removed from the domain without affecting the results.

Reference Method Cp mean. Cp rms Strouhal number
This work DDES 1.091 0.252 0.203
Nguyen and Nguyen (2016)49 DDES 1.133 0.262-0.363 0.196-0.201
Dong and Karniadakis (2005) 14 DNS 1.143 0.448 0.203
Norberg (2003)37 Exp. 0.25-0.45 ~0.2
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C. rCFD

The rCFD method has a few parameters that can be adjusted.
First, the method is capable of handling coarse-graining of both space
and time.”' In this work, we record every 16™ CFD time step, which
corresponds to approximately 90-100 sampling points per vortex
shedding period. The recording time step is chosen to be fine enough
so that the flow fields do not change significantly between steps, while
at the same time coarse enough to minimize database storage size. A
coarser recording frequency than every 16™ time step is probably pos-
sible; however, further coarsening of this recording frequency has not
been tested in this work. Coarse-graining in space can be performed
by mapping the CFD fields to a coarser rCFD mesh with the option to
retain sub-grid scale variances. This method is, however, not used in
this study.

For the selection of the distance metric between database snap-
shots, the metric defined in Eq. (15) is used here. Other definitions are
possible, depending on which fields are most important in a certain
flow system. It is also possible to limit the size of the considered
domain, both for the distance calculation and when constructing the
CFD database. For example, if only the region immediately around the
cylinder is of interest, then the field information far away can be dis-
carded. This saves storage space, which can be a major factor in decid-
ing the CFD database size.

The CFD database need to contain enough flow information to
be able to generate good approximations of the flow fields. In this
work, we use a fixed database size of tU/D = 15 for all cases, which
for the transient cases Re > 100 correspond to about three vortex
shedding periods. Note that the Re = 20 case represents a steady-state
flow and does not have a well-defined vortex shedding period. This
value is chosen based on the saturation of the mean nearest-neighbor
distance in the recurrence matrix,”” and it is also in line with the
expected time duration required to accurately assess the aerodynamic
behavior of a complex bluff body using a scale-resolving turbulence
model.”

The recurrence path length required for the predicted deposition
efficiency to converge can be determined by observing the evolution of
the signal over time. In the current simulations, the deposition effi-
ciency is within 10 % of its final value within approximately two vor-
tex shedding periods, indicating that this signal converges relatively
quickly as a large enough portion of the database has been sampled.
Nevertheless, all results presented here are obtained from injecting par-
ticles over ten vortex shedding periods, to ensure that there is no sig-
nificant dependence on the chosen recurrence path length in the
reported values.

IV. RESULTS
A. Recurrence statistics

An illustration of the recurrence matrix for the carrier phase of
the case Re = 100 is illustrated in Fig. 5. The main diagonal is supple-
mented by several off diagonal bands, indicating that there is a clear
recurrence pattern in the flow system. The recurrence is very good,
with the off diagonal bands going to almost zero, which indicates close
agreement between snapshots at different times ¢ and '.

Similarly, the recurrence matrix for the case Re = 10000 is illus-
trated in Fig. 6. Here, we also see good agreement and a clear off diago-
nal band structure. However, the recurrence is not exact, as evidenced
by the non-zero minima on the off diagonal bands. This can be

ARTICLE pubs.aip.org/aip/pof

300 , 1
0.8
&
< 200
= 0.6
% Qa
Q 04
£ 100
w0
0.2
0 / 0

0 100 200 300
Snapshot index

FIG. 5. Recurrence matrix for the CFD database at Re = 100. Plotted are the
matrix elements D; for the distance metric as defined in Eq. (15).

explained by the turbulence present in higher-Reynolds-number cases.
For low Reynolds numbers, the flow is laminar and random velocity
fluctuations due to turbulence do not affect the overall flow fields. We
then get essentially perfect symmetry in time. As the flow becomes
more turbulent at higher Reynolds numbers, random turbulence
effects start to influence the flow fields, introducing variations that
impair symmetry in time. This gives rise to the non-zero off diagonal
bands in the recurrence matrix. Note that since each case has a differ-
ent normalization factor N, the element values of the two matrices can-
not be directly compared. General trends can, on the other hand, be
safely compared.

B. Front-side particle deposition

A validation of the front-side deposition efficiency #g,, as a
function of the particle Stokes number is illustrated in Fig. 7 for the
case Re = 1685. The figure presents literature values' as the dotted
line, and a corresponding DDES simulation performed in this work as
the dashed line. It is clear that the DDES simulation corresponds very
closely to the simulation results found in the literature.
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FIG. 6. Recurrence matrix for the CFD database at Re = 10 000.
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FIG. 7. Front-side particle deposition efficiencies at Re = 1685. The dotted line rep-
resents literature values," and the dashed line represents a DDES simulation pro-
duced in this work.

As can be seen in the figure, the impact efficiency is heavily
dependent on the Stokes number, especially in the transition regime
found at intermediate Stokes numbers of 0.2 < St < 1. In the high-
particle-inertia regime, St > 2, impact efficiencies change slowly with
the Stokes number. For the low-particle-inertia regime, St < 0.045,
impact efficiencies flatten out.

Beyond St > 2, particle deposition is mainly due to particle iner-
tia. The sudden changes in the carrier phase flow speed and direction
are not strong enough to significantly deflect the particle from a colli-
sion course with the cylinder, and an impact occurs. In the low-inertia
regime, St < 0.045, the suspended particles behave similarly to perfect
tracer particles. In this regime, particle-cylinder impacts are mainly
due to interception from the finite size of the particles. In other words,

- — - 3D DDES, Re=1685, this work
3D rCFD, Re=1685, this work

— — — 3D DDES, Re=6600, this work
3D rCFD, Re=6600, this work
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the center of mass of the suspended particles follows the fluid stream-
lines very closely, but the finite radius of the particle means that the
surface of the particle impacts the surface of the cylinder when the dis-
tance between the particle center of mass and the cylinder surface is
within one particle radius. Therefore, the main deposition mechanism
in this regime is interception.

With the DDES simulation at Re = 1685 validated against litera-
ture in Fig. 7, we present in Fig. 8 a comparison of DDES deposition
efficiencies for the Reynolds numbers 1685, 6600, and 10 000 as color-
coded dashed lines. The subfigures also illustrate the corresponding
deposition efficiencies computed using rCFD flow field extrapolations
(solid lines). The DDES and rCFD results match very closely for all
Reynolds numbers, indicating that the particle deposition process can
be accurately modeled using the rCFD method.

Although there are no disturbances in the upstream flow, the
front-side deposition on a cylinder shows strong transient features
beyond Re > 20 as the flow is periodically shifted to either side by the
vortex shedding, pushing the particles in the boundary layer sideways.
The particle interception is therefore enhanced as compared to a sta-
tionary boundary layer, and it is expected that this mechanism plays a
more prominent role at higher Reynolds numbers.' For comparison, a
steady-state RANS simulation of the Re > 10000 case showed that the
front-side deposition efficiencies were accurately captured for
St > 0.2, but underpredicted by up to a factor of two for St < 0.2 (not
shown). The results in Fig. 7 show that the rCFD approximation of the
front-side particle deposition process is very accurate, despite the
jumps in the database for the underlying fluid flow fields required by
the method. The CFD-to-rCFD comparison is equally excellent for the
low-Re cases (not shown), as expected due to the lack of turbulent
velocity fluctuations and thus near-perfect recurrence processes at lam-
inar flow conditions.

C. Back-side particle deposition

Backside particle deposition efficiencies as functions of the particle
Stokes number are presented in Figs. 9 and 10 for the high-Reynolds

- — - 3D DDES, Re=10000, this work
3D rCFD, Re=10000, this work
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FIG. 8. Deposition efficiencies computed using flow fields from DDES (dashed lines) and rCFD (solid lines) for Re = 1685, 6600, and 10 000. The results are color-coded by
Reynolds number. Deposition efficiencies computed using extrapolated flow fields from rCFD correspond closely to the deposition efficiencies computed using conventional

DDES flow fields.
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FIG. 10. Back-side deposition results using DDES (dashed lines) and rCFD (solid
lines), together with selected DNS results from literature.’

number cases Re > 1685. Figure 9 presents literature values as markers,
whereas Fig. 10 presents results produced in this work, with dashed
lines representing DDES results and solid lines representing rCFD
results. In Fig. 9, as not much data are available for separate front and
backsides, the literature values available for cylinders"z’3 ” are comple-
mented with data for other, similar, geometries such as a square bloc 0
and a circular disk.”” For comparison, one set of DNS results from the
literature is present in both figures. No backside deposition was
observed for the low-Reynolds number cases Re = 20 and Re = 100,
in agreement with previous observations."
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As is apparent from Fig. 9, the spread in the literature values is
very significant, in fact several orders of magnitude. This large spread
is due to the difficulty of accurately capturing the strong wake effects
present behind the cylinder. It can, however, be noted that the present
DDES results in Fig. 10 are within the range of previously predicted
backside particle deposition efficiencies for cylinders. The sensitivity of
the backside deposition process to accurate descriptions of the fluid
turbulence implies that it is vital that the turbulence is either properly
resolved or accurately modeled. However, currently available turbu-
lence modeling techniques do not offer sufficient accuracy for particle
backside deposition studies. The challenges of modeling can be
observed in the presented impact efficiencies from literature, where
high-accuracy methods, such as DNS, generally predict lower impact
efficiencies than methods with significant degrees of turbulence model-
ing, such as RANS.” Compare, for instance, the impact efficiency
results using DNS for flow at Re = 1685' and the corresponding
RANS results for Re = 1065.” In these two cases, we get a difference of
about three orders of magnitude for particles with St~ 0.1.
Consequently, properly resolving, not modeling, the turbulence is a
well-established way to get reliable particle deposition results on the
rear side of a submerged body.

However, one crucial difference between the best available previ-
ous high-accuracy DNS study' and this work is that the former limits
the domain to two dimensions, whereas this work uses three dimen-
sions for cases with Re > 1685. In this range of Reynolds numbers, the
wake will exhibit increasingly powerful three-dimensional turbulent
structures that cannot be captured using a two-dimensional represen-
tation. This limitation in the flow description will then lead to different
particle deposition results as the three-dimensional turbulent struc-
tures become more significant, a fact that is also discussed by the
authors of the DNS study.’ A comparison between the impact efficien-
cies computed using two-dimensional DNS and the corresponding
three-dimensional DDES indicates that there is a clear difference in
the calculated deposition efficiencies at Re = 6600. However, for com-
pleteness, we also simulated this case with a two-dimensional domain,
which yielded results very similar to the 2D-DNS, thus supporting the
conclusion that three-dimensional simulations are required for
Re > 6600.

In Fig. 10, it is immediately clear that the rCFD approximations
are very close to the reference CFD simulations, indicating that the
approximated solutions still reproduce the main flow structures and
fluid-particle interactions. Comparing the CFD and rCFD results
from this study to the DNS data from literature," good agreement is
found for the case Re = 1685. The sharp peak found in the DNS simu-
lations at St = 0.1 is not observed in our results, but the baseline level
is captured accurately. The results for the case Re = 6600 differ
between this work and the 2D-DNS," but this difference is attributed
to the number of physical dimensions used in representing the system.
As previously noted, employing our computational setup, but restrict-
ing the domain to a two-dimensional slice, yielded results that are very
similar to the 2D-DNS (not shown). The reason behind the significant
difference in deposition efficiency is the development of turbulent
three-dimensional structures that are not adequately captured by two-
dimensional simulations.

The deposition rate on the back of the cylinder has a clear
Reynolds number dependency, where more turbulent cases at
Re = 6600 and Re = 10000 correspond to higher particle deposition
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efficiencies compared to those for the case Re = 1685. This trend
appears as the local boundary layer becomes thinner with increasing
Re (so that particles can more easily penetrate it from the wake) in
combination with an increase in small-scale vorticity (so that there are
eddies that may effectively throw out small particles in directions
opposite the main flow)." The peak at St ~ 0.1 is due to the fact that
the turbulent eddies characterized by a turnover time equivalent to the
particle response time are most likely to effectively throw particles
back toward the cylinder.' That both these trends are adequately
reflected not only by the present DDES but also very well reproduced
by the rCFD approximation, is a surprisingly positive observation.
Despite the jumps along the rCFD recurrence path, which introduce
small artificial glitches in the representation of the turbulent flow field
at random intervals, the sensitive particle deposition process on the
back side can still be well described.

It is also clear that it is only the low-inertia particles (St=0.2) that
impact the back of the cylinder. Higher-inertia particles pass through
without being caught in the wake, preventing them from migrating to
the cylinder surface. This critical Stokes number has been found to be
0.125 for potential flow”* and approximately 0.13 for 2D-DNS."

Note that caution must be exercised when constructing the data-
base. It is vital that the database contains a representative set of flow
field snapshots. This is especially important when the length of the
database is comparatively short. In this work, we use a fixed database
size of three vortex-shedding oscillations, which works well for aerody-
namic properties, but may be too short to capture rare events impor-
tant for particle deposition. An example of this effect can be observed
between the two databases in Fig. 11, where the reference DDES simu-
lation is plotted together with two versions of the rCFD approxima-
tion. The only difference between the two rCFD approximations is
that their corresponding databases were constructed using different
segments of the DDES data. Both of the initial flow fields came from
the DDES simulation, but at different points in time. Taking different
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FIG. 11. Comparison of backside deposition results at Re = 10000 from DDES
and two sets of rCFD approximations, using different flow field databases. When
using databases of the small size used in this work, it is crucial that the databases
contain a representative set of original flow fields, or else the computed deposition
results will likely be biased.
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recurrence paths through a single database produces only minor varia-
tions to the predicted deposition efficiencies. However, using a differ-
ent database clearly affects the computed efficiency. This observation
indicates that the contents of the database are of major importance
when producing accurate rCFD approximations. In the current work,
our primary focus is on evaluating the rCFD approach for database
sizes sufficient for accurate characterization of the aerodynamics.”’
The database length needed for convergence is therefore not further
studied in this work but left for future studies.

Even though rCFD deposition efficiencies are well predicted with
the database employed in this work, the deposition locations computed
with the rCFD method exhibit some clustering that is not present in
the reference DDES results. Figure 12 presents impact locations on the
back of the cylinder for the three cases in Fig. 11. The reference DDES
results in Fig. 12(a) exhibit an even deposition in a band. The overall
trend is similar for the results of the two databases in Figs. 12(b) and
12(c), but with clearer clustering. The clustering patterns are also dif-
ferent between the two databases. These results indicate that the pre-
dicted deposition depends on the exact contents of the database, at
least for the small database used in this study of only three vortex shed-
ding periods. It is expected that using a larger database would eliminate
the effects of database-specific clustering. A small database contains,
by definition, only a small number of events that can bring particles to
the cylinder surface. A time-extrapolated flow field evolution based

(a) DDES

(b) rCFD database 1

(c) rCFD database 2

FIG. 12. Snapshots of particle deposition locations for the DDES reference (a) and
two different rCFD approximations, (b) and (c), using different flow field databases.
All cases are for Re = 10000. The images, here, were captured from a position
directly downstream from the cylinder. Particle sizes not to scale. When particle
deposition is computed using DDES, the particle deposition locations are evenly
spread out across the entire span of the cylinder, with higher particle concentrations
at angular locations in the middle, corresponding to directly downstream. Particle
deposition calculated using rCFD exhibits more clustering, which is due to the lim-
ited size of the flow field database.
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only on this small set of events will then naturally lead to clustering. A
larger database will contain more fluid flow events that bring particles
to the surface, and will therefore reduce the effects of single-event
sampling.

Artificial clustering may be a challenge for industrial long-term
deposition predictions, as it is less straightforward to differentiate
physical from unphysical regions of increased deposition in more com-
plex geometries. At the same time, it is not only the distribution of
deposited particles over the surface that is important in assessments of
the consequences of deposition but also the temporal deposition char-
acteristics play an important role. For example, if the particles are
droplets that enter a liquid film on the surface of the body, not only
the location of a deposition event but also its frequency is of utmost
importance in accurately determining what will happen next.”

To gauge the effects of using the rCFD method on the temporal
deposition pattern of particles, a pairwise delay histogram can be com-
puted, such as the one in Fig. 13. In this graph, we plot the delay
between each deposition event and all subsequent particle deposition
events. The x axis is normalized in terms of the cylinder vortex shed-
ding period and the y axis is normalized so that the integrated quantity
sums to unity. It can be seen that the DDES and rCFD temporal depo-
sition patterns show different behavior, with the DDES results exhibit-
ing clear peaks at the first few vortex shedding periods, but then
evening out to a steady decay. The rCFD results, on the other hand,
show clear periodic correlations at integer multiples of the vortex shed-
ding period, even after long periods of time.

The DDES results show correlation only for the first few vortex
shedding periods can be attributed to turbulence-induced variations in
the deposition timing. Turbulence causes the vortex shedding process
to deviate from the perfectly periodic pattern seen in laminar cases at
low Reynolds numbers. The in-sweeps of particles toward the cylinder
surface then do not perfectly align with the average vortex shedding
period, extinguishing the temporal correlation found for short delays.
The clear, long-term correlation found for the rCFD case is instead
attributed to the limited number of vortex shedding periods stored in
the rCFD database. The method introduces some temporal variation

0.25 [l pDES, Re=10 000
*CFD, Re=10 000

e
— e
o o

Normalized count [-]
o
=

0.05

0 2 4 6 8 10 12 14 16

Normalized time between collisions [-]

FIG. 13. Normalized delays between each collision and all subsequent collisions.
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when the recurrence path jumps between snapshots, but these jumps
are not very frequent and introduce only small variations in the phase
of the oscillation. The individual vortex shedding periods are fixed to
the ones recorded in the database. Therefore, the temporal correlation
is much stronger and clearly visible, even after several vortex shedding
periods.

In conclusion, the rCFD approximation of the deposition process
shares the most pronounced characteristics in terms of temporal corre-
lation of deposition events with the full CFD simulation. However, just
as a clustering tendency could be discerned in the spatial deposition
patterns when the database contains a limited number of vortex shed-
ding periods, an artificially enhanced clustering in time results as the
deposition events are necessarily always stitched together using snap-
shots from the same database. A larger database is expected to further
diminish the differences in deposition frequency between CFD and
rCFD.

D. Computational performance

A bar chart of the measured wall-clock run time of the different
parts of the CFD and rCFD simulations of the Re = 10000 case is pre-
sented in Fig. 14. For the CFD simulations, the measured run time is
reported for the fluid and particle solvers, respectively. For the rCFD
simulations, the “fluid” time category is the time needed to read the
flow fields from database storage. The particle solver times are practi-
cally identical due to the two cases using the same particle solver set-
tings. For the rCFD preparation step, the “create database” category
represents the time needed for running the fluid solver to generate the
CFD database. The second category, “compute recurrence matrix,”
represents the time needed for calculating the D matrix.

Looking at the time needed for evolving the fluid, the rCFD
approximation is massively faster than the conventional DDES analy-
sis, achieving a speedup of a factor of 942. This is the difference in time
needed between calculating the fields and just reading them from

I riuia
I Particles
I Create database
E 150 I Compute recurrence matrix
=
Q
=
£
+ 100
<
Q
Q
-~
@]
—
3
S 50
0 _

DDES rCFD  rCFD preparation

FIG. 14. Computational performance of the DDES and rCFD methods, categorized
by type of calculation. The latter method is divided into two phases, “rCFD prepara-
tion” and “rCFD.” The rCFD preparation phase is only run once for each flow sys-
tem; the rCFD phase can be run once or several times for parametric studies. Time
is measured in wall-clock time.
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storage. When also considering the particles, which take the same
amount of time to solve in both methods, the rCFD to DDES speedup
factor is 25. Finally, comparing the entire rCFD process, including the
preparation steps, to the DDES solution time, we get a factor of
8 speedup.

As evidenced by these results, the rCFD process is significantly
faster than the conventional DDES solution. The speedups are espe-
cially significant if the same fluid flow case can be used, for example,
when performing parameter studies on the particles. In these cases, the
rCFD preparation step is only run once. The computational cost is
reduced to essentially only solving for the particles.

In industrial settings where a fluid flow analysis has already been
performed as a previous step of a product development cycle, the
rCFD preparation step is reduced to only computing the recurrence
matrix. An example would be in predictions of vehicle soiling in the
automotive industry, where an aerodynamics characterization step
would already have been performed and the particle deposition study
can be carried out using an rCFD database of already existing
contents.

Furthermore, the computational cost for the particle tracking as
performed here depends on the deposition efficiency. As described in
Sec. 111 B, the number of particles tracked for a given Stokes number is
inversely proportional to the deposition efficiency, implying that the
number of particles tracked to obtain good statistics increases signifi-
cantly as the deposition efficiency goes to zero. In an industrial setting,
it is more likely that the incoming particle size distribution would be
part of the problem specification, and the number of injected particles
would therefore essentially be independent of deposition efficiency. At
the same time, the particles with the lowest deposition efficiency con-
tribute the least to the overall deposition, and they are therefore rela-
tively unimportant in a complete deposition assessment. This effect is
even further reinforced by the fact that the lowest deposition efficien-
cies are seen for the smallest particles, which typically represent an
insignificant part of the total mass or volume (as this contribution
scales with d;) of a given particle size distribution. In conclusion, the
typical particle tracking cost of an industrial deposition study is
expected to be much smaller than the cost measured in the present
work. The speed-up potential of rCFD as compared to conventional
CFD can thus eventually become up to almost three orders of magni-
tude, depending on the case specifics in question. In this assessment,
further speed-up from coarsening the rCFD database in space and
time has not been taken into account.

For the simulations presented in this work, fluid and particle solv-
ers ran on eight processor cores. The simulations were performed on a
desktop computer with an Intel i7-12700 processor and 64 GB of
memory. For the rCFD database, a solid-state drive was used to maxi-
mize data throughput rate.

V. CONCLUSIONS AND OUTLOOK

Particle deposition onto objects in turbulent flows is of consider-
able interest in many applications, such as sensor soiling in the auto-
motive industry, icing on aircraft, and ash build-up in boilers. In these
applications, the description of an individual particle deposition event
requires access to highly resolved spatiotemporal information of the
underlying flow field, which is computationally expensive using con-
ventional CFD. This situation becomes even more challenging as long
simulation times are needed to acquire good statistics on the particle
deposition process.

ARTICLE pubs.aip.org/aip/pof

In this work, we have shown the potential for using rCFD
approximations of the carrier phase flow fields when performing par-
ticle tracking and deposition simulations. We have demonstrated that
we get very similar deposition efficiencies using both the full CFD
method and the new rCFD approximation on the example case of
particle-laden flow around a cylinder. This level of accuracy can be
achieved with rCFD at only a fraction of the computational cost of a
corresponding CFD simulation. Most importantly for predictions of
long-term particle deposition, the rCFD technique enables infinite
time extrapolation without any deterioration in quality of the flow
field description. The discrete temporal jumps introduced by the
method have been shown to have a very limited influence on the
obtained results, for the complete range of Stokes numbers used, and
they therefore do not jeopardize the long-term accuracy of the
approach.

For all the Reynolds numbers investigated, the front-side deposi-
tion — which dominates the overall deposition onto the cylinder — was
very well predicted using rCFD. This result implies that the front-side
boundary-layer fluctuations induced by the main vortex shedding are
accurately represented in the rCFD approximation. The much less
effective back-side deposition could also be well predicted, although
some dependence on the database length was discerned for the highest
Reynolds number (Re = 10 000). This observation highlights the diffi-
culties in obtaining robust long-term predictions for quantities that are
controlled by rare events when using a flow-field database of limited
size. Any reduced-order model or machine-learning approach trained
on the same CFD dataset should be expected to perform similarly in
this regard.

While the rCFD method only provides time extrapolations for
the flow at a single Reynolds number, it would be possible to use sev-
eral rCFD databases at several Reynolds numbers and then interpolate
results between them. Previous work in the literature has demonstrated
the viability of an interpolation approach between databases with dif-
ferent inlet velocities for the case of gas-solid fluidized beds.”® For the
case of particle deposition on a cylinder, it would be possible to use
rCFD to generate particle deposition patterns, and then train a
machine learning model to interpolate deposition behavior at interme-
diate Reynolds numbers. This would extend the applicability of the
time-extrapolations provided by the rCFD method.

The results presented in this study show that the rCFD method is
capable and efficient in approximating the full CFD solution for
Lagrangian particle deposition studies on a cylinder geometry. Future
studies should focus on evaluating the rCFD approach for more com-
plex geometries, and on investigating the possibilities to obtain even
better computational performance from optimizing the spatiotemporal
resolution of the rCFD database by coarse-graining.
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