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Sub-diurnal asymmetric warming has
amplified atmospheric dryness since
the 1980s

Ziqian Zhong 1, HansW.Chen 1 , AiguoDai 2, Tianjun Zhou 3, Bin He 4 &
Bo Su4,5,6

Rising atmospheric vapor pressure deficit (VPD)—a measure of atmospheric
dryness, defined as the difference between saturated vapor pressure (SVP) and
actual vapor pressure (AVP)—has been linked to increasing daily mean near-
surface air temperatures since the 1980s. However, it remains unclear whether
the faster increases in daily maximum temperature (Tmax) relative to daily
minimum temperature (Tmin) have contributed to rising VPD. Here, we show
that the faster rise in Tmax compared with Tmin over land has intensified VPD
from 1980 to 2023. This sub-diurnal asymmetric warming has driven a larger
SVP increase than would occur under uniform temperature rise, while AVP is
more strongly influenced by Tmin. Using reanalysis data, we estimate that
asymmetric warming has contributed an additional ~18% to the increase in
global land VPD. Sub-daily station observations corroborate this pattern, with
asymmetric warming accounting for ~30% of VPD intensification across all
stations. Our findings indicate that sub-diurnal asymmetric warming has sub-
stantially amplified global warming’s effect on atmospheric dryness over the
past four decades, with significant implications for terrestrial water availability
and carbon cycling.

Global surface temperatures have been rising, with warming accel-
erating across nearly all continents in recent decades1,2. The past nine
years, from 2015 to 2023, have been the warmest on record3–5. Rising
air temperatures increase the near surface (~2m) saturation vapor
pressure (SVP)—the atmosphere’s capacity to hold water vapor—by
roughly 7% per 1 °C warming according to the Clausius-Clapeyron
relationship6,7. As the near surface actual vapor pressure (AVP) has
generally increased at a lower rate than SVP, their difference, known as
the atmospheric vapor pressure deficit (VPD), has increased in all cli-
matic zones since 1980s8–10. The notable VPD increase in recent dec-
ades has significantly affected vegetation growth and productivity11–14,

maize yield15,16, land evapotranspiration17,18, and the occurrence of
wildfires19,20 worldwide.

VPD changes are controlled by both atmospheric temperature
and moisture variations. This is because SVP is almost exclusively
determined by air temperature, while AVP depends on both tem-
perature and moisture variations. Another common metric for the
water vapor content in the atmosphere is relative humidity (RH),
defined as the ratio of AVP to SVP. Unlike the increase in SVP due to
rising air temperatures, the long-term trend of globally averaged near-
surface RH over land has remained small until the early 2000s21, and a
significant decline has been reported after the year 200022,23. The
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factors contributing to the spatial patterns of RH trends on a global
scale remain unclear24. Additionally, although surface air temperature
influences both SVP and RH, and is a key climatic factor affecting VPD,
the impact of sub-daily temperature variations on VPD is often over-
looked, even though diurnal temperature variations have been found
to be the main driver of RH diurnal variations21.

Given the approximately exponential relationship between air
temperature andSVP25, a temperature increaseduringwarmerdaytime
hours results in a larger SVP increase than an equivalent warming
during cooler nights. Recent studies have found that daily maximum
temperatures (Tmax) have increased more rapidly than daily minimum
temperatures (Tmin) over land since the 1980s26,27. This sub-diurnal
asymmetric warming is primarily driven by changes in solar radiation,
which is closely linked to variations in cloud cover and aerosol
emissions26,28,29. The resulting increase in the diurnal temperature
range (DTR = Tmax − Tmin) marks a shift from previously faster night-
time warming to faster daytime warming30–33. This shift raises the
question: What is the relative importance of Tmax and Tmin in driving
VPD variations?

To answer this question, we employed ridge regression34 to assess
the effects of interannual variations in Tmax and Tmin on VPD. Con-
sidering the potential complex interactions and non-linear relation-
ships among the environmental factors examined, we further applied a
Random Forest (RF) regression model35 enhanced with Shapley Addi-
tive Explanations36 (RF-SHAP) as a complementary approach. The RF
approach delivers robust predictive performance by effectively cap-
turing intricate, non-linear data patterns that traditional linear models
may not adequately capture. In addition, the SHAP framework pro-
vides a clearer understanding of each environmental factor’s relative
contribution. Finally, using flux tower observations, we examined daily
temperature–VPD relationships for both Tmax and Tmin, then imple-
mented RF regression to evaluate the role of sub-diurnal asymmetric
warming in driving long-term VPD changes.

Results
Interannual analysis
In our study, we used both sub-daily in-situ observations from the
HadISD dataset37 and hourly data from the ERA5-Land reanalysis38.
Previous research has shown that the ERA5 reanalysis effectively cap-
tures diurnal variations in climatic variables39,40. However, in some
regions—such as East Asia—correlations between DTR values derived
from the ERA5-Land reanalysis and co-locatedHadISDobservations are
notably weaker (see Supplementary Discussion 1, Supplementary
Fig. 1). Therefore, most of our analyses were conducted using both the
HadISD and ERA5-Land datasets in parallel, to provide complementary
insights and mutual support.

We first identified the annual trends in DTR and VPD over the
period 1980–2023. VPD can be calculated using the following
equation41:

VPD=SVP× ð1� RHÞ ð1Þ

The significant (p <0.05) increase in annual-mean VPD (Supplemen-
tary Fig. 2a), at an average rate of 0.24 hPa per decade across
1398 stations, can thus be attributed to a substantial rise in SVP and a
significant decrease in RH (Supplementary Fig. 2c). Previous regional
studies have suggested that RH measurements may exhibit disconti-
nuities due to recent hygrometer changes42. However, these disconti-
nuities are localized and limited in number, and the associated
uncertainties are essentially negligible when assessing large-scale
characteristics of RH43. The positive VPD trends were most pro-
nounced in the mid- to low-latitude regions based on the ERA5-Land
reanalysis dataset (Supplementary Fig. 3f).

Due to the faster increase in Tmax than in Tmin, the mean DTR
across all stations has significantly increased at an average rate of

0.10 °C per decade. Spatially, based on the ERA5-Land dataset, we
found that 58% of global land areas experienced an increase in DTR.
Notably, the area with a significant increase in DTR (30%) was nearly
twice as large as the area with a significant decrease (15%) during
1980–2023 (Fig. 1a). This finding is consistent with previous studies
reporting increasing DTR in recent decades26,27. Regions showing DTR
increases were mainly located in western North America, South
America, Europe, central Africa, Central Asia, eastern China, and Aus-
tralia. We found a strong correlation between the annual average DTR
and VPD during 1980–2023 (correlation coefficient r = 0.88, p < 0.05)
across all stations (Supplementary Fig. 2a). This correlation remained
strong and significant (r = 0.64, p <0.05) after removing their long-
term linear trends. The ERA5-Land reanalysis dataset also showed
similar increasing trends in annual mean DTR and VPD over land
(Supplementary Fig. 2d), along with a significant correlation between
them (r = 0.76, p <0.05 for the raw time series and r =0.60, p <0.05
after detrending).

We then investigated the impact of interannual variations in DTR
on VPD. Specifically, we employed ridge regression34 and an RF
regressionmodel, using DTR, dailymean temperature (Tmean), and soil
moisture (SM) as independent variables, and VPD as the dependent
variable (Supplementary Fig. 4):

VPD � f ðDTR, Tmean, SMÞ ð2Þ

where f represents the functional relationship between VPD and the
independent variables. In addition to this formulation, VPD was also
modeled as a function of Tmax, Tmin, and SM:

VPD � f ðTmax, Tmin, SMÞ ð3Þ

SM was included as an independent variable in both equations
because it is a key source of surface vapor and physically influences
VPD through its role in evaporation. Moreover, SM canmodulate DTR
by enhancing evaporative cooling, which typically has a stronger effect
on Tmax than Tmin

44. Therefore, it is essential to account for the influ-
enceof SMwhen assessing theDTR–VPD relationship in the regression
models. Based on the ridge regression model defined in Eq. (2) and
detrended, standardized interannual variables, we found that inter-
annual fluctuations in VPD were positively associated with DTR varia-
tions across both station-based observations and ERA5-Land grid
points during 1980–2023 (Fig. 1b). We further applied the ridge
regressionmodel defined in Eq. (3) to assess the differential impacts of
sub-daily temperatures on VPD (Supplementary Fig. 5). Overall, Tmax

exhibited a strong positive influence on interannual VPD variability
(Fig. 1c), whereas Tmin showed a relatively weaker effect across both
station-based observations and ERA5-Land grid points (Fig. 1e). We
further estimated the relative importance of Tmax and Tmin in driving
interannual VPD variability using the RF-SHAP framework (Supple-
mentary Fig. 6). This approachmitigates issues ofmulticollinearity and
captures nonlinear interactions. Relative importance was calculated as
the normalized magnitude of the absolute SHAP values, which repre-
sent the importance of each predictor in the RF regressionmodel. The
relative importance of Tmax accounted for a median of 41% of VPD
variability across all stations (Fig. 1d) and40%across all ERA5-Landgrid
points (Fig. 1f), whereas the relative importance of Tmin was notably
lower,with amedianof 18%across all stations (Fig. 1d) and22% inERA5-
Land (Fig. 1f). These results indicate an asymmetric effect of Tmax and
Tmin on atmospheric dryness, with Tmax playing a more dominant role
than Tmin in driving the interannual variability of VPD.

VPD can be expressed as either VPD= SVP – AVP or VPD = SVP × (1
– RH) (Eq. 1), indicating that VPD variations depend on changes in SVP
and either AVP or RH. Using detrended interannual daily mean vari-
ables, we conducted further analyses based on three regression
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Fig. 1 | Relative importance of daily maximum (Tmax) and minimum tempera-
tures (Tmin) in interannual vapor pressure deficit (VPD) variations from 1980
to 2023. a Spatial distribution of the trend in diurnal temperature range (DTR) over
land areas. Inset shows boxplots of trends across observation stations (solid boxes)
and ERA5-Land grid points (hollow boxes). Pie chart shows the percentage of land
area with significantly (p <0.05) positive (red), weak positive (light red), weak
negative (light blue), and significantly negative (blue) trends, based on ERA5-Land
data. b Spatial distribution of ridge regression (RR) coefficients of interannual VPD
with respect to DTR, derived from the RR model defined in Eq. (2). c, e Spatial
distribution of RR coefficients of interannual VPD with respect to Tmax (c) and Tmin

(e), derived from the RRmodel defined in Eq. (3). Insets inb, c, and e showboxplots
of RR coefficients across observation stations (solid boxes) and grid points (hollow

boxes). Pie charts show the percentage of land area with positive (red), negative
(blue), and non-significant (light grey) RR coefficients based on ERA5-Land data.
“Non-significant” refers to cases where none of the coefficients in the RRmodel are
statistically significant. Stations (1.07% in b; 1.29% in c, e) and areas (1.10% in b; 1.11%
in c, e) with non-significant RR coefficients are masked in light grey and excluded
from RR model-based analysis. d, f Relative importance of interannual Tmax, Tmin,
and soil moisture (SM) in driving interannual VPD variability based on the Random
Forest regression model defined in Eq. (3), evaluated across stations (d) and ERA5-
Land grid points (f). All variables in the regressions are detrended and standardized
annual averages. In all boxplots, the height of each box represents the interquartile,
with the thick black line indicating themedian, and the edges denoting the first and
third quartiles. Whiskers extend to the 2.5th and 97.5th percentiles.
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models:

SVP � f ðTmax, TminÞ ð4Þ

AVP � f ðTmax, Tmin, SMÞ ð5Þ

RH � f ðTmax, Tmin, SMÞ ð6Þ

Based on the RF regression model defined in Eq. (4) and the RF-
SHAP framework (Supplementary Fig. 7), we found that the inter-
annual variations in SVP were primarily determined by Tmax, with Tmax

exerting a greater impact on SVP than Tmin across nearly 90% of land
areas in the ERA5-Land dataset (Fig. 2a). The stronger influence of Tmax

on SVP is due to the near-exponential relationship between tempera-
ture and SVP, meaning the rate of SVP increase is greater at higher
temperatures. For instance, according to the Clausius-Clapeyron
relationship, while a 1 °C increase at global average land Tmin (8.6 °C)
leads to a 0.78 hPa rise in SVP, the same temperature increase at global
annual average land Tmax (18.2 °C) results in a 1.35 hPa rise—roughly
72% higher (Supplementary Fig. 8a). This differential effect is even
more pronounced in low-to-mid-latitudes, where a 1 °C increase at

typical land Tmax (25.5 °C) produces a 76% higher SVP compared to
Tmin (15.8 °C). This illustrates why Tmax exerts a stronger influence on
SVP than Tmin, and indicates that in warmer conditions, the difference
in the impact of Tmax and Tmin on SVP will become even more
pronounced.

Based on the ridge regression model defined in Eq. (5), we found
that Tmin has significantly affected AVP across 93% of the land area
based on the ERA5-Land dataset (Supplementary Fig. 9d). Overall, Tmin

has exerted a positive influence on AVP, with 96% of land area exhi-
biting positive regression coefficients based on the ERA5-Land dataset
(Fig. 2d). Using the RF-SHAP framework with the same independent
and dependent variables (Supplementary Fig. 10), we found that Tmin

was the dominant driver of AVP over 44% of land areas, primarily
located in the mid-latitudes, where it has exerted a positive influence
(Fig. 2b). Here, the “dominant driver” refers to the variable that con-
tributes most to the RF regression model output, as indicated by the
highestmean absolute SHAP value among all predictors. The direction
of influence—positive or negative—is determined by the Theil–Sen
slope between the variable’s values and their corresponding SHAP
values. In contrast, Tmax was the dominant driver with a positive
influence over only 11% of land areas, and with a negative influence
over 6%. This widespread positive influence of Tmin on AVP may also

Fig. 2 | Relative importance of daily maximum (Tmax) and minimum tempera-
tures (Tmin) in interannual variations of saturation vapor pressure (SVP) and
actual vapor pressure (AVP) from 1980 to 2023. a Spatial distribution of relative
importance of Tmax in interannual SVP, identified using the Random Forest (RF)
regression model defined in Eq. (4) with the Shapley Additive Explanations (SHAP)
framework. Inset shows boxplots of relative importance (%) across stations (solid
boxes) and ERA5-Land grid points (hollow boxes). Pie chart shows the percentage
of land areawhereTmax importanceexceeds 50% (red) or is below50% (blue), based
on ERA5-Landdata.b Spatial distributionof the dominant driver of interannual AVP
changes, identified using the RF regression model defined in Eq. (5) with the SHAP
framework, based on ERA5-Land data. Pie chart shows the percentage of land area
where AVP is dominantly driven by Tmax, Tmin, or soil moisture (SM), with either a
positive (+) or negative (−) influence. c andd spatial distribution of ridge regression

(RR) coefficients of interannual AVP with respect to Tmax (c) and Tmin (d), derived
from theRRmodel defined in Eq. (5). Insets showboxplots of RR coefficients across
observation stations (solid boxes) and grid points (hollow boxes). Pie charts show
the percentage of land area with positive (red), negative (blue), and non-significant
(light grey) RR coefficients based on ERA5-Land data. “Non-significant” refers to
cases where none of the coefficients in the RR model are statistically significant.
Stations (4.36%) and areas (1.45%) with non-significant RR coefficients are masked
in light grey and excluded from the analysis. All variables in the regressions are
detrended and standardized annual averages. In all boxplots, theheight of eachbox
represents the interquartile, with the thick black line indicating themedian, and the
edges denoting the first and third quartiles.Whiskers extend to the 2.5th and97.5th
percentiles.
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have contributed to its broadpositive effect on RH. According to ridge
regression results fromEq. (6), 95%of grid cells hadpositive regression
coefficients for the effect of Tmin on RH based on the ERA5-Land
dataset (Supplementary Fig. 11d). The positive effect of Tmin on AVP
(Fig. 2d) can be supported by the general alignment of dew point
temperature with Tmin

45, along with the near-exponential relationship
between AVP and dew point temperature according to the Clausius-
Clapeyron relationship. Air temperature governs the maximum
amount of water vapor that the atmosphere can hold. Typically, over
land—especially under more humid conditions—RH often approaches
100% around the time of Tmin, while AVP (or specific humidity) is
relatively stable through the 24-hr diurnal cycle21. This suggests that
Tmin largely controls thewater vapor content orAVP in the airwhen it is
close to saturation. Although slight diurnal fluctuations in water vapor
content may occur, Tmin plays a more substantial role than Tmax in
controlling the daily-mean water vapor content (Supplemen-
tary Fig. 8b).

We found that the positive response of AVP to Tmax was relatively
heterogeneous and regionally variable compared to its response to
Tmin (Fig. 2b, c). During the daytime, increased temperature typically
elevates VPD, which enhances land evapotranspiration over wet
surfaces46, thereby increasing atmosphericwater vapor. However, over
drylands, the relationship between temperature/VPD and evapo-
transpiration becomes more complex, particularly when considering
plant physiological processes47. Using half-hourly observational data
fromFLUXNET tower sites48 (Supplementary Fig. 12), we found that the
diurnal cycle of VPD closely mirrors that of temperature (R² =
0.985 ±0.014; mean ± one standard deviation across all sites). This
similarity arises because SVP, which is strongly temperature-
dependent (R² = 0.997 ±0.002), exhibits greater diurnal variation
than AVP, with daily standard deviations of 2.76 hPa versus 0.17 hPa,
respectively (Supplementary Fig. 13). Consequently, higher Tmax pro-
duces greater daily maximum VPD. During high VPD conditions, plant
stomata tend to partially close in response to increased atmospheric
dryness49,50. This “feed-forward” response51 reduces transpiration rates
under high VPD conditions25, thereby limiting increases in AVP. The
inhibitory effect is particularly pronounced in water-limited areas of
low- to mid-latitudes (Fig. 2c), where the climate is relatively hot
and dry.

Daily analysis
The above findings suggest that changes in Tmax and Tmin have dif-
ferent impacts ondaily-meanVPD.WhenTmax increases, itwill lead to a
larger increase in SVP than AVP and result in a noticeable increase in
VPD. In contrast, for an equivalent increase in Tmin, the resulting
increase in SVP is smaller, while RH will increase in most regions, thus
partially offsetting the increase in VPD associated with rising Tmax.
Building on observational data from FLUXNET tower sites, we further
investigated the impact of diurnal temperatures on VPD after
accounting for the influence of SM on the relationship between DTR
and VPD. We conducted this analysis because increased SM can
enhance evaporative cooling, which reduces Tmax and consequently
lowers DTR44. Simultaneously, the increased SM raises AVP and RH,
further decreasing VPD52,53. These processes could lead to a positive
correlation between DTR and VPD.

Tomitigate the influence of SM, we segmented the daily data into
different bins basedon thepercentiles of the surface soil water content
(SWC) within each flux tower site. Before the analysis, we employed
Fourier transform-based filtering54 (Supplementary Fig. 14) to remove
seasonal variations from the daily variables. In all bins, the correlation
between SWC and either VPD or DTR was generally weak, indicating
decoupling50,55 between SWC and VPD or DTR within each bin (Sup-
plementary Fig. 15a). We then compared the partial correlations
between SVP, AVP, and RHwith Tmax or Tmin within each bin (Fig. 3). In
the partial correlation analysis, we accounted for the influence of Tmin

when estimating the correlations between Tmax and SVP, AVP, or RH.
Similarly, we controlled for Tmax when calculating correlations with
Tmin. Across all bins, Tmax showed a stronger correlation with SVP than
Tmin, while Tmin exhibited a stronger positive correlationwith AVP than
Tmax. Since RH is the ratio between AVP and SVP, Tmax was generally
negatively correlatedwithRH,while Tmin showed apositive correlation
with RH. These findings, when considered alongside Eq. (1), indicate a
strong positive correlation between VPD and Tmax, and a weak positive
or even negative correlation between VPD and Tmin. This is consistent
with the results of the partial correlation analysis between VPD and
Tmax or Tmin (Supplementary Fig. 15b). These results further demon-
strate the asymmetric effect of Tmax and Tmin on VPD, even after
accounting for soil moisture effects.

Trend analysis
The preceding analysis reveals asymmetric effects of Tmax and Tmin on
VPD at both interannual and daily scales. To further quantify the long-
term impact of sub-diurnal asymmetric warming on VPD changes, we
employed monthly, non-detrended variables—including DTR, Tmean,
and SM—in an RF regression model as defined in Eq. (2) to predict
monthly VPD values from 1980 to 2023. This RF approach was speci-
fically chosen to capture the complex nonlinear relationships among
these variables. We first trained the model to optimize its parameters,
and then applied the trained model on the input data to obtain fitted
VPD values (VPDfitted). The median out-of-bag R² for the RF models
reached 0.91 for the HadISD dataset and 0.96 for the ERA5-Land
dataset (Supplementary Fig. 16a), indicating that the models effec-
tively capture most of the variance in VPD over land. Subsequently,
three sensitivity experiments (see Methods) were conducted, one for
each independent variable, keeping the tested variable constant at its
mean value for each month during the control period (the initial three
years, 1980–1982), while the other two variables varied according to
the input. The difference between VPDfitted and the estimated VPD
from each sensitivity experiment was considered the contribution of
DTR, Tmean, and SM change to the VPD change, denoted as VPDDTR,
VPDTmean, and VPDSM, respectively.

On average, across all stations from 1980 to 2023, VPDDTR

increased at a rate of 0.06 hPa per decade (p <0.05, Fig. 4a). An
upward trend in VPDDTR was observed at 80% of the stations, with 45%
showing a statistically significant increase (p < 0.05, Fig. 4d). We then
focused on the contribution rate of DTR change to the VPD increase,
defined as the ratio of the slopes of VPDDTR and VPDfitted. On average,
this contribution rate reached approximately 30% across all stations
(Fig. 4a). Using the ERA5-Land dataset, DTR changes contributed an
average of 18% to the VPD increase across land areas (Supplementary
Fig. 17a). For the spatial analysis, we concentrated on stations where
VPDfitted exhibited a significant increase (p <0.05), representing about
66% of all stations. Here, the median contribution rate of DTR change
to VPD increase reached 35% (Supplementary Fig. 18). According to
ERA5-Land, themediancontribution rate reached22% in regionswhere
VPD showed a significant increase. These results indicate that the
increase in DTR has played a notable role in promoting the rise in VPD
since the 1980s.

To further investigate the potentially distinct long-term impacts
of Tmax and Tmin increases on VPD, we quantified the contributions of
changes in monthly variables to SVP (Supplementary Fig. 19) and
RH (Supplementary Fig. 20) changes usingRFmodels asdefined in Eqs.
(4) and (6), respectively. On average, the contribution of Tmax to SVP
(SVPTmax) was greater than that of Tmin (SVPTmin). The growth rate of
SVPTmax exceeded that of SVPTmin in most mid-latitude regions,
including southwestern North America, central and eastern South
America, southern Europe, central Africa, Central Asia, and Australia
(Fig. 4e). The contribution of Tmax to RH showed a significant
decreasing trend (−0.33% per decade, p < 0.05, based on observations,
Fig. 4c; and −0.34% per decade, p <0.05, over land in the ERA5-Land
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reanalysis, Supplementary Fig. 17c), whichwaswidespread acrossmost
of the land areas except for northern North America and India. In
contrast, the contribution of Tmin to RH exhibited a slight but sig-
nificant increasing trend (0.13% per decade, p <0.05, across stations;
and 0.13% per decade, p <0.05, over land in the ERA5-Land dataset),
which was prevalent across most land areas except for the western

United States and Central Asia (Fig. 4g). This analysis reinforces that
over the past few decades, changes in Tmax and Tmin have had different
effects on both SVP and RH. Generally, increases in Tmax have had a
bigger impact on increasing SVP than Tmin. Additionally, while
increases in Tmin generally appear to have a positive effect on RH,
increases in Tmax could contribute to decreased near-surface RH over

Fig. 3 | Asymmetric effects of daily maximum (Tmax) and minimum tempera-
tures (Tmin) on saturated vapor pressure (SVP), actual vapor pressure (AVP),
and relative humidity (RH).Assessment of the partial correlation between Tmax or
Tmin and SVP (a), AVP (b), and RH (c) while controlling for the other variable across

different soil water content percentiles at all FLUXNET sites. The height of each box
represents the interquartile range of correlation coefficients across different sta-
tions, with the edges denoting the first and third quartiles. Whiskers extend to the
2.5th and 97.5th percentiles of the correlation coefficient.
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many land regions (Supplementary Fig. 11c). Due to these dual effects,
the asymmetric warming characterized by daytime warming and
increasing DTR over the past forty years has exacerbated atmospheric
dryness over most land areas.

These results raise important questions that warrant further
exploration: did VPD decline prior to 1980, and if so, was it related to
faster nighttime warming observed during that period? To investigate
this question, we extended the study period back to 1950 using the
ERA5-Land dataset. We found that, over land, VPD significantly
declined from the 1950s to the mid-1970s at a rate of –0.25 hPa per
decade (p <0.05), reaching a minimum around 1976 (Supplementary

Fig. 21). This decline was primarily associated with a significant
decrease in Tmax (–0.13 °C per decade, p <0.05), while Tmin showed
little change (–0.03 °C per decade, p >0.05) during 1950–1976. In
contrast, during the period from 1977 to 2023, VPD increased sig-
nificantly at a rate of 0.31 hPa per decade (p < 0.05), in parallel with a
faster warming of Tmax (0.30°C per decade, p <0.05) compared to Tmin

(0.27 °C per decade, p <0.05). We further performed partial correla-
tion analyses using annual land-average variables during each period.
The partial correlation between Tmax and VPD was 0.69 (p <0.05) for
1950–1976 and 0.62 (p <0.05) for 1977–2023, after controlling for Tmin

and SM.These correlationswere stronger than thosebetween Tmin and

Fig. 4 | Contributionof sub-diurnal asymmetricwarming to trends in saturated
vapor pressure (SVP), relative humidity (RH), and vapor pressure deficit (VPD)
from 1980 to 2023. a–c Variations and changes in the annual averagemodel-fitted
(subscript fitted) VPD (a), SVP (b), and RH (c), and the contributions of diurnal
temperature range (subscript DTR), daily mean temperature (subscript Tmean), soil
moisture (subscript SM), daily maximum temperature (subscript Tmax) and daily
minimum temperature (subscript Tmin) to the variations and changes over land.
The model-fitted values are anomalies calculated by subtracting the mean values
for the control period (1980–1982). The dashed lines show the linear trends
obtained from linear regressions. d, f and g Spatial distribution of trends in VPDDTR

(d), RHTmax (f), and RHTmin (g). Insets show boxplots of trends across observation

stations (solid boxes) and ERA5-Land grid points (hollow boxes). Pie charts show
thepercentageof land areawith significantly (p <0.05)positive (red),weakpositive
(light red), weak negative (light blue), and significantly negative (blue) trends,
based on ERA5-Land data. e, Spatial distribution of differences between trends in
SVPTmax and SVPTmin. Insets show boxplots of differences across observation sta-
tions (solid boxes) and ERA5-Land grid points (hollow boxes). Pie chart show the
percentage of land areawithpositive (red) andnegative (blue) differencesbasedon
ERA5-Land data. In all boxplots, the height of each box represents the interquartile
range of trends or differences across different stations or grid points, with the thick
black line indicating the median, and the edges denoting the first and third quar-
tiles. Whiskers extend to the 2.5th and 97.5th percentiles.
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VPD during the same periods (–0.60 for 1950–1976 and –0.46 for
1977–2023, p <0.05), controlling for Tmax and SM. Together, these
findings reinforce the robustness of our conclusions, highlight the
asymmetric effects of Tmax and Tmin on atmospheric dryness, and
underscore the dominant role of Tmax in driving long-term chan-
ges in VPD.

Implications for drought and wildfire risk
Increased atmospheric dryness directly contributes to higher atmo-
spheric evaporative demand, which has been identified in a recent
study as playing an increasingly important role in the occurrence of
severe droughts56. To explore the relationship between atmospheric
dryness and drought, we analyzed the correlation between annual VPD
and the self-calibrated Palmer Drought Severity Index (scPDSI)57 during
1980–2023. As a standardized drought index, lower values of scPDSI
indicate more severe drought conditions. We found that VPD was sig-
nificantly (p <0.05) and negatively correlated with scPDSI across 47.7%
of the global land area (Supplementary Fig. 22), suggesting a strong
linkage between atmospheric dryness and drought conditions in these
regions. These areas were mainly located in southwestern North
America, eastern and southern South America, southern and eastern
Europe, Central Asia, inland East Asia, and eastern Australia. Among the
regions exhibiting significant negative VPD–scPDSI correlations, 68.6%
experienced an increase in DTR and 69.3% experienced a decline in
scPDSI. In contrast, among regions with either insignificant or positive
VPD–scPDSI correlations, only 53.2% experienced increasing DTR.
Furthermore, 62.9% of global land areas showed a significant negative
correlation betweenDTR and scPDSI, with a spatial distribution pattern
similar to that of regions with significant negative VPD–scPDSI corre-
lations. These results indicate an important role of daytime warming in
driving regional atmospheric drying and drought intensification58.
Recent increases in drought severity or frequency reported in regions
such as the southwestern United States59,60, Europe61,62, inner East
Asia63,64, and South America65,66 may be closely linked to accelerated
Tmax warming over recent decades (Fig. 1a).

Another major consequence of amplified atmospheric dryness is
the increased frequency and severity of wildfires. Based on the fire
weather index (FWI) from the European Centre for Medium-Range
Weather Forecasts (ECMWF)67, we found that a significant positive
correlation exists between FWI and VPD (93.8% of land area) as well as
between FWI and DTR (85.7% of land area) during 1980–2023 (Sup-
plementary Fig. 23). These findings suggest a strong connection
between faster daytime warming and heightened potential fire danger
and intensity, as burned area is positively correlated with fire weather
acrossmuch of the globe, including North and South America, Europe,
and large parts of Asia68. Recent wildfire events in the southwestern
United States69,70, Mediterranean Europe71, and South America72 are
likely linked to increases in both DTR and VPD since the 1980s (Fig. 1a
and Supplementary Fig. 3f).

Discussion
Our findings provide compelling evidence that stronger daytime
warming over the past four decades has significantly contributed to
increased atmospheric dryness. Given that the effects of SM on both
Tmax and VPD are primarily mediated through evapotranspiration (ET),
we conducted an additional ridge regression analysis by replacing SM
with ET in Eqs. (3) and (5). Based on the ridge regression model defined
as VPD ~ f (Tmax, Tmin, ET), we found that Tmax has exerted a stronger
positive influence on VPD than Tmin on the interannual scale. The spatial
distribution of ridge regression coefficients (Supplementary Figs. 24a,
24b) is consistent with results from the original model defined in Eq. (3)
(Fig. 1c, e), with spatial r=0.86 and r=0.68, respectively. Similarly, in the
model defined as AVP ~ f (Tmax, Tmin, ET), Tmin continued to show amore
widespread and stronger positive effect on AVP compared to Tmax

(Supplementary Fig. 25). The spatial distribution of regression

coefficients (Supplementary Figs. 25a, 25b) closely matches the corre-
sponding results from themodel based on Eq. (5) (Figs. 2c and 3d), with
spatial r=0.84 and r=0.86, respectively. Previous studies suggest that
ET is inherently difficult to measure accurately73,74, particularly at large
spatial scales75, because it is influenced by a complex combination of
environmental and biophysical factors76. Therefore, we used SM as a
more reliable proxy in the main analysis.

Additionally, the negative response of AVP to Tmax in water-
limited areas of low- to mid-latitudes (Fig. 2c) can be disrupted by the
sunlight-blocking effect of clouds. Days with higher AVP typically
exhibit increased cloud cover77, which reflects incoming solar radiation
and lowers surface incident radiation, consequently decreasing Tmax.
To mitigate this interference between AVP and Tmax due to radiation
effects, we conducted an additional ridge regression analysis, derived
frommodel defined as AVP ~ f (Tmax, Tmin, SM, RS), where RS is surface
incoming solar radiation, based on detrended and standardized vari-
ables from ERA5-Land from 1980 to 2023. The analysis reveals that the
negative response of AVP to Tmax persisted across low- and mid-
latitude regions (Supplementary Fig. 26a). The spatial distribution of
the ridge regression coefficients closely alignswith the results from the
analysis without including RS (Fig. 2c, spatial r =0.99), indicating that
the negative response of AVP to Tmax was not primarily caused by the
sunlight-blocking effect of clouds. These analyses further confirm the
robustness of our findings.

It is worth noting that SM increased significantly (p < 0.05) during
1950–1976 but showed a significant (p <0.05) decline during
1977–2023 (Supplementary Fig. 27). This corresponds to the sig-
nificant decreases in VPD and Tmax during the earlier period, and the
significant increases in both variables in the later period. These con-
trasting trends raise another important question: since the 1980s,
which effect has been dominant—the increase in Tmax leading to
enhanced atmospheric dryness and then decreased SM, or the decline
in SM reducing evaporative cooling and thereby contributing to higher
Tmax and VPD? The recent increase in Tmax can be conceptually
decomposed into two components. The first reflects the general
warming trend shared with mean temperature and Tmin, which is
widely attributed to increased greenhouse gas concentrations. The
second represents an additional increase in Tmax relative to Tmin, pri-
marily induced by radiation and mainly driven by widespread
decreases in cloud cover and regional reductions in aerosol
concentrations26,28,29. SM plays a negligible role in the first component
and only a limited role in the second26. Therefore, SM decline is unli-
kely tobe themaindriver of the recent increases in Tmax. Regarding the
reason of SM decline, given that land precipitation has shown little
long-term change78—suggesting relatively stable water input—the
reduction inSM ismore likelydue to increasedwater loss from the soil,
i.e., enhanced evaporation. Since increased VPD is a key driver of
higher evaporative demand, this supports the interpretation that the
dominant pathway is from increased Tmax leading to increased VPD
and subsequently decreased SM, rather than the reverse.

The recent increase in VPD is clearly linked to globalwarming, and
our findings reveal that this trend has been amplified by stronger
daytime warming. Earth system models (ESMs) project a continued
increase in VPD under future global warming scenarios8,9. However,
the projected magnitude of this increase may be underestimated
if the continued rise in surface solar radiation (i.e., “global
brightening”28,79,80) andDTR, alongwith the amplification effect of sub-
diurnal asymmetric warming identified in this study are not adequately
accounted for. Moreover, the observed trend of increasing DTR since
the 1980s has not been adequately captured in Coupled Model Inter-
comparison Project Phase 6 (CMIP6) models27. These findings under-
score the urgent need to improve the simulation of future DTR trends
and their influence on VPD, given that changes in atmospheric dryness
could profoundly impact water cycling through land
evapotranspiration11, carbon cycling81, and increase the frequency and

Article https://doi.org/10.1038/s41467-025-63672-z

Nature Communications |         (2025) 16:8247 8

www.nature.com/naturecommunications


intensity of extreme events such as drought and wildfires19,20, under-
scoring the critical need for heightened attention.

Methods
Data
HadISD37 is an in-situ sub-daily (reporting from 6-hourly to hourly)
dataset based on the NOAA ISD dataset82. Multiple quality checks were
applied to the dataset, including the removal of duplicates, detection
of distribution gaps, and identification of climatological outliers37,83.
For station selection, we applied strict criteria: (1) valid days required
minimum five paired observations of temperature and dew point
temperature; (2) valid months allowed maximum 10 missing days and
no more than 4 consecutive missing days27; (3) stations from
1980–2023 were included only ifmissingmonths were below 2%. After
the selection, 1398 stations were retained for analysis. Considering the
lack of SMmeasurements inHadISD,weused SM from the ERA5-Land38

reanalysis at the station sites.
The observations from flux towers of hourly temperature, VPD,

and soil water content were obtained from FLUXNET201548. For SWC,
we selected the shallowest measurement at a depth of 30 cm84,85,
representing the topsoil layer that directly interacts with the atmo-
sphere. Only temperature, VPD, and SWC data with quality flags
marked as “measured” or “good quality gapfill”were used. Time series
encompassing complete observations over at least a three-year period
were selected for analysis. After selection, 56 stationswere retained for
analysis, including 32 forest sites and 12 grassland sites. The forest sites
included sites within deciduous broadleaf forests (DBF), evergreen
needleleaf forests (ENF), evergreen broadleaf forests (EBF), andmixed
forests (MF).

The hourly gridded temperature, dew point temperature, SM
content of the soil layers and total evaporation were obtained from the
ERA5-Land reanalysis dataset spanning 1950–2023 with a horizontal
resolution of about 9 km. Here, SM content between 0 and 28 cm was
calculated by summing up the moisture content for each layer
weighted by the thickness of the layer12. Monthly scPDSI data86 were
obtained from the Climatic Research Unit (CRU), covering global land
areas from 1980 to 2023 at a spatial resolution of 0.5° × 0.5°. The
scPDSI was calculated based on CRU TS 4.08 precipitation and tem-
perature data, combined with fixed parameters related to local soil and
surface characteristics. The index ranges from −4 (extremely dry) to +4
(extremely wet), representing water supply and demand as determined
by a complex water-budget model that incorporates soil properties,
historical precipitation, and potential evapotranspiration. FWI data
were obtained from the Copernicus Emergency Management Service
(CEMS)67, derived from ECMWF ERA5 reanalysis-based historical
simulations, covering 1980 to 2023 at a spatial resolution of about
0.25° × 0.25°. The FWI combines the Initial Spread Index and the Build-
Up Index to provide a numerical rating of potential frontal fire intensity
and is widely used to inform the public about fire danger conditions.

All griddeddatasetswere aggregated to a common0.5° ×0.5° grid
before analysis.

Calculation of vapor pressure deficit
VPD (hPa) was calculated using the following formula6,7:

VPD=SVP� AVP ð7Þ

SVP=6:1078× e
a ×Ta
Ta +b ð8Þ

AVP=6:1078× e
a×Tdew
Tdew + b ð9Þ

Here, SVP is the saturated vapor pressure calculated based on the
air temperature (Ta) in degrees Celsius. For Ta at or above 0 °C, a is

17.269 and b is 237.3. For Ta below 0 °C, a is 21.875 and b is 265.56. AVP
is the actual vapor pressure in hPa, which is defined as the vapor
pressure of moist air at the ambient temperature or the saturation
vapor pressure at the dew point7,41. Tdew is the dew point temperature
in degrees Celsius.

Ridge regression and attribution
Ridge regression34 minimizes the effects of high multicollinearity (i.e.,
correlation) among the independent variables, particularly by alle-
viating interference caused by strong correlations between tempera-
ture/DTR and SM26. The ridge regression was done separately using
HadISD data at each station and ERA5-Land data at each grid box, with
ERA5-Land SM data used in both analyses since HadISD does not
include SM data. Prior to conducting the ridge regression analysis,
long-term linear trends were removed from all variables. The detren-
ded time series were then converted into z-scores by dividing the
anomalies (from the linear trend) by their standard deviations for the
period from 1980 to 2023. The ridge regression objective function (β̂^)
can be expressed as follows34:

β^ =
Xn

i= 1

yi � β0 �
X

βjxij
� �2

+ λ
X

β2
j ð10Þ

where n is the number of total data points, yi is the value of the
dependent variable at time step i, β0 is the intercept term, and βj
signifies the regression coefficient for the independent variable xj
whose value at i time step is xij. The optimal regularization parameter
(λ) was determined using leave-one-out cross-validation (LOOCV).
LOOCV is a special case of k-fold cross-validation where k (the number
of subsamples) equals n (the number of observations). LOOCV is
particularly appealing for small datasets, as itmaximizes the size of the
training set in each iteration. Here, for each value of λ, we performed
LOOCV by iteratively excluding one observation, fitting the ridge
model to the remaining data, and computing the squared prediction
error for the excludedobservation. This procedurewas repeated for all
observations, ensuring that each data point served once as the
validation set. The LOOCV error for that λ was then calculated as the
average of these squared errors. This procedure was repeated over a
predefined set of λ values, and the λ with the lowest LOOCV error was
selected as optimal. Formally, the LOOCV error for each λ was
computed as:

LOOCV errorðλÞ= 1
n

Xn

i= 1

yi � yλðiÞ
� �2

ð11Þ

where yλðiÞ is the prediction for the i-th observation using the model
trained without the i-th sample.

To quantify the statistical significance of the ridge regression
coefficients, we applied a nonparametric bootstrap approach with
1000 iterations. In each iteration, the original dataset was resampled
with replacement, and the ridge regression model was refitted using
the LOOCV-optimized λ. This resulted in a distribution of regression
coefficients for each predictor, from which the 95% confidence inter-
vals (CIs) were derived using the 2.5th and 97.5th percentiles. A coef-
ficient was deemed statistically significant if its CI did not include zero.
This approach allows for robust inference without assuming normally
distributed residuals and accounts for sampling variability.

The Durbin–Watson statistic87 was used to detect the presence of
autocorrelation at lag 1 in the residuals (prediction errors) from the
regression analysis. If et denotes the residual at time t, the
Durbin–Watson test statistic (d) is defined as

d =
Xn

t = 2

et � et�1

� �2
=
Xn

t = 1

e2t ð12Þ
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where n is the number of time step. The value of d ranges from 0 to 4,
with d = 2 indicating no autocorrelation. A value of d < 2 suggests
positive autocorrelation, while d > 2 indicates negative autocorrela-
tion. In our analysis, most Durbin–Watson statistics were close to 2,
and there was no systematic deviation toward either positive or
negative autocorrelation (Supplementary Figs. 4b, 5b and 9b), indi-
cating little to no autocorrelation overall.

Random Forest regression analysis
We applied the RF algorithm to perform both interannual and trend
analyses, based on the independent and dependent variables defined
in Eqs. (2)–(6). Prior to conducting the interannual analysis, long-term
linear trends were removed from all variables. The detrended time
series were then converted into z-scores by dividing by the standard
deviation of the anomalies. For the interannual analysis, the RF
regression model was combined with the SHAP36,88 framework to
quantify the relative importance of various environmental variables in
driving the interannual variability of VPD, SVP, AVP, and RH. The SHAP
method, grounded in the Shapley value concept from cooperative
game theory, offers an enhanced approach over traditional local
interpretable model-agnostic explanations by providing consistent
and theoretically sound attributions of feature importance. For each
response variable Y (e.g., VPD, SVP, etc.) and each sample i, the RF-
predicted outcome can be decomposed as:

Y i = Ybase +
XM

j = 1

shap xij

� �
ð13Þ

where Yi is the RF prediction for sample i, Ybase is the mean prediction
across all samples (i.e., the expected value of the model output), and
shap(xij) is the SHAP value representing the contribution of predictor j
to the prediction Yi, and M is the number of predictor variables.

The relative importance of each predictor variable was quantified
using the normalized magnitude of its absolute SHAP values across all
samples. Specifically, for predictor j, the relative importance RIj was
calculated as:

RIj =
1
N

PN
i= 1 shap xij

� ����
���

PM
k = 1

1
N

PN
i= 1 shap xij

� ����
���

ð14Þ

where N is the total number of samples. The vertical bars denote
absolute value. Thismetric captures the average absolute contribution
of each variable to themodel output, normalized across all predictors,
and serves as a measure of overall variable importance. A predictor is
considered the dominant driver if it shows the highest mean absolute
SHAP value among all predictors, indicating that it contributes the
most to the RF regression model output.

To determine whether each variable had a positive or negative
influence on the response variable, we calculated the Theil–Sen slope
between the values of each predictor and its corresponding SHAP
values. A positive slope indicates that increases in the predictor tend to
increase its SHAP value contribution (i.e., positive influence on Y),
while a negative slope indicates that increases in the predictor tend to
decrease its SHAP value contribution (i.e., negative influence on Y).
This approach allows us to assess not only which variables are most
important in driving model predictions, but also whether their effects
are positive or negative.

For the trend analysis, we used all monthly data without
detrending to train the RF model to predict VPD, SVP, and RH, as
defined in Eqs. (2), (4), and (6), respectively. Model performance was
evaluated using the out-of-bag (OOB) coefficient of determination (R²)
and mean squared error (MSE), which are internal cross-validation
procedure inherent toRF andprovideunbiased estimates of predictive
accuracy without requiring a separate validation dataset. The long-

term impacts of sub-diurnal asymmetric warming on changes in VPD,
SVP, and RHwere then quantified using the RFmodel combined with a
series of sensitivity experiments, as described below.

All RF models were trained individually at each station or grid
point using 100 decision trees. Each tree independently predicted the
response variable based on the provided predictors. To determine the
optimal number of trees, we conducted a sensitivity analysis (Sup-
plementary Fig. 28) usingmonthly variables fromHadISDobservations
and the model defined in Eq. (2). The results show that the OOB MSE
stabilizes once the number of trees exceeds 30, indicating that using
100 trees is sufficient for our purposes.

Sensitivity experiments for trend analysis
To assess the relative contribution of individual predictors (e.g., tem-
perature and SM) to changes in a target variable (e.g., VPD or RH), we
conducted a series of sensitivity experiments9 based on the RF
regression models. Let Y denote the target variable (e.g., VPD or RH),
and let X = (X1, X2,…, Xn) represent the set of input predictors (e.g.,
Tmax, Tmin, SM). For each RF regression model, we first trained the
model using the full dataset (1980–2023) to optimize its parameters,
then applied the trained model on the input data to obtain fitted Y
values (Yfitted):

Y f itted = f ðX 1,X2, . . . ,XnÞ ð15Þ

To quantify the contribution of a single predictor Xi to the change
in Y, we performed sensitivity experiments by fixing Xi at its climato-
logical monthly mean during a control period (1980–1982), while
allowing all other variables to vary as observed. A new prediction Y~Xi
was made under this perturbed condition:

Y�Xi = f ðX 1, . . .Xi, ctrl , . . . ,XnÞ ð16Þ

where Xi,ctrl is set to the multi-year mean of Xi for the corresponding
calendar month calculated over the control period (1980–1982) and
held constant throughout the time series. The contribution of Xi to the
change in Y, denoted as YXi, was then calculated as:

YXi = Y f itted � Y�Xi ð17Þ

This process was repeated for each predictor, resulting in sepa-
rate estimates of the contributions from each variable. This framework
allowed us to isolate and quantify the role of each variable in driving
long-term changes in the target variable.

Seasonal analysis and detrending for seasonality
In the analysis of FLUXNET site observations, seasons were defined as
follows: March, April, May for spring (autumn), June, July, August for
summer (winter), September,October,November for autumn (spring),
and December, January, February for winter (summer) in the Northern
Hemisphere (Southern Hemisphere).

To remove the seasonal cycle from the original daily data, we
utilized a Fourier transform approach. First, we computed the mean
daily values across all years and then applied a Fast Fourier Transform
(FFT)54 to these mean values. To retain only the primary seasonal
components, we filtered the frequencies by zeroing out higher fre-
quencieswhile preservingonly the four lowest frequency components.
We then performed an inverse FFT on the filtered data to reconstruct
the seasonal component in the timedomain. Finally, we subtracted the
seasonal component from the original daily data to obtain the desea-
sonalized data. Tomaintain consistent 365-day years, we excluded the
last day of the year during leap years.
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Decoupling of SWC and DTR or VPD
Based on the daily observations at FLUXNET sites with seasonality
removed, we calculated the SWC percentiles (4th through 96th, at
4-percentile intervals) at each tower site. These percentiles valueswere
then used to bin the data. Data for all variables (temperature, SWC,
VPD, etc.)were sorted into 25bins according to thepercentiles of SWC.
This binning procedure maintained the temporal match between data
points. Only bins with more than 40 data points were included in the
further analysis. Since SWC is largely decoupled from DTR and VPD
within each SWC bin (Supplementary Fig. 15a), this method mitigates
the influence of soil moisture on the impact of diurnal temperature
variation on VPD.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Materials. The source data
underlying Figs. 1–4 have been deposited in the Figshare repository
and are available at https://doi.org/10.6084/m9.figshare.29940365.v1.
The HadISD dataset is from https://www.metoffice.gov.uk/hadobs/
hadisd/. The ERA5-Landdataset is fromhttps://cds.climate.copernicus.
eu/datasets/reanalysis-era5-land?tab=download. The FLUXNET2015
dataset is from https://fluxnet.org/data/fluxnet2015-dataset/. The
scPDSI data is from https://crudata.uea.ac.uk/cru/data/drought/#
global. The FWI data is from https://ewds.climate.copernicus.eu/
datasets/cems-fire-historical-v1.

Code availability
The code for the analysis and mapping can be obtained from the Fig-
share repository (https://doi.org/10.6084/m9.figshare.29940365.v1).
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