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ML-based State of Polarization Analysis to Detect
Emerging Threats to Optical Fiber Security

Leyla Sadighi, Stefan Karlsson, Carlos Natalino, Marija Furdek

Abstract—As the foundation of global communication net-
works, optical fibers are vulnerable to various disruptive events,
including mechanical damage, such as cuts, and malicious phys-
ical layer breaches, such as eavesdropping via fiber bending.
Traditional monitoring methods often fail to identify subtle or
novel anomalies, stimulating the proliferation of Machine Learn-
ing (ML) techniques for detection of threats before they cause
significant harm. In this paper, we evaluate the performance
of Semi-Supervised Learning (SSL) and Unsupervised Learning
(USL) approaches for detecting various abnormal events, such as
fiber bending and vibrations, by analyzing polarization signatures
with minimal reliance on labeled data. We experimentally collect
thirteen polarization signatures on three different types of fiber
cable and process them using One-Class Support Vector Machine
(OCSVM) as an SSL, and Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) as a USL algorithm for
anomaly detection. We introduce tailored evaluation metrics
designed to guide hyper-parameter tuning and capture general-
ization over different anomaly types, detection consistency, and
robustness to false positives, enabling practical deployment of
OCSVM and DBSCAN in optical fiber security. Our findings
demonstrate DBSCAN as a strong contender to detect previously
unseen threats in scenarios where labeled data are not available,
despite some variability in performance between different scenar-
ios, with F1 score values between 0.615 and 0.995. In contrast,
OCSVM, trained on normal operating conditions, maintains high
F1 scores of 0.98 to 0.998, demonstrating accurate detection of
complex anomalies in optical networks.

Index Terms—State of Polarization (SOP) variations, Machine
Learning (ML), anomaly detection, Semi-Supervised Learning
(SSL), Unsupervised Learning (USL), One-Class Support Vector
Machine (OCSVM), Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN).

I. INTRODUCTION

F IBER optic networks form the foundation of modern
telecommunications, enabling high-speed, long-distance,

and reliable data transmission with minimal signal loss. In
addition to backbone and long-haul networks, fibers are also
deployed in the access segment, forming, e.g., Passive Optical
Networks (PONs) that deliver broadband connectivity to end
users. They connect regions and nations, supporting global
connectivity and critical systems such as the Internet, govern-
ment, financial, and healthcare networks.

Optical networks are vulnerable to physical threats such
as fiber cuts, reportedly causing up to 60% of failures [1],
[2]. A leading cause of fiber cuts are construction works,
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where the operation of heavy excavator machinery induces
vibrations as a cut predecessor [3]. Fibers are also exposed
to covert security risks from evanescent coupling and fiber
bending [4], [5], which can compromise data confidentiality
via eavesdropping, without affecting signal quality. Another
security vulnerability arises from unauthorized signal access
through unused or improperly secured ports, such as mon-
itoring outputs or unused branches of optical splitters [6].
These access points, often overlooked during installation or
maintenance, can be exploited by malicious actors to tap into
the optical signal without introducing noticeable attenuation
or disrupting service.

Quick detection and response to a range of anomalies
is critical for safeguarding fiber optic networks. Techniques
like Optical Time Domain Reflectometry (OTDR), based on
Rayleigh backscattering, aid fault detection and localization of
large-scale physical faults, such as sharp bends or fiber breaks
[7], [8], [9], but face scalability and cost challenges [10],
and exhibit limited sensitivity to detect subtle disturbances,
such as minor mechanical vibrations and small-radius bends.
Alternative methods such as Distributed Fiber Optic Sensing
(DFOS) for intrusion detection [11] are effective yet complex
and expensive, requiring high-speed lasers, diplexers, and
advanced backscattering analysis.

Recent advancements rely on the existing optical fiber
infrastructure for environmental sensing [12], successfully
detecting natural and human-induced activities [13], [14]. A
key enabler for such sensing is the State of Polarization (SOP),
which is highly sensitive to mechanical disturbances. SOP is
characterized by the Stokes parameters, organized into a four-
element Stokes vector, S = [S0, S1, S2, S3], and represented
on the Poincaré sphere for visual interpretation [2]. Mechanical
stress, temperature changes, bending, and vibrations impact
fiber birefringence, altering polarized light transmission and
modifying the SOP [2]. SOP-based sensing is cost-effective, as
modern Polarization-Multiplexed Quadrature Amplitude Mod-
ulation (PM-QAM) coherent receivers inherently track SOP
for signal demodulation, eliminating the need for additional
hardware [15]. SOP-based analysis leverages the inherent
sensitivity of polarization to both benign and malicious dis-
turbances, including covert eavesdropping attempts, and is
capable of detecting subtle, short-duration, or overlapping
events without relying on backscatter or reflection signatures.
Thus, SOP-based monitoring simplifies the detection process,
avoiding the complexity and cost of DFOS or OTDR.

Effective monitoring of polarization changes is essential to
identify disturbances and maintain network integrity. However,
SOP-based monitoring systems that rely on fixed rules and
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thresholds struggle to handle evolving threats [16], especially
those that induce complex changes in the SOP. To overcome
these limitations and enable scalable, automated, and adaptive
analysis of polarization signatures, recent research has shifted
toward data-driven approaches that leverage Machine Learning
(ML) as a critical monitoring technique in SOP-based fiber
sensing, enabling models to learn and distinguish complex
disturbance patterns from polarization data.

In the context of anomaly detection, polarization signatures
can be defined as a sequence of the magnitude of polar-
ization variations in a specific time and frequency, derived
after processing the SOP variations data [17]. The derived
polarization signatures are plotted in a waterfall diagram.
These plots, unique for each event, help differentiate legitimate
actions from eavesdropping, offering a cost-effective solution
to security challenges. However, the method relies on manual
interpretation by technicians, which requires expertise, time,
and does not scale. Instead of focusing on image and vision-
based analysis of SOP, our prior research [18], [19], [20], [21]
employed sampling techniques and Fast Fourier Transform
(FFT) processing on SOP and calculated the numerical value
of changes in SOP to derive an SOP signature for each event
type.

While Supervised Learning (SL) techniques show remark-
able potential for the detection and classification of polar-
ization signatures, their reliance on labeled datasets may
be limiting for real-world applications. Labeling polarization
events, especially in large-scale optical networks, is often
labor-intensive, costly, time-consuming, and requires domain
expertise, making it impractical for network-wide monitoring
and timely anomaly detection. To overcome these challenges,
this work investigates the potential of Semi-Supervised Learn-
ing (SSL) and Unsupervised Learning (USL) techniques to
efficiently analyze and detect optical fiber events with minimal
or no reliance on labeled training sets. By leveraging the in-
trinsic patterns within the data, SSL methods can learn from a
small set of normal labeled data, while USL techniques such as
clustering can identify patterns and outliers without any prior
label knowledge. This shift towards more flexible and scalable
ML techniques is essential to improve the robustness and
effectiveness of fiber optic network monitoring, particularly
in complex and dynamic environments where manual labeling
is not feasible, or new threats, previously untrained for, may
emerge. In this paper, we consider One-Class Support Vector
Machine (OCSVM) as an SSL technique and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) as
a USL method to tackle the challenge of anomaly detection in
fiber optic sensing, where labeled data is scarce or costly to
obtain. We apply these methods to the thirteen experimental
scenarios described in [18], covering an extensive spectrum of
events possibly affecting fiber optic installations across three
cable types.

The rest of the paper is structured as follows. Section II
overviews recent advancements in ML-based anomaly detec-
tion for optical networks. Section III describes the experi-
mental setup and the data collection process for generating
polarization signatures under various conditions. Section IV
details the employed ML methodology, focusing on the data

pre-processing and hyper-parameter tuning of OCSVM and
DBSCAN. Section V analyzes experimental results, and Sec-
tion VI concludes the paper.

II. RELATED WORK

SL techniques, which rely on labeled data to train models
for event detection and classification, have been proliferating
in recent studies. In [22], a transfer learning strategy was
proposed that leverages unrelated image datasets to improve
SOP-based classification performance when labeled data are
scarce. A follow-up work introduced a Vision Transformer
framework for anomaly detection and localization using SOP
time-series inputs, highlighting the effectiveness of deep at-
tention mechanisms in optical monitoring [23]. Most recently,
SOP spectrogram representations were combined with Vision
Transformers to further enhance anomaly classification and
localization accuracy in complex network scenarios [24].
Despite their advantages, SL techniques often struggle with
complex scenarios involving overlapping effects, such as op-
erational stress, harmful vibrations, and covert attacks, leading
to reduced accuracy in distinguishing harmful from benign
events in real-world deployments.

To address these challenges, our prior work combined robust
SOP signature extraction with advanced SL models to im-
prove accuracy in real-world conditions. In [18], polarization
signatures from three cable types under thirteen scenarios
were analyzed, with eXtreme Gradient Boosting (XGBoost)
achieving 92.3% accuracy in classifying eavesdropping and
other events. In [19], a polarization-based fiber sensor with
supervised ML achieved 97.94% accuracy using Histogram
Gradient Boosting (HGB) to distinguish harmful from non-
harmful events on an indoor cable. In [20], we analyzed
noisy SOP data from OpenIreland’s live network [25] in
Dublin, achieving 86.5% accuracy using the HGB classifier,
demonstrating robustness in real-world conditions. In [21],
we applied Deep Learning (DL) models to a broader, noisier
dataset, improving accuracy to over 91%. The work in [26]
presented a supervised Convolutional Neural Network (CNN)-
based scheme for detecting fiber-bending eavesdropping at
different bending radii (10.8 mm, 12.1 mm, 15 mm) in
coherent optical systems based on the polarization data.

Despite the clear advantages of SSL and USL techniques for
optical network monitoring and anomaly detection, to the best
of our knowledge, no prior work has explored their application
to polarization signature analysis for anomaly detection in
optical fibers. The work in [27] proposed a combined USL
and SL framework that utilized power spectral density and
Signal-to-Noise Ratio (SNR) data to identify anomalies in
optical networks. Recent studies, such as [15] and [28], have
proposed advanced Digital Signal Processing (DSP)-based
techniques for anomaly detection in polarization state, vali-
dated on metropolitan fiber links using mechanical shakers to
introduce various vibration types. In contrast to these advanced
DSP techniques, our study presents a new perspective on
anomaly detection in optical fibers. While the work in [29]
leveraged an USL approach using bisecting k-means clustering
on Optical Performance Monitoring (OPM) data to detect and
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Fig. 1. A schematic of the system used to generate and analyze the SOP
signatures.

localize eavesdropping in Wavelength Division Multiplexing
(WDM) networks, our work analyzes SOP dynamics to detect
a broader range of subtle anomalies, including those not evi-
dent through power-level changes. The work in [30] reported
on an SOP-based system for detecting physical disturbances in
optical fibers using SSL anomaly detection models, including
thresholding and autoencoders. In this paper, we employ SSL
and USL techniques to detect a wide range of anomalies
in polarization signatures, including eavesdropping, harmful
and non-harmful vibrations, and overlapping events directly
from raw SOP data, eliminating the need for labeled data and
enhancing adaptability to unknown threat types.

III. TESTBED AND COLLECTED SIGNATURES

The experimental configuration used to generate, record,
and analyze polarization signature data is depicted in Fig. 1.
It consists of a transmitter, transmission line, receiver with a
polarization measurement system, and SOP processing units.

The transmitter includes a Continuous Wave Distributed
Feedback (CW-DFB) laser emitting light at 1310 nm with
polarization-maintaining properties. The laser is controlled by
a driver that maintains a constant power level and temperature,
ensuring stable operation. The optical signal is transmitted
through a transmission line which is a serial structure of
three different optical cables: Fiber Optical tactical Cable
System (FOCS) cable, an indoor Single Mode (SM) cable,
and a bare G.657.A SM bend-insensitive fiber. The CW-
DFB laser is transmitting optical power occupying one of
the available wavelengths in the O, E, S, C, or L-band of
the network. In order to mimic real-world threat scenarios,
we apply targeted manipulations to each cable type. These
actions produce polarization signatures that characterize each
specific event, crafted to simulate conditions typically linked
to eavesdropping attempts, as well as both harmful and benign
mechanical vibrations. The receiver obtains the transmitted
signal and carries out the SOP analysis using the three steps
described as follows.
Step 1: The optical analyzer is used to quantify changes
in the SOP. The acquired optical SOP signal is mapped
onto the Poincaré sphere to visualize and track polarization
variations. To convert the analog signal into a digital format,
a sampling mechanism is employed, which captures the SOP

on the Poincaré sphere at intervals of 1 ms. This process
is carried out over a 20-minute recording period, resulting
in a total of 1.2 million samples per event. Subsequently,
the numerical vectorial distance between the SOP at two
consecutive sampling points is calculated using:

NPSVt =
√

(∆S1(t))2 + (∆S2(t))2 + (∆S3(t))2 (1)

with ∆Si = Si(t)− Si(t− 1).
Step 2: The FFT analyzer further processes the data. FFT with
hamming window [31] and 512 frequency bins is applied to
concatenated 1-second Numerical Polarization State Variation
(NPSV) data segments of 1,000 elements each. The result
is a power spectrum data set of 1,200 samples (or rows,
corresponding to time slots) and 512 samples (or columns,
corresponding to frequency bins). The output of this step
characterizes the polarization dynamics for each event type,
referred to in this paper as SOP signatures.
Step 3: The collected signatures are analyzed by the ML
analyzer. It applies techniques for detecting anomalies that
may indicate harmful vibrations or eavesdropping attempts.
The detected anomalies are communicated to the Network
Management System (NMS), which oversees network health,
raises alarms, and responds to potential threats. The considered
approach is aimed at detecting the presence of anomalies at an
affected fiber link, without providing the precise localization
along the link.

Using the described experimental setup, we collect data
from thirteen experimental scenarios, comprising normal
and/or abnormal events. Normal considered events include
the relaxed fiber without vibrations or eavesdropping (denoted
as rlx) as well as non-harmful vibrations which might stem
from equipment like fans, nearby traffic, or benign interactions
with the network infrastructure. Since capturing all types of
normal vibrations in real-life scenarios is complex, this study
simulates normal vibrations using 130 Hz (denoted as 130vb)
and 155 Hz (denoted as 155vb) frequencies, representing fans
with speeds of approximately 7,000 and 9,000 Revolutions Per
Minute (RPM). We deliberately selected frequencies close to
each other in order to test the sensor system and ML models’
ability to distinguish between similar vibration signatures. To
generate these vibrations in our testbed, we attached a piezo
electrical engine to the optical cable, powered by a sinusoidal
155/130 Hz vibration. This vibration is transferred by the inner
layer of the cable and interacts with the optical fiber, inducing
changes in the SOP.

The abnormal events encompass potentially harmful vi-
brations and eavesdropping attempts. The harmful vibrations
considered in this study include fiber vibrations at 80 Hz
(denoted as 80vb). An example of such malicious event is
an excavator digging close to the installed fiber optical ground
cable, which may result in an accidental or deliberate fiber cut,
leading to a disruption in network traffic. A common excavator
generally runs at 4,800 RPM. Since one minute equals 60
seconds, the fundamental tone of the excavator corresponds to
a frequency of 80 Hz (4,800/60 = 80). While the full vibration
spectrum includes a range of frequencies around 80 Hz, for
detecting the presence of an excavator it is enough to detect
the presence of the 80 Hz vibration. In commercial equipment,
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TABLE I
COLLECTED SIGNATURES FOR BARE FIBER AND FOCS CABLE

Abbr. Scenario Justification
155vb br 155 Hz vibration bare Normal
155vb fcs 155 Hz vibration FOCS Normal
80vb br 80 Hz vibration bare Harmful; possible cut predecessor
80vb fcs 80 Hz vibration FOCS Harmful; possible cut predecessor
eav br Bending bare Eavesdropping
eav fcs Bending FOCS Eavesdropping

the entire bandwidth needs to be detected and analyzed in
order to detect an excavator running with some other engine
at different RPM. For the purpose of this paper, the main
issue is to present a fiber optical sensor together with the ML
model that can separate examples of malicious events from
examples of normal events that can be experienced in a real-
life fiber optical network. This vibration was simulated by a
loudspeaker producing a sinusoidal tone of 80 Hz at 60 dBA
volume (A-weighted sound level). The bare fiber was exposed
to the tone at a distance of 5 cm from the membrane of the
loudspeaker. The eavesdropping attack signatures (denoted as
eav) are generated by bending the fiber over a 10 mm diameter
rod. The bend radius is chosen to be 4 mm with a bend angle
of 25 degrees.

To successfully perform eavesdropping, the eavesdropper
must manipulate the fiber optic cable and expose the bare
optical fiber that is protected within it. This process generates
various signatures that can be detected. In our experiment,
we considered three cable configurations: (i) bare (br) fiber,
(ii) a standard indoor (idr) patch cable, and (iii) a military-
grade FOCS (fcs) cable. These 3 cable types were deliberately
selected to span a range of mechanical isolation levels. The
bare optical fiber offers direct mechanical exposure and thus
produces strong vibration signatures with high SNRs, serving
as a baseline for unshielded conditions. The indoor patch
cable, a commonly deployed fiber type, provides minimal
isolation, allowing external vibrations to be readily coupled
into the fiber and resulting in detectable signatures. In contrast,
the FOCS tactical cable is designed for deployment in rugged
environments, featuring a robust design that includes multiple
protective layers. These layers provide substantial mechanical
shielding, enabling the cable to withstand pulling forces up
to 2,000 Newtons and resist damage from knotting. This
construction significantly attenuates mechanical disturbances
before they reach the fiber. As such, we expect the vibration
signatures in the FOCS cable to have lower SNR.

For the bare and the FOCS cables, we consider one normal
and two abnormal events, summarized in Table I. The normal
event involves non-harmful vibrations at 155 Hz, denoted as
155vb br for the bare and 155vb fcs for the FOCS cable. The
abnormal events include potentially harmful vibrations at 80
Hz, referred to as 80vb br and 80vb fcs for the two cables,
as well as eavesdropping, denoted as eav br and eav fcs.

For the indoor cable, we consider two normal and five
abnormal events, outlined in Table II. The normal events
include a relaxed fiber without vibrations or eavesdropping
(rlx idr) and with vibrations at 155 Hz (155vb idr). The
abnormal events include potentially harmful vibrations at 80

TABLE II
COLLECTED SIGNATURES FOR INDOOR CABLE

Abbr. Description Justification
rlx idr Relaxed fiber Normal
155vb idr 155 Hz vibration Normal
80vb idr 80 Hz vibration Harmful; possible

cut predec.
eav 130vb idr Bending + 130 Hz

vibration
Eavesdropping +
non-harmful

eav 80vb idr Bending + 80 Hz vi-
bration

Eavesdropping +
harmful

eav 80vb 130vb idr Bending + 80 Hz +
130 Hz vibrations

Eavesdropping +
non-harmful +
harmful

rlx 80vb 130vb idr Relaxed + 80 Hz +
130 Hz vibrations

Non-harmful +
harmful

Hz (80vb idr) and a set of overlapping events: a combi-
nation of eavesdropping and non-harmful vibration at 130
Hz (eav 130vb idr), a combination of eavesdropping and
harmful vibration at 80 Hz (eav 80vb idr), a combination
of eavesdropping with dual-frequency vibrations at 80 Hz
and 130 Hz (eav 80vb 130vb idr), and a relaxed fiber sub-
jected to both harmful and non-harmful frequency vibrations
(rlx 80vb 130vb idr). Overlapping events reflect real-world
scenarios with fiber exposed to multiple simultaneous stres-
sors, e.g., routine vibrations generated by fan ventilation or
traffic, and intentional malicious activities, such as eavesdrop-
ping. They are specifically considered for the indoor cable
because this environment is more likely to experience a variety
of simultaneous disturbances, making it an ideal candidate to
test the robustness of our anomaly detection models.

IV. ML-BASED ANOMALY DETECTION MODELS

To analyze the obtained SOP data, we use OCSVM as
an SSL, and DBSCAN as an USL model. To evaluate the
performance of our anomaly detection models, we use standard
values derived from the confusion matrix: True Positives (TP),
referring to correctly detected anomalies; False Positives (FP),
referring to normal instances incorrectly flagged as anomalies;
True Negatives (TN), referring to correctly identified normal
instances; and False Negatives (FN), referring to anomalies
that the model failed to detect. These values enable calculation
of key evaluation metrics such as True Positive Rate (TPR)
(also known as recall or sensitivity), measuring the proportion
of actual anomalies correctly detected as TPR = TP

TP+FN ;
False Positive Rate (FPR) (FPR = FP

FP+TN ), representing
the fraction of normal data mistakenly flagged as anomalous;
True Negative Rate (TNR) (also known as specificity), which
measures the proportion of normal samples correctly identified
(TNR = TN

TN+FP ); and False Negative Rate (FNR), quanti-
fying the proportion of anomalies that were missed by the
model (FNR = FN

TP+FN ). We also consider the Accuracy
(acc), which measures the overall proportion of correctly
detected instances (both normal and abnormal), and precision,
defined as the ratio of correctly identified anomalies among all
detected anomalies. The F1-score, computed as the harmonic
mean of precision and recall, offers a balanced perspective
on model performance by jointly considering false positives
and false negatives. This makes it particularly relevant for
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anomaly detection tasks, where both Type I (FP) and Type
II (FN) errors are critical. In security-sensitive applications,
FPR and FNR are especially critical: high FPR can overwhelm
operators with false alerts, wasting resources, while high FNR
may allow threats to go undetected, potentially leading to
breaches or service disruptions. For clustering-based models
like DBSCAN, we additionally use the Silhouette Score (SS)
to assess the cohesion and separation of detected clusters,
and the Adjusted Rand Score (ARS) to measure similarity
between clustering results and ground truth labels while ac-
counting for the possibility that some agreement may occur
purely by random chance, rather than meaningful structure.
Both OCSVM and DBSCAN models require careful data
pre-processing of the collected SOP signatures and hyper-
parameter tuning, detailed in the following.

A. One-Class Support Vector Machine (OCSVM)
OCSVM is a powerful ML algorithm widely used for

anomaly detection, particularly in scenarios where the avail-
able data (predominantly) represents normal behavior, with
the goal of detecting outliers or anomalies that deviate from
this norm. OCSVM operates in a semi-supervised manner
by learning the boundaries that encapsulates the majority of
data points, assuming that they represent normal working
conditions. The algorithm maps the input data into a high-
dimensional feature space using a kernel function and then
constructs a decision boundary that maximizes the separation
between the origin and the data points in this feature space.
Data points that fall outside of this boundary are detected
as anomalies. The choice of kernel function and hyper-
parameters, such as the kernel coefficient gamma (γ) and
the regularization parameter (ν), is critical in determining the
sensitivity of the model to outliers and its overall performance.
During model inference, new data points are detected as nor-
mal if they fall within the boundary, and abnormal otherwise.

1) Data pre-processing for OCSVM: For each of the con-
sidered scenarios, the pre-processing phase begins by separat-
ing the dataset into subsets corresponding to normal operating
conditions (referred to as normal scenario for brevity) and the
malicious/harmful events (referred to as abnormal scenario).
Table III summarizes the separation of training and test data
for these scenarios. For each cable type, we created a training
set of 900 samples from the normal condition and a test
set of 1,500 samples, comprising 300 normal samples and
1,200 of the corresponding abnormal scenario samples. In the
case§indoor cable, we considered two normal cases: relaxed
fiber (case 1) and 155 Hz vibration (case 2). To assess the
detector’s behavior when exposed to all abnormal events,
we introduced the total test sets that contain all respective
abnormal events into a single evaluation case. This results in
a larger test set comprising 300 normal samples and the cumu-
lative 1,200-sample sets for each abnormal event (e.g., totaling
2,400 samples for bare and FOCS cables, and 6,000 samples
for indoor cable cases). After data separation, we evaluated
the impact of feature normalization on the performance of
our OCSVM model. The results indicated that normalization
did not confer any advantages; hence, normalization was not
applied in the final analysis.

2) Tuning of OCSVM hyper-parameters: After data pre-
processing, we tuned the main OCSVM hyper-parameters
to improve OCSVM anomaly detection performance. This
hyper-parameter tuning focused on exploring a grid of three
parameters: the kernel type, ν, and γ. The γ parameter controls
how much influence each training point has on the model.
Smaller γ values produce smoother and more general decision
boundaries, while larger values produce boundaries more close
to the training samples. In our case, smaller values worked
better. We also varied ν, which controls the fraction of data
points in the training set allowed to be outliers. Our grid search
considered a range of [0.001, 0.5] for ν, [10−7, 0.5] for γ, and
{poly, rbf, sigmoid} for the kernel function.

For each hyper-parameter combination, we employed 5-fold
cross-validation (CV), assessing the model performance across
different training-validation splits. The mean and standard
deviation (std) values obtained from the CV folds allows us to
evaluate whether a certain hyper-parameter setting results in a
model overly tailored to a specific data split. A key element of
our model selection process is the use of a novel performance
metric that we define in (2).

OCSVM perf = avg
(
[TPR− FPR+ CVmean − CVstd

− |acctrain − acctest|+ F1]
)

(2)

This metric was designed to balance the trade-offs between
different evaluation criteria by averaging the TPR, FPR,
CVmean, CVstd, F1-score, acc, and the difference in accuracy
between the training and the testing sets (|acctrain−acctest|).
After calculating the value of OCSVM perf for each hyper-
parameter combination, the models were ranked, and the
model with the highest OCSVM perf score was selected.

3) Results of hyper-parameter tuning for OCSVM: Tables
IV and V summarize the selected hyper-parameters for each
cable type and event scenario. The best hyper-parameter
setting for each normal vs. abnormal scenario, as well as
the total scenario are shown. The Radial Basis Function
(RBF) kernel function consistently achieves the best result
across all scenarios. For the bare fiber (Table IV, rows 1–
3), the best selected hyper-parameters generally reflect a
need for high sensitivity, as indicated by consistently low
values of ν and γ, suitable for detecting subtle deviations in
polarization caused by events like eavesdropping. In contrast,
the FOCS cable (Table IV, rows 4–6), which offers greater
insulation from environmental factors, exhibits a wider range
of ν values across different scenarios, pointing to a more
scenario-dependent sensitivity requirement. Nonetheless, the
γ values for both cables remain within a relatively narrow
band, reflecting the model’s consistent preference for smoother
decision boundaries. In total scenarios, moderate ν values
were selected, indicating a balance between sensitivity and
generalization across different types of disturbances.

For the indoor cable (Table V), where scenarios are more
complex and involve overlapping events, ν values generally
range from 0.001 to 0.02, with γ values tightly controlled
between 1 × 10−5 and 3 × 10−5. This configuration ensures
that the model can effectively distinguish between normal and
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TABLE III
SUMMARY OF THE CONSIDERED NORMAL AND ABNORMAL EVENTS FOR EACH CABLE TYPE, AND DATASET SEPARATION FOR OCSVM MODEL

Cable Type Normal
event

Abnormal events Training Set Test Set

Bare 155vb br eav br
80vb br
total (2 abnormal events)

900 of 155vb br 300 of 155vb br
+ 1,200 of 80vb br (1,500 Samples)
+ 1,200 of eav br (1,500 Samples)
+ 2,400 of all abnormal events (2,700 Samples)

FOCS 155vb fcs eav fcs
80vb fcs
total (2 abnormal events)

900 of 155vb fcs 300 of 155vb fcs
+ 1,200 of 80vb fcs (1,500 Samples)
+ 1,200 of eav fcs (1,500 Samples)
+ 2,400 of all abnormal events (2,700 Samples)

Indoor (Case 1) rlx idr 80vb idr
eav 130vb idr
eav 80vb idr
eav 80vb 130vb idr
rlx 80vb 130vb idr
total (5 abnormal events)

900 of rlx idr 300 of rlx idr
+ 1,200 of 80vb idr (1,500 Samples)
+ 1,200 of eav 130vb idr (1,500 Samples)
+ 1,200 of eav 80vb idr (1,500 Samples)
+ 1,200 of eav 80vb 130vb idr (1,500 Samples)
+ 1,200 of rlx 80vb 130vb idr (1,500 Samples)
+ 6,000 of all abnormal events (6,300 Samples)

Indoor (Case 2) 155vb idr 80vb idr
eav 130vb idr
eav 80vb idr
eav 80vb 130vb idr
rlx 80vb 130vb idr
total (5 abnormal events)

900 of 155vb idr 300 of 155vb idr
+ 1,200 of 80vb idr (1,500 Samples)
+ 1,200 of eav 130vb idr (1,500 Samples)
+ 1,200 of eav 80vb idr (1,500 Samples)
+ 1,200 of eav 80vb 130vb idr (1,500 Samples)
+ 1,200 of rlx 80vb 130vb idr (1,500 Samples)
+ 6,000 of all abnormal events (6,300 Samples)

TABLE IV
TUNED HYPER-PARAMETERS OF OCSVM FOR BARE AND FOCS CABLES

Event type Cable type kernel ν γ
155vb vs 80vb Bare rbf 0.001 1× 10−5

155vb vs eav Bare rbf 0.02 3× 10−5

155vb vs total Bare rbf 0.035 1× 10−5

155vb vs 80vb FOCS rbf 0.2 8× 10−5

155vb vs eav FOCS rbf 0.001 1× 10−4

155vb vs total FOCS rbf 0.05 5× 10−5

TABLE V
TUNED HYPER-PARAMETERS OF OCSVM FOR INDOOR CABLE

Event type kernel ν γ
155vb vs 80vb rbf 0.01 3× 10−5

rlx vs 80vb rbf 0.02 3× 10−5

155vb vs eav 130vb rbf 0.01 1× 10−5

rlx vs eav 130vb rbf 0.01 1× 10−5

155vb vs eav 80vb rbf 0.02 3× 10−5

rlx vs eav 80vb rbf 0.01 1× 10−5

155vb vs eav 130vb 80vb rbf 0.01 1× 10−5

rlx vs eav 130vb 80vb rbf 0.01 1× 10−5

155vb vs rlx 130vb 80vb rbf 0.01 1× 10−5

rlx vs rlx 130vb 80vb rbf 0.01 1× 10−5

155vb vs total rbf 0.001 1× 10−5

rlx vs total rbf 0.009 3× 10−4

various abnormal scenarios, including those involving multiple
simultaneous vibrations and eavesdropping.

B. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

The DBSCAN model is an unsupervised ML technique,
chosen in this work for its robustness in detecting arbitrarily-
shaped clusters and its effectiveness in isolating noise or
outliers in unlabeled data. Since DBSCAN does not rely on
a training process, it can be directly applied to a sequence
of consecutive data points, making it particularly flexible
and adaptable to various conditions. The DBSCAN algorithm

operates by defining two key parameters: the radius of the
neighborhood ϵ and the minimum number of points required
to form a dense region MinPts. A sample is considered a core
point if it has at least MinPts neighbors within the radius ϵ.
Clusters are formed by core points that are within ϵ of each
other. Points that do not belong to any cluster and have fewer
than MinPts neighbors within ϵ are classified as noise or out-
liers (i.e., anomalies in our case). The choice of ϵ and MinPts
values significantly impacts the performance of DBSCAN. A
small ϵ may result in classifying many data points as noise,
while a large ϵ can lead to the formation of fewer clusters,
with potential anomalies remaining undetected. Similarly, a
small MinPts value can cause the algorithm to detect too
many small clusters, potentially labeling noise points as part
of clusters, while a large MinPts value may result in fewer
clusters, with some anomalies being overlooked. Applying
DBSCAN to detect anomalies in polarization signatures data,
where abnormal patterns manifest as sparse or isolated points
in the feature space requires careful tuning of these parameters.

1) Data pre-processing for DBSCAN: For data pre-
processing and hyper-parameter tuning, we consider 1,200
data points for each cable type under normal operating con-
ditions and 1,200 data points corresponding to each abnormal
condition. The normal and the abnormal events are defined
in the same way as stated in Table III. The dataset is then
normalized through z-score standardization, ensuring that the
feature values are consistent and properly scaled for effective
application of the DBSCAN algorithm.

2) Tuning of DBSCAN hyper-parameters: To tune ϵ and
MinPts, we adopted a controlled sampling strategy to sim-
ulate realistic yet varied conditions. We selected fixed-size
windows of pre-processed data containing both normal and
abnormal samples. The number of normal samples in each
window (#N) ranged from 150 to 300, while the number of
abnormal samples (#AN) was varied between 10 and 15 to
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TABLE VI
TUNED HYPER-PARAMETERS OF DBSCAN FOR BARE AND FOCS

CABLES AND THE SELECTED WINDOW SIZE OF NORMAL (#N) AND
ABNORMAL (#AN) SAMPLES.

Event type Cable type ϵ MinPts # N # AN
155vb vs 80vb Bare 19 53 220 11
155vb vs eav Bare 20 78 220 11
155vb vs total Bare 20 78 220 11
155vb vs 80vb FOCS 19 11 200 10
155vb vs eav FOCS 15 80 200 10
155vb vs total FOCS 19 11 200 10

reflect realistic start of threat scenarios with low anomaly
prevalence. For each combination of ϵ and MinPts, we
randomly sampled such windows of consecutive samples and
evaluated the detection performance across 20 independent
iterations. To assess the effectiveness of a hyper-parameter
combination (ϵ, MinPts) under varying data conditions, we
introduced the metric DBSCAN perf, defined in equation (3).

DBSCAN perf = avg(TPR−FPR+F1+ARS+SS) (3)

This metric aggregates five important evaluation criteria into
a single scalar value, averaged over the sampling iterations.
The rationale behind this formulation is to combine multiple
complementary aspects of clustering performance. It combines
TPR, F1-score, and FPR to reflect detection performance,
while ARS and SS assess the quality of the resulting clus-
ters. Together, DBSCAN perf provides a balanced view of
detection accuracy and cluster quality, guiding the selection
of hyper-parameters that yield robust clustering performance
across multiple randomized trials. After evaluating all possible
hyper-parameter combinations, the results were sorted by their
DBSCAN perf value, and the hyper-parameter configuration
that achieved the highest value was selected. The selected
model was then subjected to 50 additional iterations over
different sampled windows of normal and abnormal data for
further validation, during which the final assessment metrics
presented in the next section were calculated.

3) Results of hyper-parameter tuning for DBSCAN: Tables
VI and VII summarize the tuned hyper-parameters used for
the DBSCAN models across the three cable types for all con-
sidered events. For bare fiber (Table VI), due to the unshielded
nature of the cable, moderate values of ϵ and MinPts were
selected to capture fine-grained distinctions between normal
and abnormal behavior. In contrast, the FOCS cable (Table VI)
required either more compact or more dispersed clusters de-
pending on the event type, indicating a need to accommodate
its more stable but insulated signal profile. The indoor cable
(Table VII) presented the most diverse tuning requirements,
with a wide spread in both ϵ and MinPts values. This
reflects the higher complexity of overlapping event scenarios.
Interestingly, the eavesdropping scenario drove the selection
of the total hyper-parameters for the bare cable, while 80vb
drove the selection for the FOCS cable.

C. Hyper-parameter tuning overview
In this section, we summarize the results of the hyper-

parameter tuning process by showing the trade-off between

TABLE VII
TUNED HYPER-PARAMETERS OF DBSCAN FOR INDOOR CABLE AND THE

SELECTED WINDOW SIZE OF NORMAL (#N) AND ABNORMAL (#AN)
SAMPLES.

Event type ϵ MinPts # N # AN
155vb vs 80vb 24 50 150 10
rlx vs 80vb 23 60 150 10
155vb vs eav 130vb 16 90 150 10
rlx vs eav 130vb 15 12 150 10
155vb vs eav 80vb 15 85 150 10
rlx vs eav 80vb 12 18 150 10
155vb vs eav 130vb 80vb 16 80 150 10
rlx vs eav 130vb 80vb 16 80 150 10
155vb vs rlx 130vb 80vb 21 20 150 10
rlx vs rlx 130vb 80vb 24 100 150 10
155vb vs total 16 90 150 10
rlx vs total 12 18 150 10
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Fig. 2. Pareto frontier curves illustrating the trade-off between FNR and FPR
during hyper-parameter tuning of OCSVM (O) and DBSCAN (D) for each
scenario in (a) bare fiber and (b) FOCS cable.

FNR and FPR for all hyper-parameter settings tested. The
trade-off is illustrated by selecting the hyper-parameter settings
that show the best (i.e., the lowest) FPR for a given FNR (and
vice-versa). Fig. 2 shows the Pareto frontier that indicates the
trade-off between FPR and FNR for OCSVM and DBSCAN
across three evaluation scenarios for bare and FOCS cables.
For bare fiber (Fig. 2a), OCSVM consistently demonstrates
more favorable detection performance, achieving lower FNR
values at comparable or lower FPR across all hyper-parameter
settings. OCSVM is particularly effective in the 155vb vs.
80vb case, nearly eliminating false negatives while maintaining
minimal false positives. In contrast, DBSCAN exhibits higher
FNR even at low FPR, especially in the 155vb vs. eav and
155vb vs. total scenarios. A similar trend is observed for
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Fig. 3. Pareto frontier curves illustrating the FNR-FPR trade-off during hyper-
parameter tuning of OCSVM (O) and DBSCAN (D) for the different indoor
cable scenarios, considering (a) 155vb idr and (b) rlx idr as the normal
baseline.

the FOCS cable (Fig. 2b). OCSVM continues to outperform
DBSCAN across all scenarios, maintaining lower FNR values
for the same or lower FPR. In particular, for 155vb vs. eav, it
exhibits a near perfect separation with negligible false positives
and minimal missed detections. Even in the 155vb vs. total
scenario, OCSVM exhibits strong generalization capability. In
contrast, DBSCAN exhibits consistently higher FNR values
across the same range of FPR levels. Notably, in the 155vb
vs. 80vb and 155vb vs. total scenarios, DBSCAN fails to reach
the same low FNR levels as OCSVM, underscoring its limited
adaptability when handling heterogeneous data from multiple
abnormal events.

Fig. 3 presents the Pareto frontier curves obtained during
hyper-parameter tuning of OCSVM and DBSCAN, where each
curve corresponds to one evaluated indoor attack scenario.
The plots highlight the parameter settings which achieve the
most favorable balance between the FPR and FNR. There is a
pronounced advantage of OCSVM over DBSCAN, particularly
in handling diverse and overlapping abnormal conditions. In
both baseline configurations, i.e., 155vb idr (Fig. 3a) and
rlx idr (Fig. 3b), OCSVM maintains low FNR values across
all tested scenarios. The decision boundary learned from
normal conditions generalizes well, allowing the model to
reject a wide range of abnormal patterns without significantly
increasing false alarms. In contrast, DBSCAN exhibits incon-
sistent behavior in the same scenarios.

V. RESULTS

We first analyze the performance of the two ML models for
each fiber type, followed by an assessment of the overall per-
formance across all fiber types. The performance is measured
in terms of the TPR, FNR, FPR, and TNR.

TABLE VIII
RESULTS FOR BARE FIBER SCENARIOS (NORMAL VS ABNORMAL) USING

THE OCSVM (O) AND DBSCAN (D) MODELS (M) IN TERMS OF TRUE
POSITIVE RATE (TPR), FALSE NEGATIVE RATE (FNR), FALSE POSITIVE

RATE (FPR), AND TRUE NEGATIVE RATE (TNR), IN %.

Scenario M TPR FNR FPR TNR
155vb vs 80vb O 99.92 0.08 3.33 96.67
155vb vs 80vb D 94.55 5.45 0.63 99.37
155vb vs eav O 99.75 0.25 10.67 89.33
155vb vs eav D 46.55 53.45 1.16 98.84
155vb vs total O 97.50 2.50 5.00 95.00
155vb vs total D 69.14 30.86 0.89 99.11

TABLE IX
RESULTS FOR FOCS CABLE SCENARIOS (NORMAL VS ABNORMAL)

USING THE OCSVM (O) AND DBSCAN (D) MODELS (M) IN TERMS OF
TRUE POSITIVE RATE (TPR), FALSE NEGATIVE RATE (FNR), FALSE

POSITIVE RATE (FPR), AND TRUE NEGATIVE RATE (TNR), IN %.

Scenario M TPR FNR FPR TNR
155vb vs 80vb O 79.67 20.33 32.33 67.67
155vb vs 80vb D 80.4 19.6 67.36 32.64
155vb vs eav O 99.83 0.17 2 98
155vb vs eav D 92 8 0.47 99.53
155vb vs total O 98.33 1.67 2.00 98.00
155vb vs total D 73.00 27.00 33.40 66.60

A. Results for bare fiber

Table VIII depicts the performance of the OCSVM and
DBSCAN models in distinguishing between three types of
events for the bare fiber model. We examine the effectiveness
in differentiating harmful vibration at 80 Hz (80vb), eavesdrop-
ping (eav), as well as the combined abnormal scenario (total)
that includes both types of attacks from normal vibration at
155 Hz (155vb). The results show that OCSVM achieves
below 1% FNR for individual events, but higher FPR of up
to 10%. For the combined dataset, OCSVM achieves a high
performance, with 97.5% TPR and 95% TNR. The DBSCAN
model achieves good results for the 80vb scenario, but has poor
FNR performance for eavesdropping, which also affects the
results for the combined dataset. Although DBSCAN achieved
an FPR below 1%, demonstrating good ability in detecting
the anomalies, its 30.86% FNR means that nearly one-third
of actual anomalies were not detected, which reflects a high
risk of undetected threats, and indicates the need for further
improvements. In practical terms, OCSVM achieves superior
performance in detecting harmful vibrations for bare fiber,
making it a more reliable choice for environments where the
primary concern is preventing physical damage to the fiber.

B. Results for FOCS cable

Table IX presents the performance of the OCSVM and DB-
SCAN models in distinguishing the three abnormal scenarios,
i.e., 80vb, eav, and the combined abnormal scenario (total),
from the normal scenario (155vb) in the FOCS cable.

Based on the multi-layered protection property, we can ex-
pect that distinguishing between the signatures of 80vb fcs and
155vb fcs will be a more challenging task than in other cable
types. This is confirmed in Table IX where the performance for
155vb vs. 80vb drops substantially for both models compared
to bare fiber (Table VIII). Surprisingly, the eavesdropping
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detection performance is better than the one observed for bare
fiber. This indicates that the protective layers of FOCS cables,
while detrimental to the detection of vibrations, may better
reveal the effects of the eavesdropping procedures, facilitating
its detection by ML models. When considering all anomalous
scenarios (total), OCSVM shows a strong performance with
98% in both TPR and TNR. However, DBSCAN does not
achieve a good performance, with high false negative (27%)
and positive (33%) rates.

C. Results for indoor cable

The performance of OCSVM and DBSCAN for the indoor
cable scenarios is shown in Tables X and XI. Different
from the two previously considered fiber types where the
normal scenario featured 155 Hz vibrations, for the indoor
cable we consider two normal scenarios: the 155 Hz vibra-
tions 155vb idr, and relaxed fiber rlx idr. In both cases, all
other signatures, i.e., 80vb idr, eav 130vb idr, eav 80vb idr,
eav 80vb 130vb idr, rlx 80vb 130vb idr, and total (a com-
prehensive set of anomalies encompassing all the abnormal
scenarios), are considered abnormal. We focus on the ability
of the two models to distinguish (i) harmful vibrations at 80
Hz, (ii) overlapping frequency vibrations at 80 Hz, 130 Hz and
(iii) eavesdropping combined with single or dual frequency
vibrations at 80 Hz and 130 Hz, and (iv) total from the two
normal cases.

1) Detection of harmful 80 Hz vibrations: When distin-
guishing the abnormal 80 Hz vibrations from the normal 155
Hz vibration, as depicted in the first two rows of Table X, the
OCSVM model demonstrates excellent performance, correctly
detecting 99.58% of the abnormal instances with a minimal
FNR of 0.42%. However, the model obtains an FPR of 7.33%,
which suggests that environments with frequent, benign dis-
turbances might generate unnecessary alerts. In comparison,
the DBSCAN model presents a high FNR (35.2%) and FPR
(9.08%). Similar observations can be made when the relaxed
fiber is considered as baseline, as shown in the first two rows of
the Table XI. Overall, results show that OCSVM achieves good
performance with more than 90% true positive and negative
rates in all scenarios. DBSCAN, in contrast, shows a large
performance gap. This performance gap in comparison to
OCSVM indicates that, while DBSCAN is capable of detecting
harmful vibrations, it may not be as effective in distinguishing
between closely related vibration patterns in indoor cable.

2) Detection of eavesdropping overlapping with single and
dual-frequency vibrations: The central rows of Tables X and
XI (rows 3-8) assess the ability of the models to distinguish
scenarios with overlapping events involving eavesdropping and
single- or dual-frequency vibrations from two baseline normal
conditions: 155vb idr and rlx idr. Across these overlapping-
event scenarios, both OCSVM and DBSCAN demonstrate
high detection capabilities, with OCSVM generally offering
stronger abnormal detection due to its training-based nature.
OCSVM’s performance remains consistently high regardless
of the combination of harmful or non-harmful vibrations,
with TPR higher than 97% and TNR higher than 92% in
all scenarios. DBSCAN, except for one scenario, shows good

TABLE X
RESULTS FOR INDOOR CABLE SCENARIOS (NORMAL VS ABNORMAL)

CONSIDERING 155vb AS THE NORMAL CLASS USING THE OCSVM (O)
AND DBSCAN (D) MODELS (M) IN TERMS OF TRUE POSITIVE RATE
(TPR), FALSE NEGATIVE RATE (FNR), FALSE POSITIVE RATE (FPR),

AND TRUE NEGATIVE RATE (TNR), IN %.

Scenario M TPR FNR FPR TNR
155vb / 80vb O 99.58 0.42 7.33 92.67
155vb / 80vb D 64.80 35.20 9.08 90.92
155vb / eav 130vb O 99.83 0.17 2.67 97.33
155vb / eav 130vb D 97.20 2.80 0.04 99.96
155vb / eav 80vb O 98.17 1.83 7.00 93.00
155vb / eav 80vb D 91.80 8.20 0.49 99.51
155vb / eav 80vb 130vb O 99.92 0.08 2.67 97.33
155vb / eav 80vb 130vb D 96.40 3.60 0.05 99.95
155vb / rlx 80vb 130vb O 98.17 1.83 7.00 93.00
155vb / rlx 80vb 130vb D 91.00 9.00 49.96 50.04
155vb vs total O 97.90 2.10 2.00 98.00
155vb vs total D 96.92 3.08 41.18 58.82

TABLE XI
RESULTS FOR INDOOR CABLE SCENARIOS (NORMAL VS ABNORMAL)

CONSIDERING rlx AS THE NORMAL CLASS USING THE OCSVM (O) AND
DBSCAN (D) MODELS (M) IN TERMS OF TRUE POSITIVE RATE (TPR),

FALSE NEGATIVE RATE (FNR), FALSE POSITIVE RATE (FPR), AND TRUE
NEGATIVE RATE (TNR), IN %.

Scenario M TPR FNR FPR TNR
rlx / 80vb O 98.83 1.17 5.00 95.00
rlx / 80vb D 81.60 18.40 40.89 59.11
rlx / eav 130vb O 100.00 0.00 1.33 98.67
rlx / eav 130vb D 99.20 0.80 0.00 100.00
rlx / eav 80vb O 99.58 0.42 1.33 98.67
rlx / eav 80vb D 97.20 2.80 0.03 99.97
rlx / eav 80vb 130vb O 100.00 0.00 1.33 98.67
rlx / eav 80vb 130vb D 98.40 1.60 0.00 100.00
rlx / rlx 80vb 130vb O 100.00 0.00 1.33 98.67
rlx / rlx 80vb 130vb D 76.20 23.80 6.91 93.09
rlx vs total O 99.77 0.23 5.00 95.00
rlx vs total D 98.00 2.00 20.02 79.98

performance with false rates below 10%. However, in the 80vb
scenario, its performance is substantially lower than that of
OCSVM. In general, these findings are consistent with the
previous one, showing that OCSVM has strong capabilities,
while DBSCAN may need further enhancements to be suitable
for real-world applications.

3) Detection of dual-frequency 80 Hz and 130 Hz vi-
brations: When detecting dual-frequency vibrations in the
indoor cable (rows 9-10 of Tables X and XI), the OCSVM
model consistently shows robust performance. It maintains
high sensitivity to anomalies while keeping false positives low
across both evaluated baselines. In contrast, the performance
of DBSCAN becomes less reliable under the same conditions.
Specifically, it exhibits greater difficulty in separating complex
overlapping anomalies from normal behavior, especially when
the relaxed fiber scenario is used as the baseline. This is
evident in the increased misclassification of normal samples
and reduced anomaly sensitivity compared to OCSVM. These
trends confirm that, while DBSCAN may handle certain over-
lapping patterns well, OCSVM is more effective in consis-
tently detecting subtle dual-frequency vibration events in more
challenging and realistic baseline conditions.

4) Detection of combined abnormal events: The last two
rows in Tables X and XI present the performance of the
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Fig. 4. F1-scores for the two abnormal scenarios in bare fiber and FOCS
cable.

OCSVM and DBSCAN models in detecting the total scenar-
ios. Both models achieve high TPR, but OCSVM consistently
offers superior performance, particularly in minimizing false
positives and maximizing true negatives. This advantage is
more evident when the relaxed fiber scenario is used as the
baseline, highlighting the robustness of OCSVM to back-
ground variation. In contrast, while DBSCAN maintains strong
sensitivity, its performance is limited by higher FPRs. These
trends underscore the suitability of OCSVM for comprehen-
sive anomaly detection in indoor fiber environments.

D. Overall assessment

We compare the anomaly detection performance of the
considered models and scenarios in terms of F1-score values.
In practical terms, a high F1-score means that the model not
only accurately identifies anomalies (high precision) but also
captures the majority of them (high recall).

Fig. 4 shows the F1-scores obtained by OCSVM and
DBSCAN when detecting the three abnormal scenarios in bare
and FOCS fibers. For bare fiber (Fig. 4a), OCSVM achieves
F1-scores of 0.9677, 0.9954, and 0.9842 for detecting eaves-
dropping, harmful vibrations, and total anomalies, respectively.
DBSCAN is comparatively effective in detecting harmful
vibrations with an F1-score of 0.9620, but attains values of
only 0.6122 and 0.7715 for eavesdropping and total anomalies,
indicating weaker performance in these scenarios. OCSVM
demonstrate a strong overall anomaly detection performance
for the FOCS cable (Fig. 4b), achieving an excellent F1-score
of 0.9967 for eavesdropping detection. It also performs well
in the combined anomaly scenario with an F1-score of 0.8939,
and maintains a solid score of 0.8348 when detecting harm-
ful vibrations. DBSCAN, while exhibiting greater variability,
achieves an F1-score of 0.9604 for eavesdropping detection,
but its performance declines in the total and harmful vibration
scenarios, with scores of 0.6782 and 0.6668, respectively.
These results further highlight the stronger generalization
capability of OCSVM. The diminished performance of DB-
SCAN, particularly for harmful vibrations, is likely influenced
by the FOCS cable’s multi-layered protective structure, which
dampens the physical effects that would otherwise be reflected
in polarization changes.

Results for the more complex indoor cable scenarios with
overlapping events are presented in Fig. 5. These results
reinforce the consistent high performance of the OCSVM
model across all scenarios. Regardless of whether the normal
baseline is set to the relaxed fiber (rlx idr) or the 155Hz
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Fig. 5. F1-score comparison of OCSVM and DBSCAN performance for the
abnormal scenarios in indoor cable considering 155vb idr/rlx idr as normal
scenarios.

vibration (155vb idr), OCSVM maintains F1-scores above
0.97 in most scenarios, with peak values reaching 0.9983
in scenarios that involve combined eavesdropping and multi-
frequency vibrations. Even in the most challenging total
anomaly scenario, it achieves F1-scores of 0.9889 (155vb)
and 0.9976 (rlx), demonstrating excellent generalization across
diverse threat types. DBSCAN, in contrast, shows greater
variability depending on the scenario and baseline condition.
It achieves competitive performance in certain scenarios with
clear separability, such as eavesdropping combined with dual-
frequency vibration, where it attains F1-scores as high as
0.9979. However, its performance degrades for detecting harm-
ful vibrations, where F1-score drops to 0.7112 (155vb) and
0.7303 (rlx). In the total anomaly scenario, DBSCAN achieves
moderate to good results, with F1-score of 0.8433 for the
155vb and 0.9223 for the rlx baseline.

VI. CONCLUSION

In this study, we presented a comprehensive analysis of
ML-based anomaly detection in optical fiber networks through
the collection and processing of SOP data. We evaluated the
performance of SSL and USL techniques, specifically OCSVM
and DBSCAN. Our goal was to detect various abnormal
events, such as eavesdropping and harmful vibrations, by
analyzing polarization signatures of three different cable types:
bare fiber, FOCS, and indoor cable. Thirteen polarization
signatures were collected under controlled experimental con-
ditions, and careful hyper-parameter tuning was performed.
Our findings indicate superior performance of OCSVM in
detecting anomalies, with F1-score values exceeding 0.98 in
most scenarios. Despite achieving high accuracy in some sce-
narios, DBSCAN exhibited greater variability in performance
and poor performance in complex scenarios with overlapping
events. While OCSVM consistently demonstrated high accu-
racy across most scenarios when trained on well-characterized
normal data, our analysis highlights that DBSCAN retains
significant value in deployment contexts where such baseline
data is scarce or difficult to obtain. In such cases, DBSCAN’s
unsupervised nature enables it to detect clusters and anomalies

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2025.3607022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

without requiring prior labeling, making it a practical alterna-
tive when semi-supervised or supervised learning is infeasible.
The results suggest a strong potential for the SSL and USL
models to aid human security engineers in the process of de-
tecting events in optical networks, although their performance
still shows a non-negligible amount of false positives and false
negatives. By using the ML techniques investigated in this
paper, human effort can be limited to the analysis of detected
anomalies, rather than periodically analyzing the data. This
can contribute to more cost-effective security solutions and
more sustainable optical network operation. These findings
underscore that the choice between SSL and USL techniques
should be guided by the availability of training data and the
specific operational constraints of the deployment scenario.
Moreover, our results suggest that the performance of USL
approaches like DBSCAN could be improved through addi-
tional post-processing steps, such as window-based temporal
analysis of detection outputs. Exploring such enhancements
to reduce the performance gap between USL and SSL models
represents a promising direction for future research.
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