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Abstract We develop a Deep Reinforcement Learning (DRL) agent for the RMSA problem and improve
the Shapley Value for Explaining Reinforcement Learning (SVERL) explainability framework by integrating
policy sensitivity and feature interdependence for the RMSA problem. We then explain the proactive
rejection of lightpath requests. © 2025 The Author(s)

Introduction
As optical networks grow in scale and complex-
ity1, the demand for intelligent control mechanisms
has never been greater. Reinforcement Learning
(RL) has emerged as a powerful solution to this
challenge[1]–[4]. In particular, Deep Reinforcement
Learning (DRL) models have shown great promise
in tackling the RMSA problem by learning policies
that dynamically allocate spectrum and route light-
paths to minimize blocking probability and maxi-
mize throughput[5]–[9]. Despite their advantages,
DRL models often behave as black boxes, making
decisions that are potentially optimized from a the-
oretical standpoint but difficult for human operators
to interpret. For instance, an RL agent may reject
a lightpath request even when sufficient resources
are available, or select a longer route over a seem-
ingly better one. While such actions may serve
a long-term optimization goal, their logic remains
opaque, raising concerns around trust, account-
ability, and operational insight[10]–[12].

This work presents an explainable DRL-based
framework to extract actionable insights into the
agent’s learned policies and behavior in the RMSA
context. We focus on interpreting the agent’s
decision-making process, particularly counter-
intuitive actions such as proactive rejection, where
a request is denied despite sufficient resources.

To achieve this, we first develop and implement
a DRL agent for the RMSA problem. To inter-
pret the agent’s decisions, we then adapt an ex-
isting RL-specific explainability framework, Shap-
ley Value for Explaining Reinforcement Learning
(SVERL)[13], to quantify features’ contributions to
the probability of the DRL agent taking any of the
actions. Specifically, SVERL addresses two key
limitations of existing XRL methods: (i) Policy-
awareness: Traditional feature attribution methods

1This is the authors’ version of the work. It is posted here
for your personal use. Not for redistribution. The final version
will be published at ECOC 2025 under paper ID W.02.01.176,
available here.

often ignore how the DRL agent’s policy changes
when certain input features are hidden. SVERL
allows to re-evaluate the agent’s policy after mask-
ing each feature, ensuring that the resulting ex-
planations reflect how the agent would actually
behave with incomplete information. For instance,
if the link utilization of a specific fiber is hidden,
our adaptation of SVERL evaluates the new action
the DRL agent would take, rather than assuming
the original action remains unchanged; (ii) Feature
dependency : Input features in RMSA, such as link
utilization, modulation formats, and path lengths,
are often interdependent. Masking one feature
(e.g., available bandwidth) can affect the interpre-
tation of another (e.g., modulation feasibility). Our
adaptation of SVERL accounts for these depen-
dencies by modeling their joint influence on the
DRL agent’s decisions, preventing misleading attri-
butions that arise when features are treated as in-
dependent. The results show that the explanations
reveal strategic decisions for proactive rejections,
but the conclusions are topology-dependent.

Related Work
Recent works explore the interpretability of RL
agents in RWA and RMSA problems. For in-
stance, the behavior of DRL agents has been
visualized through the distribution of allocated ser-
vices across spectrum and links, revealing high-
level policy trends but offering limited attribution
to specific input features or internal reasoning[3].
Multi-objective DRL frameworks have been pro-
posed to highlight trade-offs between throughput,
transmitter usage, and availability. However, their
outcome-level Pareto analyses do not explain how
individual state features influence decisions[14].
Graph-based approaches incorporating attention
mechanisms, such as Graph Attention Networks,
provide implicit indicators of influential compo-
nents but lack clarity on causal feature-policy
relationships[15]. Other work has studied the ef-
fect of modifying the observation space to identify
key state features without directly explaining their
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role in agent decision-making[16]. Surrogate mod-
els combined with SHAP have also been used to
interpret the importance of features. Still, these
explanations are decoupled from the actual policy
and overlook the sequential, probabilistic nature of
DRL[17]. In contrast, our work builds on the SVERL
framework[13] to directly attribute feature impor-
tance by analyzing how targeted feature mask-
ing affects the agent’s action probabilities. This
approach preserves the original policy, captures
feature dependencies, and enables more faithful,
nuanced explanations to explain non-intuitive be-
havior, such as proactive rejection.

Framework and Methodology
Our framework integrates three primary compo-
nents: the EON representing the environment, a
DRL Agent, and an Explainer. The DRL agent is
responsible for the RMSA decisions, while the ex-
plainer clarifies the agent’s actions by highlighting
the influence of features on the agent’s policies.

RL Agent. We employed a Proximal Policy Opti-
mization (PPO)[18] RL agent to address a modified
version of the RMSA problem within the Deep-
RMSA environment introduced in[19]. The Deep-
RMSA environment provides a comprehensive
modeling of the network topology, defines the ob-
servation and action spaces, and specifies the
reward function to guide the agent’s learning pro-
cess. The observation contains the following fea-
tures: (0) bit_rate_gbps, (1) source and (node_1),
(2) target node (node_2), for path x ∈ 0..k − 1
(3) starting index for the request (initial_index_x),
(4) number of required slots (req_slots_x), (5)
number of free slots in the first free spectrum
block (free_block_x), (6) total number of free slots
across path x (path_free_slots_x), and (7) av-
erage number of slots across all free spectrum
blocks across path x (avg_free_slots_x). We
adopt k=3 shortest paths, resulting in 18 features.
The action space comprises k+ 1 alternatives cor-
responding to selecting one of the k shortest paths
or rejecting the request. The reward function as-
sumes a value of 1 if the request is successfully
provisioned, 0 otherwise. The PPO agent was im-
plemented using Stable Baselines3[20], with a pol-
icy neural network with five layers, each one with
128 neurons. Key hyperparameters for the agent
included a discount factor γ = 0.95, a learning
rate of 10−4, and a value function loss coefficient
(vf_coef) of 0.1. This design enables the agent to
learn an effective policy for dynamically selecting
routes and allocating spectrum resources in opti-
cal networks based on the current network state
and service demands.

Explainer. We adapt SVERL for use with DRL
agents. SVERL explains decisions by evaluating
the impact of masking input features on agent per-
formance, accounting for how such masking may

Fig. 1: Reward and blocking rates achieved by the RL agent.

alter the learned policy and expected return. We in-
troduce several key modifications to SVERL. Since
DRL policies encoded in neural networks are not
directly interpretable, we first execute the trained
agent over multiple episodes to collect state distri-
butions under a converged policy, storing full en-
vironment states to support feature masking and
consistent environment reinitialization for repro-
ducibility. We then derive action probabilities from
the actor network and value estimates from the
critic, building explicit policy and value tables for
these states. SVERL’s operations were adapted
for tensor-based Shapley computations, and we
format outputs as SHAP-compatible objects to en-
able visual explanations. To extract explanations,
we track the visited states of the DRL agent dur-
ing and after training, then analyze the cases of
proactive rejection. The collected states and their
policies are input to SVERL, which computes the
conditioned policy for each possible coalition.

Experimental Results and Interpretations
We consider two network instances. The first is
the NSF topology[2], with 320 frequency slots in
each link, and a non-uniform traffic profile. The
second one is the German topology[21] with 320
frequency slots and a uniform traffic profile.

Figure 1 depicts the learning curves of the DRL
agent over the NSF network topology. The plot
shows a steady reward increase, demonstrating
successful learning over time, reaching conver-
gence after approximately 700 episodes. The
blocking rate curves exhibit a consistent down-
ward trend until reaching a stable, low level after
about 800 episodes. These results suggest that
the agent can efficiently manage spectrum alloca-
tion and routing decisions.

Explanations. Figures 2 and 3 show the SHAP
summary plot extracted using SVERL for the case
of proactive rejection across the two networks. A
SHAP summary plot for a specific action (class, in
our case) provides a visual summary of how each
feature influences the model’s prediction, either
increasing or decreasing the likelihood of that ac-
tion. Features on the y-axis are ordered by their
overall importance (mean absolute SHAP value),
while the x-axis shows the SHAP values indicating
impact and direction. Each point represents a data
instance: its position shows the SHAP value, and
its color reflects the feature’s value in that state.
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Fig. 2: Explanations of proactive rejections (NSF network
topology).

Proactive rejection in NSF network topology
are shown in Fig. 2. In inset I, we see
that low values of the features corresponding to
available resources on the shortest path (e.g.,
avg_free_slots_0) are the most influential factors
toward proactive rejection (relatively high posi-
tive SHAP value), while high availability of slots
pushes against proactive rejection (i.e., to accept-
ing the lightpath request, as shown by negative
SHAP values for points with medium or high val-
ues of the feature), which is intuitive. Similarly,
avg_free_slots_1 and path_free_slots_1 (available
slots on path 1) show a similar directional impact
on agent’s actions however with relatively lower
SHAP value (insets II and III). Interestingly, in in-
sets IV, we see that high availability of slots on path
3 (high values of avg_free_slots_2) is, in some
cases, a significant indication to proactively re-
ject a request. This suggests that the agent has
learned a policy that considers the broader net-
work context or potential future demands as high
availability on alternative paths (path 3) might be
associated with scenarios where the agent antic-
ipates better use of those resources later. Such
behavior points to a form of strategic reservation,
indicating the agent’s capacity to generalize be-
yond simple resource maximization. Finally, the
explanations from insets V and VI show that the
agent de-prioritizes accepting lightpath requests
with relatively high number of slots (red points
push toward rejection with positive SHAP value).
While this indicates a preference (or, bias) for light-
paths that could potentially occupy less slots, it is
important to note that this behavior is influenced
by the design of the reward function, which treats
all lightpaths equally regardless of the number of
slots they would occupy or bit rate of these light-
path requests.

Turning to the explanations derived from the
DRL agent on the German topology (Fig. 3), we
observe that all SHAP values across all features
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Fig. 3: Explanations of proactive rejections (German network
topology).

are positive or zero (no influence). This indicates
that, in every analyzed instance of proactive re-
jection, each feature contributed to the agent’s
decision to reject, suggesting a consistent pat-
tern in the agent’s perception of the network state.
Specifically, the agent appears to have frequently
encountered overloaded conditions during train-
ing, leading it to adopt a rejection-biased pol-
icy, i.e., a tendency to favor rejection over ac-
ceptance without relying on specific indications
from the environment. For instance, lower values
(represented in blue) of free_block_1 and _2 (in-
set I) are associated with higher SHAP impacts,
meaning that limited availability of free spectrum
strongly influenced the rejection decision. How-
ever, bit_rate_gbps regardless of whether its val-
ues are low or high (blue or red) also correlates
with increased rejection likelihood, pointing to a
broader, possibly heuristic-based rationale in the
agent’s behavior. In inset III, we see that node_1
and node_2 play a significant role in rejection de-
cisions, in contrast to what was observed with the
NSF topology. This suggests that the agent identi-
fied the presence of potentially unfavorable node
pairs in the topology, likely distant ones, where
the agent has learned to prefer rejection, possi-
bly to preserve resources for future requests be-
tween closer nodes. Finally, in inset IV, we see
that avg_free_slots on paths 1, 2 and 3 contribute
more to rejection when having high values than
when having low values. This suggests a flaw
in the model’s reasoning: rather than applying a
well-articulated logic for proactive rejection, the
agent appears to follow a more ambiguous and
inconsistent approach.

Conclusions
We presented an explainable DRL framework for
RMSA. By adapting the SVERL framework we
highlight how the agent’s proactive rejection be-
havior ranges from strategic in some topologies to



overly rigid in others. These insights underscore
the importance of explainability for diagnosing poli-
cies and ensuring transparent, reliable network
control.
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