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Abstract
We study localized versions of spectral action of
Fargues–Scholze, using methods from higher algebra.
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discuss its relation with the Kottwitz conjecture.

MSC 2020
11F70, 11S37 (primary), 14G45 (secondary)

1 INTRODUCTION

The purpose of this note is to explicate a formula for the cohomology of moduli spaces of local
shtukas that can be derived from the recent work of Fargues–Scholze [6], and to note some con-
sequences. Let 𝑝 ≠ 𝓁 be distinct primes. The theory of local Shimura varieties, which began with
examples such as the Lubin–Tate and Drinfeld towers, and continued with the moduli spaces of
𝑝-divisible groups of Rapoport–Zink [29], has reached a new level of generality with Scholze’s
definition of moduli spaces of local shtukas [31]. For any connected reductive group 𝐺∕ℚ𝑝, any
element 𝑏 in Kottwitz’s set 𝐵(𝐺), and any finite collection 𝜇∙ = (𝜇𝑖)𝑖∈𝐼 of conjugacy classes of
cocharacters 𝜇𝑖 of 𝐺, Scholze defines a tower

(Sht(𝐺,𝑏,𝜇∙),𝐾)𝐾
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2 HANSEN and JOHANSSON

of diamonds, with inverse limit Sht(𝐺,𝑏,𝜇∙), where𝐾 ⊆ 𝐺(ℚ𝑝) runs through the compact open sub-
groups. When 𝜇∙ = 𝜇 is a single minuscule cocharacter, the Sht(𝐺,𝑏,𝜇),𝐾 are smooth rigid spaces
referred to as local Shimura varieties. The space Sht(𝐺,𝑏,𝜇∙) carries commuting actions of 𝐺(ℚ𝑝)
and 𝐺𝑏(ℚ𝑝), where 𝐺𝑏 is the inner form of a Levi subgroup of the quasisplit form of 𝐺 canoni-
cally attached to the datum (𝐺, 𝑏). For any irreducible admissible 𝐺𝑏(ℚ𝑝)-representation 𝜌 over
ℚ𝓁 , one may define the ‘𝜌-isotypic part of the ℚ𝓁-intersection cohomology of Sht(𝐺,𝑏,𝜇∙)’, which
we will denote by

𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌].

We note that this definition naturally incorporates a shift making 0 the ‘middle degree’. It car-
ries commuting actions of 𝐺(ℚ𝑝) and 𝑊𝐸∙

∶=
∏
𝑖∈𝐼 𝑊𝐸𝑖

(where 𝑊𝐸𝑖
is the Weil group of the

reflex field 𝐸𝑖 of 𝜇𝑖) and is a bounded complex of finite length admissible 𝐺(ℚ𝑝)-representations.
Roughly speaking, the local Langlands conjecture associates an 𝐿-parameter 𝜙 = 𝜙𝜌 ∶ 𝑊ℚ𝑝

→

(𝐺 ⋊𝑊ℚ𝑝
)(ℚ𝓁) with 𝜌, as well as an 𝐿-packet Π𝜙(𝐺) of irreducible admissible representations

of 𝐺(ℚ𝑝). Furthermore, there should be a relation between Irr(𝑆𝜙, 𝜒𝑏) and Π𝜙(𝐺). Here 𝑆𝜙 is
the centralizer in 𝐺 of the image of 𝜙, and Irr(𝑆𝜙, 𝜒𝑏) denotes the set of irreducible represen-
tations of 𝑆𝜙 on which 𝑍(𝐺)

𝑊ℚ𝑝 ⊆ 𝑆𝜙 acts by a certain character 𝜒𝑏 determined by 𝑏. Let 𝑉 be the
dual of the irreducible representation of

∏
𝑖∈𝐼 𝐺 ⋊𝑊𝐸𝑖

with extreme weight 𝜇∙. The underlying
vector space of 𝑉 also carries an action of 𝑊𝐸∙

coming from 𝜙, and this action makes it into a
𝑆𝜙 ×𝑊𝐸∙

-representation that we will denote by 𝑉𝜙. Define

Mant𝐺,𝑏,𝜇∙(𝜌) ∶=
∑
𝑛

(−1)𝑛𝐻𝑛(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌])

in theGrothendieck group of𝐺(ℚ𝑝) ×𝑊𝐸∙
-representations.WriteRep(𝑆𝜙, 𝜒𝑏) for the set of finite-

dimensional representations of 𝑆𝜙 onwhich𝑍(𝐺)
𝑊ℚ𝑝 acts by𝜒𝑏. The following is then the natural

generalization of the Kottwitz conjecture (see, for example, [13, Conjecture 1.0.1; 28, Section 7.1]),
together with a folklore vanishing conjecture.

Conjecture 1.1. Assume that 𝑏 is basic and 𝜙 = 𝜙𝜌 is elliptic, that is, 𝜙 is semisimple and
𝑆𝜙∕𝑍(𝐺)

𝑊ℚ𝑝 is finite. In this case a construction assuming the local Langlands correspondence gives
a mapΠ𝜙(𝐺) → Rep(𝑆𝜙, 𝜒𝑏), which we denote by 𝜋 ↦ 𝛿𝜋,𝜌.

(1) (Kottwitz conjecture) We haveMant𝐺,𝑏,𝜇∙ (𝜌) =
∑
𝜋∈Π𝜙(𝐺)

𝜋 ⊠Hom𝑆𝜙(𝛿𝜋,𝜌, 𝑉𝜙).
(2) (Vanishing conjecture)𝐻𝑛(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]) = 0 for 𝑛 ≠ 0.

We will refer to the conjunction of parts (1) and (2) as the strong Kottwitz conjecture. When 𝑏 is
not basic, an extension of the Harris–Viehmann conjecture [28, Conjecture 8.4] gives a formula
for Mant𝐺,𝑏,𝜇∙(𝜌) in terms of the basic case for smaller reductive groups; we will not elaborate
on this further. Our main goal is a formula for 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]. We recall that [6] associates a
semisimple 𝐿-parameter with any irreducible admissible representation of a connected reduc-
tive group; we call this the Fargues–Scholze parameter. It is expected to be semisimplication
of the 𝐿-parameter appearing in the local Langlands conjecture. Our main result is then the
following:
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 3

Theorem 1.2. Assume that the Fargues–Scholze parameter 𝜑 attached to 𝜌 is generous. Then

𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] ≅
⨁

𝛿∈Irr(𝑆𝜙,𝜒𝑏)

𝐶𝛿 ⊠ Hom𝑆𝜑(𝛿, 𝑉𝜑),

in the derived category of 𝐺(ℚ𝑝) ×𝑊𝐸∙
-representations. If 𝜑 is elliptic, then 𝐶𝛿 is a non-zero

split bounded complex of finite direct sums of supercuspidal representations of 𝐺(ℚ𝑝) with
Fargues–Scholze parameter 𝜑.

The precise version, which notably includes a formula for each 𝐶𝛿 in terms of 𝜌 and 𝛿, is given
in Theorem 3.8 and Corollary 3.11 (and works in positive characteristic as well). A parameter 𝜑
is called generous if it is semisimple, if no other 𝐿-parameter has semisimplification 𝜑, and if 𝜑
satisfies an additional technical moduli-theoretic condition (see Definition 3.2). Generous param-
eters are generic on the coarse moduli space and includes the elliptic parameters. Thus, under the
expectation that 𝜑 = 𝜙, the action of𝑊𝐸∙

on 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] is essentially as predicted from the
Kottwitz conjecture. We note that our formula may be seen as a (more general) local analogue of
[18, Proposition 1.2].
The proof of Theorem 1.2 is given in Sections 2 and 3. The main idea is to apply the machin-

ery of higher algebra to the spectral action of Fargues–Scholze, to obtain a version of the spectral
action which only sees one 𝐿-parameter at a time. The general version of this idea is described in
Section 2, and we believe that this should be a useful tool in the study of the spectral action in gen-
eral. In Section 3 we use it to derive Theorem 1.2. The key point that we wish to make, and which
is needed to carry out the proof, is that even though the machinery that we use (monoidal ∞-
categories and their modules) is highly abstract, it allows you to make computations. This would
fail if we tried to work with triangulated categories instead of their∞-categorical enhancements.
Section 4 then gives some applications of Theorem 1.2 to both parts of Conjecture 1.1; we high-

lighting one such application here.When disregarding the𝑊𝐸∙
-action, Conjecture 1.1was recently

proven in [13] under the assumption of a precise form of the local Langlands correspondence.
Combining this with Theorem 1.2, one gets the following result.

Theorem 1.3. Assume the refined local Langlands correspondence [15, Conjecture G], and let 𝜙 be
the 𝐿-parameter attached to 𝜌. Assume further that the Fargues–Scholze parameter 𝜑 attached to
𝜌 is elliptic, that all 𝛿 ∈ Irr(𝑆𝜑, 𝜒𝑏) are one-dimensional, and that all representations in Π𝜙(𝐺) are
supercuspidal. Then there exists a surjection 𝛿 ↦ 𝜋𝛿 from Irr(𝑆𝜑, 𝜒𝑏) toΠ𝜙(𝐺) such that

Mant𝐺,𝑏,𝜇∙ (𝜌) =
∑

𝛿∈Irr(𝑆𝜑,𝜒𝑏)

𝜋𝛿 ⊠ Hom𝑆𝜑(𝛿, 𝑉𝜑)

in the Grothendieck group of 𝐺(ℚ𝑝) ×𝑊𝐸∙
-representations.

2 SPECTRAL ACTIONWITH SUPPORTS

In this section we derive a version of the spectral action, taking supports in the coarse moduli
space of 𝐿-parameters into account. A very special case of this is considered in [6], when the
support is a connected component of the coarse moduli space. The general statement turns out to
be rather formal, using the machinery of higher algebra. We will use the same notation as in [6]
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4 HANSEN and JOHANSSON

as much as possible, except that we will work overℚ𝓁 as opposed to themore generalℤ𝓁-algebras
Λ considered in [6].†
We start with a quick recap of some of the main players. In what follows, 𝓁 ≠ 𝑝 will be two

distinct primes and 𝐺 be a connected reductive group over a local field 𝐸 of residue characteristic
𝑝. The size of the residue field of 𝐸 will be denoted by 𝑞. The dual group of 𝐺 over ℚ𝓁 will be
denoted by 𝐺. 𝐺 carries an action of the Weil group𝑊𝐸 , which factors through a finite quotient
𝑄, and one can form the semidirect product 𝐺 ⋊ 𝑄. In [6, Section III], the Artin v-stack Bun𝐺 of
𝐺-bundles on the Fargues–Fontaine curve is defined. Its underlying topological space |Bun𝐺| is
naturally identified with Kottwitz’s set 𝐵(𝐺), and for any 𝑏 ∈ 𝐵(𝐺) we have an immersion

𝑖𝑏 ∶ Bun𝑏𝐺 → Bun𝐺.

The main player on the geometric side of the geometrization of the local Langlands correspon-
dence is the stable∞-category lis(Bun𝐺,ℚ𝓁), defined in [6, Section VII.7], and its counterparts
lis(Bun

𝑏
𝐺
, ℚ𝓁) on the strata Bun𝑏𝐺 , which are equivalent to the derived categories (𝐺𝑏(𝐸), ℚ𝓁)

of smooth representations of 𝐺𝑏(𝐸) over ℚ𝓁 .

Convention 2.1. Since we will work only over ℚ𝓁 , we drop it from the notation for the objects
on the geometric side, writing lis(Bun𝐺) ∶= lis(Bun𝐺,ℚ𝓁), lis(Bun𝑏𝐺) ∶= lis(Bun

𝑏
𝐺
, ℚ𝓁),

(𝐺𝑏(𝐸)) ∶= (𝐺𝑏(𝐸), ℚ𝓁), etc.

For any stable∞-category (⋯), its homotopy category will be denoted by 𝐷(⋯), and in any
(∞-) category , we will let 𝜔 denote the full subcategory of compact objects. lis(Bun𝐺) car-
ries the action of Hecke operators [6, Theorem IX.0.1]: For every finite set 𝐼 and any algebraic
representation 𝑉 of (𝐺 ⋊ 𝑄)𝐼 over ℚ𝓁 , there is an exact functor

𝑇𝑉 ∶ lis(Bun𝐺) → lis(Bun𝐺)
𝐵𝑊𝐼

𝐸

which preserves compact objects, where lis(Bun𝐺)
𝐵𝑊𝐼

𝐸 denotes the category of𝑊𝐼
𝐸
-equivariant

objects in lis(Bun𝐺) (see [6, Section IX.1] for precise definitions). The 𝑇𝑉 fit together into exact
Rep(𝑄𝐼)-linear monoidal functors

Rep((𝐺 ⋊ 𝑄)𝐼) → End
ℚ𝓁
(lis(Bun𝐺)

𝜔)𝐵𝑊
𝐼
𝐸 ,

which are functorial as 𝐼 varies. Here and below, whenever  is a stableℚ𝓁-linear∞-category, we
let End

ℚ𝓁
() denote the∞-category of exact ℚ𝓁-linear endofunctors of . Moreover, End𝐿ℚ𝓁

() ⊆

End
ℚ𝓁
() will denote the full subcategory of colimit-preserving endofunctors (note that colimit-

preserving functors are exact, by [20, Proposition 1.1.4.1]).
On the spectral side, we have the stack of 𝐿-parameters 𝑍1(𝑊𝐸, 𝐺)∕𝐺 over ℚ𝓁 , defined in [6,

Section VIII]. Since it will figure extensively in this paper, we simplify the notation by defining

𝔛 ∶= 𝑍1(𝑊𝐸, 𝐺)∕𝐺.

†Working over ℚ𝓁 , as opposed to over a general field extension of ℚ𝓁(
√
𝑞), is just a matter of convenience. We would

hope that much of our picture carries over to all cases considered in [6], but there are additional technical challenges in
mixed characteristic.
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 5

We also let 𝑋□ ∶= 𝑍1(𝑊𝐸, 𝐺) be the representation variety and let 𝑋 ∶= 𝑍1(𝑊𝐸, 𝐺) ⫽ 𝐺 be its
GIT quotient (the character variety), which is a good moduli space for 𝔛. The spectral Bernstein
center spec(𝐺) ∶= (𝑋□)

𝐺 is then the ring of global functions on 𝔛, and we let Perf (𝔛) denote
the stable∞-category of perfect complexes on 𝔛. By [6, Theorem X.0.1], the action of the Hecke
operators onlis(Bun𝐺) is equivalent to an exact ℚ𝓁-linear monoidal functor

Perf (𝔛) → End
ℚ𝓁
(lis(Bun𝐺)

𝜔),

called the spectral action.

Remark 2.2. The fact that𝔛 is not quasicompact is sometimes a nuisance. In particular, the spec-
tral action is constructed by writing 𝔛 as the union of quasicompact closed and open substacks
(𝔛𝑃)𝑃 parametrized by the open subgroups 𝑃 of the wild inertia of 𝑊𝐸 which act trivially on
𝐺. Write 𝑋𝑃 ⊆ 𝑋 for the corresponding affine open and closed subset. For each 𝑃 there is an
associated full subcategory 𝑃

lis
(Bun𝐺)

𝜔 ⊆ lis(Bun𝐺)
𝜔. These are direct summands and more-

over lis(Bun𝐺)𝜔 is the union of the 𝑃
lis
(Bun𝐺)

𝜔. We let 𝑃
lis
(Bun𝐺) ⊆ lis(Bun𝐺) denote the

full subcategory generated by 𝑃
lis
(Bun𝐺)

𝜔 under filtered colimits. Then one has lis(Bun𝐺) =
lim
←;;𝑃

𝑃
lis
(Bun𝐺). The spectral action is then constructed as a system of compatible actions

Perf (𝔛) → Perf (𝔛𝑃) → End
ℚ𝓁
(𝑃
lis
(Bun𝐺, )

𝜔).

In particular, they extend uniquely to colimit-preserving actions

QCoh(𝔛) → QCoh(𝔛𝑃) → End𝐿
ℚ𝓁
(𝑃
lis
(Bun𝐺)),

and this induces an actionQCoh(𝔛) → End𝐿
ℚ𝓁
(lis(Bun𝐺)). See [6, Section IX.5] for precise defini-

tions of the objects above. If 𝑉 ∈ QCoh(𝔛), we will write 𝑉 ∗ − orAct𝑉(−) for the corresponding
endofunctor onlis(Bun𝐺), depending on which notation fits best with the situation at hand.

The spectral actionmakeslis(Bun𝐺) into amodule forQCoh(𝔛) in the sense of higher algebra
(we refer to [20] for the notions of higher algebra). Thismodule structurewill allow us to apply the
constructions of higher algebra to lis(Bun𝐺). Before doing so, we recall a few more properties.
First, the Hecke action is recovered from the spectral action as the composition

Rep((𝐺 ⋊ 𝑄)𝐼) → Perf (𝔛)𝐵𝑊
𝐼
𝐸 → End

ℚ𝓁
(lis(Bun𝐺)

𝜔)𝐵𝑊
𝐼
𝐸 ,

where the second functor is induced from the spectral action. The first functor sends 𝑉 ∈
Rep((𝐺 ⋊ 𝑄)𝐼) to the vector bundle 𝑉 ⊗ 𝑋□ on 𝑋□, with𝑊𝐼

𝐸
-action given by

𝑊𝐼
𝐸 → (𝐺 ⋊ 𝑄)𝐼(𝑋□) → GL(𝑉 ⊗ 𝑋□),

where the first map is the universal homomorphism in each factor, and the 𝐺-descent datum
comes from the diagonal embedding 𝐺 → (𝐺 ⋊ 𝑄)𝐼 . By looking at centers, the spectral action
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6 HANSEN and JOHANSSON

induces a ring homomorphism

spec(𝐺) → 
geom

Hecke
(𝐺) ⊆ geom(𝐺)

to the geometric Bernstein center geom(𝐺) of 𝐺, landing inside the subring geom
Hecke

(𝐺) of endo-
morphisms equivariant for the Hecke action [6, Definition IX.0.2]. For any object𝐴 ∈ lis(Bun𝐺)

we have a ring homomorphism 𝐹𝐴 ∶ 
spec(𝐺) → End𝐷lis(Bun𝐺)(𝐴). When 𝐴 is Schur (that is,

End𝐷lis(Bun𝐺)(𝐴) = ℚ𝓁), the kernel of 𝐹𝐴 corresponds to a ℚ𝓁-point of 𝑋, which we refer to as the
Fargues–Scholze parameter of𝐴. By [33, Theorem 5.2.1], this construction is compatible with that
given in [6, Section IX.4]. For 𝑏 ∈ 𝐵(𝐺) and 𝜌 an irreducible admissible representation of 𝐺𝑏(𝐸),
we will write ‘the Fargues–Scholze parameter of 𝜌’ to mean the Fargues–Scholze parameter of
𝑖𝑏∗𝜌.

†

Now consider a derived stack𝔜with a map 𝑓 ∶ 𝔜 → 𝔛, which induces a symmetric monoidal
functor𝑓∗ ∶ QCoh(𝔛) → QCoh(𝔜). Using the spectral action and𝑓∗, we can then form the tensor
product

QCoh(𝔜) ⊗QCoh(𝔛) lis(Bun𝐺)

in higher algebra, which is aQCoh(𝔜)-module. The basic idea of this paper is that there should be
plenty of interesting objects in lis(Bun𝐺) which have QCoh(𝔜)-structures (for suitable 𝔜), and
that this can be used for concrete computations.
To keep the definitions of this paper close to its theorems,wemake our definitions in a restricted

setting, where things are more concrete. Consider the character variety 𝑋 from above. Let 𝑌 be
a closed subscheme of 𝑋, and consider its derived pullback 𝔜 to 𝔛. The structure sheaf 𝔜 is a
commutative algebra object of QCoh(𝔛). Similarly, the structure sheaf 𝑌 of 𝑌 is a commuta-
tive algebra object of QCoh(𝑋), and pullback gives a symmetric monoidal functor QCoh(𝑋) →
QCoh(𝔛) sending 𝑌 to 𝔜. In particular, we may and will also view lis(Bun𝐺) as module for
QCoh(𝑋).

Definition 2.3. Let 𝑌 ⊆ 𝑋 be a closed subscheme and let𝔜 be its derived pullback to 𝔛.

(1) We define QCoh𝑌(𝔛) to be the ∞-category Mod𝔜(QCoh(𝔛)) of 𝔜-module objects in
QCoh(𝔛). Equivalently,QCoh𝑌(𝔛) isMod𝑌 (QCoh(𝔛)), regardingQCoh(𝔛) as a module for
QCoh(𝑋). We also set QCoh𝑌(𝑋) ∶= Mod𝑌 (QCoh(𝑋)).

(2) We define 𝑌
lis
(Bun𝐺) to be the ∞-category Mod𝔜(lis(Bun𝐺)) of 𝔜-module objects

in lis(Bun𝐺). Equivalently, 𝑌lis(Bun𝐺) is Mod𝑌 (lis(Bun𝐺)), regarding lis(Bun𝐺) as a
module for QCoh(𝑋).

When 𝑌 = {𝜑} is a closed point, we will simply write QCoh𝜑(𝔛) and𝜑
lis
(Bun𝐺).

Remark 2.4. We note that our 𝜑
lis
(Bun𝐺) differs from the category lis(Bun𝐺)𝜑 defined by the

first author in [11, Definition A.1]. An analogy is the following: If 𝐴 is a commutative ring and

†Wenote that using 𝑖𝑏
♮
𝜌 instead of 𝑖𝑏∗𝜌, as is done in [6, IX.7], produces the same result (for example, by the argument in the

proof of Proposition 2.7).Moreover, the Fargues–Scholze parameter of 𝑖𝑏∗𝜌 is the composite of the ‘correct’ Fargues–Scholze
parameter of 𝜌 (defined using 𝑖1

!
𝜌 in lis(Bun𝐺𝑏 ) as in [6, Definition IX.7.1]) and the twisted 𝐿-embedding 𝐺𝑏 ⋊ 𝑄 →

𝐺 ⋊ 𝑄, by [6, Theorem IX.7.2].
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 7

𝔪 ⊆ 𝐴 is a maximal ideal, then (𝐴∕𝔪) is to (𝐴) as our 𝜑
lis
(Bun𝐺) is to lis(Bun𝐺), whereas

(𝐴𝔪) is to (𝐴) as lis(Bun𝐺)𝜑 is to lis(Bun𝐺). Here 𝐴𝔪 is the complete local ring of 𝐴 at𝔪,
and(⋯) denotes the unbounded derived category of a ring (viewed as a stable∞-category). We
will not use the categorieslis(Bun𝐺)𝜑 in this paper.

We refer to [20, Section 4] for the theory of algebra objects and their modules in higher
algebra. By [20, Proposition 7.1.1.4], all ∞-categories defined in Definition 2.3 are stable ∞-
categories (using exactness of the spectral action). Moreover,QCoh𝑌(𝔛) is a symmetric monoidal
∞-category and 𝑌

lis
(Bun𝐺) is a module for it. Both may also viewed as modules for QCoh𝑌(𝑋)

via QCoh𝑌(𝑋) → QCoh𝑌(𝔛). We then have the following well-known fact, which is a standard
application of Lurie’s Barr–Beck Theorem [20, Theorem 4.7.3.5].

Proposition 2.5. QCoh𝑌(𝑋) and QCoh𝑌(𝔛) are equivalent to QCoh(𝑌) and QCoh(𝔜), respec-
tively.

As a consequence, we get the following.

Corollary 2.6. Let 𝑌 be a closed subvariety of 𝑋. Then the spectral action makes𝑌
lis
(Bun𝐺) into a

module for QCoh(𝔜).

For computations, we will also need to consider the lis(Bun𝑏𝐺). Associated with 𝑖
𝑏 ∶ Bun𝑏

𝐺
→

Bun𝐺 we have an adjoint pair of functors (𝑖𝑏∗, 𝑖𝑏∗), defined in [6, Section VII.6]. Since QCoh(𝑋)
is generated by 𝑋 under cones, shifts, retracts and filtered colimits, any idempotent complete,
cocomplete stable subcategory oflis(Bun𝐺) will be preserved by the action of QCoh(𝑋). We can
therefore define a QCoh(𝑋)-action onlis(Bun

𝑏
𝐺
) by declaring that

𝑖𝑏∗ ∶ lis(Bun
𝑏
𝐺) → lis(Bun𝐺)

is QCoh(𝑋)-linear.

Proposition 2.7. The functor 𝑖𝑏∗ ∶ lis(Bun𝐺) → lis(Bun
𝑏
𝐺
) is QCoh(𝑋)-linear with respect to

the action above. In particular, for any 𝑌 ⊆ 𝑋 as above, 𝑖𝑏∗ and 𝑖𝑏∗ induce functors 
𝑌
lis
(Bun𝐺) →

𝑌
lis
(Bun𝑏

𝐺
) and𝑌

lis
(Bun𝑏

𝐺
) → 𝑌

lis
(Bun𝐺), which we will also denote by 𝑖𝑏∗ and 𝑖𝑏∗ , respectively.

Proof. The second part follows from the first part (and the definition, in the case of 𝑖𝑏∗). The first
part is essentially follows from [8, Corollary 6.2.4], except thatQCoh(𝑋) is not rigid since 𝑋 is not
quasicompact. However, the categories QCoh(𝑋𝑃) are rigid, so using Remark 2.2 one reduces to
this case. We omit the details. □

For our applications, we need a criterion for objects in lis(Bun𝐺) to have an 𝑌-structure,
phrased in terms of Fargues–Scholze parameters. For this, we will use the following lemma.

Proposition 2.8. Let 𝑘 be a field and let 𝐴 and 𝐵 be 𝑘-algebras, with 𝐴 commutative. Let 𝐹 ∶
(𝐴) → End𝐿𝑘((𝐵)) be a monoidal 𝑘-linear functor which commutes with colimits. Then

(1) 𝐹 induces a ring homomorphism 𝑓 ∶ 𝐴 → 𝑍(𝐵), where 𝑍(𝐵) denotes the center of 𝐵, and 𝐹 is
given by 𝐹(𝑀) = (𝑁 ↦ 𝑀 ⊗𝐿

𝐴,𝑓
𝑁), for𝑀 ∈ (𝐴) and𝑁 ∈ (𝐵).
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8 HANSEN and JOHANSSON

(2) Let 𝐼 ⊆ 𝐴 be an ideal and let𝑀 ∈ (𝐵). Assume that𝑀 has homology in a single degree. If the
map𝐴 → End𝐷(𝐵)(𝑀) factors through𝐴∕𝐼, then𝑀 has a canonical structure of an𝐴∕𝐼-module,
and hence lies in(𝐴∕𝐼 ⊗𝐿

𝐴
𝐵) = Mod𝐴∕𝐼((𝐵)).

Proof. We start with part (1). For any 𝑘-algebras 𝑅 and 𝑆, the ∞-category of colimit-preserving
functors (𝑅) → (𝑆) is equivalent to (𝑆 ⊗𝑘 𝑅

𝑜𝑝), or equivalently to the derived ∞-category
(𝑆, 𝑅) of (𝑆, 𝑅)-bimodules for which the 𝑘-module structures coming from 𝑆 and 𝑅 agree. Here
𝑋 ∈ (𝑆, 𝑅) corresponds to the functor 𝑀 ↦ 𝑋 ⊗𝐿

𝑅
𝑀, and for a given 𝐹 ∶ (𝑅) → (𝑆) the

corresponding 𝑋 is 𝐹(𝑅), with the left 𝑅𝑜𝑝-module structure coming from the map

𝑅𝑜𝑝 = End(𝑅)(𝑅) → End(𝑆)(𝐹(𝑅))

induced by 𝐹. When 𝑅 = 𝑆, the monoidal structure on End𝐿𝑘((𝑅)) by composition corresponds
to the tensor product (over 𝑅) on(𝑅, 𝑅). Now consider the 𝐹 in the statement of the proposition.
Using the above, we may think of it as a monoidal functor (𝐴) → (𝐵, 𝐵), and hence 𝐹(𝐴) is
equivalent to 𝐵, the unit. Applying the above remarks again, now thinking of(𝐵, 𝐵) as(𝐵 ⊗𝑘
𝐵𝑜𝑝), 𝐹 itself is given by 𝑀 ↦ 𝐵 ⊗𝐿

𝐴
𝑀, with the 𝐴-module structure on the (𝐵, 𝐵)-bimodule 𝐵

being given by the homomorphism

𝐴 = End(𝐴)(𝐴) → End(𝐵,𝐵)(𝐵).

Since 𝐵 is concentrated in degree 0, End(𝐵,𝐵)(𝐵) is coconnective. Since 𝐴 is also concentrated
in degree 0, this means that the map 𝐴 → End(𝐵,𝐵)(𝐵) factors through the center 𝑍(𝐵) =
𝜋0(End(𝐵,𝐵)(𝐵)), giving the desired map 𝑓. Translating back from (𝐵, 𝐵) to End𝐿𝑘((𝐵)) then
gives the desired formula.
For part (2), by shifting we may assume that 𝑀 has homology in degree 0, and so lies in

the heart of (𝐵) with respect to the usual t-structure. The assumption then says that 𝑀 has
a canonical 𝐵∕𝐼𝐵-module structure in the usual sense. Restriction along the canonical map
𝐴∕𝐼 ⊗𝐿

𝐴
𝐵 → 𝐵∕𝐼𝐵 then gives a canonical 𝐴∕𝐼 ⊗𝐿

𝐴
𝐵-module structure, as desired. □

We then have the following corollary, which gives us elements of𝜑
lis
(Bun𝐺).

Corollary 2.9. Let 𝜌 be an irreducible admissible𝐺𝑏(𝐸)-representation (in the abelian category, not
the derived category) with Fargues–Scholze parameter 𝜑. Then 𝑖𝑏∗𝜌 naturally lives in

𝜑
lis
(Bun𝐺).

Proof. Wemay choose a sufficiently small compact open subgroup 𝐾 ⊆ 𝐺𝑏(𝐸) such that 𝜌 is gen-
erated by its 𝐾-fixed vectors and we have a fully faithful exact colimit-preserving embedding
((𝐺, 𝐾)) ⊆ (𝐺𝑏(𝐸)), where (𝐺, 𝐾) is the usual Hecke algebra of bi-𝐾-invariant com-
pactly supported ℚ𝓁-valued functions on 𝐺𝑏(𝐸). In particular, ((𝐺, 𝐾)) inside (𝐺𝑏(𝐸)) =

lis(Bun
𝑏
𝐺
) is QCoh(𝑋)-stable and contains 𝜌, so we may apply Proposition 2.8 to deduce that

𝜌 ∈ 
𝜑
lis
(Bun𝑏

𝐺
). By Proposition 2.7, we then have 𝑖𝑏∗𝜌 ∈ 

𝜑
lis
(Bun𝐺). □

3 COHOMOLOGY OFMODULI SPACES OF LOCAL SHTUKAS

We now apply the constructions of the previous section to the cohomology of moduli space of
local shtukas. Let 𝑏 ∈ 𝐵(𝐺), let 𝐼 be a finite set and let 𝜇∙ = (𝜇𝑖)𝑖∈𝐼 be a collection of conjugacy
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 9

classes of cocharacters of 𝐺, with reflex fields 𝐸∙ = (𝐸𝑖)𝑖∈𝐼 . From the introduction we have the
tower (Sht(𝐺,𝑏,𝜇∙),𝐾)𝐾 of moduli spaces of local shtukas. The ‘intersection cohomology complex’
of Sht(𝐺,𝑏,𝜇∙),𝐾 is the object 𝑓𝐾♮

′
𝑊
defined before [6, Proposition IX.3.2], where𝑊 ∈ Rep(𝐺𝐼 ⋊

𝑄∙) is the representation with highest weight 𝜇∙ = (𝜇𝑖)𝑖∈𝐼 . When 𝜇∙ = 𝜇 is a single minuscule
cocharacter this is simply the (shifted) compactly supported 𝓁-adic cohomology of the smooth
rigid analytic variety Sht(𝐺,𝑏,𝜇),𝐾 . Let 𝜌 be an irreducible admissible representation of 𝐺𝑏(𝐸), with
Fargues–Scholze parameter 𝜑. Consider the 𝜌-isotypic part

𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] = lim;;→
𝐾

RHom𝐺𝑏(𝐸)(𝑓𝐾♮
′
𝑊, 𝜌)

of the cohomology of the tower (Sht(𝐺,𝑏,𝜇∙),𝐾)𝐾 . By the proof of [6, Proposition IX.3.2] and the
argument in the proof of [13, Proposition 6.4.5], we have

𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] ≅ 𝑖
1∗𝑇𝑉𝑖

𝑏
∗𝜌, (1)

where 𝑉 = 𝑊∨ ∈ Rep(𝐺𝐼 ⋊ 𝑄∙) is the dual of the representation 𝑊 with highest weight 𝜇∙ =
(𝜇𝑖)𝑖∈𝐼 , and this is a bounded complex of finite length 𝐺(𝐸)-representations. Note that the restric-
tion of 𝑊 to the diagonally embedded copy of 𝑍(𝐺̂)𝑄 in Rep(𝐺𝐼 ⋊ 𝑄∙) is necessarily isotypic
for some character 𝜒, and the functor 𝑅Γ(𝐺, 𝑏, 𝜇∙)[−] will therefore be identically zero unless
𝜒 equals the Kottwitz point of 𝑏 under the bijection 𝜋1(𝐺)𝑄 = 𝑍(𝐺̂)𝑄, by [33, Lemma 5.3.2]. We
will therefore assume this compatibility in the rest of the paper.
Now set𝔛𝜑 ∶= 𝜑 ×𝑋 𝔛 (in the derived sense), viewing 𝜑 as a closed point of 𝑋. To understand

the cohomology, we have to analyze the expression 𝑖1∗𝑇𝑉𝑖𝑏∗𝜌more closely. By Corollary 2.9, 𝑖
𝑏
∗𝜌 ∈


𝜑
lis
(Bun𝐺). The operator 𝑇𝑉 then takes us from

𝜑
lis
(Bun𝐺) to

𝜑
lis
(Bun𝐺)

𝐵𝑊𝐼
𝐸 , and is given by the

image of 𝑉 under the composition

Rep(𝐺𝐼 ⋊ 𝑄∙) → QCoh(𝔛𝜑)
𝐵𝑊𝐸∙ → End

ℚ𝓁
(
𝜑
lis
(Bun𝐺))

𝐵𝑊𝐸∙ ,

so to understand this better we need to understand the derived stack 𝔛𝜑. A priori, this can be
a non-classical stack, and we will have little to say about this case in what follows — to see the
correct structure on 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] in that case one would want a refinement of Corollary 2.9. We
will focus on a particular class of parameters 𝜑 that turn out to satisfy 𝔛𝜑 ≅ [∗ ∕𝑆𝜑], where 𝑆𝜑 is
the centralizer of 𝜑, viewed as a point of 𝔛. Recall that semisimple 𝐿-parameters over ℚ𝓁 (up to
conjugacy) precisely correspond to closed points of 𝑋. Before defining the classes of parameters
that we will be interested in, we state some algebro-geometric conventions that we will use.

Convention 3.1. When 𝑌 is a (classical) scheme of finite type over ℚ𝓁 , or a disjoint union of such
schemes, we will often think of it as its set of ℚ𝓁-points (with the Zariski topology) as in classical
algebraic geometry. In particular, ‘the locus of points of 𝑌 satisfying a particular property’ refers
to the subset of ℚ𝓁-points with that property. Moreover, 𝑌𝑟𝑒𝑑 will denote the nilreduction of 𝑌.
Whenever 𝑓 ∶ 𝑌1 → 𝑌2 is a finite type morphism of such schemes and 𝑆 ⊆ 𝑌2 is a subscheme,
we write 𝑓−1(𝑆) for the (non-derived) fiber product 𝑆 ×𝑌2 𝑌1. If 𝑆 = {𝑦} is a closed point, we write
𝑓−1(𝑦) instead of 𝑓−1({𝑦}).

We now return to the context of moduli spaces and stacks of 𝐿-parameters. In what follows, we
write 𝜋 ∶ 𝑋□ → 𝑋 for the map from 𝑋□ to its GIT quotient 𝑋.
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10 HANSEN and JOHANSSON

Definition 3.2. Let 𝜑 be a semisimple 𝐿-parameter over ℚ𝓁 .

(1) We say that 𝜑 is strongly semisimple if 𝜋−1(𝜑)𝑟𝑒𝑑 consists of a single 𝐺-orbit.
(2) We say that 𝜑 is generous if 𝜋−1(𝜑) is reduced and consists of a single 𝐺-orbit.

Concretely, 𝜑 is strongly semisimple if there are no other 𝐿-parameters with the same
semisimplification as 𝜑. We have the following lemma:

Lemma 3.3. Let 𝜑 be a strongly semisimple 𝐿-parameter. Then 𝜑 defines a smooth point of 𝑋□ or,
equivalently, of𝔛.

Proof. By [6, Section VIII.2], the tangent complex of 𝔛 at 𝜑 is 𝑅Γ(𝑊𝐸, ad(𝜑))[1], which is con-
centrated in [−1, 1], and the obstruction group is 𝐻2(𝑊𝐸, ad(𝜑)). Thus, it suffices to prove that
𝐻2(𝑊𝐸, ad(𝜑)) = 0. By [6, Proposition VIII.2.2], we have

𝐻2(𝑊𝐸, ad(𝜑)) ≅ 𝐻
0(𝑊𝐸, ad(𝜑)(1))

∗,

where −∗ denotes the ℚ𝓁-linear dual. Since we are in characteristic 0, we can interpret 𝐿-
parameters as Weil–Deligne parameters (cf. [6, Definition VIII.2.4 and Proposition VIII.2.5]) and,
since 𝜑 is semisimple, 𝐻0(𝑊𝐸, ad(𝜑)(1)) is precisely the set of 𝑁 ∈ Lie(𝐺) such that (𝜑,𝑁) is a
Weil–Deligne parameter. Any non-zero such 𝑁 defines an non-semisimple 𝐿-parameter whose
semisimplification is 𝜑, so such 𝑁 cannot exist since 𝜑 is strongly semisimple. It follows that
𝐻0(𝑊𝐸, ad(𝜑)(1)) = 0, and 𝜑 is a smooth point of 𝔛. □

For any semisimple 𝐿-parameter 𝜑, the underlying classical stack 𝔛𝑐𝑙𝜑 of 𝔛𝜑 is [𝜋
−1(𝜑)∕𝐺], so

by definition 𝜑 is generous if and only if𝔛𝑐𝑙𝜑 ≅ [∗ ∕𝑆𝜑]. In fact, we will now show that𝔛𝜑 is clas-
sical for generous 𝜑. Recall our conventions from Convention 3.1. We isolate a general geometric
invariant theory result from the argument. For this, we will need some basic notions and results
from affine geometric invariant theory. We refer the reader to [24, Section 1.2; 25, Theorem 3.5] for
the basic properties that we will use.

Lemma 3.4. Let 𝑆 be an irreducible affine ℚ𝓁-variety with an action of 𝐺 and let 𝑇 = 𝑆 ⫽ 𝐺 be
its GIT quotient. Write 𝑓 ∶ 𝑆 → 𝑇 for the quotient map. Let 𝑈 ⊆ 𝑆 denote the union of the 𝐺-orbits
which are closed and not contained in the closure of any other 𝐺-orbit. Then there exists an open
subset 𝑉 ⊆ 𝑇 such that𝑈 = 𝑓−1(𝑉), and 𝑓 ∶ 𝑈 → 𝑉 is a universal geometric quotient.

Proof. Consider the set 𝑈1 ⊆ 𝑆 of points whose orbits have maximal dimension, and denote this
maximal dimension by 𝑑′. By [25, Lemma 3.7(c)], 𝑈1 is open. Next, let 𝑈2 ⊆ 𝑈1 be the subset of
points whose orbits are closed. By [25, Proposition 3.8], 𝑈2 = 𝑓−1(𝑉) for some open 𝑉 ⊆ 𝑇, and
𝑈2 → 𝑉 is a universal geometric quotient.† Thus, it suffices to show that 𝑈 = 𝑈2. To show that
𝑈2 ⊆ 𝑈, note that any orbit in 𝑈2 is closed and cannot be in the closure of any other orbit, since
such an orbit would need to have bigger dimension, which is impossible by the definition of 𝑈2.

† For the reader looking at this reference, we note that the notions of orbit spaces and geometric quotients, and their
relation, is covered in [25, p. 31, Definition] and [25, p. 57, Definition], and that geometric quotients in characteristic 0 in
affine GIT are universal [24, Amplification 1.3].
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 11

It therefore remains to show that 𝑈 ⊆ 𝑈2. Consider the set 𝑈3 ⊆ 𝑆 of 𝑥 ∈ 𝑆 for which the
dimension of the local ring 𝑓−1(𝑓(𝑥)),𝑥 of the fiber 𝑓−1(𝑓(𝑥)) is minimal. By [23, Section I.8, The-
orem 3, Corollary 3], 𝑈3 is open. Call this minimal dimension 𝑑. Let 𝑥 ∈ 𝑈. By definition of 𝑑′,
we must have 𝑑′ ⩾ dim𝐺𝑥. On the other hand, 𝐺𝑥 = 𝑓−1(𝑓(𝑥)) by the definition of 𝑈 and it is
equidimensional (since it is a single orbit), so we must have dim𝐺𝑥 ⩾ 𝑑 by the definition of 𝑑. In
particular, we have 𝑑 ⩽ 𝑑′. On the other hand, we have𝑈1 ∩ 𝑈3 ≠ ∅ since𝑈1 and𝑈3 are open and
non-empty, and 𝑆 is irreducible. Choose a point 𝑦 ∈ 𝑈1 ∩ 𝑈3. Then 𝑑 = dim𝑓−1(𝑓(𝑦)),𝑦 and 𝑑′ =
dim𝐺𝑦 by definition. Since𝐺𝑦 ⊆ 𝑓−1(𝑓(𝑦)) and𝐺𝑦 is equidimensional, wemust have 𝑑′ ⩽ 𝑑, and
hence we conclude that 𝑑 = 𝑑′ and hence that 𝑈 ⊆ 𝑈1 (since we proved that 𝑑 ⩽ dim𝐺𝑥 ⩽ 𝑑′
for 𝑥 ∈ 𝑈). Since the orbits in 𝑈 are closed, we conclude that 𝑈 ⊆ 𝑈2, as desired, finishing the
proof. □

Proposition 3.5. Let 𝑋□
𝑠𝑠 and 𝑋𝑠𝑠 denote the loci of strongly semisimple 𝐿-parameters in 𝑋□ and

𝑋, respectively. Then 𝑋𝑠𝑠 is open, 𝑋
□
𝑠𝑠 = 𝜋

−1(𝑋𝑠𝑠), and 𝑋
□
𝑠𝑠 → 𝑋𝑠𝑠 is a universal geometric quotient.

Moreover, if 𝜑 is generous, then there is an open neighborhood𝑊 ⊆ 𝑋 of 𝜑 such that 𝜋 ∶ 𝜋−1(𝑊) →
𝑊 is flat.

Proof. We start with the first part. As a first reduction step, note that wemay prove the proposition
component by component on 𝑋, so let 𝐶 ⊆ 𝑋 be a connected component and set 𝐶□ = 𝜋−1(𝐶);
this is connected since 𝐺 is. Moreover, if there are no strongly semisimple parameters on 𝐶 then
the assertion is trivial, so assume that 𝐶𝑠𝑠 ∶= 𝐶 ∩ 𝑋𝑠𝑠 ≠ ∅. By [5, Theorem 1.7], 𝐶 is irreducible
and reduced. However, 𝐶□ might not be irreducible, preventing us from applying Lemma 3.4
directly (note that the condition on the orbits included in𝑈 in the notation of Lemma 3.4 precisely
corresponds to the definition of strong semisimplicity). Instead, we will show that the Proposition
follows by applying Lemma 3.4 to a particular irreducible component of 𝐶□.
Write 𝐶□ = 𝑌1 ∪ 𝑌2 ∪⋯ ∪ 𝑌𝑟 as the union of its irreducible components. Each component is

𝐺-invariant, so the sets 𝜋(𝑌𝑖) are closed. Since 𝜋(𝐶□) = 𝐶, we may without loss of generality
assume that 𝜋(𝑌1) = 𝐶. By exactness of 𝐺-invariants, it follows that 𝐶 is the GIT quotient of 𝑌1
as well. If 𝐶□

𝑠𝑠 ∶= 𝜋
−1(𝐶𝑠𝑠) ⊆ 𝑌1, then we can apply Lemma 3.4 to conclude the first part of the

Proposition. To see that𝐶□
𝑠𝑠 ⊆ 𝑌1, note that each orbit in𝐶

□
𝑠𝑠 has to intersect𝑌1 since the orbits are

closed and 𝐶𝑠𝑠 ⊆ 𝜋(𝑌1), and then use 𝐺-invariance of 𝑌1.† This finishes the proof of the first part.
For the second part, note thatwehave shown that𝐶□

𝑠𝑠 → 𝐶𝑠𝑠 is equidimensional anduniversally
open (since it is a universal geometric quotient), and we know that 𝐶𝑠𝑠 is reduced since 𝐶 is. So
assume that 𝜑 is a generous parameter in 𝐶. Then 𝜋−1(𝜑) is reduced by assumption, so by [9,
Corollary 15.2.3], it follows that𝐶□

𝑠𝑠 → 𝐶𝑠𝑠 is flat in a neighborhood of𝜋−1(𝜑). Wemay then spread
out this neighborhood using the𝐺-action (sincewe have a geometric quotient) and take the image
under 𝜋 to obtain the desired𝑊. □

Corollary 3.6. If 𝜑 is a generous 𝐿-parameter, then𝔛𝜑 = 𝔛𝑐𝑙𝜑 = [∗ ∕𝑆𝜑]. Moreover, for any strongly
semisimple 𝐿-parameter 𝜑, 𝜋 is flat in a neighborhood of 𝜑 ∈ 𝑋 if and only if 𝜑 ∈ 𝑋 is smooth.

Proof. We have already proved the first part. For the second part, we may work component by
component, and we use the notation from the proof of Proposition 3.5. There we have showed
that 𝜋 ∶ 𝐶□

𝑠𝑠 → 𝐶𝑠𝑠 is equidimensional, and we know that 𝐶□
𝑠𝑠 is smooth. That smoothness of 𝐶𝑠𝑠

† In fact, since the points in 𝐶□
𝑠𝑠 are smooth by Lemma 3.3, they only lie on 𝑌1. This means that 𝑌1 is the only component

of 𝐶□ mapping surjectively onto 𝐶.
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12 HANSEN and JOHANSSON

at 𝜑 implies flatness of 𝜋 at 𝜑 ∈ 𝐶□
𝑠𝑠 then follows frommiracle flatness [21, Theorem 23.1], and the

converse follows from [21, Theorem 23.7(i)]. □

Remark 3.7. Let usmake some remarks on the prevalence of generous parameters. Here, we think
of 𝐿-parameters as Weil–Deligne parameters.

(1) In general, there is a Zariski open and dense subset of generous parameters inside 𝑋𝑠𝑠 by [30,
Tag 0578] (the full set of generous parameters is locally constructible by [30, Tag 0579], but we
do not know if it is open).

(2) Let us indicate a case when strongly semisimple and generous parameters can be described
rather explicitly. Assume that𝐺 is split, and consider the unramified (or principal) component
𝔛𝑢𝑟 of 𝔛, consisting of parameters (𝜑,𝑁) for which 𝜑 is unramified (and hence equivalent
to a single element in 𝐺), which is studied in detail in [14, Section 2]. Write 𝑋□

𝑢𝑟 and 𝑋𝑢𝑟
for the corresponding components of 𝑋□ and 𝑋, respectively. As noted in a footnote in the
proof of Proposition 3.5, 𝔛𝑢𝑟 has a unique irreducible component mapping surjectively onto
the GIT quotient, and it contains all strongly semisimple parameters. In this case, it is the
component where 𝑁 = 0, hence isomorphic to [𝐺∕𝐺] (the action being by conjugation). The
strongly semisimple parameters correspond to those regular semisimple elements in𝐺 which
do not lie on other components of 𝔛𝑢𝑟. By [32, 6.4, Corollary], we then have

𝑋□
𝑢𝑟 = 𝐺 → 𝑋𝑢𝑟 = 𝐺 ⫽ 𝐺 ≅ 𝑇 ⫽ 𝑁(𝑇) = 𝑇 ⫽𝑊, (2)

where 𝑇 is a maximal torus of 𝐺, with normalizer𝑁(𝑇), and𝑊 = 𝑁(𝑇)∕𝑇 is the Weyl group.
It is well known in the theory of algebraic groups how this map can be analyzed, but let us
sketch one way. The morphism [𝑇∕𝑁(𝑇)] → [𝐺∕𝐺] of quotient stacks (induced by 𝑇 ⊆ 𝐺)
is an isomorphism over the regular semisimple locus (on both sides). In particular, in the
smooth topology and over the regular semisimple locus, the fibers of the map in Equation (2)
are equivalent to the fibers of 𝑇 → 𝑇 ⫽𝑊. The latter are smooth if and only if they are étale,
that is, when the centralizer of the regular semisimple element is 𝑇 itself. In particular, this is
always the case when the derived group of 𝐺 is simply connected [32, 2.10, Remark]. In that
case, all strongly semisimple unramified parameters are generous.
Let us also note that the smoothness of 𝑋𝑢𝑟 at a point is well understood in this situation.

Write 𝑋𝑢𝑟 = 𝑇 ⫽𝑊 and consider 𝑡 ∈ 𝑇, with stabilizer𝑊𝑡 ⊆ 𝑊, and image 𝑡 ∈ 𝑇 ⫽𝑊. Then,
by the Shephard–Todd theorem [2, Theorem 7.2.1], 𝑡 is a smooth point if and only if the action
of 𝑊𝑡 of the tangent space 𝑇𝑡(𝑇) of 𝑇 at 𝑡 is generated by pseudoreflections.† In particular,
we can consider the following examples: Let 𝑛 ⩾ 2 and let 𝜁 be a primitive 𝑛-th root of unity.
The unramified parameter 𝜑𝑛 sending Frobenius to (1, 𝜁, … , 𝜁𝑛−1) ∈ PGL𝑛(ℚ𝓁) (with𝑁 = 0)
is strongly semisimple, but 𝑆𝜑 is cyclic of order 𝑛, so 𝜑𝑛 is not generous. Moreover, a tedious
but straightforward calculation shows that it is a smooth point in 𝑋𝑢𝑟 if and only if 𝑛 = 2.

(3) The previous part of the remark shows that all unramified strongly semisimple 𝐿-parameters
for GL𝑛 are generous. In fact, one may bootstrap this to show that all strongly semisimple
𝐿-parameters for GL𝑛 are generous. This follows from the fact that any component of 𝔛 (for
GL𝑛) is isomorphic to a product of unramified components for some general linear groups
(possibly for an extension of 𝐹). For a reference for this, see the very end of [3, Section 5.2].

† The analysis of the local geometry of 𝑇 ⫽𝑊 at 𝑡 in terms of the action of𝑊𝑡 on 𝑇𝑡(𝑇) is a standard application of Luna’s
étale slice theorem and related results, cf. [19, Sections 2.2 and 3.1].
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 13

We now return to analyzing 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌], under the assumption that the Fargues–Scholze
parameter 𝜑 of 𝜌 is generous. Since 𝔛𝜑 ≅ [∗ ∕𝑆𝜑], we have QCoh(𝔛𝜑) ≅ Rep(𝑆𝜑) and the action
of 𝑉 on

𝜑
lis
(Bun𝐺) factors as

Rep(𝐺𝐼 ⋊ 𝑄∙) → Rep(𝑆𝜑)
𝐵𝑊𝐸∙ → End

ℚ𝓁
(
𝜑
lis
(Bun𝐺)

𝜔)𝐵𝑊𝐸∙ . (3)

By the compatibility between 𝑏 and 𝜇∙ (as recalled in the beginning of this section), 𝑍(𝐺)𝑄 ⊆ 𝑆𝜑
acts on 𝑉 via a character 𝜒𝑏. Write Irr(𝑆𝜑, 𝜒𝑏) for the set of irreducible representations of 𝑆𝜑 on
which 𝑍(𝐺)𝑄 acts by 𝜒𝑏. Also write 𝑉𝜑 for the image of 𝑉 under Rep(𝐺𝐼 ⋊ 𝑄∙) → Rep(𝑆𝜑)

𝐵𝑊𝐸∙ .
We can now put everything together to derive the desired formula.

Theorem 3.8. Let 𝜌 be an irreducible admissible representation of 𝐺𝑏(𝐸) and assume that its
Fargues–Scholze parameter𝜑 is generous. Decompose𝑉𝜑 inRep(𝑆𝜑)

𝐵𝑊𝐸∙ as
⨁
𝛿∈Irr(𝑆𝜑,𝜒𝑏)

𝛿 ⊠ 𝑉𝜑,𝛿 .
Then we have an isomorphism

𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] ≅
⨁

𝛿∈Irr(𝑆𝜑,𝜒𝑏)

𝑖1∗ Act𝛿(𝑖
𝑏
∗𝜌) ⊠ 𝑉𝜑,𝛿

in𝜑(𝐺(𝐸))𝐵𝑊𝐸∙ , and each 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) is a bounded complex of finite length𝐺(𝐸)-representations.

Proof. The formula follows immediately fromEquations (1) and (3), and the last statement follows
from the fact that 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) is a direct summand of 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]. □

Remark 3.9. We make some remarks on Theorem 3.8.

(1) We expect that the theorem holds when 𝜑 is strongly semisimple. For this, one would want
to show that 𝑖𝑏∗𝜌 has a QCoh([∗ ∕𝑆𝜑])-structure, but this is stronger than 𝜌 having Fargues–
Scholze parameter 𝜑 when 𝜑 is not generous. In situations when 𝜑 lifts to a generous
parameter on an isogenous group, we expect that one can prove this stronger statement, but
we have not checked the details.

(2) The categorical conjecture [6, Conjecture X.1.4] predicts that 𝜑
lis
(Bun𝐺) is equivalent to

(Rep(𝑆𝜑)) when 𝜑 is generous. In particular, each 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) should be a split complex.
(3) Each Act𝛿(𝑖𝑏∗𝜌) is non-zero but, unless 𝜑 is elliptic, many 𝑖

1∗ Act𝛿(𝑖
𝑏
∗𝜌) will be zero (indeed,

only finitely many can be non-zero).
(4) Let us briefly compare our results to those of Koshikawa [17], in particular [17, Theorem

1.3], which says that the 𝑊𝐸∙
-representations appearing in 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] are subquotients

of 𝑉𝜑, without any assumption on 𝜑 and allowing integral coefficients. In characteristic
0, we can recover this statement from the assertion that 𝑖1∗𝑇𝑉𝑖∗𝑏𝜌 ∈ 𝜑(𝐺(𝐸))𝐵𝑊𝐸∙ (which
does not require any assumption on 𝜑). Moreover, a formula of the form 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] ≅⨁
𝛿∈Irr(𝑆𝜑,𝜒𝑏)

𝐶𝛿 ⊠ 𝑉𝜑,𝛿 can be deduced straight from the spectral action as in [17, Proof of
Theorem 1.3], without the machinery developed here. Indeed, the spectral action shows that
the𝑊𝐸∙

-action on 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] factors as

ℚ𝓁[𝑊𝐸∙
] → End()∕𝔪𝜑 → End(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]),

where𝔪𝜑 ⊆ spec(𝐺) is the maximal ideal cutting out 𝜑 and  is the𝑊𝐸∙
-equivariant vector

bundle on𝔛 corresponding to𝑉.When𝜑 is generous, one hasEnd()∕𝔪𝜑 = End𝑆𝜑(𝑉𝜑), and
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14 HANSEN and JOHANSSON

by standard representation theory one gets the desired decomposition. The extra information
gained from factoring the spectral action is the functorial formula for the 𝐶𝛿.

In the rest of this section, we address points (2) and (3) of Remark 3.9 when 𝜑 is elliptic. Recall
that 𝜑 is said to be elliptic if it is semisimple and 𝑆𝜑∕𝑍(𝐺)𝑄 is finite. In this case, the discussion
in [6, Section X.2] shows that, for any 𝑏 ∈ 𝐵(𝐺), a 𝐺𝑏(𝐸)-representation 𝜎 with Fargues–Scholze
parameter 𝜑 has to be supercuspidal, and 𝑏 has to be basic. In particular,

∏
𝑏∈𝐵(𝐺)basic

𝑖𝑏∗ ∶ 
𝜑
lis
(Bun𝐺)⟶

∏
𝑏∈𝐵(𝐺)basic

𝜑(𝐺𝑏(𝐸)) (4)

is an equivalence. We then have the following assertion.

Lemma 3.10. Assume that 𝜑 is elliptic and that 𝑏 is basic. Then 𝜑(𝐺𝑏(𝐸)) is a product of
categories of the form(𝐴), for semisimple (not necessarily commutative) Artinian rings 𝐴. In par-
ticular, any compact object in𝜑(𝐺𝑏(𝐸)) is equivalent to a finite direct sum of shifted supercuspidal
representations. Moreover, 𝜑 is generous.

Proof. Let 𝐶 ⊆ 𝑋 be the connected component containing 𝜑, let 𝐶□ be its preimage in 𝑋□, and
let 𝑌𝑢𝑟 the group variety of unramified characters𝑊𝐸 → 𝑍(𝐺)⋊ 𝑄. By the local Langlands cor-
respondence for tori, 𝑌𝑢𝑟 is isomorphic to the group variety of unramified smooth characters of
𝐺𝑏(𝐸). As remarked just after [6, Definition X.1.2],† 𝐶 consists of all twists of 𝜑 by elements of𝑌𝑢𝑟,
and all these are strongly semisimple. In particular, 𝐶□ → 𝐶 is smooth with fibers isomorphic to
𝐺∕𝑆𝜑, showing that 𝜑 is generous.
Nowconsider𝐶

lis
(Bun𝐺), which is equivalent to the product of the𝐶(𝐺𝑏(𝐸)) for 𝑏 ∈ 𝐵(𝐺)basic.

Each 𝐶(𝐺𝑏(𝐸)) is the product of its Bernstein components, all of which are supercuspidal, and
the action ofQCoh(𝐶) preserves the Bernstein components. Let  be such a Bernstein component,
let () denote its center and let () denote the endomorphism ring of a compact generator
of . We have that QCoh(𝐶) is equivalent to ((𝐶)) and  is equivalent to (()). Thus, by
Proposition 2.8, the action ofQCoh(𝐶) on , viewed as an action of((𝐶)) on(()), is given
by letting𝑀 ∈ ((𝐶)) act by the endomorphism

𝑁 ↦ 𝑀 ⊗(𝐶),𝑓 𝑁

on (()), where 𝑓 ∶ (𝐶) → () is the induced homomorphism on centers. Both (𝐶) and
() carry twisting actions of 𝑌𝑢𝑟; indeed by choosing a base point they are both isomorphic
to quotients of 𝑌𝑢𝑟 by finite groups. Since the Fargues–Scholze construction is compatible with
twisting [6, Theorem IX.0.5(ii)], 𝑓 is equivariant for the actions of 𝑌𝑢𝑟, and hence finite Galois.
Armed with this, we now consider 𝜑(𝐺𝑏(𝐸)), which is the product of the categories 𝜑 ∶=

Mod(𝐶)∕𝔪𝜑 , where  ranges over the Bernstein components of 𝐶(𝐺𝑏(𝐸)) and𝔪𝜑 ⊆ (𝐶) is

† The deformation-theoretic argument in [6] appears to be incomplete. It shows that the family of unramified twists of 𝜑
is an open subset of 𝐶, but one needs an argument to show that it is closed. If 𝑍(𝐺)𝑄 is finite, that is, the connected split
center of 𝐺 is trivial, then there are no non-trivial unramified characters, hence the family is a point and therefore closed.
In general, one can reduce to this case by considering the map from the moduli space of 𝐿-parameters of 𝐺 to the moduli
space of 𝐿-parameters of the quotient of 𝐺 by its connected split center. The description of 𝐶 can also be extracted from [5,
Theorem 1.7].
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 15

the maximal ideal corresponding to 𝜑. By the description of the action of QCoh(𝐶) on , 𝜑 is
equivalent to ((𝐶)∕𝔪𝜑 ⊗

𝐿
(𝐶),𝑓

()), so we need to show that (𝐶)∕𝔪𝜑 ⊗𝐿(𝐶),𝑓 () is a
(classical) semisimple Artinian ring. By [4, 8.1, Proposition], () is an Azumaya algebra over
(). Since 𝑓 is finite Galois, it follows that (𝐶)∕𝔪𝜑 ⊗𝐿(𝐶),𝑓 () is concentrated in degree 0,

where it is a finite product of matrix algebras overℚ𝓁 , and in particular semisimple and Artinian,
as desired. The rest of the lemma then follows immediately. □

We now get the following refinement of Theorem 3.8 for elliptic parameters.

Corollary 3.11. In the situation of Theorem 3.8, assume additionally that 𝜑 is elliptic. Then
each 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) is a non-zero finite direct sum of shifted supercuspidal representations. If 𝛿 is
one-dimensional, then 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) is a single supercuspidal representation, up to shift.

Proof. Act𝛿(𝑖𝑏∗𝜌) is non-zero and supported on Bun
1
𝐺
by Equation (4), hence 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) is non-

zero. It is a finite direct sum of supercuspidal representations up to shift by Lemma 3.10. Finally,
if 𝛿 is one-dimensional, then Act𝛿 is an equivalence, so End(𝑖1∗ Act𝛿(𝑖𝑏∗𝜌)) = End(𝜌) = ℚ𝓁 by
the previous observation on the support. It follows that 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) is a single supercuspidal
representation up to shift. □

Remark 3.12. We note that Corollary 3.11 has previously appeared in the literature; see [6, Sec-
tion X.2] for the case when 𝑆𝜑 is finite and [10, Corollary 3.11; 22, Theorem 2.27] for the general
case, where it plays a key role in comparing the Fargues–Scholze constructionwith the local Lang-
lands correspondence. Note that, in light of Corollary 3.11, the Kottwitz conjecture (with respect
to the Fargues–Scholze construction) amounts to computing the image of 𝑖1∗ Act𝛿(𝑖𝑏∗𝜌) in the
Grothendieck group of 𝐺(𝐸). The vanishing conjecture, on the other hand, says that 𝑖∗

1
Act𝛿(𝑖𝑏∗𝜌)

is concentrated in degree 0. In particular, Corollary 3.11 gives a complete understanding of the
action of theWeil group. This is in contrast to local approaches to the cohomology of local Shimura
varieties predating [6], which could say very little about the Weil group action.

4 SOME CONSEQUENCES

In this section we indicate some results towards Conjecture 1.1 that can be obtained from Theo-
rem 3.8 using simple tricks or observations, or recent works on Kottwitz conjecture. We will use
the same notation as in Section 3, with a few extra additions. For clarity, we gather this here. These
assumptions will be in place throughout the whole of Section 4.

Setup 4.1. We let 𝜌 be an irreducible admissible representation of 𝐺𝑏(𝐸). We will make the
following assumptions, and use the following notations.

∙ The Fargues–Scholze parameter 𝜑 of 𝜌 is elliptic (this forces 𝜌 to be supercuspidal, as noted
above).

∙ Since 𝜑 is elliptic, the set Irr(𝑆𝜑, 𝜒𝑏) is finite. We let 𝛿1, … , 𝛿𝑟 denote its members, where 𝑟 =
# Irr(𝑆𝜑, 𝜒𝑏).

∙ With 𝑉𝜑 as in Theorem 3.8, write 𝑉𝜑,𝑖 = Hom𝑆𝜑(𝛿𝑖, 𝑉𝜑), viewed as a𝑊𝐸∙
-representation.

∙ Finally, assume that 𝐸 has characteristic 0.
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16 HANSEN and JOHANSSON

4.1 The Kottwitz conjecture

Let us start with the simplest possible version of Corollary 3.11: Assume that 𝜑 is stable, that is,
𝑆𝜑 = 𝑍(𝐺)

𝑄. Then the formula reads

𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] ≅ 𝑖
1∗ Act𝜒𝑏 (𝑖

𝑏
∗𝜌) ⊠ 𝑉𝜑,

and 𝑖1∗ Act𝜒𝑏 (𝑖
𝑏
∗𝜌) is a single supercuspidal representation up to shift. The following proposition

is then clear (note that 𝜒1 is the trivial representation).

Proposition 4.2. Assume that 𝜑 is stable. Then 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] vanishes outside a single degree,
and in that degree it is the exterior tensor product of a supercuspidal representation and 𝑉𝜑. If,
additionally, 𝑏 = 1, then 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] = 𝜌 ⊠ 𝑉𝜑, that is, the strong Kottwitz conjecture holds.

Wenow return to the general case. In [13, Theorem 1.0.2], theKottwitz conjecture is proven after
disregarding the action of 𝑊𝐸∙

, under further assumptions on 𝐿-packets. We wish to combine
this with Theorem 3.8 in order to deduce Corollary 1.3 from the introduction. This will use the
following assumptions and notation:

Setup 4.3. Assume the refined local Langlands conjecture in the form of [15, Conjecture G].
In particular, we have an 𝐿-parameter 𝜙 attached to 𝜌, and an 𝐿-packet Π𝜙(𝐺) (a set) of 𝐺(𝐸)-
representations. We assume that 𝜙 is discrete (that is, 𝑆𝜙∕𝑍(𝐺)𝑄 is finite), with centralizer 𝑆𝜙, and
that all members of Π𝜙(𝐺) are supercuspidal.

Under these assumptions, [13, Theorem 1.0.2] asserts that

Mant𝐺,𝑏,𝜇∙ (𝜌) =
∑

𝜋∈Π𝜙(𝐺)

dimHom𝑆𝜙(𝛿𝜋,𝜌, 𝑉𝜙) ⋅ 𝜋

in the Grothendieck group of 𝐺(𝐸)-representations (recall from the introduction that
Mant𝐺,𝑏,𝜇∙(𝜌) ∶=

∑
𝑛(−1)

𝑛𝐻𝑛(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]). Here 𝛿𝜋,𝜌 is a certain (not necessarily irreducible)
representation of 𝑆𝜙 attached to the pair (𝜋, 𝜌) with 𝑍(𝐺)𝑄 acting by 𝜒𝑏, described in [13,
Section 2.3]. We will need the following lemma concerning the representations 𝛿𝜋,𝜌.

Lemma 4.4. Any 𝛿 ∈ Irr(𝑆𝜙, 𝜒𝑏) occurs as a subrepresentation of
⨁
𝜋∈Π𝜙(𝐺)

𝛿𝜋,𝜌. If all 𝛿 ∈
Irr(𝑆𝜙, 𝜒𝑏) are one-dimensional, then we have

∑
𝜋∈Π𝜙(𝐺)

dimHom𝑆𝜙(𝛿𝜋,𝜌,𝑊) = dimHom𝑆𝜙(⊕𝜋∈Π𝜙(𝐺)𝛿𝜋,𝜌,𝑊) ⩾ dim𝑊

for any𝑊 ∈ Rep(𝑆𝜙) with 𝑍(𝐺)𝑄 acting as 𝜒𝑏.

Proof. For this lemma, we will refer to [13, Section 2.3] and the references within for unexplained
terminology, notation, and facts (see also [15, Section 4.5]). There is a group 𝑆+

𝜙
arising as a cover-

ing group 𝑓 ∶ 𝑆+
𝜙
→ 𝑆𝜙. Set 𝑍(ˆ̄𝐺)+ ∶= 𝑓−1(𝑍(𝐺)𝑄); this group is central in 𝑆+𝜙 . It induces a map
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 17

𝜋0(𝑍(
ˆ̄𝐺)) → 𝜋0(𝑆

+
𝜙
). If 𝜆 is a character of 𝜋0(𝑍(ˆ̄𝐺)), we will say that a representation of 𝜋0(𝑆+𝜙 )

has character 𝜆 if 𝜋0(𝑍(ˆ̄𝐺)) acts as 𝜆 on it. According to [15, Conjecture G], there is a bijection
𝜋 → 𝜏𝑧,𝔪,𝜋 betweenΠ𝜙(𝐺) and irreducible representations of 𝜋0(𝑆+𝜙 )with a certain character 𝜆𝑧,
and there is an irreducible representation 𝜏𝑧,𝔪,𝜌 of 𝜋0(𝑆+𝜑 ) associated with 𝜌, which has a certain
character 𝜆𝑧 + 𝜆𝑧𝑏 . By definition, 𝛿𝜋,𝜌 is the descent of 𝜏

∗
𝑧,𝔪,𝜋 ⊗ 𝜏𝑧,𝔪,𝜌 to 𝑆𝜙 along 𝑓 (and hence 𝜆𝑧𝑏

corresponds to 𝜒𝑏). With this in mind, let 𝛿 be an irreducible representation of 𝑆𝜙 with character
𝜒𝑏. Pullback along 𝑓 gives an equivalence of representations of 𝑆𝜙 with character 𝜒𝑏 and repre-
sentations of 𝜋=(𝑆+𝜙 )with character 𝜆𝑧𝑏 , so we also let 𝛿 denote the corresponding representation
of 𝜋0(𝑆+𝜙 ). Then 𝛿

∗ ⊗ 𝜏𝑧,𝔪,𝜌 has character 𝜆𝑧, and can therefore be written as a sum of the 𝜏𝑧,𝔪,𝜋
(possibly with multiplicities). Moreover, 𝛿 is a summand of (𝛿∗ ⊗ 𝜏𝑧,𝔪,𝜌)∗ ⊗ 𝜏𝑧,𝔪,𝜌. This proves
the first part of the lemma. To deduce the second part, we nowhave⊕𝛿∈Irr(𝑆𝜙,𝜒𝑏)𝛿 ⊆ ⊕𝜋∈Π𝜙(𝐺)𝛿𝜋,𝜌
(non-canonically), so

dimHom𝑆𝜙(⊕𝜋∈Π𝜙(𝐺)𝛿𝜋,𝜌,𝑊) ⩾ dimHom𝑆𝜙(⊕𝛿∈Irr(𝑆𝜙,𝜒𝑏)𝛿,𝑊) ⩾ dim𝑊,

where the second inequality uses that the 𝛿 are one-dimensional. □

With these preparations, we can deduce Corollary 1.3.

Theorem 4.5. Assume Setups 4.1 and 4.3, and that all 𝛿𝑖 and all 𝛿 ∈ Irr(𝑆𝜙, 𝜒𝑏) are one-
dimensional. Write 𝑖1∗ Act𝛿𝑖 (𝑖

𝑏
∗𝜌) = 𝜋

′
𝑖
[𝑛𝑖], where 𝜋′𝑖 is supercuspidal and −[𝑛𝑖] denotes a shift by

an integer 𝑛𝑖 (we can do this by Corollary 3.11). Then

Mant𝐺,𝑏,𝜇∙(𝜌) =

𝑟∑
𝑖=1

𝜋′1 ⊠ 𝑉𝜑,𝑖,

and {𝜋′
1
, … , 𝜋′𝑟} = Π𝜙(𝐺) as sets. Moreover,𝐻

𝑛(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]) = 0 when 𝑛 is odd.

Proof. ByTheorem3.8,Mant𝐺,𝑏,𝜇∙ (𝜌) =
∑𝑟
𝑖=1(−1)

𝑛𝑖𝜋′
𝑖
⊠ 𝑉𝜑,𝑖 inGroth(𝐺(𝐸) ×𝑊𝐸∙

). In particular,
Mant𝐺,𝑏,𝜇∙(𝜌) =

∑𝑟
𝑖=1(−1)

𝑛𝑖 dim𝑉𝜑,𝑖 ⋅ 𝜋
′
𝑖
in Groth(𝐺(𝐸)), where we have that

𝑟∑
𝑖=1

(−1)𝑛𝑖 dim𝑉𝜑,𝑖 ⩽

𝑟∑
𝑖=1

dim𝑉𝜑,𝑖 = dim𝑉

since the 𝛿𝑖 run through Irr(𝑆𝜑, 𝜒𝑏). On the other hand,

Mant𝐺,𝑏,𝜇∙ (𝜌) =
∑

𝜋∈Π𝜙(𝐺)

dimHom𝑆𝜙(𝛿𝜋,𝜌, 𝑉𝜙) ⋅ 𝜋

in Groth(𝐺(𝐸)) by [13, Theorem 1.0.2]. By Lemma 4.4, we have
∑
𝜋∈Π𝜙(𝐺)

dimHom𝑆𝜙(𝛿𝜋,𝜌, 𝑉𝜙) ⩾

dim𝑉. Note that, for a fixed 𝑖 (or 𝜋) and varying 𝜇∙, some 𝑉𝜑,𝑖 (or Hom𝑆𝜙(𝛿𝜋,𝜌, 𝑉𝜙)) will be non-
zero. Using this fact and comparing the two inequalities we have derived so far, we see that the 𝑛𝑖
are even and that {𝜋′

1
, … , 𝜋′𝑟} = Π𝜑(𝐺), as desired. □

Remark 4.6. We make a few remarks on this theorem.
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18 HANSEN and JOHANSSON

(1) While [13, Theorem 1.0.2] is only stated for 𝜇∙ = 𝜇 a single cocharacter, its proof goes through
for general 𝜇∙. We note, however, that Theorem 4.5 for general 𝜇∙ follows from the case 𝜇∙ = 𝜇
(in light of Corollary 3.11), as this case suffices to show that {𝜋′

1
, … , 𝜋′𝑟} = Π𝜙(𝐺) and that the

𝑛𝑖 are even.
(2) As noted in the introduction, this is rather close to the Kottwitz conjecture, but falls short

in two aspects. First, we do not know that 𝜙 = 𝜑 (indeed, we do not know that 𝜑 is elliptic
in most cases it is expected to be). Lacking this, our result looks rather amusing: The 𝐺(𝐸)-
representations in 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] arise from 𝜙, whereas the𝑊𝐸∙

-action is given in terms of
𝜑. Moreover, even if 𝜙 = 𝜑, it is not clear to us how the resulting parametrizations of Π𝜙(𝐺)
compare. At present, the only approach available to these questions is through the cohomol-
ogy of (global) Shimura varieties. It is known that 𝜙 = 𝜑 for inner forms of GL𝑛 and SL𝑛 for
general 𝐸 [6, 13], for inner forms of GSp4 and Sp4 when 𝐸 is unramified over ℚ𝑝 [10], for
some (similitude) unitary groups in an odd number of variables [22] when 𝐸 = ℚ𝑝, and for
special orthogonal and unramified unitary groups when 𝐸 is unramified [26]. Comparing the
parametrizations of the 𝐿-packet seems to be more subtle, however.

(3) One-dimensionality is known to hold in many cases. Examples include inner forms of SL𝑛,
Sp2𝑛, SO2𝑛+1 and unitary groups.Moreover, [15, Conjecture G] is known for the regular super-
cuspidal 𝐿-packets constructed by Kaletha for all 𝐺 split over a tame extension of 𝐸 and for 𝑝
sufficiently large, in [16]; see [7, 16]. We refer to the introduction of [13] for more details.

4.2 Vanishing

Recall that we assume Setup 4.1 throughout Section 4. One interesting aspect of Theorem 3.8 is its
uniformity when varying 𝜇∙: Only the𝑊𝐸∙

-representations change.† This observation can some-
times be used to propagate vanishing results for some 𝜇∙ to a larger collection.‡ To illustrate the
method, we reprove the strong Kottwitz conjecture for inner forms of GL𝑛, which was previously
proved by the first author [12, Theorem 1.9], using results on averaging functors from [1].

Theorem 4.7. Assume Setup 4.1 and that 𝐺 is an inner form of GL𝑛. Then 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] ≅ 𝜋 ⊠
𝑉𝜑, where the right hand is concentrated indegree 0 and𝜋 is the irreducible admissible representation
of 𝐺(𝐸) corresponding to 𝜑 under the usual local Langlands correspondence.

Proof. Note that we are in the stable situation here, so we need to show that 𝑖1∗ Act𝜒𝑏 (𝑖
𝑏
∗𝜌) is 𝜋

concentrated in degree 0. That it is a shift of 𝜋 follows from [13, Theorem 1.0.3], since its Fargues–
Scholze 𝐿-parameter is 𝜑. To prove vanishing, note that we can choose a minuscule cocharacter
𝜇𝑏 such that 𝑅Γ(𝐺, 𝑏, 𝜇𝑏)[𝜌] = 𝑖1∗ Act𝜒𝑏 (𝑖

𝑏
∗𝜌) ⊠𝑊𝜑, where𝑊 the dual of the irreducible repre-

sentation with extreme weight 𝜇𝑏. By [12, Theorem 1.6], 𝑅Γ(𝐺, 𝑏, 𝜇𝑏)[𝜌] vanishes outside degree
0, finishing the proof. □

Another trick that can sometimes be used is duality. Letting 𝔻 denote Verdier duality on
lis(Bun𝐺), one has

𝔻(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]) ≅ 𝔻(𝑖
1∗𝑇𝑉𝑖

𝑏
∗𝜌) ≅ 𝑖

1∗𝑇𝑉𝑖
𝑏
∗𝜌
∨ ≅ 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌

∨],

†A trivial consequence is that, for fixed (𝐺, 𝑏) and 𝜌, there exists an𝑁 such that𝐻𝑖(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]) vanishes for all |𝑖| > 𝑁
and all 𝜇∙.
‡Conjecture 1.1(2) was recently proven by the first author in [12] inmany cases where 𝜇∙ is a singleminuscule cocharacter.
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A NOTE ON THE COHOMOLOGY OF MODULI SPACES OF LOCAL SHTUKAS 19

as objects in lis(Bun𝐺) (that is, forgetting the 𝑊𝐸∙
-action), where we have used that 𝑖∗

1
= 𝑖!

1
,

𝑖𝑏!𝜌
∨ = 𝑖𝑏∗𝜌

∨ (by [6, Theorem IX.05(iv); 12, Theorem 1.3], since 𝜑 is elliptic), and the interplay
between 𝔻 and pullback/pushforward, and the Hecke operators [6, Theorem IX.0.1(i)]. This gives
us the following vanishing theorem. In its formulation, we note that there is a canonical isomor-
phism between the cocenters of𝐺 and𝐺𝑏 over𝐸, so any smooth character of𝐺(𝐸) can be naturally
viewed as a smooth character of 𝐺𝑏(𝐸) (and vice versa).

Proposition 4.8. Assume Setup 4.1, that the 𝛿𝑖 are one-dimensional, and that, writing
𝑖1∗ Act𝛿𝑖 (𝑖

𝑏
∗𝜌) = 𝜋𝑖[𝑛𝑖], the𝜋𝑖 are distinct. Assume further that there is a smooth character𝜒 of𝐺(𝐸)

such that 𝜌∨ ≅ 𝜌 ⊗ 𝜒 and 𝜋∨
𝑖
≅ 𝜋𝑖 ⊗ 𝜒 for all 𝑖. Then 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] is concentrated in degree 0.

Proof. Since 𝜌∨ ≅ 𝜌 ⊗ 𝜒, Verdier duality gives us that 𝔻(𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌]) ≅ 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌 ⊗ 𝜒].
Computing from the definitions, one sees that 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌 ⊗ 𝜒] ≅ 𝑅Γ(𝐺, 𝑏, 𝜇∙)[𝜌] ⊗ 𝜒. Thus,
evaluating both sides as a 𝐺(𝐸)-representation using Theorem 3.8 and Corollary 3.11, we get
that

𝑟⨁
𝑖=1

𝜋∨
𝑖
[−𝑛𝑖]

⊕dim𝑉𝜑,𝑖 ≅

𝑟⨁
𝑖=1

(𝜋𝑖 ⊗ 𝜒)[𝑛𝑖]
⊕dim𝑉𝜑,𝑖 .

Since 𝜋∨
𝑖
≅ 𝜋𝑖 ⊗ 𝜒 and the 𝜋𝑖 are assumed to be distinct, it follows that 𝑛𝑖 = 0 for all 𝑖 with non-

zero multiplicity, as desired. □

Remark 4.9. Let us finish with a few remarks on Proposition 4.8, and the vanishing conjecture
more generally.

(1) If 𝜑 is stable, the assumption 𝜋∨
𝑖
≅ 𝜋𝑖 ⊗ 𝜒 can be dropped, and instead deduced as a

consequence of the argument.
(2) If, in addition to the assumptions in Proposition 4.8, we also assume Setup 4.3, then the asser-

tion that the 𝜋𝑖 are distinct is equivalent to Π𝜙(𝐺) having size 𝑟. For example, this is true if
𝑆𝜙∕𝑍(𝐺)

𝑄 ≅ 𝑆𝜑∕𝑍(𝐺)
𝑄 and 𝐺 is quasisplit (then Π𝜙(𝐺) is in bijection with Irr(𝑆𝜑∕𝑍(𝐺)𝑄),

which is equal to {𝛿𝑖𝛿−1𝑗 ∣ 𝑖 = 1, … , 𝑟} for arbitrary 𝑗). On the other hand, if 𝐺 is the non-split
inner form of SL2 and 𝑆𝜑 = (ℤ∕2)2, then we know that 𝜙 = 𝜑 and that Π𝜙(𝐺) has size 1.

(3) Essential self-duality is a fairly common feature among representations of classical groups
and related groups. For example, it holds for all representations of GSp2g ; see [27, Remark 5]
(in this case𝜒 is determined by the central character and hence by𝜑). Other examples include
SO2𝑛+1 and the unique non-split inner form of GSp4.

(4) Conjecture 1.3(2) can sometimes be passed through isogenies. For example, one can deduce
it for SL𝑛 and Sp4 from the case of GL𝑛 and GSp4, respectively, using computations as in the
proof of [6, Theorem IX.6.1].
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