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ABSTRACT In recent years, several personalized assistants based on Al have been researched and developed
to help users make privacy-related decisions. These Al-driven Personalized Privacy Assistants (Al-driven
PPAs) can provide significant benefits for users, who might otherwise struggle with making decisions
about their personal data in online environments that often overload them with different privacy decision
requests. So far, no studies have systematically investigated the emerging topic of Al-driven PPAs, classifying
their underlying technologies, architecture and features, including decision types or the accuracy of their
decisions. To fill this gap, we present a Systematic Literature Review (SLR) to map the existing solutions
found in the scientific literature, which allows reasoning about existing approaches and open challenges
for this research field. We screened several hundred unique research papers over the recent years (2013-
2025), constructing a classification from 41 included papers. As a result, this SLR reviews several aspects of
existing research on Al-driven PPAs in terms of types of publications, contributions, methodological quality,
and other quantitative insights. Furthermore, we provide a comprehensive classification for Al-driven PPAs,
delving into their architectural choices, system contexts, types of Al used, data sources, types of decisions,
and control over decisions, among other facets. Based on our SLR, we further underline the research gaps
and challenges and formulate recommendations for the design and development of Al-driven PPAs as well
as avenues for future research.

INDEX TERMS Artificial intelligence, data protection, machine learning, privacy, privacy assistant,
systematic review.

I. INTRODUCTION

As the world becomes increasingly digitalized, people are
faced with a growing number of requests for decisions related
to their online privacy. Nowadays, individuals are using
several apps every day, visiting different websites, and the
number of smart gadgets and Internet of Things (IoT) devices
they use continues to grow [1]. Furthermore, to comply with
privacy laws such as the General Data Protection Regulation
(GDPR) [2], software systems frequently demand from us to
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make privacy-related decisions regarding our personal data:
Do you grant this permission? Do you want to accept the
cookies? Should this sensor be left on when you host friends?
Consequently, the cognitive burden increases, leaving users in
disarray, tired, and unable to decide in their best interests [3].

During the last decade, researchers have been building
privacy assistants to alleviate this burden and support users
in their decisions. One of the first research work in that
field has resulted in the patent on a Personalized Privacy
Assistants (PPAs), registered in 2023 in the United States
by Sadeh et al. [4]). With the progress made in Artificial
Intelligence (Al), it comes at no surprise that many of the
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privacy assistants proposed or developed in recent years
leverage Al technology, notably to enable better personalized
support.

This personalization can enhance the quality of decision
support, adapted to the individuals’ needs, preferences and
current context. However, the extent to which Al drives
these Al-driven PPAs, their efficiency, privacy-friendliness,
functionality, and how legal requirements are eventually
addressed remains unclear. In fact, to the best of our
knowledge, there have been no surveys or systematic reviews
on the topic of Al-driven PPAs, despite the substantial amount
of work published on the topic in the recent years. This
lack of systematization of knowledge makes it more difficult
for other researchers and developers to reason about the
opportunities that current Al-driven PPAs may offer. It also
makes it more difficult to identify limitations and existing
gaps to be addressed, as well as open research challenges that
remain for the future.

For this reason, we present a Systematic Literature Review
(SLR) of the body of knowledge to provide a common
vocabulary and better compare, categorize and analyze the
different Al-driven PPA solutions. In doing so, we aim
to draw insights and lessons for future assistants and
to formulate better recommendations for research, design,
and development of Al-driven PPAs. Therefore, this SLR
addresses the following Research Questions (RQs):

o RQ1: What is the current state of the literature on Al-
driven PPAs for automated support of end-users privacy
decisions in IT systems?

o RQ2: What are the key attributes and properties of the
proposed Al-driven PPAs in the literature?

Here, we consider agents and assistants in a broad
sense (any logical entity able to support users, including
unimplemented theoretical models, see our selection criteria
in Table 1); Al in a generic sense as well (see Section II-C);
and, privacy decisions as the individual’s decisions regarding
their personal information management (see Section II-A).

To address our RQs, we performed an SLR on research
papers providing technical solutions, published between
2013 and 2025 in peer-reviewed venues, including a snow-
balling process until early February 2025. We screened
several hundred papers from IEEE, ACM, Scopus, and Web
of Science, resulting in 41 selected papers after several
rounds of snowballing. We extensively read and analyzed
all included papers, and the information extracted forms the
basis of our work.

Our SLR results in the following contributions:

o A Classification for Al-driven PPAs — We propose
the first classification for Al-driven PPAs, providing a
common vocabulary for designers of such systems.

o Data Charting & Quantification — We charted and
quantified several aspects of Al-driven PPAs based on
the aforementioned classification.

o Research Gaps & Challenges — We underline the
current gaps in the state of the art and highlight
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challenges for designing Al-driven PPAs based on our
data.

o Recommendations & Research Avenues — We formu-
late recommendations for improving Al-driven PPAs,
and propose several avenues for future research.

In the following sections, we present the background
and related work in Section II. The study’s methodology
is detailed in Section III. The results and classification are
organized and presented in Sections IV and V. Based on
the findings, we present our discussion of research gaps and
future work in Section VI. Lastly, Section VIII concludes our
work.

Il. BACKGROUND
As a background, this section first provides an overview of
different types of privacy decisions for which individuals
could receive support from Al-driven PPAs. Then, it sum-
marizes legal requirements for transparency that Al-driven
PPAs should meet, and refers to a classification scheme of
explainable Al that we are using for our classification.
When discussing legal requirements, we will primarily
refer in the section and for the rest of this paper to the
European Legal Framework, including the GDPR and the
Al Act [5], since the study was conducted in Europe with
the support of a European funding foundation. Moreover, the
GDPR has been regarded as the “gold standard” for data
protection with a territorial scope that goes beyond Europe,
and is therefore also used as a point of reference.

A. PRIVACY DECISIONS

Among the most notable definitions, Westin [6] has defined
privacy as the right to informational self-determination,
meaning that individuals should have the right fo decide for
themselves when, how, and what information about them
is communicated to others. As mentioned, in the EU, the
GDPR emphasizes that individuals should have control of
their personal data (Recital 7), and thus should be empowered
to make decisions about their data as one prerequisite for
exercising such control. Delving deeper into this notion of
privacy decisions, we further elaborate on this concept in the
following subsections.

1) INDIVIDUAL PRIVACY DECISIONS REGULATED BY LAWS
Some privacy decisions individuals can make to exercise
control over their data is regulated under the GDPR and
other privacy laws. These decisions notably include, but
are not limited to, the decisions to grant or to withdraw
consent to data collection and processing. Art. 4 (11) of the
GDPR defines ‘consent’ of data subjects as any freely given,
specific, informed, and unambiguous indication of the data
subject’s wishes by which they, by a statement or by a clear
affirmative action, signifies agreement to the processing of
personal data relating to them.

Moreover, the GDPR and most other privacy laws regulate
further decisions to exercise data subject rights granted by
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the respective laws. For instance, according to Art. 15-
22 GDPR, data subjects have the rights to access data, request
rectification or deletion of data, export data, and object to
direct marketing and profiling. Data subjects can also object
in cases where the legal ground for the processing is public
interest or legitimate interest, or exercise their right not to be
subject to automated decision-making.

Also the Al act (Art. 14) provides individuals with the right
to Human Oversight for critical decision-making processes
for high-risk Al systems, including the right to human review
and potential override of automated decisions.

2) FURTHER TYPES OF PRIVACY DECISIONS

Further types of privacy decisions concerning users’ choices
regarding the use of their data by others, which are not
directly mentioned or regulated by the GDPR, include
decisions of individuals to publish or share data on their own
initiative, e.g., in social networks. In these cases, data sharing
has typically not been formally triggered by a consent request
to allow data sharing with another party.

Moreover, privacy decisions encompass privacy permis-
sion settings (or access control rights), which grant others
certain rights for using their data and are, for instance,
typically used for permission systems of mobile phone
operating systems, such as Android or iOS. Setting privacy
permissions on mobile operating systems often requires
consent at installation or during runtime. However, instead of
consent, other legal grounds — such as a contract (Art. 6 (1)(b)
GDPR) —, can be used, e.g., for a banking app to forward
account information when transferring money [7]. Let us
also note the peculiar case of Global Privacy Control (GPC),
aunary signal that permits or prohibits third-party tracking on
the browser [8]. Due to its enforceability under the California
Consumer Privacy Act (CCPA) [9], it is regulated by a privacy
law but is technically more akin to a privacy permission.

Additionally, some privacy-enhancing technologies
(PETs) and protocols allow users to decide and set privacy
preferences, which are simply indications of the users’
privacy wishes of how their data should be used without
actually granting any rights to others, and thus without legal
mandate. Privacy preferences have, for instance, been used
earlier by the Platform for Privacy Preferences (P3P) [10]
or Do Not Track (DNT) [11], as an example for signals that
can be set manually in browser settings for allowing users to
specify their privacy choices.

B. REQUIREMENTS FOR TRANSPARENCY

Transparency of data processing is an important prerequisite
for users for making well-informed decisions, and should
therefore be provided by any privacy assistants that should
support users in decision-making. In cases where the data
controllers of the Al-driven PPAs are not the data subjects
themselves, the controllers should provide the data subjects
with privacy policy information ex-ante at the time when
data is obtained from them according to Art. 13 GDPR, and
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ex-post through the right to access granted in Art. 15 GDPR.
This should particularly include information about purposes
of processing, data categories concerned, but also information
about the logic involved and significance, and envisioned
consequences of automated decision-making and profiling
performed by the Al-driven PPAs.

The EU AI Act also includes obligations for transparency
for the producers and deployers of limited-risk and high-risk
Al systems (Art. 50). While the providers of limited-risk Al
systems have to mainly ensure that humans are informed that
Al systems are used, high-risk Al systems require that further
clear, comprehensible and adequate information is given to
the deployer (Art. 13), traceability of results via logging (Art.
12) and appropriate human oversight (Art. 14). However, Al-
driven PPAs are typically not in the high-risk category, since
they are used for users’ own personal privacy management,
which should typically not interfere with the fundamental
rights of others. Exceptions could, however, be Al-driven
PPAs that are, for example, used for setting permissions for
safety-critical applications impacting the safety of the users
or others.

Also, Ethics Guidelines for Trustworthy Al, promoted
by the EU Commission,! emphasize the requirement for
transparency and explainability for Al systems to be deemed
trustworthy.

C. Al FOR DECISION-MAKING

Al is a generic term for various strategies and techniques
enabling computers and machines to simulate human intel-
ligence and problem-solving capabilities [12]. Machine
learning (ML) is a field of Al (we subsume the former under
the latter in the rest of the document) that develops and
studies statistical algorithms and models, draws inferences
from patterns in data, and learns and adapts without follow-
ing explicit instructions. Al-powered tools can particularly
lighten the user’s cognitive load and thereby improve their
decision-making, e.g., by decision support, augmentation,
or automation.

While there are different ways to categorize Al systems,
we refer in the present work to the survey paper on
eXplainable AI (XAI) by Arrieta et al. [13]. They distinguish
between transparent models and those requiring post-hoc
explainability? (denoted non-inherently transparent in this
paper). We use this reference because Al-supported decisions
must be explained under specific circumstances according to
the GDPR and the Al Act [14].

1 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai

2According to them, ‘‘Post-hoc explainability targets models that are not
readily interpretable by design by resorting to diverse means to enhance
their interpretability, such as text explanations, visual explanations, local
explanations, explanations by example, explanations by simplification and
feature relevance explanations techniques [13].”
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1) TRANSPARENT Al MODELS

In their words: “A model is considered to be transparent
if by itself it is understandable.” [13]. An overview with
short definitions of transparent Al models, which were used
by the solutions surveyed in this paper, is provided below:
Decision trees are a method used for classification and
regression tasks, which model decisions and their possible
consequences as a tree-like structure of conditions and
actions. K-nearest neighbors is a simple algorithm used
for classification and regression, where the output is based
on the majority class or average of the k-nearest data
points in the feature space. Bayesian models are statistical
models that apply Bayes’ theorem to update the probability
of a hypothesis as more evidence or information becomes
available. Rule-based learning identifies and utilizes a set
of relational rules to make predictions or classifications
based on input data. Rules can take the form of simple
conditional if-then rules or more complex combinations
of simple rules to form their knowledge. A Generalized
Additive Model is a statistical framework that extends
generalized linear models by allowing the linear predictor
to depend on smooth functions of the predictor variables,
enabling more flexible modeling of non-linear relationships.
Hierarchical clustering is a method of cluster analysis that
builds a hierarchy of clusters either through a bottom-up
approach (agglomerative) or a top-down approach (divisive),
creating a dendrogram to represent the nested grouping of
data points.

2) NON-INTRINSICALLY TRANSPARENT Al MODELS

Parts of the surveyed Al-driven PPAs used non-inherently
transparent Al models, including neural networks (especially
deep and convoluted) and Support Vector Machines (SVM),
as well as reinforcement learning [15]. A short overview with
definitions of these non-inherently transparent AI models
follows below: Neural networks are a class of machine
learning models inspired by the structure and function of
biological neural networks, consisting of interconnected
layers of artificial neurons that process input data to produce
outputs for tasks such as classification, regression, and pattern
recognition, and a deep neural network is an artificial neural
network with multiple layers between the input and output
layers. Random forests are ensemble learning methods
for classification, regression and other tasks that works
by creating a multitude of decision trees during training.
AdaBoost is a machine learning ensemble meta-algorithm
that combines multiple weak classifiers to create a strong
classifier, where each new weak learner focuses on the
errors of the previous ones to improve overall accuracy.
Support Vector Machines are supervised learning models
that analyze data for classification and regression tasks by
finding the optimal hyperplane that best separates different
classes in the feature space. Reinforcement learning is a type
of machine learning where an agent learns to make decisions
by taking actions in an environment to maximize cumulative
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reward. Game theory is a mathematical framework that
studies strategic interactions between rational decision-
makers, analyzing how their choices influence outcomes.
Large language models are advanced Al systems designed
to understand and generate human-like text based on vast
amounts of training data.

Nonetheless, models that are not deemed intrinsically trans-
parent can be made explainable through the use of post-hoc
techniques.

lll. METHODOLOGY

This study adopts the widely known methodology for system-
atic literature reviews (SLRs) proposed by Kitchenham [16].
The SLR methodology offers us a well-defined and rigorous
sequence of methodological steps consisting of three main
phases: (1) planning, (2) conducting, and (3) reporting the
review. An SLR Protocol that describes the entire research
process has been written for this study. Furthermore, we make
our research data openly available in a GitHub repository for
reproducibility.> Our material comprises the citation files of
each query, the Data Extraction Forms (DEFs) of the selected
papers, and the charting spreadsheet used to compile our data.
We refer to these documents for methodological details.

A. PLANNING THE REVIEW

The first activity of the planning phase was to determine
the need for this SLR. Several databases were searched to
verify if any surveys or reviews had been conducted on Al-
driven PPAs. Search terms such as privacy, data protection,
assistant, agent, artificial intelligence, and machine learning
were used. However, we could not identify any survey or
systematic reviews on the topic, reassuring the need for an
SLR. The research questions, presented in Section I, guided
the remaining phases of this SLR with respect to the search
process, selection criteria, and data synthesis.

B. CONDUCTING THE REVIEW
1) SEARCH STRATEGY
Based on our RQs and previous preliminary searches when
designing the SLR Protocol, we identified a list of nine
relevant keywords, i.e., privacy, data protection, assistant,
agent, artificial intelligence, machine learning, intelligent,
automatic, and personalized. These keywords were used to
construct the search query in Listing 1. As such, the search
query targets papers working on three joint topics: 1) privacy
(or data protection), using either 2) an assistant or an agent,
and leveraging 3) artificial intelligence or personalization.
Four scientific databases were selected, i.e., Scopus, Web
of Science, IEEE Xplore, and ACM Digital Library, due
to their high relevance to the areas of computer science
and engineering, comprising the vast majority of published
research in the field. We also specified inclusion and
exclusion criteria (see Table 1) used during the screening of
publications retrieved from the databases. Marky et al. [17]

3 https://github.com/Victor-Morel/SLR_AI_PPA
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LisTING 1 Composition of Search Query for Literature Search.

Search Query = {
(privacy OR "data protection") AND
(assistantx OR agent*) AND ("artificial
intelligence" OR "machinexlearning"
OR intelligent OR automat* OR personalixed)

TABLE 1. Criteria for the inclusion and exclusion of studies.

Inclusion Criteria

- Provides a technical solution (implemented or theoretical) to
help end-users automate personal (and personalized) privacy
decisions with an assistant (or artificial agent) in IT systems.

- Papers from 2013 onward to concentrate on the state-of-the-art.
- The concept of Al needs to be explicitly stated in the papers.

TABLE 2. Summary of information included in the DEFs.

Extracted Information

- Bibliographic information, such as title, abstract, authors and
affiliations, venues, year of publication, etc.

- Key information of the Al-driven PPA, such as its source(s)
of data, its eventual architecture, its system context, the type of
privacy decision considered, the accuracy of the decisions, the
type of Al used, etc.

- The presence of a user study, and performed its critical appraisal
(see below).

- Extent of evaluation, a scale of validation activity that is mea-
sured.

- Quality assessment and critical appraisal of the studies that have
validated or evaluated the Al-driven PPA.

- Features of user’s control over decisions (initially guided by EU
consent requirements).

Exclusion Criteria

- Papers with solutions that are purely theoretical without sub-
stantial explanations on how they could be implemented in prac-
tice.

- Papers with solutions that solely automate the analysis of
privacy policies but without any type of personalization.

- Papers with poor scientific quality (e.g., lack objectives or re-
search questions, the methodology is not described, the solution
is insufficiently/vaguely described, etc.).

is a good illustration of a relevant paper not meeting our
selection criteria. In spite of providing a technical solution
to automate privacy decisions (explicitly called a PPA), the
paper does not use Al and hence is not included in our list of
papers. Bollinger et al. [18] provides another example of an
excluded yet relevant paper. The paper provides a technical
solution for automating privacy decisions and uses Al, but
does not personalize the decisions.

Before starting the search process, two authors piloted
the searches on all databases and ran a calibration exercise
to verify the consistency of the inclusion criteria. For that,
the authors independently screened 10% of the results and
discussed their decisions. The conflicts were all discussed
and solved, sometimes with the help of the third author. This
process was repeated a second time, screening another 10%
of the papers at a point that the authors fully agreed with the
consistency of the selection process.

2) DATA MANAGEMENT

To manage the screening process, we exported search results
from each database and imported them to the RAYYAN
software (https://rayyan.ai/), allowing two reviewers to inde-
pendently select papers (i.e., double-blinded) and to manage
conflicts by a third reviewer. Duplicated publications were
also removed using RAYYAN during the selection process.
Bibliographies of final results were exported to Zotero (for
citing and sharing research).

3) SELECTION PROCESS
Figure 1 presents an overview of the selection process.

The querying of the databases mentioned above on October
19, 2023, yielded 2386 papers and 1697 unique entries
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after removing duplicates. The screening phase lasted until
November 23, 2023, and resulted in the selection of
33 papers. Two authors then read 10% of these 33 papers
(3) and adjusted the DEF based on mutual feedback. This
step helped us add new important fields to the DEF and
consistently extract data from the papers.

The first data extraction phase, consisting of a full reading
of each of the 33 papers, was performed over weeks 4 to 7
(included) in 2024. Fifteen papers were excluded after full
reading for different reasons: they were duplicates (i.e., same
work published in different venues); they did not provide
any technical solution; the automated decisions were not
personalized to an end user; Al was not used for automating
decisions; or they are of poor scientific quality (see our
criteria in Table 1); one paper was not available for download,
we could not access it even after reaching out the authors.

We then proceeded to several snowballing phases [19],
during which we checked the abstracts of all seemingly
relevant* papers cited (backward snowballing), and screened
citing papers (forward snowballing). The snowballing pro-
cess lasted from week 8 to week 19 of 2024 and resulted in
21 additional papers after exclusion, for a total of 39 papers
(33-15+21). We performed an update of our results in
February 2025, repeating the whole process in a 2nd round of
searches. This update led us to include one additional paper
through the database searches and another one through the
snowballing process, for a total of 41 papers.

4) DATA EXTRACTION AND ANALYSIS
The data extracted in the DEFs was compiled and further
organized in spreadsheets during weeks 20-21 in 2024.
This process also included the initial aggregation of data
and the creation of frequency charts across several data
categories (e.g., studies per year, types of publications,
authors and affiliations, etc.). Table 2 shows a summary of
the components extracted from the included studies.

It is also worth noting that we classified publications
by their types of contributions according to the following

4We only assessed papers cited in relevant sections, e.g., related work.
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205 =
IEEE
262 I
I After duplicate removal
Scopus Before duplicate removal 1,697
1,337 2,386 I

Scopus 2025
519

Web of Science
582
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ACM 2025 _ 816
85

Web of Science 2025 _
50

IEEE 2025
162

FIGURE 1. Sankey chart of the selection process.

items proposed by Kuhrmann et al. [20] and Shaw [21] (i.e.,
all that apply): (i) model, as a representation of observed
reality by concepts after conceptualization; (ii) theory,
as a construct of cause-effect relationships; (iii) framework,
including frameworks/methods (related to automated privacy
decisions); (iv) guidelines, as a list of advice; (v) lessons
learned, as a set of outcomes from obtained results; (vi)
advice, as recommendations (from opinion); and, (vii) tool,
as tools to automate privacy decisions.

Although we attempted to extract as much data from
the studies as possible using a DEF, we found that, during
the data analysis process, there was a need to further
categorize studies across other facets. For instance, additional
information was compiled in the spreadsheets, such as a
high-level categorization of certain fields (i.e., the type of Al
used) or a critical appraisal of the user studies presented in the
selected papers, although only when those user studies were
used to evaluate the Al-driven PPA, and not when they were
used for data collection to build datasets.

This collection of facets created during the study design
and data analysis processes forms the basis of the work’s final
classification scheme, presented as part of the main results.
All authors were involved in the data analysis process and the
definition of facets that further classify studies on the topic.

For the critical appraisal, we used the CAT (Critically
Appraised Topic) Manager App of CEBMA (the Center
for Evidence-Based Management) [63], which provides a
practical yet rigorous approach to evaluate studies based on
objective criteria. It helps determine a study’s trustworthiness
regarding cause and effect questions. Once a study is
evaluated, the possible outcomes are: Very high (A+), High
(A), Moderate (B), Limited (C), Low (D), or Very low (D-).
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Snowballing 2025

_ Excluded

Initial selection 15
33 Included
18 _ Selected
Snowballing 41
21

Update 2025
1 2

Update 2025 duplicates removed

597

By definition, an Al-driven PPA leverages Al techniques.
We therefore collected information about the Type of Al
used. Al models rely on data for training and decision-
making. As such, we extracted the source of data. During the
adjustment of the DEF, we observed that Al-driven PPAs are
usually designed for a specific system context, and for one or
several types of decision. Connected to the system context,
we extracted the choice of architecture of the implementation
(if any) to analyze the trust implications.

We also collected the methods for an empirical assessment,
presence, and quality of user studies, or the means used
to measure the accuracy, to gain insights on eventual
benchmarks of Al-driven PPAs. Studies can be classi-
fied as evaluation or validation research, as proposed by
Wieringa et al. [64]. An evaluation works in real-world prac-
tice and is implementing/deploying the solution or testing in
an actual project with real test users, such as real case studies
and realistic user testing of prototypes/systems. A validation
is a limited illustrative or hypothetical “case study’’ or “use
case” performed as a lab experiment. In general practice,
prototypes are often validated by cross-sectional studies.

Finally, initially guided by legal requirements for con-
sent and the exercise of data subject rights under the
GDPR (although eventually, no paper considers consent),
we extracted what became user control over decisions.

C. REPORTING THE REVIEW

Based on the data analysis, a whole coherent narrative was
written by the research team, i.e., this SLR article, conveying
all the results, our interpretation of the main findings, and
identifying research gaps. This synthesis on Al-driven PPAs
is thus reported in the following sections.
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TABLE 3. This table informs the type of contribution, informing whether
the surveyed solution presents a framework, a tool (i.e. with an
implementation), a model, lessons learned, or advice.

Type of contribution
B
Year Publication —‘g E;
z — ') E ]
o T & &5 O
5322 %3
L B = B g <
2014 | Xie etal. [22] ° °
2015 | Apolinarski et al. [23] o o
2015 | Hirschprung et al. [24] . .
2015 | Squicciarini et al. [25] ° °
2016 | Liuetal. [26] . .
2016 | Albertini et al. [27] °
2016 | Dong et al. [28] ° °
2017 | Baarslag et al. [29] o o .
2017 | Fogues et al. [30] .
2017 | Zhong et al. [31] °
2017 | Misra et al. [32] .
2017 | Nakamura et al. [33] .
2017 | Olejnik et al. [34] o o
2018 | Das et al. [35] .
2018 | Tanetal. [36] °
2018 | Wijesekera et al. [37] . °
2018 | Yuetal. [38] o o
2018 | Bahirat et al. [39] .
2018 | Raber et al. [40] o o °
2019 | Klingensmith et al. [41] .
2019 | Barbosa et al. [42] ° °
2019 | Alom et al. [43] .
2019 | Alom et al. [44] .
2020 | Kasaraneni et al. [45] o o
2020 | Kaur et al. [46] °
2020 | Botti-Cebria et al. [47] .
2020 | Kokciyan et al. [48] °
2020 | Sanchez et al. [49] .
2021 | Kaur et al. [50] °
2021 | Lobner et al. [51] °
2022 | Filipczuk et al. [52] o o
2022 | Hirschprung et al. [53] . .
2022 | Kokciyan et al. [54] °
2022 | Ulusoy et al. [55] .
2022 | Zhan et al. [56] °
2022 | Brandio et al. [57] .
2022 | Mendes et al. [58] o o °
2022 | Shanmugarasa et al. [59] o o
2023 | Ayci et al. [60] o o
2023 | Serramia et al. [61] o o
2024 | Wang et al. [62] .

IV. SUMMARY OF DATA CHARTING RESULTS

This section provides an overview of the quantitative
insights generated through the data charting process (e.g.,
publications per year, citations, types of decisions). The main
findings related to the critical appraisals are also introduced
in this section. It is worth noting, nonetheless, that the
classification features are further detailed in the following
Section V.

Among the 41 papers surveyed, we tallied 15 different
countries for the authors’ affiliations (see Table 4), with the
USA and UK leading in numbers. About 55% (n = 22) of the
selected publications were published from 2019 to 2024, with
the year 2021 being the most productive with 8 publications
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TABLE 4. Countries of affiliation of authors of selected papers.

Countries Total || Countries Total
United States 14 China 2
United Kingdom 6 Israel 2
Japan 4 Portugal 2
Netherlands 4 Switzerland 1
Italy 4 Turkey 1
Germany 4 Canada 1
Spain 3 Australia 1
India 2

TABLE 5. Number of publications per year.

Year  N.of Publications || Year N. of Publications

2013 0 2019 4
2014 1 2020 5
2015 3 2021 2
2016 3 2022 8
2017 6 2023 2
2018 5 2024 1

(see Table 5). At the time of data collection, papers were cited
between 0 and 275 times with an average of 38.56 citations,
a median of 14, and a standard deviation of 59, indicating a
power law distribution of the citation count. The most cited
papers are Liu et al. [26] (n = 275), Yu et al. [38] (n = 199),
and Squicciarini et al. [25] (n = 130) (numbers at the time of
data collection).

As shown in Table 6, regarding the sources of data
used by the Al-driven PPAs, context data, attitudinal data,
and metadata were the most prevalent. We observed a
relatively balanced distribution when it comes to the types of
decisions (between 12 and 15 for each type) and the system
contexts (between 11 and 13, with two outliers for Cloud
and Intelligent retail store). For the types of Al systems
that we were able to classify, most models were deemed
non-intrinsically transparent (NIT, n = 14), followed by
transparent (T, n = 8) and partially transparent (PT, n = 4)
models. Note also that Das et al. [35] did not specify the
type of Al used in their paper, we were therefore unable to
categorize their solution in that respect (under Type of Al
used).

In Table 3, the publications were also classified by their
types of contributions, according to the categories proposed
by Kuhrmann et al. [20] and Shaw [21]. We observed a
prevalence of models (n = 24) and tools (n = 21), followed
by frameworks (n = 9). Nonetheless, these models, tools,
and frameworks lack empirical assessment, an issue further
analyzed in Section V-F.

Finally, the results of our critical appraisal can be found
in Table 7. Out of the 41 publications, only 15 presented
a user study, i.e., qualitative research that is suitable to be
critically appraised. In terms of quality, they mostly scored
“low” or “very low” (n = 9) according to the CEBMA
checklist. Exceptionally, only the studies of Liu et al. [26]
and Baarslag et al. [29] were appraised as of high quality.
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This suggests that the empirical evidence around Al-driven
PPAs remains incipient, and existing solutions can be further
tested in real-world settings, a challenge (or opportunity) that
is discussed in Section VI.

V. CLASSIFICATION FOR AI-DRIVEN PPAS

We provide in this section a classification for Al-driven
PPAs as the main contribution of this SLR. Summarized in
Figure 2, the classification comprises several dimensions,
i.e., features typically considered in the design of such an
assistant (see also Tables 6 and 7). These dimensions are the
type of decision (Section V-A), the type of Al (Section V-B)
and the source of data (Section V-C) used in the decision,
the system context (Section V-D), the choice architecture
of its eventual implementation (Section V-E), the empirical
assessment (Section V-F), and the extent to which users have
control over the decisions (Section V-G).

The classification and its dimensions are data-driven,
in the sense that they were derived based on what is described
in the papers, reflecting the current state of the literature. For
example, considering the category of system contexts, more
dimensions could be envisioned, but we limited it to the five
dimensions (i.e., mobile apps, social media, [oT, cloud, and
intelligent retail stores) that were found in the papers. Each
feature will be explored in more detail in this section, and
substantiated with non-exhaustive examples for each possible
option, while an overview is provided in Figure 2.

Note that not all dimensions are necessary for composing
an Al-driven PPA. The dimensions for the type of Al,
source of data, type of decision, and system context are
“mandatory,” consisting of essential requisites that an Al-
driven PPA needs to consider (solid boxes in Figure 2).
Other dimensions such as the empirical assessment, choice
architecture, and user control over decisions are “optional”
since not all the identified Al-driven PPAs were evaluated,
some do not have an implementation (and therefore an
architecture), and some (regrettably) do not empower users
with much control for various reasons (dashed boxes in
Figure 2).

Furthermore, note that most but not all dimensions are non-
exclusive. For instance, it is possible to combine different
types of data and/or Al models (non-exclusive), but the
system context is often exclusive in the sense that solutions
are often designed for a specific system context.

A. TYPE OF DECISION

Decisions taken by an Al-driven PPA can be of different
types, and it is essential to distinguish them to assess the
possibilities they offer. Indeed, some decisions — such as
permissions — have a binding character, i.e., they constrain
the system to act according to the user’s choice, while others
do not, such as preferences. Note that it may not always be
possible to distinguish between each type of decision clearly
(as discussed in Section II-A2). Other types of decisions with
different implications regarding their enforcement can be
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envisioned by an Al-driven PPA (such as consent or deletion
requests, see Section II-A).

1) PERMISSIONS

The first type of decisions that many Al-driven PPAs
assist the users with is permissions, which, as discussed in
Section II-A2, correspond to access control settings. Per-
missions are system-specific and binding, as the underlying
operating system should enforce them.

We typically find mobile app permissions (e.g., in Baarslag
et al. [29], mobile apps are addressed in 11 papers), but they
are not restricted to the mobile environment. Al-driven PPAs
can deal with permissions in IoT environments (see, e.g., [41],
IoT is covered by 13 papers) or in the cloud [24].

2) PREFERENCES

The second type of decision covered by the literature is
preferences, which, unlike permission settings, should be
understood as expressions of will. Several works refer to
preferences while they actually deal with permissions [24],
[26], [37], [52], [59]. It is indeed common to talk about
preferences imprecisely, but they should not be confused with
permissions that have a binding property.

3) DATA SHARING

Data sharing is the third type of privacy decision of Al-
driven PPAs encountered in the reviewed literature, for which
the binding character is uncertain for users. For instance,
assessing whether a limitation in the audience is enforced is
not always possible from a user point of view because the
underlying technical system is inaccessible to them, see, e.g.,
Ulusoy and Yolum [55]. Typically, it can be difficult or even
impossible to assess whether most social media platforms
strictly account for the user’s privacy decisions, or merely
welcome them as recommendations to be applied only if
possible. Papers classified under this type of decision usually
do not mention the binding character of their solution (or the
lack thereof).

B. Al TECHNOLOGY USED

Another significant characteristic of Al-driven PPAs is the
type of Al used. Many solutions are based on machine
learning models, such as supervised ML (classification),
non-supervised ML (clustering), and reinforcement learning,
sometimes combined. It is, however, also possible to find
older Al techniques grouped under the umbrella of expert or
rule-based systems.

We also classified the different Al technologies used by
the Al-driven PPAs reviewed regarding their explainability,
or their inherent transparency. However, XAI is only
explicitly addressed by one work [51]; the other models are
therefore categorized based on Arrieta et al. [13]’s taxonomy,
which defines non-ML based systems as Al (including
rule-based). For classification models, we annotated T for
Transparent in Table 6, NIT for Not-Inherently Transparent,
and PT for Partially Transparent when the solution relies on
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TABLE 6. Summary table of our classification, part 1. It presents the mandatory features of Al-driven PPAs, namely the type of decision, the type of Al
used (for which we specified whether the classification model is Transparent (T), Not-Inherently Transparent (NIT), or Partially Transparent (PT) because
several models are used), the type of source of data, and the system context (note that IRS stands for Intelligent Retail Store). An empty field signifies
that the solution does not exhibit the characteristic (e.g., does not consider Y type of decision).

Type of decision | Type of Al used Type of source of data System context
2 g g £
= = S < w S
Year | Publication é) 8 %D '% & § ';'% % % . o :; % g S
z2 52 [E § 2375 _gE 8k
E & = 2 z o 5 = S |8 8 & = £ B |8 & 2
5 ¥ = .S 2 2 & 3 4| BE & 8 &5 © | 8 B 2
L £ A ) O 3 2 30 < =2 A 0 Al a 8 U K
2014 | Xieetal. [22] . NIT °
2015 | Apolinarski et al. [23] . NIT ° °
2015 | Hirschprung et al. [24] . . . .
2015 | Squicciarini et al. [25] . . . °
2016 | Liuetal. [26] . T ° ° °
2016 | Albertini et al. [27] . . °
2016 | Dong et al. [28] . T ° ° °
2017 | Baarslag et al. [29] ° ° . ° °
2017 | Fogues et al. [30] . PT o o °
2017 | Zhongetal. [31] . NIT ° ° °
2017 | Misra et al. [32] ° NIT ° ° °
2017 | Nakamura et al. [33] . NIT . .
2017 | Olejnik et al. [34] . T o o °
2018 | Das et al. [35] . . .
2018 | Tanetal. [36] . T . °
2018 | Wijesekera et al. [37] . NIT ° e o °
2018 | Yuetal. [38] ° NIT ° ° °
2018 | Babhirat et al. [39] ° T ° .
2018 | Raber et al. [40] ° T . . °
2019 | Klingensmith et al. [41] . NIT . . .
2019 | Barbosa et al. [42] . PT o o °
2019 | Alom et al. [43] . PT o o
2019 | Alom et al. [44] . NIT . ° .
2020 | Kasaraneni et al. [45] ° T ° . °
2020 | Kaur et al. [46] . NIT ° ° ° .
2020 | Botti-Cebria et al. [47] . PT . .
2020 | Kokciyan et al. [48] . ° ° °
2020 | Sanchez et al. [49] . . . .
2021 Kaur et al. [50] . . . . ° °
2021 | Lobneretal. [51] . T e o ° °
2022 | Filipczuk et al. [52] . ° . . .
2022 | Hirschprung et al. [53] . . . .
2022 | Kokciyan et al. [54] . ° ° ° °
2022 | Ulusoy et al. [55] . ° ° . °
2022 | Zhan et al. [56] . o o . °
2022 | Brandio et al. [57] . NIT o ° °
2022 | Mendes et al. [58] . NIT . .
2022 | Shanmugarasaetal. [S9] | e ° e o o o .
2023 | Aycietal. [60] ° NIT e o °
2023 | Serramia et al. [61] . o o .
2024 | Wang et al. [62] . e | e o o o o °

models with different levels of transparency. Note that LLMs
were not considered in Arrieta et al., we nonetheless classify
them as non-inherently transparent.

1) TRANSPARENT
a: CLASSIFICATION
Supervised machine learning, also called classification mod-
els, is a common set of techniques deployed in Al-driven
PPAs. In this context, a model is trained to classify an object
of decision into a choice tailored to the users’ desires.
Transparent classification models [13] (used in 8 papers)
are composed of decision trees (used for instance
in Bahirat et al. [39]), k-nearest neighbors (leveraged in
Botti-Cebria et al. [47]), and Bayesian models (see
Olejnik et al. [34]).
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b: CLUSTERING

Several works use clustering techniques for their Al-driven
PPA. In this context, clustering is classically used to create
a set of privacy profiles, i.e., an archetypal ensemble of
default parameters (for preferences or permissions) to which
a user is then assigned. Clustering algorithms (leveraged in
6 papers) used are hierarchical clustering [26], k-means [57],
k-modes [59], although several papers did not disclose the
exact method used, such as Hirschprung et al. [24].

¢: RULE-BASED

Al-driven PPAs can be powered by non-machine-learning
algorithms, based instead on rules (e.g., Albertini et al. [27]
implement association rules). This comprises theoretical as
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TABLE 7. Summary table of our classification, part 2. It presents the optional features of Al-driven PPAs, such the Architecture, under which we denote
with “~" when the criterion is not applicable (no implementation/tool is presented) and when the solution presents an implementation, but the paper did
not specify enough information to infer its architecture. For user control over decisions, we specify the elements present to inform users under Informed
(type of Data, Purpose, Controller). It also presents the accuracy (if any) of the predictions (see Section V-F); the type of user control over decisions; the
presence or not of a user study, and the type of user study if applicable; and the results of our critical appraisal (see Section 111-B4).

Architecture User control over decision
3
Year Publication g Accuracy User study Critical appraisal
3 |3 H o

- & £ |t z £ £

g E3 s E g E

iz 2 |E 2 : 2
2014 Xie et al. [22] - - - No Yes Yes & No 68% Online user experiment o -
2015 Apolinarski et al. [23] . D Yes Yes No - No -
2015 Hirschprung et al. [24] - - - D No P Yes No - Online qualitative survey D-, very low (55%)
2015 Squicciarini et al. [25] - D Yes Yes No 92.53% Cross sectional study © D-, very low (55%)
2016 Liu et al. [26] ? D,P Yes Yes Yes 78.7% Randomized controlled studies d A, high (90%)
2016 Albertini et al. [27] . D Yes No No - Cross-sectional study D, very low (55%)
2016 Dong et al. [28] — — - — - - - 89,8% F1 Case studies -
2017 Baarslag et al. [29] . . Unclear Yes Yes No - Randomized controlled study © A, high (90%)
2017 Fogues et al. [30] . No No No No Around 50% Online survey o -
2017 Zhong et al. [31] - - - - - - - 79% Survey o -
2017 Misra et al. [32] . D Yes Yes No 91.8% Non-controlled before-after study " C, limited (70%)
2017 Nakamura et al. [33] - - - - - - - 85% Cross-sectional study g D, very low (55%)
2017 Olejnik et al. [34] [ No Yes Yes No More than 80% Yes, for data collection o -
2018 Das et al. [35] o Yes It depends Yes No - No -
2018 Tan et al. [36] . No Noh Yes No 95% ! No -
2018 Wijesekera et al. [37] . . D,C Yes Yes Yes 95% Interrupted time series study (ESM) B, moderate (80%)
2018 Yu et al. [38] - - - - - - - Cross-sectional study | D, very low (55%)
2018 Babhirat et al. [39] - - - D, P k It depends It depends No 81.54% No -
2018 Raber et al. [40] - — — D Yes! Yes Yes 70% Non-controlled before-after study ™ C, limited (70%)
2019 Klingensmith et al. [41] [ [ D Not always Yes No - No -
2019 Barbosa et al. [42] - - - - - - - 86.8% 1 Survey o -
2019 Alom et al. [43] - - - - - - - Up to 72.2% (satisfaction) Cross-sectional study © D, very low (55%)
2019 Alom et al. [44] - — — - - - - 96.4% and 94.5% P Yes, for labeling and evaluation o —
2020 Kasaraneni et al. [45] [ D Yes Yes No - No -
2020 Kaur et al. [46] - - - - - - - - No -
2020 Botti-Cebria et al. [47] . D Yes Yes No -4 No -
2020 Kokciyan et al. [48] — — — — — — - — No —
2020 Sanchez et al. [49] - - - Unclear Yes Yes No 84.74% Online survey to build their dataset o -
2021 Kaur et al. [50] - - - - - - - - No -
2021 Lobner et al. [51] - - - - - - - 83.33% " Survey o -
2022 Filipczuk et al. [52] ° ° D Yes Yes No 65% S Non-controlled before-after study t C, limited (70%)
2022 Hirschprung et al. [53] = = = = = = = = Cross-sectional study D, low (60%)
2022 Kokciyan et al. [54] - - - No It depends Yes No Between 41 and 92% No -
2022 Ulusoy et al. [55] - - - - - - - Around 75% ¥ No -
2022 Zhan et al. [56] - - - - - - - 74% No -
2022 Brandio et al. [57] . - - - - Between 82 and 88% Field study o« -
2022 Mendes et al. [58] . No No No No 92% Field study o -
2022 Shanmugarasa et al. [59] . No Yes Yes No 92.62% Cross-sectional study v D, very low (55%)
2023 Ayci et al. [60] [ No Yes Yes No 89% No -
2023 Serramia et al. [61] . No Yes No No 3.78/5% Cross-sectional study ¥ D, very low (55%)
2024 Wang et al. [62] J No No Yes No — No —

2 Only location
Not necessarily, depends on what they call the Configuration Options
€ A survey-based study and a direct user evaluation

™ AUC of binary allow/deny for a given scenario

© User satisfaction

P Accuracy based on appreciation of evaluators

Two surveys
¢ Between-participants design
Online survey
£ Online questionnaire
1 Not by default, they have a sort of ‘user settings’ for expert users
! For privacy leakage detection (not to be confused with preferences detection)
J To measure the interpretability of the approaches
Not consistently
Based on the current data collection
™ Online survey

well as practical works, with two out of four providing a tool
([27] and [61]).

2) NOT-INHERENTLY TRANSPARENT

a: CLASSIFICATION

Non-transparent classification models (found in 14 papers)
typically encompass classic neural networks (as in
Klingensmith et al. [41]) and deep neural networks (see for
instance Yu et al. [38]); random forests [32], Ada Boost [58]
and Support Vector Machines (used in Wijesekera et al. [37])
complete the picture. Post-hoc explanations must comple-
ment these models, as they are not easily understandable by
themselves.

b: REINFORCEMENT
Reinforcement learning is the least used family of
machine-learning techniques in Al-driven PPAs. It is
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9 The accuracy presented is for the right category of data

T With interpretability of the results

S On average, but seems higher in specific case

U Between-subject experimental design

! Depends on several parameters

V Difficult to assess because they measure utility of decisions in a simulated setting

W Online survey

X Acceptability rate, not accuracy

Y To measure the level of comfort of the norms inferred

& Alpha means that the user study is not meant to assess the solution, but only meant to collect data

implemented in Kaur et al. [50] and Ulusoy and Yolum [55],
both used to adapt users’ feedback to their preferences, and in
Zhan et al. [56]. The first paper uses it to disclose information
(using permissions), while the second uses it to learn bidding
preferences in a negotiation context.

c: LOGIC-BASED

Al-driven PPAs can be based on logic (5 papers), for
instance, expert systems (Kokciyan et al. [54] uses an agent-
based model) or game theory (such as Hirschprung and
Alkoby [53]). These works, albeit few, span various system
contexts and types of decisions.

d: LLM

We selected only one paper using Large-Language Models
(LLMs) [62] during an update of the survey. Here, the authors
leverage GPT-3.5 and GPT-4.0 to produce privacy rules,
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FIGURE 2. A schematic representation of the classification presented in Section V. Each facet is represented as a rounded
box, solid for the mandatory features, and dashed for the optional ones. For User control over decisions (see Section V-G),
we distinguish between qualities of control (solid arrows) and instruments of control (dashed arrows).

based on sensors outputs and user preferences. Note that
LLM:s are based on deep neural networks and are, therefore,

difficult to explain and even prone to hallucinations.

C. SOURCE OF DATA

An Al-driven PPA can rely on various sources of data when
using Al to help with a privacy decision. These data sources
are very often combined, and a careful choice is necessary
to fully exploit the potential of the models described in the

previous section.
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1) CONTEXT

Context is an often-used data source, yet not always well-
defined. However, when it is defined, it is composed
of the location [22], the time, relationships with other
individuals [30], or the activity performed [43].

External data provided by third parties or other unrelated
entities is sometimes used to predict privacy decisions, and
this external data can arguably be considered context. For
instance, under this term, we find risk factors [60] or infor-
mation related to other applications in the background [57].
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Context is usually a crucial component for an effective Al-
driven PPA because, as has been argued under Nissembaum’s
theory of privacy as contextual integrity [65], context is
paramount to designing appropriate information flows and
respecting privacy norms.

2) ATTITUDINAL DATA

A few Al-driven PPAs ask users questions to elicit so-called
attitudinal data about stated practices, or preferences regard-
ing privacy recommendations to avoid the so-called cold-start
problem, which arises when no past data is available to pro-
vide a recommendation. For example, Nakamura et al. [33]
focuses on asking a minimal set of questions while keeping
accuracy as high as possible, or Alom et al. [44] asks “a
reasonable [sic] number of questions (50) to the users.”

3) BEHAVIORAL DATA

Another common source of data is behavioral data. Behav-
ioral data has the advantage of reflecting the actual users’
privacy decisions to predict the next ones, as it does not
simply rely on stated practices (unlike attitudinal data). While
it can be a powerful tool, it can also create a feedback loop,
reinforcing the same decisions.

Behavioral data can encompass past decisions, such as
in Zhan et al. [56], which leverage past choices to fill a
knowledge base and then use them to predict privacy
decisions. It can also comprise current settings or preferences
on a specific type of data to infer a decision for another
type [24]. The system can also use these preferences to
match users to a particular privacy profile, using for instance
clustering techniques (see Section V-B1b).

4) METADATA

Metadata is data that provides information about other data,
for example, the name of an application used [37], network
requests [36], the purpose associated with processing [42],
the usage frequency of certain permissions (such as location)
by an app [46], or tags associated with images [25]. To some
extent, metadata can overlap with context, for instance, when
considering time or location. However, the articles surveyed
more often refer to the time and location of collection
of a certain data point for metadata, and to the current
time and location when a decision has to be made for
context. Metadata can provide peripheral information to make
decisions, although it is rarely used as a sole source of data
(out of 14 leveraging metadata, only 4 papers [36], [41], [45]
rely solely on it).

5) DATA TYPE

The data type refers to the category of data concerned by
the decision, such as whether it is an image to share on
social media [31], the location requested by an app [52],
or various sensor data by an IoT device [59]. The type of data
can provide accurate information about the sensitiveness of
a decision (location data can, for instance, provide sensitive
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information regarding the users’ context, e.g., from location
data that reveals that a user visits a clinic or church, medical,
or religious information could be inferred), yet only a
relatively low number of solutions rely on the data type to
build an Al-driven PPA [29], [31], [33], [37], [51], [52], [59].

6) CONTENT OF DATA

The content of data refers to the specific content of a data
point, as the name indicates. However, we also include
data that can be directly inferred from the content of data
under this category. For example, Botti-Cebria et al. [47]
and Dong et al. [28] estimate the sensitivity of the content
of the information to be shared to help make a decision.
Indeed, content can be leveraged to tailor decisions: a picture
deemed private should not receive the same treatment as one
deemed public, and a geolocation trace that may potentially
allow inferring religious practice should cautiously be dealt
with.

D. SYSTEM CONTEXT

Most Al-driven PPAs target a specific system context, that
is, a set of technologies with distinct characteristics. Indeed,
each system context has specific requirements that one must
consider when designing an Al-driven PPA. System contexts
differ by the availability of an interface, computational
power, and control over the architecture.

1) MOBILE APPS

Several works focus on mobile applications, and often on
Android [23], [37]. Mobile ecosystems have the advantage
of being well-defined ecosystems, enabling the possibility to
strictly enforce privacy decisions (i.e., it is often addressed
with permissions, see Section V-Al).

Mobile phones also possess reasonable computational
power (in the sense that they can run an Al-driven PPA)
and a screen enabling direct user interactions. Hence, an Al-
driven PPA can be implemented directly on a smartphone (see
Baarslag et al. [29]), and it can interact with and even regulate
mobile apps, all of which make mobile ecosystems suitable
candidates for Al-driven PPAs under the users’ control.

2) INTERNET OF THINGS

Another widely used system context for Al-driven PPAs is the
Internet of Things (IoT). We understand IoT as a network of
devices, including sensors, mechanical and digital machines,
as well as consumer devices, all connected to the Internet.
In practice, Al-driven PPAs have been developed for smart
homes [42], [59], on campuses [35], or for wearables such as
fitness devices [49] for instance.

Most 10T devices are usually not equipped with proper
interfaces and lack computational power. These charac-
teristics make it challenging to build Al-driven PPAs
assisting with permission settings, yet not impossible (see
Klingensmith et al. [41] for instance, who manage to do so
with an Al-driven PPA located on end devices).
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3) SOCIAL MEDIA

According to our classification of the literature, the third
major system context is social media, for which several
Al-driven PPAs have been designed to help make privacy
decisions. In this case, neither the interface nor the com-
putational power are usually limiting factors. However, the
design and implementation of social media platforms (that
are usually not published openly) make it difficult to assess
the binding character of privacy decisions supported by Al-
driven PPAs running on social media platforms. Al-driven
PPA solutions are rather designed to support data sharing,
i.e., whether a specific post should be shared on social media
and with whom, than focusing on assisting users with privacy
decision-making.

4) CLOUD

A less prevalent system context is cloud environments,
with only one of the reviewed articles proposing an Al-
driven PPA targeting cloud environments [24]. Their solution
offers a method to simplify information disclosure in cloud
environments such as Google Drive. However, this work is
thus a lone example and contrasts with the otherwise balanced
distribution of works among other system contexts.

5) INTELLIGENT RETAIL STORE

Similar to cloud environments, only one work,
Raber et al. [40], was captured under this category. Their
Al-driven PPA provides a solution to automate decisions in
intelligent retail stores, combining pervasive computing and
online applications.

E. ARCHITECTURE

By architecture, we refer here to where the computation
happens, i.e., the decision-making, and not necessarily
the pre-processing steps such as building privacy profiles.
Directly connected to the architecture is the trust model of
the Al-driven PPA. While this term is usually reserved for
security-oriented research, describing whether one has to
trust the different entities or not provide relevant information
for understanding the privacy boundaries.

Note that the location of the computation is only relevant
for implemented Al-driven PPAs, and not for theoretical
models. Similarly, most solutions surveyed do not explicitly
describe a threat or trust model in their paper. Nonetheless,
it is possible to infer that trusted parties are required in
some solutions. For instance, Tan et al. [36] describe an
architecture comprising a remote classifier (in which one has
to place trust), yet no trust model is described.

1) LOCAL COMPUTATION
The processing can happen locally on the user device, such
as on a smartphone (see, e.g., Olejnik et al. [34]), but this
device can also be a home pod in an IoT context (see, e.g.,
Shanmugarasa et al. [59]).
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Creating and processing user profiles, using local Al
models, and locally deriving privacy decisions have the
advantage that the user can keep control over the locally
processed data, including their profiles and Al models, which
usually can include sensitive information about the user’s
preferences or behavior. However, local data processing also
puts more responsibilities on the user to secure the devices
properly against malware or other attacks.

2) REMOTE COMPUTATION

The Al-driven PPA could also be based on remote data
processing (according to the user’s point of view), involving
a central server that processes personal privacy decisions
and contextual data, including, e.g., location data or another
type of data. Remote computation raises the question of
the trust placed in the party performing this computation
to protect the data properly, to enforce the data subject’s
rights (e.g., to access or to delete their data and computed
profiles or models), and not to use the data for any unintended
purposes [36].

Several solutions rely on a remote third party that has to be
trusted, e.g., Baarslag et al. [29], or Tan et al. [36]’s solution
that places trust on their own remote classifier. The solution
developed by Wang et al. [62] relies on ChatGPT, a closed-
source chatbot on which all trust has to be placed with little
or no accountability. In contrast, others only require trusting
the operating system (OS) on which the Al-driven PPA is
implemented [34], or require trusting both the OS and mobile
applications [23].

3) FEDERATED LEARNING

Only one article, by Brandao et al. [57], presented an Al-
driven PPA based on federated learning. In this work, the
processing of user data for the computation of locally trained
neural network models happens on the user devices. These
devices only share the neural network weights with a central
server, which will, in turn, average all the local weights
and send back the results to the clients, which can use
these new weights to continue the training process. Federated
learning is a privacy-enhancing approach for processing
the users’ raw data only locally, which can achieve a
performance comparable to the centralized approach (remote
computation). Nonetheless, federated learning could still be
attacked, e.g., with membership inference attacks, to leak
personal data from locally trained models [66].

F. EMPIRICAL ASSESSMENT
Al-driven PPAs’ performance can be measured in terms
of accuracy, but because several solutions are meant to be
usable tools, assessing an Al-driven PPA encompasses more
than a mere measurement of how well a privacy decision is
predicted.

As mentioned in Section III-B4, an empirical assessment
can be an evaluation (see, e.g., [26]) or a validation
(e.g., [93]).
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1) USER STUDY
A classical way to validate a tool or a method is to
conduct a user study, and we found 16 papers reporting
a user study to validate usability. A user study can have
various interpretations, ranging from a simple questionnaire
to rate satisfaction (such as Alom et al. [43]) to a large-scale
randomized controlled study (see, e.g., Liu et al. [26]) — the
former being more akin to a mere validation, the latter a full-
fledged evaluation.

Note that several works elicited data to build a dataset
through a user study, which was therefore not meant as a
means of assessment (annotated as « in Table 7).

2) PURELY STATISTICAL (DATASET)

Several works provide a validation without a user study, that
is, only based on a purely statistical analysis based on a
dataset [39], [45], [47], [48], [54], [56], [60],. Such a measure,
although potentially subject to a higher degree of statistical
rigor, cannot necessarily capture users’ expectations and may
even fall into the pitfall of Goodhart’s law.

3) ACCURACY MEASUREMENT
Accuracy can measure the capacity of an Al-driven PPA
to predict a privacy decision, but not all papers measure
the same type of accuracy. Tan et al. [36] measure privacy
leakage detection, Botti-Cebria et al. [47] whether the correct
category of data is predicted or not, Amoros et al. [61] the
acceptability rate, Barbosa et al. [42] the Area Under the
Curve (AUC) of a binary allow/deny for a given scenario, etc.
Other works, while they do measure the accuracy of their
solution to predict a privacy decision, present their work with
limited rigor or precision. For example, Fogues et al. [30]
only present their results in plots. In contrast, others, such as
Olejnik et al. [34], dedicate an entire subsection to explaining
accuracy measurements.

G. USER CONTROL OVER DECISIONS
Finally, Al-driven PPAs should not only assist users with
making privacy decisions but should at the same time also
empower users with various options to improve control over
their decisions. These options span over qualities of control
(solid arrows in Figure 2) and instruments of control (dashed
arrows). The former denotes adjectives that can be appended
to control (akin to non-functional requirements in software
engineering [67]), and the latter denotes concrete possibilities
or actions for users (similar to functional requirements).
These options are partly related to GDPR requirements
for consent (introduced in Section II-A), which are thus
relevant for privacy decisions that constitute consent. Note,
however, that only a handful of papers specifically refer to
legal considerations. Filipczuk et al. [52] refer to the GDPR,
Mendes et al. [58] acknowledge that an automated response
to a permission request might not constitute legal consent,

5According to which “When a measure becomes a target, it ceases to be
a good measure.”
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Lobner et al. [S1] base the rationale of explainability on
legal requirements, and Sanchez et al. [49] even claim GDPR
compliance. Nonetheless, decisions for setting permissions
for mobile operating systems, for instance, still require
consent at installation or run time. Thus, legal requirements
for consent remain relevant for these types of decisions.

1) EX-ANTE TRANSPARENCY

Under Art 13 GDPR, data subjects should receive information
if data is collected from them, and informing users is also an
integral part of the dominant transparency paradigm in the
US (the notice of the notice and choice approach). Informing
data subjects with intelligible notices arguably improves their
control over decisions. Several Al-driven PPAs only inform
about the type of data concerned by the privacy decision [27],
some inform in addition about the controller [64] or of the
purpose of processing [39]. In theory, meeting this criterion
should not be difficult, although providing intelligible notices
requires significant expertise in practice (as illustrated in
Schaub et al. [68]).

2) SEMI-AUTOMATED

The semi-automated character of a decision refers to
including an affirmative action of the user to confirm
the decision, which is therefore not fully automated [69].
Most solutions provide a semi-automated decision process,
although not systematically (e.g., Das et al. [35] mention
that only opt-out is possible for facial recognition), or not
always (e.g., Klingensmith et al. [41] offers different types of
“privacy profiles”’, one of which — Laissez-Faire — enables
full automation). Tan et al. [36] do not leave users in the loop
by default, but the system allows the possibility to change
the settings for “‘experienced users,” while it depends on the
Configuration Option for Hirschprung et al. [24].

3) SPECIFIC

The specificity of a decision refers to the presentation and
the possibility for users to decide on the granularity of each
data type, purpose, and controller separately. For an Al-
driven PPA, it means having a fine-grained selection process,
during which users should not be presented with bundled
decisions. For instance, Shanmugarasa et al. [59]’s solution
works per “‘situational context”: who (is requesting data),
data type, purpose, and re-sharability (to third parties); while
the solution of Xie et al. [22] only works for one type of data
(location), therefore only meeting this option in a restricted
sense.

4) REVOKE

Finally, we observed that some Al-driven PPAs enable users
to withdraw decisions. Here, rather than denying a decision or
a recommendation, revoking operates after a given decision
to withdraw it. This feature has rarely been observed in
practice — at least explicitly — although the solution of
Liu et al. [26] allows revoking previously granted decisions.
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Revoking previously made decisions, such as sharing data on
social media, can be challenging to enforce. Also, note that
certain operating systems — such as mobile OSes — will still
allow users to revoke their decisions manually, although we
stress that this action is performed outside the Al-driven PPA.

VI. DISCUSSION

This systematic literature review provides unique insights
into how state-of-the-art research has designed Al-driven
PPAs in recent years. For instance, IoT became a system
context of interest only in 2018, and we observed a similar
late adoption trend for reinforcement learning after 2021.
However, Al techniques have been used in every system
context for all types of decisions throughout the years without
any apparent pattern. While this lack of a clear pattern is
not the most informative in itself, we ought to look instead
at the gaps this survey highlights, the challenges Al-driven
PPAs raise, then to inform better design and development
recommendations based on these analyses.

We acknowledge that our survey of scientific articles
reveals primarily gaps in the state-of-the-art research on
Al-driven PPAs, not gaps in Al-driven PPAs that are
already used in practice. Nonetheless, the best practice
recommendations for addressing identified gaps also target
developers of Al-driven PPAs and may, in these cases, not
be appropriate for research projects (as opposed to deployed
systems). However, knowledge and awareness of these best
practice recommendations may still be helpful for researchers
nonetheless.

Based on our main findings, this section provides a
detailed discussion organized in seven parts: the issues of
properly evaluating Al-driven PPAs in Section VI-A; Al-
driven PPAs not sufficiently addressing Privacy-by-Design in
Section VI-B; the (lack of) explanations and explainability
in Section VI-C; the concerns surrounding system contexts in
Section VI-D; the relationship with legal considerations in
Section VI-E; the challenges in leveraging different sources
of data in Section VI-F; and finally, potential research
avenues are introduced in Section VI-G.

A. EVALUATING AI-DRIVEN PPAS

The problem of the evaluation of Al-driven PPAs is two-
fold. First, we observe that the evaluations of Al-driven
PPAs are not based on the same or comparable accuracy
metrics or measurements. As presented in Section V-F,
accuracy is measured regarding a privacy decision, but also
a privacy leakage, acceptability rate, etc. Second, our data
shows a lack of user study evaluations, and our critical
appraisal shows a trend toward “low” and ‘“very low”
scores to assess cause and effect. Only 15 out of 39 papers
mentioned that they performed a user study to evaluate their

6Some papers may have been published on the topic earlier than in 2013,
the year from which we started to include papers in our SLR.
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solution,”,? but only six studies scored above (or equal to)
70% based on the CEBMA critical appraisal we performed.
We acknowledge that user studies may go beyond the scope
of strictly theoretical papers (e.g., models or frameworks
without prototype implementation). Yet, we contend that
the validation offered by these theoretical papers, often
cross-validated on a dataset, is far from being able to reflect
reality. Any proposed Al-driven PPAs must be validated and
evaluated to substantiate empirical evidence of their value and
feasibility. Without setting unrealistic standards for research,
it is still essential that academics and developers strive to put
their proposed solutions to the test in real-world settings.

To address the issue of disparate indicators, it is crucial to
establish standardized accuracy metrics that can be uniformly
applied across studies, facilitating more meaningful cross-
study comparisons. Additionally, there should be a greater
emphasis on conducting high-quality user trials, as these
are essential for providing rigorous empirical validation and
ensuring the practical feasibility of Al-driven PPAs.

Recommendation: Based on the current lack of empir-
ical evidence, we propose that the usability of Al-driven
PPAs should be evaluated through user studies follow-
ing high-quality standards for qualitative and quantitative
research, and such evaluations should notably encompass the
accuracy of the privacy decision taken.

B. LACK OF PRIVACY-BY-DESIGN

Since Al-driven PPAs typically analyze the users’ attitudinal
or behavioral privacy preferences, metadata or content,
or other data types for personalized assistance, they need for
this purpose to process personal data and user profiles, which
could be considered sensitive data. We identified, however,
a gap regarding following a privacy-by-design approach for
Al-driven PPAs, since hardly any of the papers we surveyed
focus on, or mention how, the Al-driven PPAs themselves
can be designed in a privacy-preserving manner. More specif-
ically, among papers describing technical architectures,’
only one uses federated learning as a privacy-enhancing
approach [57], however, without discussing that federated
learning is still vulnerable to privacy attacks, such as
model reconstruction and member inference attacks (see e.g.
Shaw et al. [21] and Mothukuri et al. [70]).

Therefore, federated learning needs to be complemented
with other PETs, such as differential privacy, which reduces
the risk of re-identification attacks by adding random
noise. Besides such data obfuscating PETs, also other
PETs are available that protect the confidentiality of
personal data when creating and/or using trustworthy Al
models, including encrypted data processing technologies
such as homomorphic encryption, functional encryption or

7Some papers include a user study for collecting data, which is not focused
on their proposed solution.

8We verified whether the authors of all submitted papers published follow-
up articles, and did not find any.

9Recall that theoretical papers are excluded from this analysis.
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multi-party computation and the use of a trusted execution
environment (TEE) (see also OECD [71] or Canard et al. [72]
for overviews). Nonetheless, since the implementation of
trustworthy and privacy-preserving Al models may also (in
the case of obfuscation PETSs) reduce the model accuracy,
or may come with computational or communication costs,
PETs need to be implemented and configured with care for
achieving suitable trade-offs between privacy protection and
accuracy, performance costs.

Many presented Al-driven PPAs require trust in a central
server, where the data processing is performed, while data
processing on the users’ local device may be preferable from
a privacy perspective, as it does not require trusting another
(central) party. To this end, Wijesekera et al. [37] provides an
insightful analysis of the trade-off of having either a local
(offline) or a remote computation, concluding that offline
learning still performs well (almost 95% accuracy). Also note
that the privacy threat models are rarely described, making
it difficult to evaluate security and privacy assumptions
critically.

Recommendation: We contend that Al-driven PPAs must
embrace stronger privacy-by-design principles, including
better design strategies but also better integration of Privacy
Enhancing Technologies, with suitable privacy — accuracy
and — performance trade-offs. In particular, PETS for
achieving data minimization, such as federated learning
combined with differential privacy, or PETs for enabling
privacy-preserving data analytics by Al-driven PPAs based
for instance on multi-party computation, homomorphic or
functional encryption, should be implemented and deployed.

C. UNEXPLAINABLE Al

Another pitfall identified is the lack of explanations provided
by most Al-driven PPAs, combined with the lack of
explainability/interpretability offered by the Al models used.
Only one of the surveyed papers explicitly addresses
explainability of the generated decisions [51], and only
8 use transparent models (see Section V-B) to make
predictions.

The growing trend to use deep learning architectures may
not facilitate the explainability of decisions, but this challenge
is not insurmountable. It is indeed possible to devise post
hoc explanations, and to take inspiration from other existing
work on usable explanations for Al-made decisions. Note,
however, that inherent transparency can come at the expense
of other quality aspects (e.g., accuracy, security, safety,
ethical and social considerations [62]) of decisions — trade-
offs must be considered case-by-case. Deep neural networks
tend to outperform their simpler counterparts, although
this statement does not seem to generalize to all kinds of
decisions, such as decisions made in highly unpredictable
settings like social predictions [73].

As discussed in Section II-B, transparency of Al can
be a legal requirement in some specific use cases related
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to Al-driven PPAs. For instance, transparency is required
for the data controller according to the GDPR, or for the
provider or deployer according to the Al Act, even though
this will not apply to most Al-driven PPAs and use cases.
In fact, none of the surveyed papers related to high-risk Al
applications. Transparency can in general also foster trust in
technology [74].

To enhance transparency, future research should prioritize
the integration of post-hoc explanation tools and ensure that
decision rationales are clearly presented in the user interface.
Balancing accuracy and transparency is essential, and
adopting inherently interpretable models or supplementary
explanation tools can help achieve this equilibrium.

Recommendation: Based on this analysis, we recommend
1) considering the use of inherently explainable Al tech-
niques, such as decision trees, for the classification, whenever
this implies that the potential quality loss will be appropriate
for the specific use case, or 2) the integration of ad-hoc
explanations otherwise, e.g., for neural networks and SVMs.

D. MISSING SYSTEM CONTEXT
Our SLR covered five system contexts: mobile applications,
social media, IoT, the cloud, and online retail stores. We are,
however, surprised not to find other contexts, such as
web browsers or Trigger-Action Platforms (TAPs). The
former because cookie notices are notoriously a ‘hassle”
for users in modern web experience; we therefore expected
to encounter solutions tackling this issue.!? The latter refers
to platforms offering applications for connecting otherwise
unconnected devices and services using simple recipes, such
as “Every morning at 7 am, send a Slack message with the
first meeting of the day from Google Calendar.” Trigger-
action programming has gained a lot of traction in the last
years (IFTTT, the most important TAP, boasts over 27 million
users [75]), yet no Al-driven PPAs specifically addresses it.
Both these system contexts possess their specific features:
many controllers with non-standard interfaces for cookie
notices, and numerous actors mediated through a single
centralizing entity for TAPs. They therefore require targeted
efforts from designers to offer adequate technological
solutions to manage privacy decisions.

Recommendation: We encourage researchers and devel-
opers of Al-driven PPAs to expand their efforts into a broader
range of system contexts, also encompassing but not limited
to web browsers and TAPs.

E. FEW LEGAL CONSIDERATIONS

As some privacy decisions made by Al-driven PPAs have
legal privacy implications or issues, legal requirements, e.g.,
under the GDPR, the AI Act, or other national legislation,
should be discussed and considered for the design and use
of Al-driven PPAs. However, a couple of reasons could

10Recall that Bollinger et al. [18] does not personalize decisions.
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explain the lack of discussion of legal requirements and
implications according to the EU legal framework. Firstly, the
geographic distribution of the solutions surveyed, given that
only 13 papers have authors with EU affiliations. Secondly,
the timing of the publications, as 17 papers were published
before the GDPR was enacted and none before the Al Act
came into force. Nonetheless, it is still surprising to find
only 4 papers mentioning (but not even addressing) legal
considerations.

In the more general case, we contend that even when legal
privacy principles do not apply for a particular use case
or context, they can still provide valuable guidelines for
the design of Al-driven PPAs. For instance, assisting users
with making informed, unambiguous, and explicit privacy
decisions (as required for consent) may foster trust in Al-
driven PPAs even when the privacy decision does not formally
constitute consent. Also, usable explanations of the risks and
implications when using an Al-driven PPA can in general help
raise awareness among users.

Recommendation: We recommend a deeper consideration
of legal requirements for the design of Al-driven PPAs.
Considering GDPR legal requirements could particularly
amount to: 1) meeting consent requirements when assisting
on decisions related to consent, such as permission settings;
2) the introduction of Al-driven PPAs assisting and enabling
users to exercise their data subject rights;, and, 3) the
incorporation of usable explanations for the logic behind the
Al-based proposed decisions, as well as information about
the significance and the envisaged consequences of such
automated processing for the data subject. Moreover, for con-
sidering legal requirements of the Al act, we recommend the
design of Al-driven PPAs for assisting users with exercising
their right to human oversight of critical decision-making
processes involving their personal data, including guidance
on potential overrides of automated decisions

F. USE OF VARIED SOURCES OF DATA, ACCOUNTING FOR
BOTH CONTEXT AND PERSONAL PREFERENCES

Lastly, our study yielded that Al-driven PPAs leverage
various sources of data (context, attitudinal data, behavioral
data, type of data, content of data, and metadata), but not
necessarily within the same solution. However, utilizing
several of these data sources can be a challenge in itself, as it
requires careful curation of the datasets and adequate use of
the Al models. The benefits harnessed can be high, resulting
potentially in higher prediction accuracy and, thus, in higher
quality of privacy guidance and assistance.

We also acknowledge the difficulty of determining certain
sources of data — such as context —, or the problem of
the sensitivity of data. As mentioned in Section V-CI,
context is rarely defined. It is, however, possible to draw
inspiration for a rigorous definition from the seminal
paper by Barth et al. [76] on the formalization in a logical
framework of the concept of contextual integrity coined by
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Nissenbaum [65]. As for the sensitivity of data, it is notably
incumbent on context when, for instance, the same type
of data (e.g., location) can be deemed non-sensitive in one
context (e.g., at a workplace in the middle of the week), but
sensitive in another (e.g., Sunday morning near a church,
thereby disclosing potential religious beliefs).

Recommendation: Based on the relative singularity of
data sources, we advocate for a plurality of data sources,
encompassing context as much as personal preferences.

G. RESEARCH AVENUES

In this final section of our Discussion, we explore prospective
research paths on Al-driven PPAs, informed by the results
of our study and the current social, technical, and legal
landscape.

1) THE FUTURE OF AI-DRIVEN PPAS AND GENERATIVE Al
While the uptake of generative Al, such as Large Language
Models (LLMs), is undeniable, their application to Al-
driven PPAs is not yet prevalent in the literature. Only
one of the included studies leverages LLMs to enable
automated privacy decisions. This solution, referred to as
PrivacyOracle, allows users to have a “privacy firewall”” for
filtering and managing personal data flows in the context of
smart buildings [62]. Nonetheless, we can also acknowledge
other research not included in this SLR, such as the work of
Hamid et al. [77] that provided a benchmark for evaluating
Generative Al-based Privacy Assistants to simplify and make
privacy policies more user-friendly. Note that this work was
not included in the SLR, as it only enhanced explanations but
did not automate any privacy decisions.

We are perhaps one step away from having a new wave
of LLM-powered Al-driven PPAs. LLMs are great for
summarizing and capturing insights from a large amount of
text (e.g., privacy policies, logs, traffic data, and system docu-
mentation). We envision that if such insights become reliable
enough, the user’s privacy preferences could be automatically
matched with a given system’s privacy configurations, semi-
automating decisions, providing allow/deny rules based on
previous privacy settings for similar systems, etc. In the
work of Wang et al. [62], their PrivacyOracle was already
achieving 98% accuracy in identifying privacy-sensitive
states from sensor data and 75% accuracy in measuring
the social acceptability of information flows. However, such
opportunities also raise a series of risks.

LLMs are intrinsically challenging to explain and lack
transparency and interpretability. Furthermore, due to the
risk that they respond with false or misleading informa-
tion presented as facts (or ‘“hallucinate”), they conflict
directly with compliance requirements such as the GDPR
data accuracy principle,'' and should therefore be

HAre 5 (i) (e) GDPR indeed stipulates that data needs to be “accurate
and, where necessary, kept up to date; every reasonable step must be taken to
ensure that personal data that are inaccurate, having regard to the purposes for
which they are processed, are erased or rectified without delay (‘accuracy’)”.
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incorporated into Al-driven PPAs with caution. Still,
future research should address opportunities and challenges
of designing and using LLM-based Al-driven PPAs, as well
as technical and legal requirements for involving LLMs in
assisting users with privacy decisions.

This SLR shows that integrating generative Al and LLMs
into Al-driven PPAs remains largely unexplored. It is worth
mentioning that this finding was rather unexpected to our
research team, as the SLR’s search scope has included
publications up to 2025, and generative Al has already made
its mark in the privacy research area [78], [79]. In particular,
recently LLMs have been developed and tested for assessing
privacy policies [80], and it has been demonstrated that
LLMs can be very helpful for analyzing and extracting
privacy practices from privacy policies [81], and thus provide
valuable input for users’ decision-making. Therefore, despite
the risks that LLMs bring, it is foreseeable that they can be
further enhanced and meaningfully used to automate users’
privacy tasks, such as in Al-driven PPAs. With that in mind,
this SLR benefits from being inherently extendable, and in a
few more years, researchers can update the review to confirm
this finding.

2) DESIGNING GENUINELY PRIVACY-FRIENDLY AI-DRIVEN
PPAS

A promising yet critical avenue for future research remains to
design a genuinely privacy-friendly AI-driven PPA, with
the right amount of notice to empower users and avoid the
so-called “consent fatigue.” This right amount of notice can
be a difficult balance to achieve — some users favor more
notice than others — but it is a crucial step for the uptake of
such assistants.

The design should naturally be informed by the latest
results in the academic literature [82]; it should carefully
consider the number of notices, their content, their timing,
etc. However, it should also be complemented by usability
studies conducted in the early stages of the prototype,
as iterations over the design of the assistant are likely to be
required to fine-tune it.

3) TRUST IN THE Al ASSISTANTS AND AUTOMATION BIAS
Individuals tend to overly trust Al systems and favor Al-based
decision-making while ignoring contradictory information
made without automation, a phenomenon known as automa-
tion bias [83], which is a problem also related to the Elisa
effect first described by Weizenbaum [84].

If the user’s decisions are biased towards following a
privacy recommendation proposed by a Al-driven PPA,
the users’ autonomy may be negatively impacted in
practice. Hence, future research should examine if users
may too easily trust and rely on proposed or nudged
decisions by Al-driven PPAs without critically judging
or adapting proposed decisions and how such a prob-
lem could be addressed by Human-Computer Interaction
research.
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VII. THREATS TO VALIDITY

A. THREAT I-PLANNING LIMITATIONS OF THE SLR

The first threat relates to the planning of the SLR in
terms of identifying the need and justification for this
study. Here, we were concerned with identifying existing
reviews (systematic and non-systematic) on the topic of Al-
driven PPAs. The initial searches did not reveal any review
studies on the topic, as described in Section III-A, pointing
to a significant gap in secondary research Al PPAs. The
planning phase of the SLR is also critical to outline the
research questions and provide the basis for an objective
investigation of the studies that are being reviewed. If the
RQs are not explicitly stated or omit the key topics, the
literature review results can be flawed, overlooking the key
information. To mitigate this threat, we outlined two RQs and
objectives (Section III-A). In summary, we seek to minimize
any bias or limitations during the planning phase when
defining the scope and objectives of this SLR. As a last step
in the planning phase, the team finalized and cross-checked
the study protocol to minimize the limitations of the SLR plan
before proceeding to the subsequent phases.

B. THREAT II-VALIDITY OF THE SEARCH PROCESS
Identifying and selecting the studies reviewed in the SLR are
also significant processes to be observed. Selecting studies is
a critical step; if any relevant papers are missed, the results of
the SLR may be flawed. Therefore, we followed a stepwise
process (Section III-B), starting with a literature screening
and followed by a complete reading of papers. This selection
process was carried out independently by two reviewers.
We also performed forward and backward snowballing,
looking for references to other potentially relevant studies.
Also, this SLR restricts the selection of publications to four
scientific databases: Scopus, Web of Science, IEEE Xplore,
and ACM Digital Library. These databases were used due to
their high relevancy to computer science, privacy, and data
protection, as well as to maintain a feasible search space.
This search process gives us confidence that we minimized
limitations related to (i) excluding or overlooking relevant
studies or (ii) including irrelevant studies that could impact
the results and their reporting in the SLR.

C. THREAT IlI-POTENTIAL BIAS IN THE SYNTHESIS
PROCESS

Some threats should also be considered regarding the
potential bias in synthesizing the data from the review and
documenting the results. This means that if there are some
limitations in the data synthesis, they directly impact the
results of this SLR. Typical examples of such limitations
could be a flawed research taxonomy and a mismatch of
potential research gaps. To minimize the bias in synthesizing
and reporting the results, we have created a data extraction
form that uses well-known classification schemes, such as
the ones proposed by Wieringa et al. [64] and Creswell and
Creswell [85], or Arrieta et al. [13] for the classification of Al.
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Three researchers independently reviewed this data extraction
form while revising the research protocol. While one of the
researchers led the data extraction step, two other authors
helped by cross-checking the work throughout the process
for consistency. Three authors were involved in the creation
of the classification scheme derived from the literature (i.e.,
shown in Section 2), actively working on reviewing the list
of categories for consistency through a series of meetings.
Furthermore, this SLR also offers a complete replication
package, enabling researchers to reproduce or extend this
review (https://github.com/Victor-Morel/SLR_AI_PPA).

VIil. CONCLUSION

With the SLR presented in this article, we provide a classifi-
cation and common vocabulary to compare and discuss Al-
driven PPAs. Although many papers (41 in our selection) have
already been published on Al-driven PPAs in the last decade,
they do not yet form a coherent body of literature. Al-driven
PPAs can be improved by performing standard evaluations
(including their usability), integrating privacy by design in
their design process, providing additional explanations for
their decisions, and considering a broader range of system
context and larger variety of data sources. We hope this
survey and its classification allow users and developers of Al-
driven PPAs to compare different solutions and understand
their pros and cons. Moreover, the recommendations should
help improve Al-driven PPAs in different ways, addressing
the challenges raised by Al’s latest developments (including
LLMs), data collection, and modern regulations.
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