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Sweden
Phone: +46(0)31 772 1000

Cover illustration by Daniel Brunns̊aker (2025). The image depicts a robot
conducting scientific research, surrounded by icons representing the stages of
the scientific process (hypothesis formation, planning, experimentation, ana-
lysis, and reporting).

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2025.



“To make interesting scientific discoveries, you should acquire as
many good friends as possible who are energetic, intelligent and
knowledgeable as they can be. You will find all the programs you
need are stored in your friends, and will execute productively and

creatively as long as you don’t interfere too much.”

- Herbert A. Simon
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Abstract

Biological systems remain only partially understood, and the relative pace of
functional discovery has been slowing down despite advances in measurement
technologies. A growing consensus suggests that the most promising way
forward is not only via conventional laboratory automation, but through the
development of fully autonomous systems that can generate, prioritize, draw
insight from, and execute high-throughput experimentation.

This thesis explores how such automation can accelerate scientific discov-
ery by combining methods from artificial intelligence—such as inductive logic
programming, explainable AI, and large language models—with physical in-
strumentation, including laboratory robotics and high-throughput analytical
platforms like mass spectrometry. The work spans the entire discovery cycle,
from hypothesis generation to experimental evaluation.

As a case study, the methods are applied to Saccharomyces cerevisiae
(baker’s yeast), an extensively studied eukaryote and a powerful model or-
ganism for systems biology. In doing so, the thesis contributes to further
characterization of key aspects of yeast biology, including the diauxic shift and
its regulators (via untargeted metabolomics), genome-wide proteomic regula-
tion, phenotypic determinants of fitness, and metabolic interactions involving
amino acids.

The findings emphasize that automation in biology requires more than
throughput alone. Automated systems must also leverage existing know-
ledge, provide interpretable reasoning processes, and preferably capture enough
metadata for auditability. These studies also highlight how automation, when
combined with structured knowledge and high-throughput experimentation,
can refine existing approaches and move biology toward more integrative and
transparent modes of discovery.

Keywords

Automation of science, laboratory automation, machine learning, inductive
logic programming, systems biology, metabolomics, mass spectrometry
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Summary

The salient points of this thesis are as follows:

Methodological contributions

• Logic programs generated from descriptive ontologies can serve as flexible
and testable hypotheses in both high-throughput and automated settings.

• Relational database-derived logic programs can be used to interpretably
predict quantified biological abundances (such as protein and metabolite
levels) and to infer protein function.

• Knowledge priors structured in semantically meaningful ways can be used
to predict phenotypic traits such as digenic and trigenic fitness.

• Ontology-based embeddings, combined with explainable AI techniques,
can be used to generate actionable hypotheses in yeast physiology.

• Large Language Models can be used to automatically generate interven-
tions designed to test logically structured hypotheses in a systems biology
setting.

• Formalizing knowledge representation from the outset can improve the
reliability of automated approaches for hypothesis generation and valida-
tion.

Automation and data modalities

• Mass spectrometry–based metabolomics can be automated in both sample
preparation and analysis.

• These automated workflows can be cheap, reliable, and high-throughput.

• Ion mobility–based mass spectrometry, particularly when combined with
rapid separation methods such as SPE (solid-phase extraction), provides
an effective compromise between acquisition speed and resolution in yeast
systems biology.

• Untargeted metabolomics can rapidly generate exploratory hypotheses
about gene function and contextual regulation.
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• It can also provide partial verification of such hypotheses in model organ-
isms such as S. cerevisiae.

• Metabolomics can be used to generate testable implications for hypotheses,
enabling automated hypothesis-driven experimentation.

• Metabolomics data are a promising candidate for use with automatic
hypothesis refinement.

• Phenomics and mass spectrometry integration enables automated discov-
ery cycles that generate and refine hypotheses with improved context.

Biological insights

• The diauxic shift involves not only a metabolic switch between fermenta-
tion and respiration, but also major metabolic adjustments to internal
and environmental stressors.

• Among these adjustments, reactive oxygen species (ROS) scavenging is
particularly pronounced.

• Untargeted metabolomics revealed likely secondary functions for well-
annotated genes, such as FAA1, DLD3.

• Putative proteins YGR067C and RTS3 likely play indirect roles in the
TCA cycle, vitamin B6 metabolism, and amino acid metabolism.

• Many amino acids show synergistic or antagonistic growth inhibition
effects when combined with common compounds in S. cerevisiae, such as
arginine and caffeine or glutamate and spermine.
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Chapter 1

Introduction

Science is undergoing a transformation. The traditional, human-driven scientific
method—rooted in observation, hypothesis formation, experimentation and
analysis—is straining under the complexity and scale of modern research
(Musslick et al., 2025). This is especially true in fields like biology, where the
systems we study produce enormous volumes of data and exhibit a level of
complexity far beyond what a human can experimentally analyze or comprehend
within a reasonable timeframe (Dasgupta et al., 2023; Kitano, 2002).

These challenges mirror those seen in other domains that have undergone
automation. Just as the industrial revolution mechanized physical labour, and
as self-driving systems, such as cars, now handle tasks once thought impossible,
the process of scientific discovery, too, is approaching a paradigm shift (Kuhn,
2012). Increasingly, we are exploring how machines might not only assist
scientists, but potentially participate in, or even drive, the scientific process
itself.

By automating repetitive and time-consuming aspects of research, machines
can increasingly handle the scale and precision of modern science. This raises
the possibility of a new division of labour: automated systems managing data
and experimentation, while humans focus on tasks that demand creativity,
interpretation, and intuition. The automation of scientific discovery is therefore
not only about speed, but about reconfiguring the process itself. It involves
artificial intelligence for hypothesis generation, robotics and high-throughput
platforms for experimentation, and new frameworks for structuring knowledge
so that both humans and machines can build upon it.

Systems biology serves as a natural proving ground for scientific automation.
Through it we seek to understand complex biological systems by integrating
computational models with large-scale experimental data across multiple levels
of biological organization. The field is, by necessity, interdisciplinary, relying
on the integration of methods from biology, computer science, engineering,
and mathematics. It also exemplifies the kind of complexity and data-rich
environment that exceeds human capacity, making it both a motivation for and
a beneficiary of automation. Scientific progress in systems biology increasingly
depends on the ability to iterate rapidly across experimental and computational

3



4 CHAPTER 1. INTRODUCTION

cycles, integrate heterogeneous datasets, and generate interpretable models.
In this thesis, I investigate scientific automation through its application to

the systems biology of Saccharomyces cerevisiae, commonly known as baker’s
yeast. As the most extensively studied eukaryotic organism, yeast systems
biology is accompanied by a vast source of structured biological knowledge,
curated data, and well-established experimental tools—making it an ideal
model system for developing and testing automated approaches.

The research is structured around five studies, which investigates and apply
different ideas for automating parts of the scientific process, as illustrated in
Fig 1.1:

• Metabolomics in scientific automation: Paper 1 investigates the
use of untargeted metabolomics (a concept more thoroughly explained
in Chapter 3) data as a source of information for future automated ap-
proaches. It is an information-rich and automation-friendly data modality,
not fully explored in systems biology. We apply it to investigate gene
function in the role of a complex temporal phenomena—the diauxic shift.
We additionally present a proof of concept for its use in model validation
in active-learning-based approaches for metabolic models (Brunns̊aker
et al., 2023).

• Explainable AI for hypothesis generation: Paper 2 applies rela-
tional learning and explainable AI techniques to generate regulatory rules
and genotype-phenotype relations from structured biological knowledge.
We then apply these findings to protein abundances in S. cerevisiae, auto-
matically generating human-readable, and logically rooted hypotheses
about protein function and genotype-phenotype relations (Brunns̊aker
et al., 2024).

• Automated data acquisition: Paper 3 explores and develops software
and hardware integration that automates metabolomics data acquisition,
enabling future avenues of downstream automation. The methodology is
evaluated on several different biologically interesting biomolecules, and
via untargeted metabolomics capture in a biological matrix (S. cerevisiae)
(Reder et al., 2024).

• Structured knowledge representation: Paper 4 utilises structured
knowledge about yeast biology to construct a vast resource of information
about genetic modifications, and investigates how to represent them
efficiently and expressively. This is combined with a graph neural network,
and used to predict outcomes of digenic interactions (direct or indirect
interactions between two genes). We additionally use the framework as a
hypothesis generator, experimentally validating its outputs.

• Self-driving science: Paper 5 combines many of the concepts introduced
in previous works, and uses them to produce an automated framework
for scientific discovery. It combines relational learning for hypothesis
generation, large language models for experimental design, and automated
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laboratory infrastructure in order to generate and evaluate hypotheses
about S. cerevisiae phenotype. It does so in an explainable manner, with
data representations interpretable by both humans and machines.

Together, these five studies represent a progression toward automating
various components of the scientific discovery cycle in systems biology. From
data acquisition and hypothesis generation to experimental validation and
interpretation. While each study contributes to separate pieces of the process,
their combined impact lies in demonstrating how structured knowledge repres-
entations, high-throughput experimentation, and machine learning can enable
automated scientific inquiry.

The remainder of this thesis builds the context and practical foundation
underlying this work. First, I examine the motivations for automating science,
including both its opportunities and its limitations. I then delve into the
complexity of systems biology, exploring why it is a field which might be a good
beneficiary of automation. Finally, I explore how exactly machine learning can
be leveraged to support scientific discovery.

Figure 1.1: The classic iterative cycle of systems biology: (1) utilize ex-
isting knowledge, (2) mathematically represent and model it, (3) generate testable
hypotheses, (4) test the hypotheses experimentally, (5) analyse the outcomes, and
integrate new findings into the current body of knowledge. The arrows represent
what factors of the cycle have been performed for each of the papers included in the
thesis, and to what extent they have been automated. Dashed arrows represent steps
that have been manually performed.
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Chapter 2

The Automation of Science

The idea that robots could one day perform scientific reasoning has steadily
moved from theory to practice. As modern science tries to deal with increasingly
complex systems and overwhelming data volumes, the need to rethink the
traditional scientific method has become more and more pressing. Automation
offers a compelling alternative.

The following chapter explores the concept of automated science: the use
of artificial intelligence, robotics, and structured knowledge to support or even
carry out core components of the scientific process. While elements of these
concepts have long existed in isolated forms, such as high-throughput screening
or laboratory robotics, recent advances now enable integrated, end-to-end
systems capable of generating hypotheses, planning and executing experiments,
and interpreting results (King et al., 2004; King et al., 2009; Williams et al.,
2015; Coutant et al., 2019; Ghareeb et al., 2025; Gottweis et al., 2025).

These ideas are not new. The field of automated scientific discovery traces
its roots back to early expert systems like DENDRAL, which interpreted
mass spectrometry data to automatically infer molecular structures (Lindsay
et al., 1993). It continued with systems like BACON (Langley, 1979), which
rediscovered physical relations, such as Kepler’s laws. These concepts then
eventually transitioned into robotic platforms like Adam (King et al., 2009)
and Eve (Williams et al., 2015) that integrated hypothesis generation, ex-
perimentation, and analysis. These systems laid the groundwork for what
is now a growing and interdisciplinary effort to reshape modern science into
a machine-augmented (or even machine-led) process (Gottweis et al., 2025;
Ghareeb et al., 2025; C. Lu et al., 2024).

In this chapter, we first examine the key motivations and benefits behind
automating science, including managing systems of high scale and complexity,
increasing reproducibility, and the potential to further democratize science. We
then turn to the functional parts of a robot scientist and the tools needed to
perform automated science in systems biology. Lastly, we discuss the challenges,
practical and philosophical, including concerns around bias, interpretability,
ethical implications, and loss of human oversight.

7



8 CHAPTER 2. THE AUTOMATION OF SCIENCE

2.1 Motivation for Automating Science

Automating scientific processes offers numerous advantages that address sig-
nificant challenges in modern research. By optimizing the use of resources
such as reagents, equipment, and time, automation reduces waste and im-
proves efficiency. It also minimizes human exposure to hazardous materials
and high-risk environments, enhancing safety (and potentially even regulatory
compliance). Many scientific protocols are complex and repetitive, making
them prone to human error; automation can ensure that these procedures are
executed with precision and consistency. Furthermore, automated systems can
operate continuously without breaks, enabling time-efficient experimentation
and significantly accelerating the pace of discovery.

While the benefits of automation apply across many scientific domains, they
are particularly useful in fields that are data-intensive, require high experimental
throughput, and involve highly complex systems. Manual workflows are no
longer sufficient to process or make sense of these domains at the speed and
scale modern research demands.

Amongst the scientific disciplines, the life sciences present a particularly
urgent case for automation, not only due to its scale and complexity, but also
because of the transformative potential of automation in areas like sustainability,
healthcare, and food security. Biological systems are not just large; they are
deeply structured, dynamic, and context-sensitive (Kitano, 2002). These
characteristics expose several broader challenges that increasingly limit the
impact and sensitivity of traditional scientific workflows. Overcoming them
will require more than simply accelerating existing protocols, automation must
also be capable of guiding and refining the process itself (Coutant et al., 2019).

In what follows, three challenges are illustrated: the complexity of modern
biological systems, difficulties in reproducibility, and the barriers to access and
perform science.

Complexity
Biological complexity presents one of the most significant challenges to modern
science. Systems-level biology involves the interplay of thousands of genes, pro-
teins, and metabolites—often under dynamic and ever-shifting environmental
conditions. Some illustratory examples and challenges in this field include:

• Combinatorial explosion: Yeast is a fairly simple organism by euk-
aryotic standards, but even if accounting for only pairwise interactions
among the ∼6,000 genes available in S. cerevisiae, it implies

(
6000
2

)
≈ 18

million experiments. Far beyond manual capacity, as evidenced in Cost-
anzo et al. (2016).

• Temporal dynamics: Regulatory networks and other biological mech-
anisms shift over time (cell cycle, stress responses, subtle environmental
changes), demanding fine-grained sampling that only automated and
continuously monitoring platforms are likely to be able to provide.
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• Multiscale interactions: Data collection and analysis of processes span-
ning molecular and cellular levels of organization (e.g., kinases regulating
enzyme activity, affecting reaction fluxes, which in turn affects environ-
mental sensitivities) require highly coordinated and precise workflows
that bridge these scales. Depending on the phenomena, these workflows
can easily extend beyond the capabilities of manual human analysis and
intervention.

These challenges are not only technical. They define the limits of what human
researchers can realistically study without assistance. Addressing these chal-
lenges will require more than simply automating existing laboratory procedures.
To fully realize modern discovery, automated systems must also be able to
guide the scientific process itself, integrating prior knowledge, generating and
prioritizing hypotheses and adapting to experiments in real time. In other
words, automation must be coupled with intelligent decision-making that keeps
the experimental cycles efficient and informative.

Reproducibility

Several studies have shown that biology is facing a reproducibility crisis, where
it is difficult to repeat, much less replicate results (Baker, 2016; Munafò et al.,
2017). This is eroding confidence in key discoveries and highlighting a large
amount of wasted resources and scientific dead-ends (Roper et al., 2022). This
crisis can be observed across several different aspects, such as:

• Protocol variability: Manual pipetting, differences in timing, subtle
(and often undocumented) technician-induced tweaks, slight variations in
instrumentation, equipment differences, and the age of reagents are all
likely to introduce high degrees of variability.

• Software drift: While not restricted to the life sciences, undocumented
changes or tweaks in scripts or software versions could lead to non-identical
analysis pipelines over time.

• Metadata loss: Key contextual details in experimental protocols such
as incubator humidity, processing details (e.g., “shake vigorously”), in-
strument calibration dates, and ambient temperature are often recorded
informally (and sometimes even completely omitted), making true replic-
ation impossible.

Automation has the ability to directly tackle most, if not all, of these issues.
Not only are they essential to proper science, the inclusion of these aspects are
a necessity for successful scientific automation:

• Standardized protocol execution: Robotics ensure that pipetting
volumes, mixing steps, and incubation times are identical across runs.
Whilst there could still be errors, they are far more likely to be predictable
(and traceable).
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• Version-controlled analysis: Integration of version management, con-
tainerized pipelines, workflow managers and orchestration frameworks
can alleviate issues and inconsistencies in data processing and analysis.

• Comprehensive metadata capture: Due to the nature of automa-
tion, it allows for a much higher degree of detail of performed actions.
Consistently recording metadata during both planning and runtime steps
could allow for true reproducibility by not omitting any key details.

Note that many of these aspects do not strictly require automation in order to
be used in conjunction with scientific workflows, but by more fully integrating
automated solutions into the scientific process, many of these issues are likely
solved as a byproduct of its inclusion.

Democratizing Science
Despite its global impact, cutting-edge biological research has historically been
confined to a relatively small number of well-funded institutions. This is
largely due to the high costs of specialized instrumentation, infrastructure, and
technical expertise. These continue to grow as experimental platforms evolve
and become more complex. As a result, the opportunity to ask and investigate
important questions in health, sustainability, and biotechnology are unequally
distributed amongst the scientific community.

Scientific automation, if implemented responsibly, offers a way to challenge
this imbalance. Cloud-connected, open-source platforms and remotely accessible
lab automation tools could significantly lower the threshold for conducting
rigorous biological experiments. These systems can reduce the need for deep
technical specialization, making it easier for a broader range of people to
contribute to scientific research in a more consistent and reproducible way.

In this light, automation is not just a way to scale and proceduralize scientific
throughput, it is also a means to broaden participation, diversify perspectives,
and make the process of science more inclusive and globally accessible.

2.2 Social and Ethical Considerations

While automating the scientific process has great advantages, it also raises
important ethical and social questions and considerations, many of which echo
long-standing concerns around automation. Historically, automation has led to
the displacement of labour, deskilling of workers, and concentration of power
(Frey et al., 2017). Similar risks arise in the context of scientific automation
and must be addressed carefully.

One concern is the loss of scientific skill and intuition. As machines take on
core tasks like hypothesis generation or data analysis, opportunities for hands-
on learning and critical thinking may decline—particularly for early-career
researchers. Maintaining human expertise and interpretability is essential.

Transparency and accountability are also critical. Scientific processes must
remain explainable and auditable; black-box models can obfuscate reasoning,
making it harder to validate results or assign responsibility when any errors
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occur. Connected to this, bias remains a risk, as automated systems can inherit
and amplify historical patterns. Without intervention, this could skew research
focus and deepen inequalities. Similarly, with improper deployment, the use
of automation could shift control over science to those who own the tools and
infrastructure, reinforcing global disparities in research access.

As outlined in the Stockholm Declaration on the Ethics of AI by King et al.
(2024), these systems must be designed and used responsibly, with transparency,
fairness, and human values at the core. Automation should support science,
not replace its human foundation.

2.3 Components of an Automated Scientist

Automating the science of biology is more complex than simply replacing manual
labour with automated labour. It requires reshaping of the entire scientific
workflow into a system that can operate with minimal human intervention (or
at select places), while preserving rigour, transparency and robustness. From
the initial hypothesis generation steps to the data analysis and sharing, each
phase must be computable, scalable and auditable. We note that many, if not
most, of these aspects are used in traditional human-led science, but improper
implementation of them are exponentially more penalising in an automated
context than a manual one. In the following sections, the functional components
are explained and example applications are given. We will also discuss the
contributions of this thesis in each step. More technical details regarding the
different mentioned aspects can be found in Chapters 3 and 4.

2.3.1 Hypothesis Generation

At the core of the hypothetico-deductive method lies the generation and
creation of hypotheses. An automated discovery system needs to be capable of
proposing hypotheses that are not only understandable, but also scientifically
meaningful. These hypotheses can be generated by, for example, leveraging
existing knowledge, literature and prior data. For these hypotheses to be useful,
they must be testable and preferably grounded in a transparent reasoning
process, ideally one that can be reviewed and interpreted by human scientists.

Hypotheses can also exist at different levels of abstraction. At a high level,
they may take the form of conceptual statements about relationships or causal
influences (e.g., “the gene SNF1 regulates carbohydrate metabolism”). At a
lower level, they can specify precise, testable predictions, such as the expected
change in concentration of a specific biochemical under a defined perturbation.
An effective automated discovery system should be able to operate across this
spectrum, selecting the appropriate level of abstraction for the available data,
the completeness of the models, and the intended experimental strategy.

Early work in automated science already demonstrated this variety in
abstraction levels. Some systems focused on learning highly specific, mech-
anistic rules from experimental data, while others generated broader, more
conceptual hypotheses. Historical examples illustrate how both ends of this
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spectrum have been successfully implemented. Expert systems like DEND-
RAL generated candidate molecular structures from mass-spectrometry data,
and its partner program Meta-DENDRAL went a step further by inducing
fragment-to-substructure rules directly from known structure-to-spectrum pairs;
each learned rule an hypothesis about chemical fragmentation (Lindsay et al.,
1993). More recently, the Robot Scientist “Adam” hypothesized general meta-
bolic roles for orphan yeast genes by simulating knockouts in a metabolic model
to predict required rescue metabolites and tested those predictions robotically
(King et al., 2009).

These examples highlights two approaches to automated hypothesis generation:

1. Rule induction from data, where patterns or logical rules are mined
directly from examples, and

2. Model-driven candidate mining, where a structured model defines the
hypothesis space and guides prioritization.

In this thesis, we propose several methods of generating hypotheses bound
by these concepts, as they are mainly based on mining literature priors from
structured databases to produce rules or extracted from domain-specific models
and later prioritised and weighted using empirical data. Paper 1 produced
more abstract hypotheses, in the form of regulators likely to be involved in a
biological phenomena by assessing uncertainties in their growth rate. In Papers
2 and 5 we apply pattern mining to generate hypothesis bodies, and apply
supervised learning to ground them in biological observables (providing the
bodies with a testable implication). Likewise, in Paper 4 we embed existing
priors using ontology embeddings, and extract viable hypotheses based on data
from genetic interactions through explainable AI (XAI) techniques. Both of the
latter strategies ensure that the hypotheses themselves follow an interpretable
structure, as they are shaped from human-defined, domain-specific ontologies.

2.3.2 Experiment Selection and Planning

Once a hypothesis is generated, the system itself must be able to determine
how to test it. This involves selecting (and potentially prioritizing) experiments
based on available resources, potential information gain, and feasibility. The
planning process should be scalable, accommodate high-throughput experiment-
ation, and incorporate as many data modalities as are needed to, with sufficient
confidence, answer the hypothesis. Crucially, this should be a transparent
process. Typically, most of the prior planning is designed by humans, but there
have been examples where an agent is tasked with designing the experiment,
such as in Song et al. (2025) and Williams et al. (2015).

One way to look at this is through the lens of information gain. In informa-
tion theory, the information content of an outcome xi is given by

I(xi) = − logb p(xi),

where p(xi) is the probability of observing xi under the current paradigm.
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As such, outcomes that are rare or unexpected have higher information
content. From this perspective, one might aim to prioritise experiments with
the highest expected information gain (i.e. the expectation of − log p(x) when
taken with respect to some predictive distribution over outcomes p(x)), as they
offer the most efficient route to reducing uncertainty. The exact implementation
is an open question, and can vary from heuristic approaches to fully formalised
selection criteria. Regardless, the main principle stays the same: choose
experiments that are as informative as possible.

Another important consideration is cost. Even highly informative experi-
ments may be impractical if they require excessive amounts of resources and
time. In its simplest form, the cost of an experiment can be represented
abstractly as, for example:

C(experiment) = x1(monetary cost) + x2(time spent) + x3(resource use) + . . .

One would likely want to perform an experiment that would minimize the cost
(C), but at the same time maximize the information content (I). A straight-
forward conceptual implementation of this weighting could, for example, be:

max
e∈E

I(e)

C(e)
,

where e is a candidate experiment, I(e) its expected information content, and
C(e) its cost.

The key idea being that an automated discovery system should consider both the
potential information gain and available resources, especially in high-throughput
settings where potential monetary costs could stack up dramatically.

In this thesis, the scales are typically small enough to not warrant full
deployment of these aspects. However, they are implicit in many of the
selection steps. Such as for Paper 1, where uncertainties in growth rates are
used to predict and select candidate genotypes. These factors are also “softly”
implemented in Paper 5 through interaction with a large language model, albeit
through prompting techniques (e.g., ”select the hypothesis likely to be the most
informative”). More details on on this can be found in Chapter 4.

Experimental design
Beyond selecting which experiments to run, the planning process must also
determine how they will be structured to minimise bias and noise. This could
include applying established experimental design strategies such as randomisa-
tion, blocking, or other types layout optimisation. For example, Latin square or
similar arrangements can be used in plate-based assays to control for position
effects and confounding variables (King et al., 2009). Randomising sample
positions helps mitigate systematic biases, while blocking could allow known
sources of variation to be accounted for explicitly. Incorporating these strategies
at the planning stage ensures that experiments are informative, robust and
reproducible. In an automated setting (in the case of iterative experimentation),
these safeguards are especially important in order to prevent the system from
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pursuing theoretically optimal but statistically fragile experiments (i.e., locally
optimal). Aspects of this are included in Papers 1, 4 and 5.

2.3.3 Agency & Execution of Experiments

Translating an experimental plan into a real-world setting requires reliable
physical automation and high degrees of standardisation. The system should
be able to perform complex experimental protocols in a reliable and error-free
way whilst keeping high fidelity to the selected hypothesis and experimental
plan. It must also eliminate human variability, ensuring that results are not
only repeatable, but also reproducible (Roper et al., 2022). Additionally, it
should capture comprehensive metadata and runtime logs regarding the process,
ensuring auditability in case of failure.

The agency of an automated system (i.e., the tools and techniques available
to it) directly shapes both the experimental design and hypothesis selection.
For example, a system equipped only for liquid handling and incubation will
be restricted to experimental strategies compatible with those capabilities,
whereas a platform that can also perform automated metabolomics or genetic
interventions opens up a much wider design space. Consequently, knowing
the systems capabilities in advance allows planning algorithms to propose
hypotheses and experiments that are not only scientifically relevant, but also
physically executable without extensive manual intervention.

As part of the work done in this thesis, we have mainly created and used
custom automation solutions. Papers 1, 4, and 5 have made use of the auto-
mated laboratory cell Eve (Williams et al., 2015), enabling basic experimental
measures such as liquid handling and cultivation. Additionally, as part of Paper
3, the main product was software enabling the full automation of metabolomics
acquisition, making use of partially existing commercial automation software,
but also bespoke orchestration to allow for the full process to be automated.
Paper 5 combined all of these processes, utilising standardised protocols for
both liquid handling and cultivation, whilst making use of developed software
and hardware for automatic metabolomics processing and analysis, further
increasing agency.

2.3.4 Data Analysis and Integration

Following experimentation, the system must have the capacity to capture and
analyse data in a scientifically meaningful way. This includes the ability to
handle complex multidimensional datasets, preferably containing many types of
biological data modalities (see Chapter 3), or more simply, enough modalities
to answer the hypothesis with sufficient confidence. The analysis should extract
insights that remain faithful to the original formulation of the hypothesis,
whilst being robust, transparent, and reproducible. Results should be human-
interpretable and shared openly, along with the underlying empirical data and
all metadata regarding the experiment.

A key enabler for such transparency and interoperability is the use of
ontologies—formal, shared vocabularies that define concepts and relationships
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in a specific domain. By representing both data and metadata using established
ontologies, results from different experiments, laboratories, or even organisms
can be more easily compared and integrated. Ontologies also allow computa-
tional reasoning tools to link experimental outcomes back to prior knowledge,
helping to uncover hidden relationships or inconsistencies. More details re-
garding ontologies will be covered in Chapter 3. For automated systems, this
common “language” is of the utmost importance, as it connects hypothesis
formulation, experiment execution, and analysis, ensuring that each stage of
the scientific cycle can be traced, interpreted, and re-used by both humans and
machines.

In this thesis, Papers 1 and 5, and to some extent Paper 3, implemented
concepts of automated data acquisition and analysis. Furthermore, Paper 5
involved the construction of a graph database that incorporated ontological
annotations for hypotheses, experimental components, and results, enabling
both rich querying and interpretability.
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Chapter 3

Systems Biology as a
Beneficiary of Automation

In the previous chapter, we explored how automation can help address the
scale, complexity, and reproducibility challenges of modern science. These
issues are especially apparent in systems biology and its related subdomains
(Baker, 2016; Roper et al., 2022). The field’s very definition makes it both a
suitable candidate for, and a major driver of, advances in scientific automation.

Systems biology is a multidisciplinary approach meant to aid in the un-
derstanding of complex biological systems at the molecular, cellular, and
organismal levels. This field has emerged as a complementary concept to reduc-
tionist biology, driven by the need to integrate data from diverse sources and
levels of cellular organization. The goal is to forge a holistic understanding of
biological systems (Regenmortel, 2004). Systems biology aims to build models
that capture the behaviour of biological systems and predict their responses
to perturbations across a variety of conditions (Tavassoly et al., 2018). The
approach has revolutionized our understanding of biology and accelerated the
development of new biotechnologies (Nielsen et al., 2008). Moreover, systems
biology approaches are essential for addressing some of the most pressing chal-
lenges in biology today, such as understanding the mechanisms of common
diseases and devising strategies to combat cancer (R. Chen et al., 2012; Loscalzo
et al., 2011). However, this holistic view of a system comes with challenges.
Reductionist biology can be be achieved with localised modelling and data
collection, but understanding cells at a systems level requires biological data
and modelling at a massive scale. Not only are even the simplest of organisms
incredibly complex, the techniques and instrumentation needed to measure
their outputs have severe limitations.

In this chapter, we focus on these challenges in the context of Saccharomyces
cerevisiae, the model organism used throughout this thesis. We will examine
why it is ideally suited for studying systems biology at scale, explore the nature
of cellular complexity, discuss how controlled perturbations reveal biological
roles, review common biological readouts, outline strategies for integrative data
analysis and assess computational frameworks and representations.

17
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3.1 Why Saccharomyces cerevisiae?

Yeast systems biology is a subfield of systems biology that mainly focuses on the
study of the baker’s yeast—Saccharomyces cerevisiae—as a model organism for
understanding complex biological systems. This yeast is a unicellular eukaryote
which has been an essential part of human civilization for thousands of years
through its use in food and beverage fermentation (Duan et al., 2018). The
ease of cultivation and overall resilience of S. cerevisiae, combined with the fact
that it shares many fundamental biological processes with higher organisms,
including cell cycle regulation and core metabolic pathways, has caused it to be
an organism of high interest to the scientific community. Moreover, its biology
makes it well suited for genetic modification through a wide array of powerful
genetic and molecular tools, such as homologous recombination (Giaever et al.,
2002; Z. Yang et al., 2020). These traits makes it ideal for systems biology,
which depends on model organisms that can be systematically perturbed,
quantitatively measured, and computationally modelled across scales. This
ultimately caused it to be the first eukaryote to have its genome sequenced
in 1996 (Goffeau et al., 1996; Botstein et al., 2011). Despite the increasing
use of mammalian and multicellular systems in research, S. cerevisiae remains
uniquely positioned for systems-level investigation due to its genetic tractability,
well-annotated genome, and ability to generate reproducible, high-throughput
data at low cost. It is also still widely used for designing bio-factory platforms
for various industrial uses such as pharmaceuticals, food additives and biofuels
(Nielsen et al., 2008; Hong et al., 2012; C. Zhang et al., 2024).

As a result, it has been the premier platform for functional discovery of genes
in eukaryotes for many years. Because of this and the relative ease of genetic
manipulation, early efforts were focused on creating genome-wide yeast deletion
mutant collections (Giaever et al., 2002; Ea et al., 1999). These collections are
comprised of large libraries of cells which have undergone processes to separately
remove or alter most of the identified coding gene sequences in S. cerevisiae.
This allowed researchers to thoroughly explore the genome through experimental
means, one gene at a time. Combined with its rapid growth, robustness and
low cultivation cost, this enabled massively parallel experimental designs that
are still unmatched in throughput and comprehensiveness by more complex
organisms. These deletion libraries, along with their associated metadata, form
a foundational dataset for many of the analyses and methodologies used in this
thesis, and enabled systematic exploration of genotype–phenotype relationships.

Taken together, S. cerevisiae offers a uniquely powerful platform for bridging
empirical experimentation with computational modelling—making it an indis-
pensable organism for systems biology.

In the following sections, we move from the rationale behind choosing S.
cerevisiae to the broader biological questions it helps us address: How do
cells function as integrated systems? How can we perturb them to infer
function? And how can computational tools help us make sense of the resulting
complexity?
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3.2 Understanding Cellular Complexity

Cells are constructed from nested tiers of biological organization: at the base lie
individual molecules—genes encoded in DNA, their RNA transcripts, the pro-
teins they produce, and the metabolites that fuel reactions (Alberts et al., 2007;
Haas et al., 2017). The activity of these molecules is dynamically regulated
through networks of gene expression, signalling, and feedback (typically com-
prised of other proteins and metabolites), which together coordinate metabolic
pathways and afford cells the ability to react to environmental cues. These
molecules can assemble into macromolecular complexes, such as collections of
enzymes that catalyse and channel substrates through metabolic pathways.
These components can additionally be formed into even larger scale organiza-
tional structures such as ribosomes, or even organelles like the mitochondria.
All of these building blocks and aggregated modules interact with each other in
highly complex spatio-temporal ways. Together, this multi-layered architecture
enables the cell to grow, divide, and respond to environmental factors. Each
component, regardless of hierarchy, may influence and depend on many others.
Understanding each component, big or small, and how they fit into the entire
system is one of the central challenges in biology.

3.2.1 The Importance of Functional Genomics

Functional genomics refers to the process of identifying and characterizing
the function of specific biological molecules or subsystems, such as genes,
proteins and metabolic pathways. This is a critical area of research, as it allows
researchers the tools and know-how to better understand the fundamental
processes that govern life, such as gene regulation and metabolism. These
insights could, in turn, provide understanding in related domains, such as
mechanisms of disease and their potential therapies.

As biological systems are too complex to infer function by intuition or static
observation alone, functional genomics uses systematic, large-scale experimental
and computational tools to dissect how molecular elements contribute to cellular
behaviour. Modern functional genomics combines experimental techniques such
as transcriptomics, proteomics, and metabolomics with computational analysis
to build models of cellular function (Haas et al., 2017).

Experiments are often designed to test responses to defined perturbations,
such as changes in genetic background or nutrient availability. Additionally,
biological systems are inherently noisy and subject to environmental variability,
yet they maintain remarkable stability. By observing how the system behaves
under these controlled changes in conditions, researchers can begin to slowly
understand biological function and its intricacies.

3.2.2 Probing Complexity through Perturbation

Given the immense complexity of biological systems, a key strategy for uncov-
ering how they work is through systematic perturbation—deliberately altering
specific components, such as knocking out a gene, inhibiting a protein, or
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changing environmental conditions, and observing how the system responds.
This approach is foundational to biology because it enables us to infer the
role of individual components by disrupting them and analysing the resulting
changes in phenotype (observable traits) or molecular behaviour.

A useful analogy could be to think of a cell as a car (a machine composed
of many interdependent parts). Imagine that you have never seen a car before
and have no manual to explain it and its components. One approach to uncover
how it functions would be to remove or disable parts one by one and try to
drive it. If removing the battery prevents it from starting, you learn something
about the battery’s role. If taking off the muffler only makes the car louder,
you could learn that it is not essential for movement. This is analogous to
knocking out genes or inhibiting proteins in a cell to reveal their functions.

Of course, some parts only reveal their importance in combination with
others or under specific conditions. A steering wheel is useless without actual
wheels, and a car’s radiator might seem irrelevant in cool weather, but becomes
essential during hot weather. Likewise, some genes show no effect when
perturbed alone but are critical when another gene is also disrupted (such
as for the example given in Fig. 3.1), or when the organism is under stress.
These interactions are key to understanding how biological systems maintain
robustness and adapt to their environments.

Growth Growth GrowthGrowth

Wild type gal3Δ gal80Δ gal3Δgal80Δ

Growth on 
Galactose

Figure 3.1: Example of a phenotypic suppression between two genes for S. cerevisiae
growing on galactose. Deleting only the GAL3 gene causes a severe growth defect,
deleting GAL80 alone has little to no effect but deleting both suppresses the phenotype
induced by the GAL3 deletion, allowing it to grow on galactose.

However, the number of possible perturbation combinations increases rapidly
with system size, making exhaustive testing infeasible, as even simpler systems
like S. cerevisiae has thousands upon thousands of components. This is why
experimental designs often prioritize likely interactions, and why computational
tools and comprehensive biological readouts are essential to guide and interpret
perturbation-based studies.
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3.3 Biological Data

What we can learn about biological systems is constrained by what we can
observe. Individual cells and their constituent parts exist on a dimensional
and temporal scale very unlike our own intuitive concept of time and space,
such as in nanometers and microseconds (Heim et al., 2017). Technology is
rapidly improving, and with it our potential to understand of biology improves.
The science of collecting biological data has given rise to several subdomains of
biological science, collectively called “omics”.

“Omics” is a term that refers to set of interdisciplinary fields aimed at
comprehensively studying certain kinds of biological molecules or processes.
These disciplines generate specific types of data that can be used for functional
discovery and representations of biological systems. Together they represent a
type of flow of information through biological systems, as illustrated in Figure
3.3a and Figure 3.3b. By integrating several different types of omics, one can
achieve a much more holistic understanding of the biological system in question
(Haas et al., 2017; Karczewski et al., 2018).

Genomics typically refers to the study of genes, transcriptomics the study
of RNA (ribonucleic acid), proteomics the study of proteins, and metabolomics
the study of metabolites. This thesis will mainly focus on the two latter types
of data, namely proteomics and metabolomics. Note that there are many
other types of omics, such as fluxomics and interactomics, that are tangentially
relevant, but not directly covered in this thesis.

3.3.1 Challenges in Observability

A fundamental challenge in biological research is that our insights are con-
strained by what we can observe and quantify. If we cannot measure it, we
cannot rigorously analyse or model it. Many processes occur at spatial scales
(e.g., intracellular interactions across organelles) or temporal scales (e.g., bio-
chemical reactions or conformational changes in proteins) that are beyond the
capacity of current instruments.

Furthermore, living systems are notoriously heterogeneous and dynamic:
sampling a few cells or taking a snapshot in time may miss crucial variability
or transient events such as cell cycle changes. Even when we can collect data,
processing and measuring can by themselves perturb these systems, such as
when one takes a sample out of the incubator for sequencing, inadvertently
altering its temperature, oxygen levels, and subsequently inducing a stress
response. These experimental interventions, though necessary, can introduce
artifacts or mask native behaviours. This raises the very real challenge of
distinguishing true biological signals from those induced by the act of meas-
urement itself. As a result, designing minimally invasive, high-resolution, and
temporally sensitive experimental methods is essential for advancing our ability
to capture the true dynamics of living systems. Difficulties in observability
are not only bottlenecked by experimental measures, but also on its analysis.
Modern data collection techniques used today produce vast amounts of data,
from high-throughput sequencing to real-time imaging, that pose their own
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Figure 3.2: Plot illustrating the relationship between chemical complexity
and biological specificity across different omics layers. At the bottom,
genomics is based on just four nucleotide bases, offering a relatively chemically simple
foundation, but with limited direct specificity to cellular state. Transcriptomics, while
also built from four bases, adds biological specificity through expression dynamics.
Proteomics increases both specificity and complexity, typically being constructed
from 20 amino acids, involving diverse post-translational modifications, and dynamic
abundances that more directly reflect cellular functions. At the top, metabolomics
exhibits the greatest chemical complexity, encompassing a vast and diverse array of
small molecules with millions of possible conformations. At the same time, metabolic
profiles often provide the most immediate and specific readouts of cellular physiology,
linking genotype, environment, and phenotype (Dettmer et al., 2007).

computational and statistical hurdles. As a result, blind spots remain in our
understanding of cellular behaviour simply because what we wish to study lies
beyond the limits of our experimental capacity and analytical frameworks.

Each of these omics subdomains contain their own sets of problems, each
with their own advantages and disadvantages.

3.3.2 Metabolomics

Metabolomics is the study of small molecules called metabolites in a biological
system. It typically is used to provide insights into the biochemical pathways
and cellular processes that govern metabolism by studying the products and
substrates of biochemical reactions. Metabolomics can aid in topics such as
identifying biomarkers for disease, elucidating the nature of metabolic pathways,
or study responses to environmental factors. It is typically seen as the type
of data most closely representing the phenotype (observable state) of the
organism (Dettmer et al., 2007). This also means that is a highly volatile,
meaning that while it is a highly informative measure, it is also extremely
prone to heteroscedastic variation, where the amount of variability depends on
the scale or conditions of measurement.
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Metabolites are typically identified and quantified using advanced analytical
techniques, such as mass spectrometry (Alseekh et al., 2021). Mass spectrometry
is an analytical technique used to measure the mass and chemical composition of
various molecules. It works by ionizing molecules to generate charged particles,
which are then separated based on their mass-to-charge ratios. This can provide
valuable information about the structure and abundance of specific molecules
(Glish et al., 2003). It typically utilizes several orthogonal separation methods
prior to mass analysis to maximize data quality and confidence in metabolite
identification. Liquid chromatography (used in Paper 1) could be used to
further separate molecules by their chemical traits, such as hydrophilicity
and polarity, sharpening chromatographic peaks and potentially mitigate ion
suppression (adverse effect on response due to reduced ionisation efficiency)
(Harrieder et al., 2022). Additionally, an increasingly widespread technique
is ion mobility (used in Papers 3 and 5), which introduces an extra degree of
separation based on cross collisional sections (CCS). It essentially separates
ions based on their mobility in some type of ideally behaving gas, meaning that
this separation metric is typically influenced by their size and shape (Lanucara
et al., 2014; Paglia et al., 2022).

Broadly speaking, metabolomics is divided into two separate classes of study,
namely extracellular and intracellular. These reflect the physiology of the cell
in different ways. The extracellular metabolome describes the substrates and
products that the cells input and output from and into the environment around
them (Pinu et al., 2017). Intracellular metabolomics typically describes the
internal concentrations of metabolites inside the cell, which are involved in
various molecular processes governing the cells’ functions (A. Zhang et al.,
2013).

Additionally, when studying metabolomics through mass spectrometry, it
is generally approached in either a targeted (hypothesis-driven) or untargeted
(exploratory) manner—or a combination of both. Targeted metabolomics
focuses on a predefined set of metabolites, often selected due to their relevance
to the biological context of interest. The analysis itself is then usually optimized
to allow for reliable detection and quantification of these metabolites. It is
particularly useful when studying well-characterized metabolic pathways or
systems. Untargeted metabolomics aims to comprehensively analyse the entire
metabolome, with the goal of capturing a wide range of different metabolites.
There is no reliance on prior knowledge in regards to the biological context,
and can provide an unbiased view of the phenomenon of interest. However,
it may not provide the same level of reliability and quantitative accuracy
that a targeted approach might provide. Regardless of the used methodology,
metabolite identification (linking the readout of the machine to an actual
biochemical) is not a trivial task, as explained in Monge et al. (2019).

Several papers in this thesis explore different aspects of metabolomics. Paper
1 utilises metabolomics to evaluate regulatory models in an active learning-
based setting and extract phenotypic insights from the diauxic shift. Paper
3 is about the automation of data acquisition in metabolomics, specifically
regarding ion mobility based mass spectrometry. Paper 5 utilises it to generate
and validate biological hypotheses in an automated setting.
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3.3.3 Proteomics

Proteomics is a field that focuses on the comprehensive analysis of proteins
within a biological system. Proteins are the functional units of the cell, enabling
many different biological processes. They play vital roles in virtually all cellular
processes, acting as enzymes, signaling molecules, structural components, and
more (Alberts et al., 2007). Understanding the intricate functions, interactions,
and modifications of proteins is crucial for explaining and deciphering the com-
plexity of biological systems. Proteomics employs a wide range of techniques
and technologies to study proteins on a large scale. This also includes advanced
analytical methods such as the previously mentioned mass spectrometry (Mess-
ner et al., 2022). It is a field which is much more mature than many other
types of omics, such as metabolomics.

High-throughput quantification of proteins has historically been time-
consuming, difficult and expensive. However, during the last decade, mass
spectrometry-based proteomics has made considerable progress, and it is in-
creasingly able to facilitate biological experiments at scale (Messner et al.,
2022; Messner et al., 2023). This is enabling close to genome-wide coverage,
measuring many of the organism’s proteins, in a high-throughput and relatively
inexpensive manner.

Paper 2 utilizes genome-wide proteomic abundances to train supervised
machine learning models to evaluate systematized knowledge on S. cerevisiae
and generate biological hypotheses in a high-throughput manner.

3.3.4 Integrative Analysis

A key methodology in systems biology is integrative analysis: combining several
different experimental readouts or levels of biological organization to gain a
more holistic understanding of the system in its entirety. By linking observations
from multiple omics layers (such as genomics, transcriptomics, proteomics, and
metabolomics) one can increase predictive power, identify causal mechanisms,
and generate richer, more targeted hypotheses than would be possible from
any single data type alone. Despite its promise, integrative analysis faces a
number of obstacles:

• Heterogeneity & quality: Biological data modalities differ significantly
in acquisition, protocols, units, and noise characteristics (even from the
same general levels of organization).

• Dimensionality & scalability: Adding more data types can dramat-
ically expand the feature space, increasing computational demands and
reducing interpretability.

• Temporal alignment: Different modalities capture processes on differ-
ent biological timescales (e.g., shifts in metabolite concentrations occur
faster than transcriptional changes), complicating direct integration.

• Biological relevance & interpretability: Condition-dependent be-
haviours require careful contextualization, and integrated models must
remain interpretable for domain experts.
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• Missing data & incomplete coverage: Each modality has unique
detection limits and biases, leading to gaps that can propagate through
the integration process if not handled carefully.

These issues become even more critical in automated discovery, where the
system must be able to reason over multi-modal data with minimal human
intervention or intuition.

Common Strategies
The choice of integration method depends heavily on the frameworks, al-
gorithms, and data structures in use. Common strategies include statistical
correlation, network-based integration, machine learning models, and graph-
based approaches such as knowledge graphs (Gligorijević et al., 2015). Different
omics types are also suited for different types of investigations. As visualized
in Figure 3.3b, it is crucial to match the data type to the biological question
of interest. For example, when investigating metabolism, metabolomics and
proteomics together provide robust readouts of the current metabolic state
(metabolites) and the effectors of change (proteins).
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Figure 3.3: Molecular readouts and their roles. a. The “Omics-cascade”.
Simplified description of the different types of data and levels of organization that could
be used to describe the response of biological systems to perturbation (e.g. disease
or environmental) (Dettmer et al., 2007). b. Simplified schematic of mechanism
of action in biological systems when exposed to a signalling event or perturbation.
Signalling molecules (e.g. proteins, metabolites, RNA) causes an expression or activity
change in effector proteins, in turn mediating a response. Response causes a change
in internal state, which is communicated by signalling molecules. M, T and P denotes
the omics-type that can feasibly represent the different states.



26 CHAPTER 3. SYSTEMS BIOLOGY AS A BENEFICIARY OF AUTOMATION

Applications in this Thesis
This thesis applies several approaches to integrative analysis, often using
structural knowledge priors to improve interpretability. These concepts will be
explained more thoroughly in the next section.

• Paper 1: Computational experiment selection using a combined sig-
nalling and regulatory network integrated with a genome-scale metabolic
model (Coutant et al., 2019). Untargeted metabolomics was used to
capture the current metabolic state, then contextualized using curated
metabolic networks via topological enrichment, enabling biological inter-
pretation and inference of indirect gene deletion effects.

• Papers 2 and 5: Aggregation of multiple organizational levels (e.g.,
protein interactions, metabolite concentrations, protein abundances) and
structure data (e.g., the Gene Ontology, Ascomycete Phenotype Ontology)
into a unified logic-program formalism to predict and hypothesise about
proteomic and metabolomic states. Paper 2 focused on the proteome;
Paper 5 extended the approach to produce testable hypotheses, answerable
through phenomics and metabolomics.

• Paper 4: Alternative integration via ontological embeddings and knowledge-
graphs, representing different datatypes in a more qualitative manner to
predict phenotypic outcomes of genetic perturbations.

In the context of automation, integrative analysis is particularly useful when
data and models are expressed in machine-readable, semantically consistent
formats. This enables automated systems not only to combine heterogeneous
data at scale, but also to reason over it and assist in experiment selection and
analysis.
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3.4 From Biology to Computation

Understanding the complexity of biological systems requires more than just
experimental data—it demands abstraction, formalization, and the ability to
simulate and reason about system behavior. As the scale and resolution of
biological measurements have increased, so too has the need for computational
tools that can integrate diverse datasets, extract meaningful patterns, and
generate testable predictions. This shift from purely descriptive biology to
data-driven, model-based inquiry is a hallmark of modern biology.

The challenge lies in bridging the gap between raw biological complexity
and structured computational formalisms. Biological processes are usually
non-linear, happens across several levels of hierarchies of organization, and are
more often than not context-dependent, making them difficult to represent or
simulate without simplification.

This section explores some of the approaches that have been used to enable
this translation. From mathematical and statistical modelling techniques to
formal knowledge representation methods that allow the encoding, sharing,
and automated reasoning across biological knowledge.

3.4.1 Representing Metabolism

Metabolism refers to the set of biochemical processes that occur within living
organisms, encompassing the reactions that convert nutrients into energy and
generate the building blocks required for growth, repair, and maintenance.

Metabolic networks are a type representation that allow for insight into
the molecular mechanisms of metabolism. The models attempt to acquire and
represent all of the known metabolic information about a specific metabolic
system, such as enzymes, metabolites and their associated reactions. These
serve as valuable references for researchers studying metabolism, as these
typically provide comprehensive maps and conditional descriptions of the
reactions.

Examples of large-scale projects which aggregate different representations
of metabolism would be KEGG, Reactome and Biocyc (M. Kanehisa et al.,
2000; Minoru Kanehisa et al., 2023; Minoru Kanehisa, 2019; Gillespie et al.,
2022; Karp et al., 2019). These models are typically subdivided into metabolic
pathways—modules which perform some sort of localized task in the cell.
Examples could encompass catabolic (degradative) pathways like glycolysis
or anabolic (biosynthetic) pathways such as amino acid biosynthesis. These
representations are highly amenable to computational methods and techniques.

Genome-Scale Metabolic Models (GEMs)
Genome-Scale Metabolic Models are computational reconstructions of the
complete metabolic reaction space of an organism. They integrate genomic,
biochemical, and physiological data to produce a stoichiometrically consistent
network, where reactions are connected to their catalyzing enzymes and the
corresponding genes via Gene–Protein–Reaction (GPR) rules. They provide a
formal framework for simulating and analysing metabolic activity under various
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Figure 3.4: Pathway representation (as a directed graph) of the citric acid cycle in
Saccharomyces cerevisiae. Green circles mark involved metabolites, orange squares
represent reactions (via the involved enzyme) and the white squares denote inter-
connected pathways. Pathway information retrieved from KEGG (2023-08-02) (M.
Kanehisa et al., 2000).

conditions (Orth et al., 2010; Mo et al., 2009; C. Zhang et al., 2024). A GEM
is represented through, among others, the following concepts:

• S, the stoichiometric matrix, of dimensions m× n (metabolites × reac-
tions)

• v, the reaction fluxes (usually in the form of a vector of length n)

• c, an optimization objective (typically biomass or the accumulation or
excretion of a specific biochemical).

• lb, ub, lower and upper bounds of fluxes (vectors that decides reaction
direction and overall flux capacity of reaction fluxes in v).

GEMs support constraint-based modelling, enabling simulation of metabolic
states without explicitly requiring detailed kinetic parameters, which are often
unavailable at genome scale—although there exists modelling regimes that
incorporate these constraints as well, such as in F. Li et al. (2022).

Flux Balance Analysis (FBA)
This type of structure enables simulation of metabolic activity, and is typically
achieved through the use of methodologies such as flux balance analysis (FBA).
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FBA is a simulation technique that seeks to model the cell by simulating the
flow of metabolites through a GEM under various conditions. This can, for
example, enable predictions of growth rates and specific metabolite production
rates based on nutrient and environmental conditions (Orth et al., 2010).

One of the main design choices made for overall tractability, is that it
assumes a steady state for intracellular metabolites (no internal accumulation
of biochemicals), as in Sv = 0. Reaction fluxes (flow of mass) are additionally
bound the lower and upper bounds, enabling the solving the fluxes through
linear programming, i.e.:

max
v

cT v s.t. Sv = 0, lb ≤ v ≤ ub (3.1)

Note that the methodology is not without its limitations. The steady-state
assumption is severely limiting, as it is not a realistic reflection of intracellular
states. Additionally, the framework does not typically account for regulatory
effects (such as transcription or phosphorylation, see Fig. 3.3). This concept
can however be extended through manipulation of lower and upper reaction
bounds when the acting enzyme is exposed to regulatory effects, which could
be simulated, as in Coutant et al. (2019). This methodology was heavily used
in Paper 1, both for experiment selection and model validation.

Abstracting GEMs for reasoning
Beyond their use for direct metabolic simulation, GEMs can straightforwardly
be transformed into higher-level graph structures that link metabolism to other
biological processes. For example:

• Reaction–gene graphs: where reactions are linked to the genes encod-
ing their catalyzing enzymes, as shown in Fig. 3.5B.

• Gene–metabolite graphs: which connect gene products to metabolic
changes through intermediate reactions, as seen in Fig. 3.5C.

These abstractions are especially useful when connecting changes in genotype
to phenotype. In Paper 1 and its associated work, it used to connect regulatory
perturbations to predicted flux changes and growth phenotypes. Additionally,
in Papers 2 and 5, the metabolic relationships are encoded as relational facts,
enabling structured reasoning across gene-to-metabolite relations. In these
cases, these abstractions allow metabolic information to be combined with
otherwise heterogeneous datasets, enabling richer systems-level analyses.

3.4.2 Gene Regulation

A gene regulatory network (GRN) describes how genes, their products, and
regulatory elements interact to control when and how strongly genes are
expressed. In essence, it maps the cellular decision-making layer: transcription
factors can activate or repress specific targets, kinases can modulate protein
activity post-translationally, and signalling pathways can cascade regulatory
effects across multiple genes (Lee et al., 2002; Coutant et al., 2019).
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Figure 3.5: Metabolic network along with examples of network structures
in GEMs. A. Toy metabolic, where M1, M2 and M3 correspond to metabolites,
and R1-R5 denote metabolic reactions. The reactions are: R1 :→ M1 (import),
R2 : M1 → M2, R3 : M2 → M3, R4 : M1 → M3, R5 : M3 → (export) B. Reaction-
gene graph for exemplified network. G1 and G2 denote genes whose gene product
catalyzes reactions. C. Metabolic graph, demonstrating the connections between
genes and metabolites (through reactions).

GRNs are typically represented as directed graphs in which nodes denote
genes or gene products, and edges indicate regulatory relationships such as
activation, repression, or modulation. These can be inferred from data using
approaches like Bayesian networks, mutual-information methods, time-series
models (e.g. dynamic Bayesian networks, DBNs), or large-scale deep learning
frameworks (Margolin et al., 2006; Murphy, 2002; Z. Li et al., 2023).

In this thesis, GRNs provide a way to connect regulatory changes to
metabolic consequences. In Paper 1, a DBN of the diauxic shift was coupled
to a genome-scale metabolic model to simulate the impact of gene deletions
on metabolic fluxes and phenotypes. In Paper 2, regulatory relationships
were encoded as logical propositions, enabling integration with metabolic
abstractions for reasoning across genotype–phenotype links.

3.4.3 Structured Knowledge Representation

Representing biological knowledge in a structured and “computable” form
is essential for enabling integration, automated reasoning, and large-scale
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Figure 3.6: Simplified graphical example of regulation-metabolism integra-
tion. Tf1 is an example transcription factor activating G1 and repressing G2, both of
which in turn catalyse reactions R2-R4. Note, that in the context of the toy network
presented in Fig. 3.5, higher abundance of this transcription factor could force the
network to take an alternative path to the end product (via R4). Also shown are
example propositional descriptions of the toy regulatory network (starting from the
transcription factor), similar to the abstractions used in Papers 2 and 5.

analysis. Biological systems are complex, and functional knowledge about
genes, phenotypes, metabolites, and interactions must be usable across different
datasets, tools, and domains. Ontology-based representations (structured
vocabularies with formally defined relationships) are a widely adopted solution,
as they provide semantic interoperability and organization of concepts. Below
are a descriptions of a few of the ontologies used in this work.

The Gene Ontology (GO)
Gene Ontology (GO) is a widely used resource and provides a standardized
vocabulary that enables a structured and controlled representation of biological
knowledge related to genes and their functions. It generally classifies or
annotates genes based on a few different categories (Ashburner et al., 2000):

1. Molecular function, a category which describes the type of biochemical
activity or intrinsic property of the gene products. This could include con-
cepts such as transport, transcription factor activity or phosphorylation
activity.

2. Biological process, a category representing various molecular events
and activities within living organisms. It encompasses terms such as
“cellular metabolism” or “signal transduction” that describe the biological
processes genes are involved in.

3. Cellular compartment, a category describing the locations or structures
within a cell or organism where gene products are active or present. It
includes terms such as “nucleus” or “mitochondrion”, that indicate the
sub-cellular locations or compartments associated with specific gene
products.

Each term within the Gene Ontology is organized in a hierarchical manner,
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Figure 3.7: Example ancestor chart for the “mitochondrion” gene ontology term
(in the cellular compartment category). Each arrow corresponds to a different
semantically meaningful relation with the parent term. The hierarchical structure
allows for classification of gene function at different levels of specificity.

with more specific terms commonly being children of more general terms.
This hierarchical structure allows for the organization and navigation of gene
annotations at different levels of detail and specificity.

Other ontologies and resources
Beyond GO, several complementary ontologies and structured databases exist
to capture other facets of molecular and cellular function, phenotype, and
interaction. For example, an ontology that is heavily used in this thesis
is the Ascomycete Phenotype Ontology (APO), which formalizes observed
yeast phenotypes—such as growth defects, colony morphology, and chemical
sensitivities—using a controlled vocabulary (Cherry et al., 2012; Engel et al.,
2025).

The Chemical Entities of Biological Interest (ChEBI) ontology provides
standardized identifiers and hierarchical classification for small molecules and
ions encountered in biology (Hastings et al., 2016). To link proteins both to
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each other and to small molecules, resources like STRING-DB curate and score
protein–protein associations from experimental data and prediction methods,
while STITCH-DB focuses on protein–chemical interactions, both with inter-
operable descriptions of the interactions themselves (Szklarczyk et al., 2023;
Szklarczyk et al., 2016). Together, these ontologies and interaction databases
enable rich, multilayered knowledge graphs that have the potential to assist in
systems-level analyses of gene function and phenotype.

While not used in this thesis, there are many different widely used biological
ontologies, such as KEGG Brite and Panther (Mi et al., 2013; Minoru Kanehisa
et al., 2023).

Beyond domain-specific resources, there are also more general ontologies for
representing the scientific process itself. The Ontology for Biomedical Investig-
ations (OBI) defines terms for describing many aspects of an investigation such
as protocols, instrumentation, data transformations, and analysis methods,
facilitating annotation and integration of experimental workflows (Bandrowski
et al., 2016).

Many of the aforementioned ontologies were used in Papers 2, 4 and 5, either
as instantiations of genes, or to describe and annotate biological hypotheses
and experimental investigations.
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Figure 3.8: Simplified examples of ontologies used in this thesis. APO
(Ascomycete Phenotype Ontology) standardizes the description of mutant phenotypes
in fungal species. GO (Gene Ontology) describes functional aspects of gene products.
ChEBI (Chemical Entities of Biological Interest) describe compounds relevant for
biological processes.
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Chapter 4

Machine Learning for
Biological Discovery

The complexity of biology demands analytical approaches that go beyond
traditional human intuition. Systems biology seeks to unravel the dynamics
and interactions that give rise to cellular behaviour and emergent properties.
High dimensionality, non-linear dynamics and relationships, context dependent
regulation and overall data volume produce a setting in which interesting
biological signals are buried underneath noise and complex interdependencies.
These challenges quickly overwhelm traditional statistical and mathematical
approaches, motivating the need for more advanced computational strategies.

Machine learning provides tools to detect complex patterns, produce accur-
ate prediction models, and suggest testable hypotheses. By learning directly
from experimental observations, these algorithms can detect subtle and complex
properties of biological systems at a level of detail beyond human capability.

In this chapter, we introduce the core machine learning techniques that
were used in this thesis, and illustrate how they can be used to aid in biological
discovery and the automation of biological science.

35
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4.1 Learning from Observations

4.1.1 Supervised Learning

Supervised learning is a fundamental concept in machine learning. It is a
category of learning algorithms where labelled training data are used in order
to learn. In this paradigm, a dataset typically consists of pairs of input samples
(features) and their corresponding outputs—often called labels or targets. The
goal is then typically to train a model (a learner) that can learn from the training
data in order to make accurate predictions about the phenomena of choice. The
model learns from the labelled examples by identifying patterns, relationships,
or statistical dependencies between the input and output variables.

Formally, in supervised learning we are given a set of (n) training examples
(input-output pairs), i.e. {(xi, yi)}ni=1, where each xi ∈ X is an input (feature
vector) and each yi ∈ Y is an associated output. The goal is to then learn
a function that can accurately map the relation between the two, such as g :
X → Y . In biological contexts, X could, for example, represent transcriptomic
profiles, protein concentrations, or other types of descriptors, while Y might
correspond to phenotypic outcomes such as metabolite accumulations or drug
responses. The specific choice of X and Y will depend on the framing of the
biological question.

Beyond prediction, supervised learning can be used as a tool for biological
insight. By analysing how input features contribute to model performance, it
enables us to identify which properties are most associated with the output
label. This is particularly useful when features are biologically meaningful and
interpretable because it allows the model to act not just as a predictor, but
also as a hypothesis generator.

Supervised learning has been successfully used in biology for decades, and is
now a staple in most bioinformatic workflows, with applications in for example:

• Classification of cancer through gene expression by using a classifier
on microarray data to distinguish acute myeloid leukemia from acute
lymphoblastic leukemia (Golub et al., 1999).

• Predicting clinical drug response from gene expression using regularised
linear models on cancer cell-line panels and applied them to patient
tumors to predict sensitivity to chemotherapy (Geeleher et al., 2014).

• Gaining mechanistic insight into antibiotic resistance using biochemical
reaction data and regularised linear models to generate mechanistic,
interpretable explanations of antibiotic resistance (J. H. Yang et al.,
2019).
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Figure 4.1: Supervised learning to extract testable features. a. General
methodology behind supervised learning. Using an input X (e.g. gene counts) and a
target label Y (e.g., drug resistance, protein levels or nutrient uptake), learn a function
g that maps the relation between the two types of variables. b. Relative importances
of features for different targets, extracted from the learner (g). For example, feature
4 (x4) is very important for predicting protein levels (red). c. Description of features.
Features can be continuous measurements, like RNA counts or protein abundances,
but could also be represented as propositions. Propositions such as in x3 and x4 have
been used extensively in this thesis. These could allow for more interpretable (and
testable) multimodal features, e.g. a nutrient uptake could be commonly associated
with antibiotic resistance, but during a conditional treatment a specific protein could
have a stronger connection to the predicted outcome.

4.1.2 Explainable Machine Learning

Explainable AI (XAI) seeks to make machine-learning decisions transparent
and trustworthy by revealing how input features contribute to model outputs.
In biology, interpretability is essential for turning predictions into hypotheses,
mechanisms, or actionable insights. Unlike purely predictive settings, biological
research often seeks to explain the underlying processes, identify causal factors,
and potentially even guide further experimentation. An interpretable model
could allow researchers to trace predictions back to specific features, biological
pathways, or relevant interactions, thereby transforming statistical associations
into biologically meaningful hypotheses.

In this thesis, we make use of several different types of learners (with varying
degrees of interpretability). Below, we distinguish between models that are
intrinsically interpretable (where the model itself serves as its own explanation)
and post-hoc explanation techniques that approximate the behaviour of less
interpretable learners.
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Explainable Models

In the simplest case—a linear regression model—interpretation is direct. For

an input vector x(j) = (x
(j)
1 , . . . , x

(j)
n ), the model predicts:

ŷ(j) = β0 +

m∑

i=1

βix
(j)
i . (4.1)

where βi quantifies the effect of feature x
(j)
i on the prediction for sample j.

The value of βi reflects the strength of the association, while its sign indicates
the direction (i.e., negative or positive association with the dependent variable).
Because of this explicit structure, the best explanation for the model is the
model itself.

Another family of interpretable models are those based on decision trees.
Here, predictions are generated by traversing through a sequence of “decisions”,
typically based on feature thresholds (e.g., if feature xi > 0.5, then predict high
ŷ). This structure makes it straightforward to trace how any given prediction
was made.

However, some variants of this, such as random forest (Breiman, 2001) or
even gradient-boosted trees (T. Chen et al., 2016) sacrifice this transparency
for improved accuracy. While each individual tree is interpretable, an ensemble
of hundreds or even thousands of trees make it difficult to aggregate traces or
decisions. In these cases, one typically leverages built-in aspects of the training
to facilitate interpretability, such as:

• Decrease in impurity: A measure of the reduction in impurity (i.e.,
how cleanly did this decision split the data) for a feature, aggregated
across all trees.

• Gain: A measure of the total improvement in the model’s loss given a
feature.

These are essentially summary statistics of the models learning process, offering
interpretability at a high level.

Post-hoc explanations

However, for more complex learners—such as particularly large decision-tree
ensembles or deep neural networks—the model might not be able to reliably
serve as its own explanation because its internal structure could be too intricate.
In such cases, post-hoc explanation methods can be employed to approximate
how input features influence predictions.

One widely adopted technique is SHAP (Shapley Additive Explanations).
Drawing on cooperative game theory, SHAP assigns each feature a “credit”
for a given prediction, decomposing the model’s output into a sum of locally
accurate, feature-specific contributions (Scott M Lundberg et al., 2017; Scott M.
Lundberg et al., 2020). Then, for a given sample (x(j)), the predictions can be
decomposed in the following relation:
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f(x(j)) = ϕ0 +

m∑

i=1

ϕ
(j)
i , (4.2)

where ϕ0 = E[f(x)] is the expected prediction (baseline), and ϕ
(j)
i is the

contribution of feature i to the prediction for sample j. ϕ
(j)
i is computed as

the Shapley value of feature i, i.e. its average marginal contribution across all
possible spaces of features (see Scott M Lundberg et al., 2017). This ensures
local accuracy, as the baseline and all feature contributions sum exactly to the
model’s prediction for that sample.

In biology, these tools let us peer inside complicated models to uncover
potential mechanisms. For example, a classifier trained to predict cellular
fitness from gene-expression profiles might highlight a small subset of genes
whose SHAP values consistently drive fitness predictions upward. Those genes
then become candidates for downstream validation, hypothesis generation, or
even therapeutic targeting; transforming opaque predictions into actionable
biological insight.

Feature Explanations
It is important to distinguish feature interpretability from mechanistic explan-
ation. A feature may reliably predict an outcome without itself being part of
the causal mechanism. Such predictive associations may reflect correlation,
shared upstream drivers, or other indirect relationships rather than true mech-
anistic involvement. To generate truly mechanistic explanations, studies like
the one produced by J. H. Yang et al. (2019) have combined mechanistic data
(fluxomics) with linear models, yielding transparent explanations for antibiotic
resistance that directly reflect biochemical reaction rates. This is an example
of a complementary strategy for improving interpretability. Namely to focus
on the features themselves. By engineering or selecting descriptors that have
clear, semantically meaningful definitions such as reaction fluxes, or actions
of regulatory binding, the explanation task is simplified. When each input
feature corresponds directly to a recognizable biological concept, even a com-
plex model’s decisions become more understandable. In practice, this can be
achieved by, for example:

• Domain-guided feature construction, where expert knowledge is used to
group sets of measurements into more higher-level summaries (such as
pathway enrichment scores) (Barbie et al., 2009; Golriz Khatami et al.,
2021).

• Rule-based or logic-derived features, for example from inductive lo-
gic programming, that encode specific relationships between entities
in human-readable form (Orhobor et al., 2020; Brunns̊aker et al., 2024).

• Ontology embeddings, where each dimension of a learned representation
aligns with a known category or term (J. Chen et al., 2025).

By coupling these interpretable features with any learner, be it a linear model
or deep neural network, you shift much of the burden of explanation onto the
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features themselves. The model then only needs to combine a set of already-
meaningful inputs, greatly simplifying both global and local interpretability
analyses.

In several works presented in this thesis (Papers 2, 4 and 5), we proced-
uralized this principle by generating interpretable features via inductive logic
programming (ILP) or ontological embeddings and then applying XAI tech-
niques to them. By grounding each feature in explicit domain knowledge, we
produce explanation models that are both faithful to the original learner and
expressed in human-readable terms. This not only enhances interpretability
but, in the case of ILP (see section 4.2.1), can also yield directly testable
hypotheses expressed in natural language, bridging the gap between predictive
power and scientific understanding.
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4.2 Learning from Community Knowledge

A reoccurring theme of this thesis is the usage of structural knowledge priors,
typically based on accumulated community knowledge constructed with struc-
tured ontologies. These priors can be leveraged for biological discovery using
algorithms designed for use with relational data representations.

4.2.1 Inductive Logic Programming

Inductive logic programming (ILP) is a subfield of artificial intelligence that aims
to learn logic programs from examples. This is typically done by constructing
hypotheses (h) to explain examples (E) with the aid of background knowledge
(B). Formally, the goal is to infer h such that, together with B, it correctly
accounts for the observed data (Muggleton et al., 1994; Muggleton, 1999;
Muggleton et al., 2012).

In what follows, we use the symbols ∧ (logical and), ∨ (logical or), ¬
(logical negation), |= (logical entailment), ̸|= (non-entailment), and 2 (falsity
or contradiction). With this notation, a correct hypothesis is usually expected
to satisfy four conditions (Muggleton, 1999):

B ̸|= E+ (necessity) (4.3)

B ∧ h |= E+ (sufficiency) (4.4)

B ∧ h ̸|= 2 (weak consistency) (4.5)

B ∧ h ∧ E− ̸|= 2 (strong consistency) (4.6)

Here, E+ denotes the set of positive examples and E− the set of negative
examples. Necessity ensures that the background knowledge alone does not
already entail the positives (so that the hypothesis is not redundant). Sufficiency
requires that the hypothesis, together with the background, entails all positive
examples. Weak consistency requires that the combination of background
and hypothesis is satisfiable, i.e. free of contradiction. Strong consistency
further requires that this remains true even when the negative examples are
added, ensuring that no negatives are entailed. In practice, particularly in
noisy domains, sufficiency and strong consistency are sometimes relaxed (or
disregarded completely) and replaced with statistical criteria used to rank
hypotheses that approximately satisfy these conditions (King et al., 2001).

Among the four conditions described above, sufficiency is the most central
in practice, as it directly concerns whether a hypothesis explains the positive
examples. In this thesis, however, sufficiency is often applied in a relaxed form,
and consistency is usually interpreted in its weaker version—requiring only that
hypotheses remain free of contradiction while covering the positives. Necessity
is generally regarded as an auxiliary safeguard against redundancy.

A logic program acquired through these types of methods usually takes the
following form:

a← b1, ..., bn (4.7)
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where a is an atom (the head of the rule), and each bi is a literal (an atom
or its negation) in the body. Atoms represent basic propositions, from which
more complex logical statements can be constructed. In ILP, a hypothesis h is
such a logic program (i.e. a set of rules).

To enable systematic hypothesis construction, ILP often relies on the
concept of inverse entailment, derived from the deduction theorem applied to
the condition of sufficiency (Muggleton, 1999).

B ∧ h |= E+

⇔ B |= (h→ E+)

⇔ B |= (¬E+ → ¬h)

⇔ B ∧ ¬E+ |= ¬h

(4.8)

Inverse entailment provides a way to construct candidate hypotheses from
examples: given positive (and sometimes negative) examples, it allows the
generation of a most-specific clause that is entailed by the data, from which
hypotheses can then be derived (Muggleton et al., 1994; Muggleton, 1999).

WARMR
Relational database

Pruning 
level 1

Pruning 
level 2

Pruning 
level n

Collection of 
frequent patterns

Downstream task

Frequent patterns Infrequent patterns

Figure 4.2: Overview of frequent pattern mining using WARMR. Given a
relational (Datalog) database of the phenomena of interest defined by the head (a) and
its associated relations (e.g., genes and their phenotypes), WARMR then performs a
level-wise search over candidate queries defined by a user-specified language bias. At
each step, existing patterns are refined by adding literals (b), and candidates that
do not meet a pre-specified frequency (support) threshold are pruned. The logic
program on the right side denotes the general structure of the program at the current
level. The resulting frequent patterns can then be used as candidate hypotheses or as
features for downstream tasks such as regression or classification.
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Generating Candidate Logic Programs

In this thesis, candidate hypotheses are often generated using the WARMR
algorithm, a level-wise ILP approach for discovering frequent Datalog patterns
under a user-specified language bias (Dehaspe et al., 1999; King et al., 2001).

At a high level (also see Fig. 4.2), WARMR explores the space of possible
queries allowed by the language bias in a breadth-first manner, retaining only
those that occur frequently in the data. The language bias (restrictions on
which predicates and argument types may appear in a clause) plays a central
role, since it determines both the scope of the search and the interpretability
of the resulting rules. In our setting, such biases are typically defined using
biological relations (e.g. regulatory interactions, phenotypes), which ensures
that the resulting candidate programs are meaningful within the domain.

WARMR provides an efficient way of generating structured hypotheses,
which can then be evaluated using the ILP conditions introduced above. For
a more detailed description of the algorithm, including data representation,
search strategy and bias specification, please read the original descriptions as
written by King et al., 2001 and Dehaspe et al., 1999.

An example logic program as defined in Prolog (using three of the biological
concepts mentioned in Section 3.4.3 and used in Paper 2) could take the
following form:

Gene(A) : −
Regulated By(A, B, Transcription factor),

Located In(B, Mitochondrion),

Enzyme Metabolite(A, Glutamine)

(4.9)

This could then be interpreted as: genes (A) that code for an enzyme catalyzing
a reaction involving glutamine and are regulated by a transcription factor (B)
located in the mitochondrion.

An advantage of this method is the ability control the structure of the logic
program according to a specified task. In Paper 5 we leverage this to shape the
search in order to produce logic programs that adhere to typical experimental
biological hypotheses, that could be easily testable with available laboratory
infrastructure. An example of this can be seen below:

Cells(A) :=

ExhibitsPhenotype(A, Increased Resistance, B, C),

CompoundName(B, Formic acid),

Condition(C, Treatment : 10mM Formic acid).

(4.10)

This can be interpreted as: Cells (A) with increased resistance to formic acid
(B) when exposed to a concentration of 10 mM (C).

Note that these patterns have no testable or actionable implications and
instead only describe coverage of positive examples. Whilst the programs
themselves can be identified and evaluated, they do not yet have a biological
quantity associated to them outside of the examples they cover.
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4.2.2 Finding Useful Patterns in Data

Whilst one can mine many patterns from structured databases, it could be
difficult to know whether they are biologically relevant (or rather, relevant for
the scientific question). For several works that has been done as part of this
thesis, we assign importance to extracted patterns using XAI-techniques in
order to assess their relevance.
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        x
HasChemStressResistance (NaCl)
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       Cellular Fitness

a) Paper 2 b) Paper 5
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Figure 4.3: Extracted patterns used to generate hypotheses. This thesis
has explored different uses of patterns from existing ontologies using various types of
representation. a. Pattern used in Paper 2 to infer clues about general phenotypical
associations with His4p abundance (examples with both abmormal telomere lengths
and H+ accumulations tend to be associated with changed His4p levels). b. Pattern
and association used as the basis for an hypothesis in Paper 5. Involves the association
between the amino acid lysine and overall tolerance to hyper-osmotic stress. c.
Extracted structure used to predict an association between NaCl tolerance and
Inositol utilisation (in relation to cellular fitness) in Paper 4. Dashed lines indicate
a simplification of the underlying ontology for brevity. Blue indicates the concepts
used to form the pattern itself, whilst pink signifies the biological readout used to
define the relevance. The patterns and associations presented for Paper 4 and 5 were
experimentally validated.
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In Paper 4 we utilise an input-gradient method to extract useful patterns
in the context of cellular fitness (Shrikumar et al., 2017; Costanzo et al., 2016).
This allowed us to extract synergistic phenotypes, and generate a testable
combination of traits—in this case the association between inositol utilization
and NaCl tolerance—ass illustrated in Fig. 4.3.

For Papers 2 and 5, we use a similar approach, but in a propositional
setting. The patterns themselves are propositionalised (i.e., by instantiating
each predicate over the available constants to produce ground atoms, and then
encoding those atoms as Boolean features) enabling the use of more efficient
(and highly interpretable) attribute-value learners, such as linear regressors
or decision trees (as explained in Section 4.1.2) (Kramer et al., 2001). In the
context of Paper 2, biologically relevant patterns were found by predicting for
protein abundances and connecting the qualitative patterns (logic programs)
to this quantified biological entity through model explainability techniques
(Scott M. Lundberg et al., 2020). For the latter paper, we used regularized
linear models to force a testable implication unto the logic programs, allowing
us to get clauses like the following (this was experimentally validated in the
paper, as seen in Fig. 4.4):

+ Aminoadipate, Cells(A) :=

ExhibitsPhenotype(A, Increased Resistance, B, C),

CompoundName(B, Formic acid),

Condition(C, Treatment : 10mM Formic acid).

(4.11)

Additional examples of underlying patterns used in this thesis can be seen in
Fig. 4.3, highlighting several patterns used for experimental evaluation.

An additional advantage of this family of methods is that they can easily
be used on top of existing ontologies, producing patterns that directly adhere
to the underlying semantics.

Ade
meti

on
ine

Amino
ad

ipa
te

L-V
ali

ne

N2-A
ce

tyl
-L-

orn
ith

ine

L-A
rgi

nin
e

L-C
itru

llin
e

Quin
oli

nic
 Acid

L-H
ist

idi
no

l

Glut
ath

ion
e

FA
D

2000

1000

0

1000

2000

C
oe

ffi
ci

en
t

Top metabolites associated with formic acid resistance

50 0 50 100
Change in AUC (%)

C(Treatment)[T.Formic acid]

Q("Supplementation (per mM)")

Supplement at 5.0 mM

C(Treatment)[T.Formic acid]:Q("Supplementation (per mM)")

Formic acid×(Supplement at 5.0 mM)

Q("Negative control")

C(Treatment)[T.Formic acid]:Q("Negative control")

Variable Effect

Change in AUC (%)

Top metabolites associated with formic acid resistance Variable effect

cvR²: 0.48 10mM Formic acid

Aminoadipate (per mM)

5mM Aminoadipate*

10mM Formic acid × 
Aminoadipate (per mM)

10mM Formic acid × 
5mM Aminoadipate* 

5mM L-Proline**

10mM Formic acid × 
5mM L-Proline** A B

Figure 4.4: Example of data underlying the generation and evaluation
of a pattern. In Paper 5, endpoint metabolic profiles and time-series growth data
was used to infer compounds associated with formic acid resistance (panel A). A
logic program was then procedurally generated (see Equation 4.11) and automatically
experimentally evaluated, as seen in panel B. Significant interactions in red.
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4.3 Large Language Models in Science

Large language models (LLMs) are deep neural networks typically built on
transformer architectures (Vaswani et al., 2017). These are pre-trained on vast
amounts of text to learn statistical patterns in language. Through a process
of self-supervised learning, they internalize grammar, facts, and potentially
even reasoning heuristics without explicit labels. These models can perform a
wide variety of downstream tasks: drafting and summarizing text, translating
between formats (e.g., natural language to code or experimental protocols),
extracting structured data from unstructured sources, and (in the case of this
thesis) generating hypotheses or experimental designs in response to a few
examples or natural-language instructions.

Because they learn from such diverse data, LLMs exhibit remarkable ad-
aptability. In scientific workflows, this flexibility has been harnessed for tasks
including:

• Multi-agent AI co-scientist frameworks, where LLMs are organized into
pipelines that iteratively propose and refine hypotheses. This approach
has been used for drug repurposing for acute myeloid leukemia, identifying
epigenetic targets for liver fibrosis and finding novel therapeutic targets
for macular degeneration (Gottweis et al., 2025; Ghareeb et al., 2025).

• Drug-synergy hypothesis generation, using prompt-based exploration of
chemical spaces to suggest combinations of FDA-approved drugs to treat
cancer. Several pairs of drugs were tested on MCF7 breast-cancer cells,
finding several with synergy exceeding standard controls. (Abdel-Rehim
et al., 2025).

• Augmented autonomous chemistry, integrating LLMs with web searches,
code execution, and robotic interfaces to design, execute, and optim-
ize chemical reactions. The system autonomously improved yields in
palladium-catalysed cross-couplings and successfully completed several
other diverse synthetic tasks (Boiko et al., 2023).

• Retrieval-augmented knowledge grounding, combining LLMs with ontology-
backed vector stores to extract structured hypotheses from literature
and map entities to standard ontologies. This was applied to several
publications in yeast biology, showing promise in automated hypothesis
summarization and entity grounding (Reder et al., 2025).

Despite their power, LLMs can produce hallucinations (plausible-sounding
statements unsupported by data) and may vary in consistency across outputs.
While not always the case, generated hypotheses often lack a degree of validation
that is standard in most experimental sciences, and model outputs may not
conform to community data standards unless carefully guided.

In this thesis (Paper 5), we integrate LLMs into a logic-driven discovery
framework where we leverage them to translate interpretable—ILP-derived—
logic programs into detailed experimental plans that can then be executed
robotically. This hybrid approach combines the flexibility of LLMs with
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the precision and reproducibility afforded by formal logic (described in the
previous sections) and standardized data practices. We show that this has many
advantages over previously used methods, such as the ones seen in Gottweis
et al., 2025.



48 CHAPTER 4. MACHINE LEARNING FOR BIOLOGICAL DISCOVERY



Chapter 5

Summary of Included
Papers

In this chapter, the five papers included in this thesis are summarized.

Paper 1 employs semi-automated experiment selection, high-throughput cul-
tivation, and mass spectrometry to characterize several regulatory genes in the
context of a biphasic complex biological phenomenon—the diauxic shift. It
highlights several metabolic pathways involved in the shift itself, whilst evalu-
ating the use of mass spectrometry-based metabolomics for model validation
and phenotyping for regulatory deletants.

Paper 2 uses a combination of structured biological priors, inductive logic
programming, and supervised learning to learn predictive relationships between
gene function, phenotype, and protein levels on a genome-wide scale, enabling
high-throughput hypothesis generation.

Paper 3 involves the creation of software pipeline for automated high-throughput
metabolic profiling, enabling downstream scientific automation. It involves
evaluation on several chemical standards and intracellular yeast matrices.

Paper 4 investigates and validates the use of ontology-based box embeddings
and knowledge graphs to predict and interpret cellular fitness. It also invest-
igates the frameworks ability to generate testable hypotheses. Experimental
evaluation of hypotheses were performed, extracting insights on hyper-osmotic
stress.

Paper 5 is about the design and experimental validation of an automated
framework for biological discovery using logic programming and concepts from
agentic AI. It combines ideas from Paper 1-4, involving automated hypothesis
generation, laboratory automation, mass spectrometry-based metabolomics
and automated hypothesis testing. It extracted insights from several metabolic
interactions regarding amino acids, generating growth-data, metabolic profiles
and detailed metadata in the process.

49
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5.1 Paper 1: High-throughput metabolomics
for the design and validation of a diauxic
shift model

When S. cerevisiae grows on glucose in an aerated batch culture, one can
commonly observe a diauxic shift (or biphasic growth). During the initial
growth phase, the yeast ferments glucose into ethanol; once glucose has been
consumed, the yeast switches to an ethanol substrate through respiration
(Geistlinger et al., 2013). This transition requires a substantial reconfiguration
of the metabolic network and a similar phenomenon can be observed in cancer
cells known as the Warburg effect, where it instead typically ferments glucose
into lactate (Liberti et al., 2016). Despite extensive research, the regulation of
the diauxic shift remains poorly understood (Coutant et al., 2019).

In this work, we employ a combination of computer-aided experimental
design, automated laboratory cells, and analytical tools to characterize the
roles of several genes involved in the diauxic shift.

Figure 5.1: Workflow demonstrated in Paper 1. dFBA (dynamic Flux Balance
Analysis) simulation suggests deletant strains which are subsequently cultivated in
an automated laboratory cell and then and analysed using mass spectrometry-based
metabolomics and various bioinformatics tools. 1Simulations using models proposed
in Coutant et al. (2019)

Genes of interest were selected based on the simulated impact of specific types of
gene deletions on metabolism. This selection was performed using a combined
signalling and regulatory network (explained in Sections 3.4.1 and 3.4.2), along
with flux balance analysis, within a framework established by previous iterations
of the robot scientist concept, developed by Coutant et al. (2019). The selection
criteria were based on differences in growth phenotype given the structural
changes caused by the semi-autonomous model improvements performed in
the original work. These were then investigated through the phenotyping
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of deletant strains (strains of S. cerevisiae where the selected gene has been
deleted), automated cultivation techniques and untargeted metabolomics. A
complete summary of the methodology can be seen in Fig. 5.1.

Figure 5.2: Overview of the effects of gene deletion on metabolic profiles. a.
Metabolic profiles (levels of observable metabolites) for the deletant mutants pre and
post diauxic shift. b. Pathway enrichment (with the KEGG-derived yeast metabolic
network as the background) for the deletant strains pre-shift. c. Pathway enrichment
(with the KEGG-derived S. cerevisiae metabolic network as the background) for the
deletant strains post-shift. Pathway enrichment (overrepresentation) aids in inferring
impact of the deletions on metabolism (and, in turn, the role of the gene).

We demonstrate the suggested workflow by successfully characterizing several
genes involved in the diauxic shift, as seen in Figure 5.2. Three of these are
of either or contested function (TDA1, YGR067C and RTS3 ), and two have
corresponding homologues (a gene that shares a common evolutionary ancestry
with another gene) in humans (DLD3 and FAA1 ) (Bjurström et al., 2025).
Additionally, we further phenotype 5 other genes (RME1, OCA1, PCL1, GAL11
and MEK1 ).

The study also further characterized the diauxic shift, leveraging the
strength of untargeted metabolomics to find subtle, and previously unex-
plored, changes in metabolism triggered by the metabolic transformation itself,
such as glycerophospholipid metabolism and the intersection between arginine,
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proline and glutathione metabolism (see Fig. 5.3c). Additionally, we find
that—unsurprisingly—the diauxic shift itself involves a major metabolic trans-
formation, clearly visible through metabolomics data, as seen in Fig. 5.3a and
5.3b.

Figure 5.3: a. Diauxic shift phase classification and 95% confidence intervals using
orthogonal partial least squares discriminatory analysis (oPLS-DA) with identified
peaks as features. b. Volcano plot showing differentially expressed metabolites
across the shift. c. Diffusion based topological enrichment with significantly enriched
pathways in red.

A secondary objective of the study was also to demonstrate the effectiveness
of the aforementioned tools for the purposes of future automation and model
improvement studies. We concluded that whilst it could be a useful tool, the
steady state assumptions going into the simulation framework (see Section 3.4)
are in conflict with the nature of measured metabolite accumulations. As such,
it should likely be seen as a more holistic assessment, rather than be used for
specific reactions.

We conclude that untargeted intracellular metabolomics is well suited to
generating data and hypotheses about gene function due to its high information
content. Moreover, it is ideally positioned to support automated approaches
due to the relative simplicity of processing and the potential to make massively
high-throughput.
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5.2 Paper 2: Interpreting protein abundance
in Saccharomyces cerevisiae through rela-
tional learning

Exploring the impact of gene deletions on biological readouts is a fundamental
problem in systems biology. Despite having functional annotations for the
majority of genes in extensively studied organisms like Saccharomyces cerevisiae,
achieving a comprehensive understanding of regulatory rules at a systems level
remains a challenge (Wood et al., 2019).

In this study, we investigate proteomic and metabolic profiles derived from
a collection of S. cerevisiae deletants, utilizing structured priors, relational
learning, and supervised machine learning (both described in Chapter 4).

Figure 5.4: Overview of methodology applied in Paper 2. Metadata (genotype)
from data sets on proteomic abundances is used to identify frequent patterns in a
relational database. The frequent patterns are propositionalized and used to predict
protein levels in an explainable manner.

S. cerevisiae is a very well studied organism, as such the community has system-
atized a substantial amount of highly structured and expressive knowledge on
its biology (Engel et al., 2025; Cherry et al., 2012; H. Lu et al., 2019). This work
subsequently makes use of this prior to learn predictive relationships between
proteomic profiles (generated by Messner et al. (2023)) and the functional char-
acterization of the yeast genome. This is done by translating this knowledge
into a Datalog database, and using frequent pattern mining (applied through
inductive logic programming) to generate logic programs—representing biolo-
gically relevant regulatory rules. These were then evaluated using supervised
learning and feature analysis. See Fig. 5.4 for a visual summary.

Some examples of the relations present in the pattern-search can be seen
below. Note that this includes concepts from gene regulation, protein structure,
metabolism and phenomics.
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ORF metabolite(+Gene, #Metabolite)

ORF pathway(+Gene, #Pathway)

ORF nullphenotype chemical(+Gene, #Phenotype, #Chemical)

ORF has protein domain(+Gene, #Domain)

regulates(+Gene,−Gene, #Type)

For example, the mode ”regulates”, consists of an input (+Gene), output
(-Gene), and a constant (#Type). This would mean that an allowed clause
could include a relation in which gene A (+Gene) regulates gene B (-Gene) by
regulating expression or activity (which is discerned from #Type). The end
result would be logic programs consisting of several atoms, such as the example
seen in section 4.2.1. These hypotheses/relational features are then assessed by
evaluating their predictive power (in terms of proteomic abundances) as seen
in Fig. 5.5.
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Figure 5.5: Predictability of protein abundance given relational features. R2 denotes
the coefficient of determination (proportion of variance explained).

By assessing predictive logic programs across all of the 2292 proteins present
in the study by Messner et al. (2023), we could evaluate which biological
concepts contributed most to protein abundance in general (according to our
framework) as seen in Fig. 5.6. For example, highly impacting concepts such
as abnormal growth rates severely affect protein abundances in many cases,
typically connected to abnormalities in abundances of amino acids—molecules
crucial for a functional metabolism and metabolic signalling as well as being
fundamental building blocks of proteins.
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We also learnt several predictive relationships between specific protein
abundances, function and phenotype; such as α-amino acid accumulations and
deviations in chronological lifespan. This was also extended to investigate
some specific proteins more closely, namely His4p and Ilv2p (see Fig. 5.7); the
methodology successfully validated existing literature, but also inferred their
roles as regulatory elements for neighbouring processes.
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Figure 5.6: A. Normalized average SHAP-values of relational features across all
available protein models with a positive coefficient of determination. B. Normalized
gain of relational features across all available protein models with a positive coefficient
of determination. Both of these concepts of explainability (SHAP and gain) are
explained in more detail in Chapter 4
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Figure 5.7: A. Top features for the prediction of Ilv2p, given only relational features
(the frequent patterns). Sorted by average contribution in descending order. B. Top
relational features for Ilv2p abundance, according to maximum change in model
output (i.e facts that severely changed the outcome of the prediction for a subset
of proteins), given only relational features. C. Top features for the prediction of
His4p abundance, given relational features and metabolite concentrations. Sorted by
average contribution in descending order. D. Top relational features according to
maximum change in model output for His4, given relational features and metabolite
concentrations. Each dot corresponds to one sample. ilp- denotes that the feature is
a generated relational feature. Complete explanations for these descriptors can be
seen in the appended manuscript. The x-axis denotes the change in predicted protein
abundance caused by a feature (for each sample).
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5.3 Paper 3: AutonoMS: Automated Ion Mo-
bility Metabolomic Fingerprinting

Modern life science laboratories are transitioning from manual work to high-
throughput, data-centric discovery platforms (Musslick et al., 2025; Lobentanzer
et al., 2025; Coutant et al., 2019). This transformation is driven by the
convergence of robotic automation and integrated software systems. It is
becoming increasingly common for automated laboratory instruments to handle
labour-intensive tasks like sample preparation and assay execution, increasing
both data quantity and quality (Holland et al., 2020; Bai et al., 2022).

Mass spectrometry (MS), especially when integrated with ion mobility
(IM-MS, further explained in Chapter 3), is a widely used analytical tool in
life sciences due to its sensitivity and resolution. IM-MS adds an additional
separation dimension based on molecular structure, enhancing its utility for
complex sample analysis. Despite advancements in automation and analytical
techniques, many mass spectrometry workflows remain complex, time-intensive,
and require significant manual intervention. In areas like metabolomics, analyt-
ical instrumentation are often late adopters of automation, limiting throughput.
The complexity introduced by high-throughput systems like IM-MS further
exacerbates this challenge.

Figure 5.8: AutonoMS enables walkaway automation of ion mobility mass spectro-
metry data collection and analysis. A. AutonoMS integrates software control layers
with an Agilent RapidFire-6560 ion mobility mass spectrometry system to provide
automated data acquisition, raw data handling, data processing, and metabolomic
end-to-end analysis. B. The AutonoMS software stack is shared between the 6560
and RapidFire control computers. Human users or an upstream software agent may
trigger AutonoMS runs using a pre-specified experiment definition file.

In this work, we introduce AutonoMS. It is an automated platform for mass
spectrometry experimentation. It automates sample injection, data acquisition,
and metabolomics analysis using open-source libraries and integrates with an
Agilent RapidFire and 6560 DTIMS-QTOF systems (see Fig. 5.8). AutonoMS
allows experiments to be planned and executed programatically, supporting
upstream automation agents.



58 CHAPTER 5. SUMMARY OF INCLUDED PAPERS

Figure 5.9: Automated analysis of the extracted intracellular yeast samples with
AutonoMS. A. Detected peak areas in extracted yeast samples across injections
of the 5 ions used in the chemical standards analysis. Peak areas shown as the
moving average (solid lines) together with the standard deviation (shaded areas).
B. Untargeted metabolite features found across all extracted yeast samples across
positive (blue) and negative (orange) ionization modes. Single ionization state ion
features are shown in gray, and marker size is scaled according to abundance.

We demonstrate autonomous operation on biologically relevant chemical stand-
ards, and extract untargeted metabolomics data from complex biological
samples (S. cerevisiae) as seen in Fig. 5.9. The platform addresses the need
for greater automation at the analytical end of omics workflows, supporting
large-scale screening and discovery efforts. Its ability to bridge experiment
execution with informatic analysis highlights several use-cases for downstream
closed-loop automation.
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5.4 Paper 4: Ontology-based box embeddings
and knowledge graphs for predicting phen-
otypic traits in Saccharomyces cerevisiae

Despite decades of study, many aspects of yeast biology are poorly understood.
Many genes are still unannotated, and complex interplay between genes and
proteins can produce unexpected phenotypes (Wood et al., 2019; Costanzo
et al., 2016; Kuzmin et al., 2018). Fully exploring even simple organisms
experimentally is an extremely resource-heavy and time-intensive undertak-
ing due to the sheer complexity of biological systems. Therefore, scalable,
information-rich, methods for hypothesis generation are needed to accelerate
biological discovery (Coutant et al., 2019).

Saccharomyces cerevisiae is a widely studied model eukaryotic organism
due to its industrial relevance and biological similarity to higher eukaryotic
organisms. Due to its history as a widely used research organism, there exists
extensive structured resources like the Saccharomyces Genome Database (SGD),
BioCyc, and ontologies such as Gene Ontology (GO), Ascomycete Phenotype
Ontology (APO) which provide rich biological knowledge about yeast (Cherry
et al., 2012; Engel et al., 2025; Karp et al., 2019; Ashburner et al., 2000).
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Figure 5.10: a. An overview of the data representation used in this study, and how
it is connected in the knowledge graph. The colour of the nodes specifies where the
classes (nodes) themselves are defined. b. Examples from the defined hierarchies.

Knowledge graphs (KGs) offer a structured way to integrate heterogeneous
biological data. These KGs can be embedded into vector spaces to enable
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computational tasks like link prediction. Techniques such as TransE, as well
as graph neural networks, can generate useful representations of entities and
relationships. These representations can facilitate downstream tasks such as
phenotype prediction and hypothesis generation about biological function.

In this work, we present a method that uses graph neural networks (GNNs)
to predict and interpret the effect of gene deletions in the yeast S. cerevisiae.
It makes use of a knowledge graph (KG) and ontology-based box embeddings,
utilising several widely used ontologies combined with bespoke integration
terms (see Fig. 5.10 and 5.11). From the class hierarchies in the ontologies, box
embeddings are learnt as low dimensional representations of the nodes in the
graph, which are used together with GNNs to predict cell growth for double
gene knockouts from the dataset generated by Costanzo et al. (2016). We show
that high level qualitative information can be used to predict experimental
data (such as cellular fitness).
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Figure 5.11: a. An overview of the framework for predicting the fitness when
deleting pairs of genes. b. Representation of different domains and how they are
aggregated in the GNN. Arrows from the boxes represent SAGE modules.

We also demonstrate that the model can generalise beyond the task it was
trained for by evaluating its performance on triple knockouts (Kuzmin et al.,
2018). Additionally, we apply model interpretability techniques (Kokhlikyan
et al., 2020) to identify co-occurring edges important for fitness predictions.
Highlighted results can be seen in Fig. 5.12(a).

We additionally use the outcomes of this to computationally generate an
hypothesis about inositol utilisation and sodium chloride (table salt) tolerance
(highlighted in Fig. 5.12(a)). This hypotheses was validated in an automated
biological experiment revealing a dose-dependent rescuing effect, as seen in Fig
5.12(b). Potentially highlighting and further validating inositols association
with cellular membrane stability.
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Figure 5.12: Overview of the feature selection and experimental results. a. Highest
ranked features, selecting based on phenotypes testable in our experimental setup
through filtering of ontological terms. Highly ranked features in grey were not selected
due to safety constraints (e.g., cancerogenic compounds). b. Box plot showing the
distribution of AUC (a holistic measure of growth dynamics) for all of the tested
experimental conditions. Results show a significant (dose dependent) rescuing effect
of inositol during NaCl treatment.
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5.5 Paper 5: Agentic AI Integrated with Sci-
entific Knowledge: Laboratory Validation
in Systems Biology
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Figure 5.13: An automated framework for biological discovery, covering the full
cycle from generating hypotheses, executing experiments and integrating results.
Hypotheses are derived from structured yeast knowledge using ILP and the linked to
metabolomics data. The hypotheses are then tested through experiments designed
by a large language model (LLM). A robotic lab system automatically executes
experiments, measuring growth over time and collecting metabolic profiles through
mass spectrometry. All outcomes, including metadata, are stored in a graph database
for analysis, transparency, and reuse.

Artificial intelligence (AI) combined with laboratory automation offers the
possibility of transforming how science is done. Advances in AI, robotics,
and high-throughput technologies now make it possible to imagine research
systems that design, execute, and interpret experiments with minimal human
intervention (King et al., 2009; Bai et al., 2022; Musslick et al., 2025). Biology,
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in particular, poses challenges of scale and complexity that far exceed human
analytical capacity. Even in simple model organisms such as S. cerevisiae,
the number of interacting components and possible experimental conditions
makes manual exploration infeasible (Coutant et al., 2019). To address this,
we present a framework that integrates logic-based reasoning, large language
models (LLMs), and laboratory automation for end-to-end scientific discovery
(as illustrated in Fig. 5.13).

Our system combines the flexibility of LLMs with relational learning, groun-
ded in community-adopted ontologies. Hypotheses (see Fig. 5.14) are generated
from structured biological data, automatically formalized, and then priorit-
ized. Experimental plans are designed with the aid of LLMs, which are then
executed on robotic platforms. All data—including metadata and intermediate
outputs—are stored in a graph database to ensure traceability, reproducibility,
and reuse (King et al., 2011).
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Figure 5.14: Asymmetric overlap between amino acid hypothesis spaces. Each pie
chart shows, for a given amino acid (vertical axis), the fraction of its logic programs
that are also linked to another amino acid (horizontal axis). Shared programs are
colored by their regression outcome: blue = positive, green = negative, yellow =
differing signs. The bar chart indicates the total number of logic programs assigned
to each amino acid on the vertical axis.

We validated this framework in S. cerevisiae, focusing on interactions between
amino acid supplementations and stress conditions. Automated experiments
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revealed previously underexplored phenomena, such as glutamate-induced
growth inhibition in spermine-treated cells and arginine-mediated enhancement
of caffeine toxicity. Additionally, through iterative hypothesis refinement, we
discover an association between aminoadipate and formic acid stress.

Even when predictions failed, the system produced valuable insights. For
instance, highlighting when phenotypes were likely driven by downstream
metabolites rather than the supplemented compounds themselves.

The framework’s modular design makes it readily extensible to other hypo-
thesis types and data modalities, such as transcriptomics or proteomics. While
some minimal human input still remains, these steps are easily automated if
need be.
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Figure 5.15: Results from three automated interaction experiments with different
outcomes. The title shows the tested logic program. The first plot shows how the
interventions affected growth, with red marking significant effects. The bar plot shows
how much of the tested compounds built up inside cells. The final plot illustrates
how the metabolic profiles of the groups differed, confirming that the interventions
caused detectable changes in metabolism.

More broadly, this work demonstrates the feasibility of a logic-driven, agen-
tic, multi-component framework for automated hypothesis generation and
experimental validation. By combining symbolic reasoning, language-driven
flexibility, and robotics with metabolomics as a scalable readout, we show how
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AI scientists can become reliable partners in systems biology—accelerating
discovery, ensuring reproducibility, and operating at scales beyond traditional
human reach. Leveraging mass spectrometry-based metabolomics as a central
data source provides an informative readout for scientific discovery, while re-
maining fully compatible with high-throughput robotic experimentation. This
integration of reasoning, automation, and metabolomics shows how AI-driven
discovery cycles can be more comprehensive than those relying on a single
measurement type, and more precise than those built on loosely typed message
passing. We believe this platform lays the groundwork for a more reliable,
machine-driven discovery process in systems biology, extensible to other omics
modalities and experimental domains.



66 CHAPTER 5. SUMMARY OF INCLUDED PAPERS



Chapter 6

Concluding Remarks

This thesis has explored the automation of scientific discovery in yeast systems
biology, focusing on the development and integration of computational and
robotic systems for hypothesis generation, experimental design, data acquisition,
and analysis. The collective works illustrates how automation and machine
learning can be combined to accelerate functional genomics, reduce human
bias, and improve reproducibility in biology.

A central theme of this work has been the automation of experimental work-
flows. From semi-automated experiment selection and metabolomics profiling
(Paper 1) to fully integrated systems for hypothesis generation and robotic
execution (Paper 5), the research demonstrates how robotics, computational
algorithms and experimental design can replace or augment manual laboratory
processes. This contributes not only to increased scientific throughput, but
also to reduced variability and mitigation of reproducibility concerns.

Another major contribution lies in making better use of existing biological
knowledge. Papers 2 and 4 demonstrate how large-scale experimental data
and structured ontologies can be used to infer new functional relationships and
generate interpretable predictions. Even when predictive accuracy is imperfect,
these approaches provide insight by grounding predictions in prior knowledge
and data-driven relationships.

A third explored aspect is the development of frameworks for interpretable
and flexible hypothesis generation. By combining relational learning with
structured representations and language models (Papers 4 and 5), the thesis
showcases how machine learning systems can both formulate and reason about
biological hypotheses in ways that are highly accessible to human researchers
with a basic grasp of the domain.

Together, these works represent a step toward closed-loop scientific systems
that span from data to discovery. They show how diverse tools—ranging from
inductive logic programming and graph neural networks to large language
models and laboratory automation—can be composed into modular workflows
that assist in, or even drive, the scientific process end to end.

While this work highlights some progress, there are challenges that re-
main. Data heterogeneity, model generalizability, and system integration all

67
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require further refinement. Nonetheless, the thesis lays a foundation for more
autonomous and interpretable systems biology. While these results represent a
step forward, they also highlight open challenges and opportunities for further
development.

6.1 Limitations

While the individual studies in this thesis demonstrates technical feasibility and
proof of concept, it also contains many methodological limitations, constraining
broader applicability.

Work in this thesis has relied extensively on mass spectrometry-based
readouts (especially metabolomics). Whilst metabolomics provide a rich and
functionally relevant readout of cellular states, it is inherently difficult to
connect it to biological mechanisms. It is a highly volatile measure, and many
aspects of modelling relies on completely disregarding their accumulation (FBA,
steady-state assumptions). Additionally, in mass spectrometry-based workflows,
compound coverage is typically limited due to factors like ionization efficiency,
instrument sensitivity or matching database quality (Alseekh et al., 2021). As
a result, a large fraction of the metabolome can not be reliably covered, much
less quantified. This incomplete picture risks leading to incorrect conclusions,
for example, inferring that a pathway is inactive simply because its metabolites
are not observed.

Another key limitation in this work is the heavy emphasis on single meas-
urement modalities. While many of the approaches described here implicitly
integrate heterogeneous data sources through logic formalisms or other qual-
itative frameworks, these do not replace the need for direct, quantitative
measurements. For example, metabolomics can capture functional endpoints of
cellular processes, but without parallel quantitative readouts from other layers
(e.g. transcriptomics, proteomics or phosphoproteomics), important regulatory
or signalling events may be entirely missed. This absence of multi-layer quantit-
ative data can obscure causal relationships, weaken mechanistic interpretation,
and limit the ability to model dynamic, multi-scale processes.

ILP and other logic-based approaches, while highly interpretable, are
bounded by the expressivity of the underlying logic and the completeness
of the background knowledge (Muggleton et al., 2012). They typically work in
discrete, symbolic spaces, which can oversimplify the inherently quantitative
and dynamic nature of cellular biology. Search spaces must also be heavily
curated and pruned to remain computationally tractable, which risks excluding
relevant but complex patterns.

The use of LLMs for hypothesis generation and planning (Paper 5) in-
troduces reliability concerns. While these models can synthesize coherent,
domain-relevant text, they are not inherently grounded in factual accuracy or
domain constraints. They may hallucinate entities, misinterpret context, or
propose experiments that are syntactically correct but scientifically infeasible.
Whilst considerations have been taken to reduce this unreliability (such as
reliance on logical structures), it still necessitates careful validation (and often
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human oversight) before acting on their output.

Finally, many of the methods described here depend on the rich annota-
tion and densely mapped networks available for S. cerevisiae (Cherry et al.,
2012; Engel et al., 2025). In less-characterized organisms—where genome-scale
models, interaction networks, and ontologies are much more incomplete—the
same approaches may yield weaker results, with greater uncertainty in both
hypothesis generation and interpretation. Real-world validation can also be-
come substantially more challenging for non-model organisms, as cultivation
conditions, genetic tools, and assay protocols are often less standardized or
more technically demanding. While far from insurmountable, these combined
factors pose significant barriers to extending the pipelines described here to
other species, such as higher eukaryotes.

6.2 Future directions

While this thesis demonstrates how various components of scientific discovery
can be automated and integrated, much remains to be done to realize the full
potential of autonomous systems biology.

The automation of data acquisition, as explored in Papers 1 and 3, provides
a strong foundation for high-throughput experimentation. However, these
systems remain limited in scale, scope, and adaptability. Expanding beyond
metabolomics to incorporate other data modalities, such as transcriptomics,
proteomics, or fluxomics, will be necessary to support more comprehensive
models of cellular behaviour.

Papers 2 and 4 demonstrate the utility of structured reasoning and inter-
pretable modelling for drawing insights from existing biological data. Yet,
challenges remain in bridging the gap between qualitative biological knowledge
and quantitative experimental outputs. Future research should focus on tighter
integration of ontologies, formalized metadata, and context-aware reasoning
frameworks. Improving the robustness of predictions, especially in the presence
of noisy or incomplete data, will also be critical. Such work would enable more
nuanced and informed inferences, moving beyond simple pattern recognition
toward deeper biological understanding.

Paper 5 presents a combination of many of these previous ideas, producing a
system that generates hypotheses, plans experiments, and executes them in the
lab. However, the autonomy of these types of systems is limited. Feedback from
experimental outcomes is still underutilised, as the system does not explicitly
update its own models. Achieving truly closed-loop discovery will require the
ability to learn from failure to a much larger extent. The systems would also
need to reason more under uncertainty, and adapt to new evidence, all while
maintaining interpretability and transparency. This remains one of the most
important and difficult challenges in scientific automation.

Across all these domains, several limitations need to be addressed. The
heterogeneity of biological data, the lack of standardized metadata, and the
lack of robustness of current reasoning systems limit the generalizability and
reliability of automated approaches. Moreover, while automation can increase
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scale, it also introduces risks. This is particularly true if decisions made by
more “opaque” models are not subject to human oversight, such as in the case
of parts of the workflow in Paper 5.

Additionally, future systems must be designed not only to operate autonom-
ously but to collaborate effectively with human researchers. This could be
integrated in many different ways, from iterative learning to human-in-the-loop
type solutions.

In conclusion, this thesis outlines one possible path toward machine-assisted
scientific discovery. It provides some tools and frameworks, but also exposes
many of the unresolved questions that future research must tackle. These
include questions of scale, reasoning, collaboration, trust, and fairness. Ad-
dressing them will be essential not just for automating existing processes, but
for fundamentally transforming how scientific discovery is conducted.
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Véronneau, Sally Dow, Ankuta Lucau-Danila, Keith Anderson, Bruno
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Witting (Jan. 2022). “Current state-of-the-art of separation methods used in
LC-MS based metabolomics and lipidomics”. In: Journal of Chromatography
B 1188, p. 123069. doi: 10.1016/j.jchromb.2021.123069.

Hastings, Janna, Gareth Owen, Adriano Dekker, Marcus Ennis, Namrata Kale,
Venkatesh Muthukrishnan, Steve Turner, Neil Swainston, Pedro Mendes
and Christoph Steinbeck (Jan. 2016). “ChEBI in 2016: Improved services
and an expanding collection of metabolites”. In: Nucleic acids research 44.1,
pp. 1214–9. doi: 10.1093/nar/gkv1031.

Heim, Noel A., Jonathan L. Payne, Seth Finnegan, Matthew L. Knope, Micha l
Kowalewski, S. Kathleen Lyons, Daniel W. McShea, Philip M. Novack-
Gottshall, Felisa A. Smith and Steve C. Wang (June 2017). “Hierarchical
complexity and the size limits of life”. In: Proceedings of the Royal Society B:
Biological Sciences 284.1857, p. 20171039. doi: 10.1098/rspb.2017.1039.

Holland, Ian and Jamie A. Davies (Nov. 2020). “Automation in the Life Science
Research Laboratory”. In: Frontiers in Bioengineering and Biotechnology 8.
doi: 10.3389/fbioe.2020.571777.

Hong, Kuk-Ki and Jens Nielsen (Aug. 2012). “Metabolic engineering of Sacchar-
omyces cerevisiae: a key cell factory platform for future biorefineries”. In:
Cellular and Molecular Life Sciences 69.16, pp. 2671–2690. issn: 1420-9071.
doi: 10.1007/s00018-012-0945-1.

Kanehisa, M. and S. Goto (Jan. 2000). “KEGG: kyoto encyclopedia of genes
and genomes”. In: Nucleic Acids Research 28.1, pp. 27–30. doi: 10.1093/
nar/28.1.27.

Kanehisa, Minoru (2019). “Toward understanding the origin and evolution
of cellular organisms”. In: Protein Science 28.11, pp. 1947–1951. doi: 10.
1002/pro.3715.

Kanehisa, Minoru, Miho Furumichi, Yoko Sato, Masayuki Kawashima and
Mari Ishiguro-Watanabe (Jan. 2023). “KEGG for taxonomy-based analysis
of pathways and genomes”. In: Nucleic Acids Research 51.1, pp. 587–92.
doi: 10.1093/nar/gkac963.

Karczewski, Konrad J. and Michael P. Snyder (May 2018). “Integrative omics
for health and disease”. In: Nature Reviews Genetics 19.5, pp. 299–310. doi:
10.1038/nrg.2018.4.



76 BIBLIOGRAPHY

Karp, Peter D., Richard Billington, Ron Caspi, Carol A. Fulcher, Mario
Latendresse, Anamika Kothari, Ingrid M. Keseler, Markus Krummenacker,
Peter E. Midford, Quang Ong, Wai Kit Ong, Suzanne M. Paley and Pallavi
Subhraveti (July 2019). “The BioCyc collection of microbial genomes and
metabolic pathways”. In: Briefings in Bioinformatics 20.4, pp. 1085–1093.
doi: 10.1093/bib/bbx085.

King, Ross D., Maria Liakata, Chuan Lu, Stephen G. Oliver and Larisa N.
Soldatova (Apr. 2011). “On the formalization and reuse of scientific research”.
In: Journal of The Royal Society Interface 8.63, pp. 1440–1448. doi: 10.
1098/rsif.2011.0029.

King, Ross D., Jem Rowland, Stephen G. Oliver, Michael Young, Wayne Aubrey,
Emma Byrne, Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N.
Soldatova, Andrew Sparkes, Kenneth E. Whelan and Amanda Clare (Apr.
2009). “The Automation of Science”. In: Science 324.5923, pp. 85–89. doi:
10.1126/science.1165620.

King, Ross D., Teresa Scassa, Stefan Kramer and Hiroaki Kitano (Feb. 2024).
“Stockholm declaration on AI ethics: why others should sign”. In: Nature
626.8000, pp. 716–716. doi: 10.1038/d41586-024-00517-7.

King, Ross D., Ashwin Srinivasan and Luc Dehaspe (Feb. 2001). “Warmr:
a data mining tool for chemical data”. In: Journal of Computer-Aided
Molecular Design 15.2, pp. 173–81. doi: 10.1023/A:1008171016861.

King, Ross D., Kenneth E. Whelan, Ffion M. Jones, Philip G. K. Reiser,
Christopher H. Bryant, Stephen H. Muggleton, Douglas B. Kell and Stephen
G. Oliver (Jan. 2004). “Functional genomic hypothesis generation and
experimentation by a robot scientist”. In: Nature 427.6971, pp. 247–252.
issn: 1476-4687. doi: 10.1038/nature02236.

Kitano, Hiroaki (Mar. 2002). “Systems Biology: A Brief Overview”. In: Science
295.5560, pp. 1662–1664. doi: 10.1126/science.1069492.

Kokhlikyan, Narine, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsal-
lakh, Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan and Orion Reblitz-Richardson (Sept. 2020). Captum: A
unified and generic model interpretability library for PyTorch. doi: 10.

48550/arXiv.2009.07896. (Visited on 10/07/2025).
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Domenzain, Simonas Marcǐsauskas, Petre Mihail Anton, Dimitra Lappa,
Christian Lieven, Moritz Emanuel Beber, Nikolaus Sonnenschein, Eduard
J. Kerkhoven and Jens Nielsen (Aug. 2019). “A consensus S. cerevisiae



78 BIBLIOGRAPHY

metabolic model Yeast8 and its ecosystem for comprehensively probing
cellular metabolism”. In: Nature Communications 10.1, p. 3586. doi: 10.
1038/s41467-019-11581-3.

Lundberg, Scott M and Su-In Lee (2017). “A Unified Approach to Interpreting
Model Predictions”. In: Advances in Neural Information Processing Systems.
Vol. 30.

Lundberg, Scott M., Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M.
Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal and
Su-In Lee (Jan. 2020). “From local explanations to global understanding
with explainable AI for trees”. In: Nature Machine Intelligence 2.1, pp. 56–
67. doi: 10.1038/s42256-019-0138-9.

Margolin, Adam A., Ilya Nemenman, Katia Basso, Chris Wiggins, Gust-
avo Stolovitzky, Riccardo Dalla Favera and Andrea Califano (Mar. 2006).
“ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Net-
works in a Mammalian Cellular Context”. In: BMC Bioinformatics 7.1, S7.
doi: 10.1186/1471-2105-7-S1-S7.

Messner, Christoph B., Vadim Demichev, Julia Muenzner, Simran K. Aulakh,
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Monge, Maŕıa Eugenia, James N. Dodds, Erin S. Baker, Arthur S. Edison and
Facundo M. Fernández (June 2019). “Challenges in Identifying the Dark
Molecules of Life”. In: Annual review of analytical chemistry (Palo Alto,
Calif.) 12.1, pp. 177–199. doi: 10.1146/annurev-anchem-061318-114959.

Muggleton, Stephen (Oct. 1999). “Inductive Logic Programming: Issues, results
and the challenge of Learning Language in Logic”. In: Artificial Intelligence
114.1, pp. 283–296. doi: 10.1016/S0004-3702(99)00067-3.

Muggleton, Stephen and Luc De Raedt (1994). “Inductive logic programming:
Theory and methods”. In: The Journal of Logic Programming 19, pp. 629–
679.



BIBLIOGRAPHY 79

Muggleton, Stephen, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach,
Katsumi Inoue and Ashwin Srinivasan (Jan. 2012). “ILP turns 20”. In:
Machine Learning 86.1, pp. 3–23. doi: 10.1007/s10994-011-5259-2.
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