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A B S T R A C T

Machine learning and artificial intelligence (AI) is transforming the way pharmaceutical products are developed 
across drug discovery, process engineering, and pharmaceutics functions. AI for nanomedicine development is 
enabling faster and more accurate prediction of critical quality attributes (CQAs). However, the full potential of 
AI is limited by the quality and accessibility of data. Unlike adjacent fields such as the chemical sciences, the 
pharmaceutics domain lacks curated, open-access databases, particularly for nanomedicines. To address this, 
here we curate an open-access local database focused on liposomal formulations. The database includes 
formulation parameters, in vitro release (IVR) testing conditions, and digitised drug release data. By evaluating 
the entries in the database qualitatively and quantitatively, we identified challenges in current data reporting 
practices. This includes incomplete reporting of formulation and IVR testing conditions, as well as inconsistent 
quality of drug release plots and their data format. Based on our analysis, we propose a set of data standards and 
a database structure to support harmonisation for nanomedicine formulation and IVR data. Our open-access 
database aims to improve data accessibility and transparency to enable the development of robust AI models 
for IVR and CQA prediction, ultimately streamlining nanomedicine development.

1. Introduction

Nanomedicines have increasingly been used to overcome issues with 
poor aqueous drug solubility, toxicity, and lack of site-targeting after 
drug administration (Mitchell et al., 2021). Despite their benefits, the 
regulatory nanomedicine approval process is slow (Đorđević et al., 
2022; Jia et al., 2023). This is owed to the complexity of nanomedicine 
manufacture, non-standardised testing routines, and unpredictable 
clinical outcomes (Sercombe et al., 2015). In turn, this results in diffi
culties in translating nanomedicines from bench to market.

During nanomedicine product development, multiple properties are 
measured to certify the desired quality of the final product (Beg et al., 
2019). One critical property is the drug release behaviour. By under
standing this kinetic process, the drug release mechanism can be 

discerned. In addition to assessment of structure-property relationships, 
the release profile can provide indications of safety, quality, and efficacy 
of the product. Moreover, in vitro / in vivo correlations (IVIVC) can be 
established to predict in vivo performance of a drug in humans (Lu et al., 
2011).

The drug release kinetics of nanomedicines are governed by 
numerous factors. Amongst these factors, critical material attributes 
(CMAs) such as drug and excipient properties and critical process pa
rameters (CPPs) such as processing time and homogeniser speed are 
closely connected. These factors ultimately lead to critical quality at
tributes (CQAs) of the formulation such as particle size, zeta potential, 
and drug loading which impact product performance (Alshaer et al., 
2022; Liu et al., 2022). Furthermore, the in vitro release (IVR) behaviour 
of nanomedicines is affected by the choice of release measurement 
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method, media composition, temperature, and pH (Wallace et al., 2012). 
In Fig. 1, a summary of the variables influencing nanomedicine drug 
release kinetics is shown. Understanding the individual and combined 
effects of formulation and process variables on nanomedicine drug 
release kinetics is challenging, as the problem is multivariate. For 
instance, particle size is a well-recognised determinant of release rate, 
with smaller nanoparticles typically releasing their payload more 
rapidly than larger ones due to their larger specific surface area (Chan 
et al., 2023). Particle size itself is influenced by formulation component 
selection, composition, and CPPs, amongst other factors (Maritim et al., 
2021; Shaker et al., 2017; Yenduri et al., 2022). Lower molar ratios of 
cholesterol, have been reported to yield larger particles (Yenduri et al., 
2022), which generally release drug more slowly. However, cholesterol 
concentration also affects membrane fluidity, where higher levels in
crease bilayer rigidity and reduce permeability of the bilayer (Liu et al., 
2000), which can result in slower drug release. A hydrophobic drug such 
as quinine, which interacts with the non-polar lipid chains, tends to 
reduce encapsulation efficiency and slows drug release. In this case, 
increasing the cholesterol content in the particle decreases drug release 
rates. In contrast, for a hydrophilic drug such as atenolol, the relation
ship between cholesterol and drug release rate is the reversed. These 
complexities are further compounded by the effect of the IVR testing 
conditions on drug release rate. Collectively, these interdependencies 
highlight the need for machine learning and artificial intelligence (AI) 
approaches to deconvolute the complex drug release process.

AI methods are increasingly being adopted to accelerate nano
medicine formulation research and development (Bao et al., 2023). AI 
models can learn to represent complex relationships from data in set
tings where mechanistic models are difficult to develop or too compu
tationally expensive to use. It has been demonstrated that AI models can 
be used to accurately predict particle properties (zeta potential or par
ticle size) for varied formulation types such as silica nanofluids (Muneer 
et al., 2023), amorphous solid dispersions (Schmitt et al., 2022), electro- 
sprayed polymers (Wang et al., 2022), and liposomes (Han et al., 2023). 

For IVR predictions, AI has been used to predict release rates for poly
meric, long-acting injectables (Bannigan et al., 2023), polysaccharide 
(Abdalla et al., 2024), and 3D printed tablets (Muñiz Castro et al., 2021). 
In our recent work, we presented the first application of AI to predict 
drug release from liposomes (Yanes et al., 2025).

AI approaches require access to large, standardised datasets. In fields 
adjacent to pharmaceutics, databases such as ChEMBL are available 
(Gaulton et al., 2012). In pharmaceutics the number of datasets is also 
growing to expedite the formulation development process via AI ap
proaches. These datasets include but are not limited to formulation 
compositions of self-emulsifying drug delivery systems (Zaslavsky and 
Allen, 2023) and the drug release behaviour of drug-loaded PLGA mi
croparticles (Bao et al., 2025). Additionally, web-based applications are 
increasingly used for AI-driven formulation design (Dong et al., 2024; 
Wang et al., 2025).

At present, in the bio-nano experimental literature, minimum in
formation reporting standards have been suggested to improve repro
ducibility, facilitate meta analyses, and in silico modelling (Faria et al., 
2018). However, in the context of nanomedicine AI drug release pre
dictions, data standards are lacking at present and overall adoption of AI 
in pharmaceutics is limited by the lack of curated databases containing 
standardised, accessible data for model development (Hickman et al., 
2023).

To contribute to tackling the above challenges, this work first pro
poses a standardised database structure for reporting of liposome IVR 
data. The database structure is designed to be transferable to other 
nanomedicine classes such as polymeric, inorganic, and lipid nano
particle carriers by adapting the formulation and testing parameter 
fields to system-specific CQAs and CPPs. Liposomes are amongst the 
most widely researched drug delivery systems (Gu et al., 2023), yet there 
are no open-access liposome datasets with a focus on IVR data and 
testing conditions. To fill this gap, we give full access to a comprehensive 
literature mined database containing 271 distinct IVR profiles, 141 
liposome formulations, 22 drugs and extensive details of potential 

Fig. 1. Nanomedicine drug release as a multivariate problem requiring advanced modelling approaches. Parameters influencing release kinetics are grouped into 
Critical material attributes (CMAs), critical processing parameters (CPPs), critical quality attributes (CQAs) and in vitro release (IVR) method parameters. The listed 
variables are not exhaustive, and the framework is applicable to multiple nanomedicine classes. Capturing and standardising these parameters is essential for 
developing robust AI models for predicting drug release.
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formulation CPPs / CQAs, IVR testing method parameters, and lipid 
composition features for property prediction. This work expands upon 
our previously developed ML workflow (Yanes et al., 2025) by offering 
full open-access to the database used, providing a starting point for 
formulation, excipient, and IVR method parameter selection. Beyond 
compiling data, we review the database content to critically assess 
reporting quality in the literature and propose a set of data standards to 
establish more consistent and transparent data sharing practices. By 
making this database open-access, we aim to enhance pharmaceutical 
industrial-academic data sharing and establish a foundation of data 
standards for future work on AI-based drug release predictions for other 
dosage forms.

2. Methods

2.1. Database construction and data acquisition

The methodology used to construct the database and systematically 
select literature data is described in the ESI and a summary is provided 
below.

2.1.1. Database structure
For academic articles that met the criteria above, information 

relating to the search terms, article, drug used, formulation preparation, 
characterisation, composition, instrumental details, IVR testing condi
tions (apparatus, release media composition and conditions, specific 
details such as amount of drug added) were recorded in a set of 10 
related tables. The database was constructed using SQLite (v3.43.1) 
within Python (v3.12.1) and tables were defined to manage the one- 
many relationships encountered in formulation science, such as one 
formulation being assessed across many different conditions. Full details 
of all tables, their primary and foreign key which were established to 
define relationships between the tables, are displayed in the schema 
derived (Fig. 2, ESI Table S2) and rationale for the schema is given in 
section 2.1.2. Drug release plots were digitised using WebPlotDigitizer 
(v4.6). Each drug release plot was assigned an integer primary key ID, in 
the IVR table which was used to name the CSV file which contained the 
digitised IVR raw data in the form time, release % columns.

2.1.2. Digitalisation of literature data
The workflow used for the manual selection of articles and the 

Fig. 2. Database structure (schema) for liposome_IVR.db, designed to store comprehensive information on IVR tests for liposomal formulations. Each box represents a 
table in the database. Arrows indicate primary-foreign key relationships between tables. For example process parameters such as preparation method, encapsulation 
method, incubation temperature, and incubation time and stored in formulation_CPPs_CQAs table. While detailed compositional information, including the molar ratio 
of each formulation component, is recorded in the formulation_composition table. The schema enables structured storage and cross-referencing of formulation pa
rameters, process variables, quality attributes, and IVR testing conditions, facilitating efficient data retrieval and modelling. Full table descriptions, field definitions, 
and an explanation of the schema design are provided in ESI Table S2, ESI section 1.3 and section 2.1.2 in the main manuscript, respectively.
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Fig. 3. Flowchart outlining the methodology for academic article identification, inclusion and drug release plot quality appraisal. The process starts with three 
distinct article search strategies, followed by manual evaluation against defined inclusion criteria related to formulation type, composition, In vitro release data, and 
test method reporting. Once accepted, a final drug release plot quality appraisal was performed.

Fig. 4. Distribution of drug compounds used with each IVR testing apparatus across all IVR tests in the curated database. Heatmap of drug compound-release method 
combinations across the dataset, where each cell represents the number of formulations in which a given drug (rows) was tested with a specific release method 
(columns). Row and column totals summarise the overall frequency of each drug and release method respectively. Differences in apparatus choice can influence 
measured release profiles as there are no standarised IVR test methods, demonstrating the importance of capturing this data for modelling. Vdc: Vertical diffu
sion cell.
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resultant article inclusion criteria is summarised in Fig. 3. Further details 
can be found in the ESI, section 1.1.

Data from articles that meet the selection criteria were manually 
digitised into the database. A manual approach was taken because the 
way nanomedicine related data e.g., preparation methods, formulation 
composition, drug loading, analytical techniques, and IVR methodology 
– are reported in the literature makes automated data extraction very 
challenging. The development of automated data extraction for nano
medicine data, analogous to the application of large language models 
(LLMs) in materials science (Dagdelen et al., 2024), could be an 
attractive avenue for future developments.

To illustrate the digitisation workflow for a single paper, an example 
is provided in the ESI (section 1.3). Data from each article were entered 
sequentially across relational tables in a standarised format to reduce 
redundancy and preserve traceability. Search metadata, including the 
search terms, database used, and results, were recorded in the search_
terms table, with each entry assigned a unique ID serving as a foreign key 
to the papers table containing bibliographic details such as publication 
year and DOI. APIs mentioned in each paper were stored in the API_name 
table with their chemical identifiers (e.g., SMILES). The formulation table 
linked each API to its parent paper and formulation type, enabling the 
same formulation to be recorded with different APIs. Components were 
stored in the component_name table, and their proportions were con
verted or recorded as molar ratios in the formulation_composition table, 
linking component IDs to formulation IDs. This structure allowed a 
variable number of components to be linked to a single formulation and 
for commonly used components to be stored efficiently for reuse. 
Formulation process parameters, characterisation data, and instru
mental settings were stored in formulation_CPPs_CQAs, enabling multiple 
characterisation entries for a single formulation for example, prepara
tion methods or measurement angles varied.

IVR experimental details were stored in the IVR table, linked to a 
formulation_ID. A single formulation could have multiple IVR entries 
reflecting different test conditions, such as media composition, tem
perature, pH, release method, or drug addition volume. The composition 
of the release media was stored in the media_components table, linked 
back to the IVR table, enabling one IVR test to be associated with mul
tiple media components, each with its own concentration or percentage. 
This also handled cases where the same formulation and IVR method 
were tested with different media compositions.

The database schema exploited the natural one-to-many relation
ships in formulation science: one paper could contain multiple formu
lations, one formulation could have multiple components, CPPs/CQAs, 
and IVR experiments, and one IVR experiment could involve distinct and 
multiple media components. This design enabled data traceability, 
reduced duplication, and supported complex cross-linked queries. An 
example query, for example, is retrieving all IVR tests for a specific API 
in a specific media composition containing less than 10 % cholesterol. 
The database’s scalability and standardisation make it suitable for sys
tematic database curation of other nanomedicine systems and for 
enabling downstream analysis, including AI-based predictions. Adop
tion of this structure in reporting in the literature could also facilitate 
future automated LLM-based data extraction.

3. Results and discussion

3.1. Compiling a comprehensive database of liposome formulations and 
digitised drug release data

3.1.1. Database construction
To address the lack of a curated database containing liposome 

formulation characterisation data, IVR testing conditions, and 

Fig. 5. Percent distribution of drug molecular descriptors used in each liposome in each IVR test in the database. Each column shows a violin plot overlaid with 
individual data points for molecular weight (g/mol) (a), calculated logP (b), and topological polar surface area (TPSA) (c). The violin shape represents the distri
bution density, while the overlaid points show the actual values for each drug in the dataset.
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corresponding drug release profiles suitable for AI model development, 
we systematically mined the literature to compile the first and most 
comprehensive liposome IVR database. The database captures detailed 
information on formulation properties, composition, preparation 
methods, compound identity, formulation characterisation instruments 
and settings, IVR apparatus and configurations, release media compo
sition, IVR testing conditions, and digitised drug release data (Fig. 2, 
Table S2).

Our database is designed to serve as a foundation for future AI-driven 
liposome prediction tasks, including IVR profiles, particle size, and zeta 
potential. We implemented the database using Structured Query Lan
guage (SQL) to accommodate the relational complexity of formulations, 
where each entry may include multiple excipients with distinct attri
butes. SQL also enables efficient querying, allowing for streamlined data 
retrieval and analysis for downstream applications.

A total of 34 academic journals were found using a range of searching 
methods. During the initial search, it was found that there were differ
ences in the reporting standards of the liposomal IVR testing conditions 
and apparatus used. Articles were excluded if drug release was reported 
in unsuitable formats, such as concentration or absorbance readings. In 
some cases, there were details of preparation of liposomal formulations 
which were characterised, but an IVR test was not performed. In other 
scenarios, an IVR test was performed, however there were no details 
about the preparation of the formulations.

Articles were selected with the aim to develop first a database of 
liposomal IVR tests. Therefore, all types of liposomes such as small / 
large unilamellar vesicles and multilamellar vesicles (SUV / LUVs and 
MLVs) were selected. This meant the time-scale over which tests were 

conducted varied from seconds, minutes, hours, and days. For articles 
that met the criteria mentioned (Fig. 3, ESI section 1.1.2), there were 
also variable reporting standards.

3.1.2. Exploratory database analysis

3.1.2.1. Release methods. To assess the diversity of the collated IVR test 
parameter and formulation characterisation database, exploratory data 
analysis (EDA) was used. Out of the 271 tests, a total of 22 distinct Active 
Pharmaceutical Ingredients (APIs) were used, with 45 % of the tests 
conducted using doxorubicin (Fig. 4). This skew is attributed to the fact 
that the doxorubicin containing Doxil was the first FDA-approved 
nanomedicine in 1995, and is considered one of the most effective 
anticancer drugs to date (Barenholz, 2012). Amphotericin B, a polyene 
antifungal agent formulated as AmBisome (Stone et al., 2016), 
accounted for 14 % of the IVR tests.

The heatmap in Fig. 4 highlights the distribution of different release 
methods used. The dialysis method was the most popular user selected 
apparatus, accounting for 41 % whilst the dispersion releaser was the 
least common at 0.4 % of tests (Fig. 4). As both methods are membrane- 
diffusion techniques, the apparent release data is reported to systemat
ically underestimate the actual drug release rate due to the barrier effect 
of the dialysis membrane (Yu et al., 2019). It is well documented that 
there is a lack of standardised protocols in assessing IVR from colloidal 
drug carriers (Gómez-Lázaro et al., 2024), the diversity in methods used 
reinforce this. The heatmap highlights sparsity in the curated dataset, 
revealing underrepresented drug-release method combinations where 
targeted experimental efforts could improve the accuracy of AI-based 

Fig. 6. Distribution of drug compounds used with media components in IVR tests across the curated database. Heatmap of drug compound-media component 
combinations, where each cell represents the number of formulations in which a given drug (rows) was combined with a specific media component (columns). Row 
and column totals summarise the overall frequency of each drug and media component, respectively. Media components include buffers, surfactants, proteins, and 
other additives to mimic physiological conditions and influence drug release kinetics. The figure highlights variability in media selection across studies, showing it is 
important to capture the parameter as a potential input for AI-based drug release predictions.
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drug release predictions.

3.1.2.2. Molecular descriptors. Each drug in the database was described 
by several molecular descriptors (Table S13). Fig. 5 highlights the 
prevalence and distribution of the parameters molecular weight, 
calculated logP, and topological polar surface (TPSA) in the database, 
covering ranges of 208–924 g/mol, − 5.5–9.8 and 32.3–319.6 Å2, 
respectively. As the drug itself is known to influence the drug release 
kinetics (Lindner and Hossann, 2010), molecular descriptors were cho
sen to capture molecular size, polarity, and structural characteristics. 
The distribution of drug properties used in IVR-tested formulations 
showed identical groupings because the same drug was used across 
different lipid compositions or tested under varying IVR conditions and 
release media (Fig. 5). For effective AI implementation, diversity of 
training data is required to capture greater information of the system 
(Gong et al., 2019). The drugs included here covered a parameter space 
reflective for pharmaceutical products; this does not cover the full, vast 
range of chemically possible values (Reymond and Awale, 2012). The 
database, at present, is sufficient for compiling data regarding drug / 
lipid properties, formulation characterisation, IVR method parameters, 
and their corresponding digitised drug release profiles.

3.1.2.3. Release media. The release media composition is typically 
selected to represent physiological conditions, hence phosphate buff
ered saline (PBS) was the most common buffer selected accounting for 
20.6 % of the IVR tests in the database (Fig. 6). Even though PBS was the 
most commonly used buffer, it is not representative of the complex make 
up of human blood, which has serum proteins that, upon interaction 
with liposomes, can destabilise bilayer membranes leading to vesicle 
disruption (Bonté and Juliano, 1986). Additionally, PBS has a low buffer 

capacity, which has been reported to lead to pH drift during testing 
which leads to robustness issues (Mead et al., 2023).

More complex media compositions are employed when developing 
biorelevant testing conditions to investigate in vitro / in vivo correlations. 
For instance, in one of the mined articles, various media components 
(buffers, synthetic surfactants, and albumin) were screened to assess 
their impact on the release rate of AmBisome (Díaz de León-Ortega et al., 
2021). Amongst these, albumin was identified as the most critical factor 
influencing release of Amphotericin B.

Overall, liposome drug release is largely governed by thermody
namic properties, such as drug partitioning across the bilayer surface 
(Jain and Jain, 2016), which in turn are influenced by electrostatic in
teractions and hence the ionic strength of release media (Boija et al., 
2004). As such, the release media composition is a critical parameter 
that must be carefully selected and controlled when evaluating liposome 
IVR. Currently, selecting an appropriate release medium largely remains 
an empirical process that often involves trial-and-error, which is re
flected in the variability of media components shown in Fig. 6. Our 
database aims to address this by allowing users to locally query media 
compositions, including the range of components employed. This can 
provide a rational starting point for practitioners selecting a release 
medium for a new formulation. Furthermore, media composition data 
may serve as useful feature inputs for future predictive AI models, 
although the development of media composition featurisation strategies 
is beyond the scope of this work.

3.1.2.4. Physical liposome properties. The physical properties of lipo
somes such as particle size, zeta potential, and polydispersity index 
(PDI) are key parameters known to influence drug release (Alshaer et al., 
2022). Particle sizes of the liposomes used in the IVR tests ranged from 

Fig. 7. Percent distribution of formulation properties of each liposome used in each IVR test in the database. Each column shows a violin plot overlaid with in
dividual data points for particle size (nm) (a), zeta potential (mV) (b), and polydispersity index (PDI) (c). The violin shape illustrates the distribution density for each 
property, while the overlaid points represent the measured values for each formulation in the dataset.
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30 to 25,500 nm, with a median value of 127 nm (Fig. 7a, b). Particle 
size of the formulated liposome is optimised during product develop
ment. The target size depends on location and type of tissue targeted 
(Hoshyar et al., 2016), which is why a broad range of particle sizes were 
measured in the formulations in the database, meaning a range of 
therapeutic indications were covered. Zeta potential values ranged from 
− 53.8–35.3 mV with a median value of − 12.7 mV (Fig. 7c, d). The larger 
the absolute zeta potential magnitude, the greater the colloidal stability 
and it is reported that to minimise protein adsorption and improve blood 
circulation time, liposomes should be close to neutral in terms of surface 
charge, i.e., within − 10 to +10 mV (Smith et al., 2017). The zeta po
tential values of the formulations in the database fell broadly within this 
range. The polydispersity index (PDI) of liposomal formulations in the 
database ranged from 0.022 to 0.31, with a median value of 0.135 
(Fig. 7e, f). PDI values <0.3 represent homogenous and well-dispersed 
systems (Amasya et al., 2016), indicating that the database entries fall 

within this category.

3.1.2.5. IVR testing conditions. Typically, IVR tests are conducted at 
37 ◦C and a pH of 7.4 to mimic physiological conditions. This is shown in 
the bivariate distribution plot of the IVR tests mined from the literature, 
where a high-density region is identified at these ‘standard’ conditions 
(Fig. 8). The variance in media temperature (20–60 ◦C) can be attributed 
to distinct types of IVR tests such as extended or accelerated release that 
are employed. The pH values observed ranged from 5.5 to 8.0. The IVR 
tests conducted with lower pH values contained doxorubicin, which is 
weakly basic due to the primary amine located on the 3 position on the 
pyranozide moiety (Teranishi et al., 2016). At lower pH, higher faster 
release kinetics occur due to conversion into the cationic hydrophilic 
form. The rationale for the selection of lower pH values can be attributed 
to either accelerated testing strategies (Shibata et al., 2015) or repre
sentative of tumour physiology (Silverman and Barenholz, 2015).

The choice of IVR testing conditions depends on the test’s objective: 
whether to demonstrate drug release behaviour, assess biorelevance, or 
perform accelerated testing. However, our database reveals significant 
variability in release media components, IVR conditions, and apparatus 
selection, highlighting the trial-and-error nature of this process. For 
example, developing an accelerated IVR test for a new liposome product 
often requires extensive experimentation, as optimal parameters for one 
formulation may not apply to another with different drug or lipid 
compositions. Overall the plots in the previous sections identify clear 
gaps in the database that provide a basis for decision making for future 
experimental design plans for experimentalists to rationally expand the 
dataset.

Our database provides a valuable starting point for querying 
appropriate IVR conditions for new formulations. AI model development 
demands standardised data (Suriyaamporn et al., 2024). Therefore, we 
assessed the completeness of potential feature inputs for AI-driven IVR 
prediction models.

3.2. Incomplete reporting of formulation and testing conditions restricts 
feature input availability for AI-driven IVR prediction models

Robust AI models rely on complete datasets, however incomplete 
reporting in formulation and IVR testing details significantly limits the 
data quantity available for model development, reducing predictive 
accuracy. After our database curation, it was found that with respect to 
formulation characterisation reporting, specific formulation CQAs for 
zeta potential, PDI, and particle size were missing in 54 %, 45 %, and 20 
% of the IVR entries, respectively. As for IVR test reporting, the release 
medium volume, pH, and temperature were missing in 23 %, 20 % and 4 
% entries, respectively (Table 1). Full reporting of IVR testing conditions 
and formulation characterisation of the formulation used for testing is 
therefore required to ensure databases are complete and extracted data 
subsets are larger. Additionally, data scarcity of the joined dataset 
highlighted in Fig. 9 is a common issue faced in AI-driven analysis, 
where there are inconsistencies in reporting between different articles. 
To overcome these two issues, here, a database structure is suggested for 
reporting nanomedicine IVR tests and characterisation of the respective 
formulation (Fig. 2).

By implementing the proposed database structure (Fig. 2), the way in 
which liposomal IVR tests are reported would be standardised to include 
full details of formulation characterisation, IVR testing conditions, and 
reporting of instrumental settings to facilitate implementation of future 
AI analysis and provide improved traceability and reproducibility. 
Overall, the open-access local database presented is hoped to encourage 
and foster a collaborative approach between academia and industry to 
work towards a common goal of saving time/resources in the research 
and development process of liposome development. In the future, it is 
anticipated such a database could be hosted on a web server where 
scientists consistently upload nanomedicine IVR and characterisation 

Fig. 8. Bivariate distribution of IVR testing parameter space across the curated 
database, shown as contour plots representing regions of high and lower den
sity. Each contour reflects the frequency with which specific combinations of 
media temperature and pH occur. More tightly packed contours indicate 
parameter ranges that are more frequently reported, while wider contours show 
underexplored regions of the testing parameter space. This visualisation helps 
reveal trends in the reported IVR test conditions and potential gaps to populate 
the database.

Table 1 
Percent of missing values for potential feature inputs for AI- 
based drug release prediction across the curated database. 
Each feature corresponds to a CQA or IVR method parameter 
that could be used for AI model development. The table 
highlights data sparsity issues that may impact downstream 
predictive modelling.

Potential feature input % missing

Zeta potential / mV 54
PDI 45
Media volume / mL 23
Particle size / nm 20
Media pH 20
Drug-lipid / % 8
Media temperature / ◦C 4
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Fig. 9. Matrix of potential feature inputs for AI-based drug release prediction across the curated database containing a total of 271 entries. Each row represent a 
unique IVR test identified by its IVR ID, while each column corresponds to a specific feature digitised from the articles. White spaces indicate missing values for that 
feature in the corresponding IVR test. This visualisation highlights data completeness and gaps across the joined dataset that can be used for model development.

Fig. 10. Assessing the quality of IVR plots found in articles returned using search method 1 and 2. IVR plots passed quality appraisal if they had a resolution of ‘good’ 
or ‘medium’ AND Yes across both performance bias detection bias metrics. A total of 221 / 271 IVR plots met these quality standards. The quality appraisal was 
conducted to evaluate the suitability of our digitised drug release data for AI-based drug release predictions.
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data in a structured format specified by the database schema (Fig. 2) 
which would feed into AI pipelines. To develop AI-prediction models 
requires a target output to be linked to the feature inputs, in the case of 
drug release prediction for nanomedicines, this requires access to high 
quality digitised drug release data.

3.3. Inconsistent drug release plot quality and missing raw data limit 
feature output availability for AI-driven IVR prediction models

Accurate and quantitative target output data is essential for accurate 
predictive AI models to predict drug release. To evaluate the suitability 
of our digitised IVR data for this purpose, we conducted a quality 
appraisal of the extracted drug release profiles. Variability in the num
ber of data points per profile (Fig. S1) and in over data quality (Fig. 10) 
was observed. Of the 221 drug release profiles assessed, 159 met the 
quality appraisal criteria.

Currently, using IVR data from the literature as AI model outputs 
often requires manual extraction via software tools, which can introduce 
errors. To support AI-driven IVR predictions, we recommend that raw 
drug release data be provided in standardised CSV format, containing 
two columns: time and release %. It should be explicitly clear which 
formulation and testing conditions correspond to each IVR profile. 
Finally, all IVR data should meet our quality appraisal criteria (ESI 
section 1.5) to ensure data reliability and suitability for AI model 
development.

At present, there are minimum information reporting standards 
suggested in literature for nanoparticles in biological environments 
(Faria et al., 2018), but this does not focus on IVR tests. Based on this, a 
set of data standards are proposed to ensure nanomedicine formulation 
and IVR data is AI-ready.

3.4. Making IVR and formulation data AI-ready: Recommended data 
standards

The following data standards are essential for IVR, and formulation 
data generated to be used in AI-driven drug release predictions: 

1. Full formulation characterisation of the nanomedicine product 
used for IVR studies is non-negotiable. As outlined in the MIRIBEL 
guidelines (Faria et al., 2018), at a minimum this includes particle 
size, polydispersity index (PDI), and zeta potential. With these in
puts, AI practitioners can link formulation feature inputs to release 
kinetics.

2. Precise formulation composition reported as molar percentages 
(mol %) of each component of each nanomedicine product used for 
IVR studies is required. This format ensures accelerated integration 
into future versions of the database and could facilitate use of large 
language model data extraction.

3. Complete IVR test method parameters such as media volume, 
temperature, and pH must be reported. These are critical variables 
which affect release rate and can serve as feature inputs for AI-driven 
IVR predictions.

4. High quality, machine-readable drug release data must be sup
plied in raw format (e.g., CSV with time and % release). Data must 
meet the quality appraisal criteria outlined above. Raw data enables 
both kinetic model fitting (Yanes et al., 2025) and/or direct input 
(Bannigan et al., 2023) approaches for AI-driven drug release pre
dictions, while eliminating the need for error-prone extraction from 
plots.

4. Conclusion

This work presents a comprehensive, open-access database of lipo
some IVR experiments, along with data standards and a suggested 
database structure to standardise formulation and IVR data in nano
medicine. To our knowledge, this is the first nanomedicine database of 
this kind. This initiative was driven by current inconsistent reporting 
practices and a lack of databases suitable for AI-driven CQA and IVR 
predictions for liposomes. The database includes detailed information 
on formulation composition, preparation methods, and IVR testing 
conditions. It thus provides a foundation for generating larger, more 
diverse, and AI-ready datasets and for developing predictive AI models 
that can support nanomedicine formulation design and testing. By 
making the database open-access, it is intended to foster greater trans
parency and promote broader data sharing cultures within the phar
maceutics community. The proposed database structure and data 
standards are adaptable to other nanomedicine dosage forms, support
ing wider efforts to harmonise data reporting in the field. Together, the 
database, structure, and standards aim to improve the traceability and 
utility of formulation and IVR data generated in nanomedicine research. 
Following these proposed standards will ensure data reported is AI- 
ready, enabling robust, predictive AI models to streamline nano
medicine research and fully harness the potential of AI in the field.
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