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Abstract

Connected and Automated Vehicles (CAVs) are projected to dominate traffic
roads in the future due to their potential advantages in efficiency and safety.
CAVs are equipped with sensors and onboard computers that allows them
to perform coordination. The transition toward fully autonomous era will
see a gradual replacement of legacy Human-Driven Vehicles (HDVs) creating
mixed traffic environments. In such environments, the presence of HDVs can
pose challenges to CAVs due to their uncertain behaviors and intentions. The
particular concern of CAVs-HDVs interactions occurs at traffic intersections,
where these road segments are responsible for the highest share of traffic
jams and fatalities. Additionally, vehicle coordination in mixed traffic involves
computationally difficult problems that cannot be solved in a tractable way.

This thesis presents optimization-based coordination strategies which builds
upon mixed-platooning scheme and heuristic approaches. By utilizing the
CAVs presence, the platooning strategy is implemented to partially control
the HDVs. To retrieve initial intersection crossing order, a feasibility-enforcing
Alternating Direction Methods of Multipliers (ADMM) is employed. Further-
more, an optimization-based heuristic is developed to efficiently evaluate re-
ordering scenarios. The heuristic employs constraint-feasibility check and cost
comparison techniques. Next, in an economic optimal coordination scenario,
a sensitivity-based heuristic is implemented to further reduce computational
loads by approximating Nonlinear Program (NLP) solutions. The numerical
results demonstrate that these heuristics can achieve near-optimal solutions
and be better than the alternatives while can be hundred times faster than
the Mixed-Integer Program (MIP) solvers.

Keywords: Autonomous vehicles, mixed traffic, mixed integer optimiza-
tion, model predictive control.
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CHAPTER 1

Introduction

1.1 Background

Autonomous vehicles (AVs) (or self-driving cars) are expected to heavily im-
pact urban transportation in the coming decades, leading to reduced traffic
operations costs and more economically efficient road transport [1]. In fact,
AVs can potentially improve traffic performance by mitigating traffic conges-
tion [2], increasing traffic flow [3], and reducing energy and fuel consump-
tion [4]. On the other hand, AVs are expected to preserve, or improve, the
safety level for passengers and the environment by reducing traffic accidents
and fatalities [5]. To achieve such objectives, AV technology shall achieve the
highest level of autonomy, eliminating the need for human drivers and con-
ventional traffic signs [6]. Such a shift requires, among other things, the AVs
to communicate seamlessly with other connected agents and infrastructure,
leading to what are known as Connected Autonomous Vehicles (CAVs).

It is well-known that vehicles negotiating traffic junctions like, e.g., inter-
sections, roundabouts [7] can cause congestion and accidents, more frequently
than in other circumstances. Therefore, vehicle interactions are strictly regu-
lated by right-of-way rules, traffic lights, and signs. However, these methods
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can still fail, as human drivers can misinterpret or neglect traffic rules [8].
In contrast, CAVs can negotiate intersections by executing coordination algo-
rithms that embed collision avoidance rules, thus very much reducing the risk
of collisions and the congestion severity [9].

However, the path toward full penetration of CAVs must go through tran-
sition periods, where CAVs will coexist with HDVs [1]. Such mixed traffic
challenges the coordination of CAVs as HDVs typically neither cooperate nor
communicate [10]. Furthermore, the behavior of human drivers is uncertain
and can be predicted to a limited extent only [11]. These issues can be par-
ticularly critical in the context of intersections, where approximately 90% of
the accidents are due to wrong drivers’ decisions [12]. Besides safety, the
presence of HDVs can dramatically reduce the advantages introduced by AV
technologies mentioned so far. Hence, the problem of coordinating CAVs in
mixed traffic must be fully understood to develop and deploy coordination
strategies.

Motivated by the above issues, this thesis primarily aims to study the impact
of accommodating HDVs in CAVs coordination at unsignalized intersections
and develop computationally efficient methods to safely perform (approxi-
mately) optimal coordination in mixed traffic scenarios.

1.2 Problem Formulation

The following research questions are investigated in this thesis

1. Q1 How to indirectly control HDVs trajectories at unsignalized inter-
sections using CAVs?

2. Q2 How to optimally perform closed-loop CAVs coordination in mixed
traffic with HDVs?

3. Q3 How to obtain an approximate initial crossing order in a computa-
tionally efficient way?

4. Q4 How to design an approximately optimal and computationally effi-
cient heuristic method to address changes of crossing order (reordering)
scenarios?

5. Q5 How to formulate economic optimal (traffic and energy-efficient)
coordination and perform it in a computationally efficient way?



1.3 Related Works

1.3 Related Works

We next present a review of the literature that has addressed questions Q1-

Q5.

CAVs coordination at intersections

The problem of coordinating vehicles at unsignalized intersections has initially
focused on CAVs only. This problem has been extensively and thoroughly
studied in [13]—[18]. Unsurprisingly, these studies show that coordinated CAVs
lead to better traffic performance indices than, for example, traditional traffic
lights. One of the important tasks in this context is determining the access to
the intersection, i.e., crossing order, which is usually paired with techniques
to avoid longitudinal and lateral collisions inside the conflict zone (CZ), which
is the area of the junction where the vehicles’ paths intersect. In general, the
collision timeslot or safety distance.

Heuristic methods

The existing approaches to determining the crossing order can generally be
categorized as either optimization-based or heuristic-based. Examples of such
approaches are presented in [19], [20] where the original Mixed-Integer Non-
linear Program (MINLP) formulation of the vehicle coordination problem is
simplified into a Mixed-Integer Quadratic Program (MIQP). Mixed-Integer
Program (MIP) formulations are used in [17], [21] to manage intersections,
such that collisions are prevented. Note that the crossing order problem is
considered an NP-hard problem due to the presence of a discrete set of deci-
sions [22], which implies that the resulting MIP problem can be computation-
ally intractable or not be solvable within real-time constraints. These issues
motivate research on computationally efficient heuristics as an alternative to
MIP formulations.

One of the widely used heuristics is First-Come, First-Serve (FCFS). This
approach is revealed in [17], [23], [24] to select the order based on the arrival or
exit sequence at the intersection area and create a virtual safe distance between
the incoming vehicles. However, this approach can be far from optimal as no
optimization process is involved. The work in [25] suggests the use of predicted
entry times to the CZ to get the crossing order. In [14], the authors propose
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a heuristic that uses vehicle reachability analysis to calculate priorities that
can be used to determine the order. In [26], a directed tree search method
was used to efficiently find crossing orders and its application is extended to
lane change. Moreover, a rule-based heuristic combined with timeslot or exit
time minimization was developed in [16] and [27]. It can be noted that none
of them compares and evaluates their approaches against MIP solvers so that
their distance from optimality cannot be verified.

Albeit not in road traffic systems, alternative heuristic methods, such as
Alternating Direction Methods of Multipliers (ADMM) |28|, have been used
to approximately solve MIQPs in various applications [29]-[32].

Mixed traffic environment

The approaches developed for fully automated problem settings are not specif-
ically designed to deal with mixed traffic scenarios. The lack of mechanisms
to accommodate the presence of HDVs motivates the recently increasing body
of research on coordination in mixed traffic. In 33|, a platooning strategy is
implemented to regulate the HDVs behind it to increase traffic efficiency at
intersections. A similar goal is pursued by [34] in which the deep reinforce-
ment learning is applied to minimize intersection queueing. The platooning
concept is also revealed in [35], [36] to regulate HDVs in generic highway set-
tings. However, these works do not consider uncertainty factors stemming
from human drivers. In [37], they consider stochasticity in human intention
in the CAVs coordination at roundabouts, while in [38] the driver’s intentions
are learned by using a neural network to develop a multi-mode controller.
The crossing order problem at unsignalized intersections within mixed-traffic
settings is also considered, e.g., in [39] with its gradient-based optimization,
in [23] with FCFS, and in [40] with Time-To-Intersection (TTI) method.

Economic coordination

In optimization-based methods, the velocity-tracking objective paired with ac-
celeration/deceleration input has been widely applied, as in |41], [42]. Aside
from such tracking objectives, economical-oriented objectives such as travel
delays and fuel consumption minimization are discussed in, e.g., [39], [43].
However, they neglect the relevant nonlinearities within powertrain (engine)
dynamics required to address the energy economy. The use of economic ob-
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jectives with powertrain dynamics is demonstrated in [44], but the crossing
order is not addressed there.

Reordering scenarios

Furthermore, some studies have focused on reordering problems where the
crossing order can dynamically change. For example, [45] implemented a time-
varying priority assignment by evaluating possible collisions from each vehicle.
In [46], a negotiation-based priority approach was applied to coordinate CAVs,
allowing rules to be negotiated during the auction phase based on the current
states of the vehicles. Arrival/exit time minimization-based methods were
used in [47], [48], and [40] to handle changing traffic flow. These methods sort
the order based on current states or maximum possible acceleration of each
vehicle.

1.4 Scope and Contributions

Scope: The traffic setting recommended here is the high penetration rate
of CAVs. This ensures that the number of CAVs as traffic actuators is much
higher than that of HDVs to guarantee performance advantages. Nevertheless,
the proposed heuristics in this thesis can also work for scenarios with lower
penetration rates. Additionally, it is assumed that the knowledge of the exact
behavior model of the HDVs is not available to the CAVs. Other entities such
as pedestrians or cyclists are not considered in this thesis.

Contributions: This thesis presents the following main contributions:

1. Formulation of a MIQP problem for a platooning-based CAVs optimal
coordination in mixed traffic with HDVs at unsignalized intersections.

2. Feasibility-enforcing ADMM approach to efficiently retrieve initial cross-
ing order.

3. An Exact optimization-based Heuristic (EH) framework inspired by a
tailored B&B to efficiently address reordering scenarios.

4. Formulation of a MINLP problem with an emphasis on economically
optimal CAVs coordination at mixed traffic.
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5. Sensitivity-based Heuristic (SH) framework for computationally cheaper
NLPs approximations used in reordering cases, both in small and general
large traffic settings.

1.5 Thesis outline

This thesis consists of two parts. Part [[] contains seven chapters that serve as
a self-contained summary and overview of the publications (papers) appended
in Part [[I

The remainder of Part [[] is organized as follows. Chapter [2] briefly revisits
optimization and optimal control theories that are essential to understanding
the remaining chapters. In Chapter [3] the vehicle types, model, and intersec-
tion environment used in this thesis are explained. The platooning strategy
utilized to regulate HDVs is also introduced there. Next, Chapter [4] presents
the formulation of CAVs coordination problem in mixed traffic, including the
details on the objective functions and safety constraints. This is followed by
the explanations on the proposed heuristic methods to obtain initial crossing
order and address reordering. In Chapter [5] selected numerical results from
the appended papers are discussed. Moreover, the papers are briefly summa-
rized in Chapter [0} Finally, Chapter [7] concludes the work in this thesis.



CHAPTER 2

Optimization and Optimal Control

This chapter presents an overview of the optimization theory and tools used in
this thesis. Section [2.I] introduces generic constrained optimization problems
and sensitivity analysis tools. Section discusses heuristics to (approxi-
mately) solve Mixed-Integer Problems (MIPs). Finally, Section [2.3| describes
the constrained optimal control theory and methods

2.1 Nonlinear Optimization

Let us consider the following nonlinear constrained optimization problem

min f(z), (2.1a)
sit. gi(z) =0, 1=1,..,m, (2.1b)
hi(z) <0, 1=1,..,1, 2.1¢)

where z € R"™ and f : R™ — R are the vector of decision variables and ob-
jective (cost) function, respectively. g; : R — R™ with g = [g1, ..., gm]' and
hi : R™ — R! with h = [hq, ..., ] " are the equality and inequality constraint
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functions, respectively. Note that can be turned into a mazimization
problem using a negative objective function, i.e., —f and vice versa.

In this thesis, problem is smooth and at least twice continuously dif-
ferentiable, further denoted as Nonlinear Program (NLP). In NLP, f, g, h can
be nonlinear, but there are some exceptions. If f is a quadratic function
whereas g, h are affine functions, then is a Quadratic Program (QP).
Additionally, NLP is convez if their functions are convex, i.e.,

fOzy+ (1= 0)az) <Of(21) + (1—0)f(22), 6€][0,1], (2.2)

and the functions g; are affine.

Conditions for Optimality

Next, fundamental properties held by the solutions of NLP , and used in
this thesis, are recalled.

Definition 1: (Feasibility) = is feasible w.r.t. if it satisfies ,
21, i.e., x € X where X ={z : g(z) =0, h(z) <0}.

Definition 2: (Minimum point) z* € X is a global minimizer of if
fl@*) < f(x), Ve € X. If is non-convex, x* can also be defined as a
local minimizer where x € X is a subset of the neighborhood around z*.

To establish optimality conditions for and guarantee its continuity, the
following definitions are introduced.

Definition 3: (Linear Independence Constraint Qualification (LICQ)) If
Vg(*) and Vi ha(*) are linearly independent, LICQ holds at =*. The set A
denotes the set of active constraints, i.e., ha(z*) =0, and h z(z*) < 0, where
~ denotes the complement of a set.

For other types of constraint qualifications, one may refer to [49]. The point
x € X* is regular for the NLP if it fulfills a constraint qualification such
as LICQ.

Definition 4: (Augmented Lagrangian) For the NLP , we define the
Lagrangian function

L= f(z)+ A g(x) + piha(z), (2.3)

where A € R™, € R! are column vectors containing the dual variables
(Lagrange multipliers) associated with g and h, respectively.

10



2.1 Nonlinear Optimization

The first-order necessary conditions to the optimality of NLP is de-
scribed as follows.

Theorem 1: (Karush-Kuhn-Tucker (KKT) conditions) If z* is regular,
then there exist vectors \*, u* such that

Vo L(z*, X, u") =0 (2.4a)
g(xz*) =0 (2.4b)

h(z*) <0, (2.4c)

ha(z*) =0, (2.4d)

uw>0, (2.4e)

(2.4a)) is the stationary condition. (2.4b)) and (2.4c) are the primal feasibil-
ity conditions. ([2.4d)) is the complementary slackness and (2.4€)) is the dual

feasibility. Any (z*, \*, u*) that satisfies KKT conditions is considered a
KKT point. Note that, for convex NLP (2.1, a KKT point z* leads to a global
minimum. For non-convex NLPs , sufficient conditions for optimality can
be formulated to achieve sufficient conditions for local minimum [50]. Thus,
Second-Order Sufficient Conditions (SOSC) are provided.

Theorem 2: (Second-Order Sufficient Conditions (SOSC)) Let x*, \*, pu*
satisfy the KKT conditions and LICQ holds. Consider a matriz Z € R™ such
that Vyg(x)"Z =0,V h ) Z =0,Z # 0. If

ZTN2 L(x*, N\, u*)Z > 0, (2.5)

then SOSC hold.

Sensitivity Analysis

Let us consider the following parametric NLP

min f(z.p) (262
st. g(z,p) =0, (2.6b)
h(z,p) <0, (2.6¢)

11



Chapter 2 Optimization and Optimal Control

where p € R? is a parameter, and its augmented Lagrangian

L= f(x,p)+ A g(z,p) + pahalz,p). (2.7)
The primal-dual solution of is thus a function of p, i.e.,
2p) = [z () () ()] (2.8)
The KKT conditions for NLP are

V. L(z*,p)
r(z*,p)=| g(z*,p) | =0. (2.9)
hA(x*ap)

Also, ha(z*,p) may contain weakly active constraints, that is, h;(z*,p) =0
and pf = 0, which is non-differentiable.

Furthermore, LICQ and SOSC are used to establish the following

Theorem 3: If LICQ and SOSC hold at p, then x*(p) is continuous in the
neighborhood of p. Furthermore, if there is no weakly active constraint, then
Vpa*(p) exists by the Implicit Function Theorem [49].

By leveraging Theorem |3| an approximated parametric solution of ,
2*(p), can be calculated by using V,z*(p), i.e., sensitivities and xz*(p), i.e.,
a minimizer obtained at an initial point with nominal parameter p, via the
first-order Taylor approximation

&*(p) = z*(p) + Vpa™(p)(p — P). (2.10)

The sensitivity V,z*(p) is obtained from differentiation of KKT (2.9) matrix

0z or(z,p) -1 r(z,p)
Z_- ( - ) =n), (2.11)

where V,z*(p) are in the first n rows of g—;.

It is notable that only yields a valid approximation *(p) of x*(p)
within a neighborhood of p to which p belongs, and as long as the active
constraints within h4(z*, p) = 0 remains unchanged. As this is generally not
the case for NLP (2.6)), a generalized tangential predictor [51] can be utilized to
approximate the change in the solution Az(p) := #*(p) — 2*(p). The predictor

12



2.1 Nonlinear Optimization

is defined by the following local QP

1
rgin iAxTHAx +b' Az (2.12a)
st. g+ Vaeg Az + VpgTAp =0, (2.12b)
h+V.h"Az+V,h"Ap <0, (2.12¢)

where

H=V2_L(z*p),

As this single QP (2.12)) only yields accurate predictions for relatively small
Ap, the predictor-corrector method is required for generally large Ap.

Predictor-Corrector QP

A « Exact solution T —

. 15tapproximation "' sesssuess

. 2" approximation "% =

v

Figure 2.1: Sequential approximation of the predictor-corrector method.

Next, a concise explanation of the predictor-corrector method is reported,
which resembles parametric sequential QP [52]. The fundamental idea is to
split a large Ap, as in line 1 of Algorithm [1} into K smaller fixed steps dp
(line 2) that are solved and integrated iteratively in a homotopy procedure

13



Chapter 2 Optimization and Optimal Control

to obtain the next 2*J, A\*J p*J (lines 6-7). The routine is illustrated in
Figure where the short-dashed green curve represents the approximation
of Ap calculated by the first iteration of QP (line 5), which is used
to reach p' and obtain #*!. Using 2*!, the method next solves the QP to
obtain the second approximation (long-dashed blue curve), which is used to
reach the next point p? and obtain #*?2.
approximate solution manifold 2* (line 11) that closely resembles the exact
solution manifold x*.

At each iteration j, the current parameter p? along with f, g, h are updated
to track the change of the solution curvature (line 8 of Algorithm [I)). Alter-
natively, the sequence of points from p to the final p in iteration n can be
retrieved using p? = (1 — {;)p + ¢;p, where ¢; € [0,1]. Since p enters the
constraints linearly, the derivatives of g, h do not need to be updated. The
approximated solution Z* can be used to, e.g., compute the cost function of

NLP (2.6).

Algorithm 1 Predictor-corrector QP

This allows us to obtain a final

Input: §,p, " (p)

Output: 7*(p)

: Compute large step Ap =

Compute small step dp =

Set p=p, 20 = 2*

while j < K do
Solve QP
Update primal solution *7 = 2*7~1 + Az
Update dual variable \*J = AGP> pl = Hop
pitl = pi + §p and update the sensitivities
J=7+1

end while

: Take 2*(p) = 2971 (p)

pP—Dp
Ap
K

=
= o

2.2 Mixed-Integer Optimization

This thesis considers the problem where some of the decision variables are
subjected to binary/integer constraints [53|. This leads to the Mixed-Integer
Program (MIP) formulation of ({2.1) which is non-convex. MIP can be further

14



2.2 Mized-Integer Optimization

Original Problem

15t jevel

Infeasible
2M javel

Solution Worse

Figure 2.2: Search tree of a branch and bound

classified into Mixed-Integer QP (MIQP) and Mixed-Integer NLP (MINLP)
depending on the objective function and/or the constraints.
Let us consider the following MIP problem

min f(x€,zP), (2.13a)
st g(z®,2P) =0, (2.13b)
h(z¢,z) <0, (2.13c)

2 € {0,1}"" (2.13d)

where z¢ € R™ 2P are the continuous and binary/integer variables, respec-
tively. Due to constraint MIP is considered as NP-hard [53].
That is, as the size of MIP ([2.13]) increases, the computational time to solve
MIP (2.13) and obtain ezact solutions z%*, 2>* can grow exponentially.

Next, selected methods used to (approximately) solve MIP problems are
discussed.

Branch and Bound

The Branch and Bound (B&B) method is one of widely-used framework for
solving integer or MIP problems. B&B divides the MIP (2.13) into N sub-
problems (nodes), e.g., by fixing some of 2. The subproblems are ordered in
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Chapter 2 Optimization and Optimal Control

a tree structure as depicted in Figure[2:2] Then, it runs two subroutines to get
the solutions and assesses the feasibility on each subproblem. The subroutines
compute lower and upper bounds to retrieve a local minimum candidate. The
upper bound can be found by choosing any binary point from a feasible area.
One can make use of convex relaxation of the non-fixed binaries or duality
theory to determine the lower bound.

The algorithm iteratively runs subproblems branching to search for a better
solution in different levels and pruning infeasible or worse ones. The process
stops when it cannot find any feasible solution or the error tolerance has
been reached. The incumbent solution is then taken as the optimal solution.
Due to the searching complexity, the procedure does not guarantee to get a
global minimum and often it cannot be computationally efficient due to their
enormous number of possible combinations.

There are many variations on B&B and its derivative methods applied in
different MIP solvers due to their mainly different branching and pruning
strategies, e.g., Branch-and-Cut [53].

Alternating Direction Methods of Multipliers

Alternating Direction Methods of Multipliers (ADMM) was originally devel-
oped to solve convex problems, mainly for distributed optimization and sta-
tistical learning applications [28]. ADMM with extensions have been applied
as heuristics to solve non-convex or NP-hard problems [30], [32], [37].
ADMM iteratively performs primal problem minimization and multipliers
updates. In particular, ADMM works in an alternating way when solving for
primal and dual solutions. In the context of MIQP [29], ADMM can be used

by rewriting (2.13)) as

mggin flx) + Ix(z,y) (2.14a)
st g(z) =0, (2.14Db)
h(z) + h(y) =0, (2.14c)

where = [z&T 25 T]T
jective function whereas Iy (x,y) denotes indicator function of X. By adding
auxiliary function h(y), h(x) is transformed into equality constraints.

To obtain near-optimal approximate solutions, ADMM can be designed with

and y € R™ is auxiliary variables. f is a quadratic ob-
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2.8 Optimal control

dual loops. The outer loop generates random values within X’ to initialize the
inner iterations, while in the inner loop, the following steps are carried out

BZEZ := argmin (f(x) + gl\g(:p) + A5+ th(x) + h(y) + MH%) (2.15a)
o (P o 0[] iy
el =[] it Do) 150

with IT denotes projection function to X which might not be unique in non
convex settings and p > R*. In the case of 2P, IT can round it to the nearest
binary/integer.

As there is no convergence guarantee to a local minimum, ADMM instead
aims to find an approximate, feasible solution in a computationally faster way.

2.3 Optimal control

The optimal control approach combines control methods of dynamical systems
and optimization. The goal is to find a sequence of optimized control actions,
from an initial time ¢y to final time ¢, to drive a system trajectory by solving
a constrained optimal control problem (OCP).

In the continuous-time domain, the OCP has the general form

min  V(a(ty)) +/t "), u(t) dt (2.16a)
s.t. .T(to) = .f?o, (216b)
x(t) = f(x(t)au(t))> (2.16C)
h(z(t), u(t)) <0, (2.16d)

where x and u denote the the vector of states and input, respectively, while
Zo is the initial state. v and [ are the terminal and stage costs, respectively.
f and h denote the dynamic model and the trajectory constraints.

In particular, the direct approaches to OCP are discussed next.

17



Chapter 2 Optimization and Optimal Control

Direct Optimal Control

The direct approaches or direct optimal control works by parameterizing the
infinite-dimensional variables z, u of continuous-time OCP and approx-
imating the problem using a finite-dimensional NLP , which can be solved
using off-the-shelves solvers. In other words, "first discretize, then optimize".

The parameterization of u is performed by discretizing the input trajectory
from to to ¢ty using a uniform N intervals, i.e., ¢o,¢1,...,txy Where ty =ty. In
between, a piecewise constant policy is applied, i.e., u(t) := ug, Vt € [tk, tkt1],
with k € [0, N—1] and ¢, = kAt where Ak is the time interval. The discretized
control input is [uy, us, ..., un].

In a similar manner, the multiple shooting technique can be applied to
discretize z(t) into the state vector x = [zg,x1,...,2n] . To compute the
solution of the dynamics and stage cost , numerical integration
is required, which can be explicit or implicit. Some of popular integrators
include Euler, or Runge-Kutta methods.

The discretized OCP is as follows

N-1
min  V(zy) + Z Ie(zg, ug)dt (2.17a)
a k=0
s.t. o = i’o, (217b)
Tpr1 = Fr(xg, ug), (2.17¢)
h(zg, ur) <0, (2.17d)

where Fj and [, are the discretized dynamics and stage cost, respectively. In
this thesis, OCP (2.17) can be NLP or QP.

Model Predictive Control

By solving OCP at tg, u} € [tr,tr+n] is obtained. One way here
is to implement directly the resulting inputs for the whole future horizon,
which is known as open-loop control. However, this may results in a poor
performance as the measurement at future time [tk+1, Tht N] are not considered
in the open-loop scheme, i.e., the real x; can be significantly different from
the model due to model inaccuracies and uncertainty.

Therefore, closed-loop Model Predictive Control (MPC) is used instead
where feedback mechanism is involved. The loop procedure is summarized
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2.8 Optimal control

in the following steps

1. Obtain estimation/measurement of zj, at ¢

[\

. Solve OCP (2.17)) and obtain ug, ..., u}y
3. Implement ug
4. Go back to step 1

ug represents optimal input at the initial (current) time k and it is periodically
updated every dt. The prediction horizon N is then also periodically shifted
to follow the experiment/simulation time step.
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CHAPTER 3

Vehicle Model and Environment

This chapter describes the types and modeling of vehicles and human driver
behavior, along with mixed-traffic intersection settings applied in this thesis.
Additionally, the mixed-platooning strategy is explained.

3.1 Vehicle Types

In this thesis, two types of vehicles are considered: Connected and Automated
Vehicles (CAVs) and Human-Driven Vehicles (HDVs). A CAV is characterized
by its ability to perform fully autonomous driving, i.e., without any human in-
tervention, and to connect to other CAVs or road infrastructure to, e.g., share
its information with other autonomous entities and coordinate their decisions
accordingly. On the other hand, a HDV does not possess connectivity, which
makes it unable to perform direct coordination.

Each vehicle considered here is assigned an integer index and belongs to
either set of CAVs N :={1,...,N} or HDVs M :={N +1,...,M}.

21



Chapter 8 Vehicle Model and Environment

3.2 Vehicle Motion Model

In the literature, there are several motion models [54], [55] with different
levels of detail, such as lateral & longitudinal motions, inertial effects, and
powertrain. In this thesis, the longitudinal model is particularly selected as the
path is predefined and the vehicle can follow it perfectly within the intersection
area.

General form

A motion model of a vehicle with index i € N, M can be generally expressed
as the following ordinary differential function

i(t) = f(@i(t), wi(t)), (3.1)

where the state vector z;(t) = [p;(t),vi(t)] C R? contains the longitudinal
distance of vehicle ¢ from its origin point and its longitudinal velocity. The
time is ¢ € Ry and u;(t) is the input. Also, the vehicle motion starts from the
given initial states z; o = x¥, and is subject to some physical limitations, e.g.,
maximum velocity and acceleration.

The continuous-time model above can be translated into discrete time
by using numerical integration over the interval [ty, ¢x11], of duration At, such
that & = [t/At] € N and t, = kAt. The discretization yields the following
function

i1 = F(@i g, Ui k), (3.2)

where x; ;, u; 1, are the discrete-time state and input vectors, respectively.

Double-Integrator Kinematic

For the sake of simplicity, the kinematic motion of vehicle 7 is often described
through a series of integrators, e.g., the linear double-integrator form
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3.2 Vehicle Motion Model

where a;(t) is the acceleration/deceleration. Since this continuous-time model
is linear, it is often directly translated into its discrete-time equivalent with
the state space form

Tkl = Aaci’k + Bui’k, (34)

where k = |t/At| € N, At is the sampling interval, and the matrices are

1At _ [3A
A=l 5=

where the state vector contains the discrete-time position and velocity z; ; =
[Dik, vi,k]T and the input u; ; = a; 5. The states and input are subject to the
following velocity and acceleration/deceleration bounds

o™ <y g < 0T 3.5a

a™in < ui g < @™, (3.5b)

with v™™ > 0, as vehicle i cannot reverse.

Nonlinear Dynamics

Vehicle i’s motion can be alternatively described by using the following non-
linear dynamics

() = (R0~ F () — FA (1) — ), (37)

where m; is the vehicle mass, and FZ(t), FP(t), F(t), FF(t) are the forces
associated with the engine motor torque, mechanical braking, aerodynamic
drag, and rolling resistance, respectively [55]. The vehicle states are x;(t) =
[pi(t),v;(t)]T. The aerodynamic drag and rolling forces are defined as

1
F2 1) = LpACR2(0) (3.8)
F} :=m;gC; cos a, (3.9)

3

where g is the gravitational acceleration, p the air density, and A; the vehicle
front area; constants CF and C¢ are the rolling friction and aerodynamic drag
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Chapter 8 Vehicle Model and Environment

coefficients, respectively; and « is the road slope angle. For simplicity, a = 0,
although accounting for o # 0 does not require significant changes. The
propulsive force is obtained from the generated motor torque 7;(t) as

Fi(t) := %Ti(t), (3.10)

K2
K2

where G7 is the gear ratio, and r}" is the wheel radius. Note that transmission
losses are not considered here for the sake of simplicity, but can readily be
introduced [44]. The control inputs are u;(t) = [r;, FP]".

Next, the engine and braking systems are subject to the following limitations

TN < () < e (3.11a)
W < () < w™mex, (3.11Db)
Fb,min < Fb(t) < ‘Fb,max7 (311C)

where the motor rotational speed w; () is related to the vehicle speed through

vilt) = g—{wi(t). (3.12)

max
)

Fbmax denote the maximum motor torque, rotational

Here, 7 w™®*and
speed, and braking force, respectively, while 7™, ™" and FP™n are the
minimum motor torque, rotational speed, and braking force, respectively. For
implementation purposes, above can be discretized into .
Moreover, the limitations on vehicle model, i.e., or can be com-

pactly collected in AH™i(z; 1 u; ) < 0.

3.3 HDV behavior model

Two different HDV behavior models are employed here, each for prediction and
simulation purposes. The difference stems from the idea that the mismatches
between prediction and simulation are acknowledged due to the assumption
that information on HDV real behavior (model and parameter values) is not
exactly known [56], [57]. For prediction, the least assumption model is utilized,
while the switching model is applied in simulations.
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3.3 HDV behavior model

Note that other alternative HDV models exist in the literature [58]-[60] and
can be used here instead if needed.

Prediction

For prediction, HDV 4’s trajectory is modeled after the following switching of
constant velocity and maximum deceleration model

Vi k+1 = Uik + At(li’k, k>0,VieM, (313)
where
{ 0, Qi k—1 Z 0, (3.14&)
L = .
- amm, Qi -1 < 0, (314b)

where the ™" is the maximum deceleration. Case covers the case in
which the HDV slows down at £ — 1 to account for the worst-case braking,
whereas case covers the non-decelerating scenarios using the constant
velocity model.

Simulation

In simulations (experiments), the following model is applied

& A i A m > CZ, eM
=4 & TO%E OPmi 2 m (3.15)
a® +Aa; i Apmy < d,
where d is the switching threshold and
a® = kY (v; ), — v}°h), (3.16a)
a® = kP (Api g — d*F) + kY (vi g — vj1), (3.16b)

which is a switch between a wvelocity-tracking and a car-following model.
The weighting gains are kY, kP, k4. Next, vief is the reference speed and
Apik = Djk — Dik, Where vehicle j is immediately in front of i. To ac-
count for uncertainties arising from human drivers, the bounded perturbation
Aa; 1, is added.

In the case of , the input of HDV ¢, w;, is simply the accelera-
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tion/deceleration a; . If is applied instead, the resulting a; , must be
translated into motor torque/braking forces. It is assumed that the human
driver does not hit the gas and brake pedals at the same time [61], and thus
the motor torque and braking force for HDV i are computed as

W

rY
—(mya; — F — F7) ifa;p >0,
Tipi=4 G (maaip = Fly = FY) - if ai (3.17)
0 otherwise,
0 if a; >0
Fb = i ’ 1
o { —(mja;p + F), + FY)  otherwise. (3.18)

3.4 Intersection and conflict zones

All vehicles entering an intersection share a common area where their prede-
fined paths may intersect defined as the Conflict Zone (CZ). For simplicity, a
symmetric CZ is considered in the center of a two-lane, crossroad as illustrated
in Figure in which each vehicle’s path stretches from p™ to p°**. The mo-
tivation for a single CZ here is due to the assumption that HDVs heading
intentions during crossing are not known, hence the whole CZ is exclusively
reserved when each vehicle crosses. For other assumptions and different types
of intersections or larger intersections, multiple CZs, as e.g., in [13] or multiple
conflict points [62] approaches can be accommodated here.

For simplicity, the center of the CZ is considered as the origin of the po-
sition of each vehicle. Each direction branch of the junction only has a pair
of opposite lanes, and overtaking action between adjacent vehicles is not con-
sidered here. Additionally, an intersection manager (IM) is deployed to help
with CAV coordination, which can be located either locally or in the cloud,
by relying on wireless communication (5G or 6G).

3.5 Platooning strategy

In this thesis, our objective is to take advantage of the presence of CAVs to
efficiently regulate the traffic at intersections in mixed-traffic environments.
The main idea is that, by adapting the speed of CAVs approaching the in-
tersection, the behavior of HDVs can be indirectly controlled to optimize the
overall intersection energy and traffic efficiency while maintaining safety.
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Figure 3.1: A mixed traffic intersection of CAVs and HDVs.
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To that end, the mixed-platooning concept for mixed traffic intersection
is introduced in Paper C. A platoon is described by a leading CAV followed
by one or more HDVs, and thus the platoon length [; ; is measured from
the position of the leader to that of the last vehicle (tail) in the platoon, as
illustrated by the two-vehicle CAV-HDV platoon coming from the south in
Figure A vehicle that comes to the intersection without any succeeding
or preceding vehicles is designated as an isolated (one-vehicle) platoon. When
it comes to coordination, platoons are referred instead of individual vehicles.

Furthermore, all vehicle states and information (mass, coefficients, etc.) are
available to the IM and CAVs, through, e.g., measurements and recognition
from camera and road sensors. The IM is responsible for determining the
members of a platoon by using, e.g., an inter-distance rule between adjacent
vehicles or splitting the platoons in case it is deemed necessary.
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CHAPTER 4

Coordination in Mixed Traffic Intersections

This chapter presents the discussion on the optimization problem formulation,
including collision avoidance constraints and objective functions, required to
perform safe and economic optimal coordination at unsignalized intersections
in mixed traffic using platooning scheme.

Afterwards, the explanations on the proposed computationally-efficient heuris-
tics methods to obtain approximate initial solutions and address reordering
are provided.

4.1 Collision Avoidance Constraints

The collision avoidance constraints are implemented here to prevent collisions
and hence maintain safety. They generally comprise two elements: lateral
(side) and rear-end (longitudinal). The former is used to prevent collisions
between platoons coming from different directions during crossing, whereas
the latter is imposed between adjacent platoons. These constraints will be
explained in detail next.
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Chapter 4 Coordination in Mized Traffic Intersections

Lateral Collision Avoidance

To prevent lateral collisions at CZ between each pair of CAV-led platoons
1,7 € N, the following timeslot-based safety distance constraint is imposed

] (4.1a)

if 1" <62 pik = Lk = pik + A7 k€ [k, ki),

) ];i
if t?Ut < t}n D Pik — li,k > Pjk + dmin7 ke [/_€ 712j
where d™® denotes the safety distance and k. = min(k | t
max(k | t < t°"), ¢ € {4,j}. The timeslot variables i, to" k., k. satisfy

cvc

Pek. =P, Pei, <P, (4.2a)
pin pc(tcc)ut) _ pout. (42b)

In words, constraint (4.1)) describe two possible cases:

1. if t?“t < ti“l then j occupies the CZ before i. Thus (4.1a) is imposed
during [k;, k;].

2. Conversely, t9" < t;n indicates that ¢ occupies the CZ before j. In this
case, (4.1b) is imposed during [k;, k;].

Additionally, the length of the preceding platoon I j is considered to ensure
that the succeeding platoon is allowed to enter after the last vehicle of platoon
c leaves CZ.

For implementation purpose of , binary indicators p;“j &> pf‘jtk e {0,1}
are introduced to activate the constraint within the selected timeslots, which
rewrites the constraint as

(4.3a)
(4.3b)

(Pk = P250) (i) (P — Lk = pik — ™) 2 0,
(6 = Piso) (L =70 3) (Pige — lig — pjx — d™") >0,
where r; ; € {0,1} is a binary variable that defines whether j crosses before 4
(ri; = 1) or the converse (r; ; = 0).

The values of p;“] > p;“]“k depend on the times at which the platoons occupy
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4.1 Collision Avoidance Constraints

the CZ, i.e., they must satisfy these activation/deactivation conditions

Pk <1+ R (4.4a)
pir,lj,k = ﬁikn]\/_[bpin7 (4.4b)
p;“]ltk 1y }acliut]\;bpout7 (440
o, > B0 (1.40)
where,
o =ripik + (1= 7i)pik, (4.5a)
PR = ripik + (1= 7i)Pjks (4.5b)

and MP € Ry is a sufficiently large constant. Conditions and
are used to set p;“]k to 0 when either of the platoons (i,7) (OR condition) is
before p'™ and to 1 otherwise. Similarly, conditions and are used
to set pf‘]‘tk to 0 or 1, respectively, when both platoons (AND condition) are
before or after p°“t. The implication of these conditions to is illustrated
in Figure which shows the situation in which platoon ¢ reaches the CZ
before j, such that is selected and activated. After this time, p;“k =1.
Similarly, after both vehicles have cleared the CZ, pj";tk =1 and (4.3b) is no
longer enforced.

Avoiding the multiplication of integer variables in is convenient from
a formulation standpoint, i.e., using Big-M [53|, as shown next. Indeed,
can be rewritten as follows

MP(1= ol 4 p08% + 1= 135) + pje — ik — i — d™™ >0, (4.6a)
MP (L= pl% o+ p0%% 4+ 7ig) + Disk — Lk — pjp — d™™ >0, (4.6b)
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pig > p™

i > "

pix > p™

pjk > p™

in
Pijk

out
Pijk

Eq. (7)

' ‘
" H

in out

ki kg t

Figure 4.1: Timing diagram of the safety constraint (4.3) activation/deactivation,
where the entry condition is based on OR logic of a pair of platoons
(i,7) positions w.r.t. CZ, while the exit condition is based on AND.
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4.1 Collision Avoidance Constraints

along with the corresponding conditional constraints of (4.4)), (4.5)

pik —p™ < Mbp” ks (4.7a

Djk —pin < Mbp” s (4.7b

_2Mb(1 —Tij) — Pik +p" < _Mb(pi,j,k - 1), (4.7c
—2MP(rij) — pig +p™ < _Mb(pii?j,k -1), (4.7d

—2MP(ri ;) + pje — ™ < MY, (4.
—2MP(1 =7 5) + pi — ™™ < MPp%, (
oM< —MP(pY, — 1), (4.7¢g

(

—MP(pP5t — 1).

—Pik +D
—Djk+ D

It can be verified that | , 1mp1y -7 while , cor-
respond to (4.4a)). Slmllarly, , 4.7h) imply -, Whlle ,
correspond to .

To avoid infeasibility, slack variable 7; ;, > 0 is added to (4.6)

out

<
<

MP(1 = p% 4 o+ 1= 1)+

Pik =Lk =i —d™ =T +1m55 >0, (4.8a)
Mb( P?gthFP”kJFT”)ﬂL
Pige —lige — Pig — d™™ — L+ 5% > 0. (4.8b)

For scenarios against leading or isolated HDVs whose trajectories cannot be
controlled, the IM can impose a safety constraint to CAV-led platoon i € N

Pik > pig +d™™, k€ [ky, ki (4.9)

where j denotes the leading HDV. This can be rewritten with the big-M
formulation and slack variables as follows

MP(1 = p8 + 0% 1) + Pk — Pik — ™ + 135k > 0, (4.10)

where the values of pi® ke P f, are determlned according to conditions
In Paper A, it is assumed that ( is always active beyond the CZ, ie.,
pinj ko P55y are not decision Variables here.
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Chapter 4 Coordination in Mized Traffic Intersections

Lower-Complexity Conditions: The activation/ deactivation mechanism il-
lustrated in Figure can still be realized without (4.7d)-(4.7f). This is
because they are used to deactivate constraint , i.e., by setting p;“J =
& pf‘;tk = 1, which implies less restriction on the solution space and poten-
tially produces solutions with lower costs. Therefore, MIP solvers will try to
achieve it without the use of — anyway. This leads to the following
simplified conditions

Pik — D" < MPpl 4, (4.11a)
pik — D™ < M %, (4.11b)
—pik + ™ < =M (p75 — 1), (4.11c)
—pjg + P < —MP (P75 — 1), (4.11d)
Pl < Py (4.11e)

Pt < PPt (4.11f)

Additionally, less complex conditions are introduced (4.11¢|)-(4.11f) to prevent
activation of (4.8]), (4.10) at time k before k + 1 is active by exploiting the
fact that ™™ > 0, i.e., vehicles are closer to the intersection in each time k.

Rear-End Collision Avoidance

Consider platoon i moving behind platoon j within the same direction. To
avoid rear-end collisions, the position gap between the two platoons must be
no smaller than d™in,

Pk — bk — pig > d™ (4.12)

For compactness, we lump the constraints (4.8), (4.10)), and (4.7)/(4.11])

above in h**(p; 1., p; k) < 0 and as WP (ol 1, p24t.) < 0, respectively.

4.2 Objective Function

In this thesis, from Paper A to D, different forms of objective functions are
utilized. In each equation, they essentially contain trade-off terms where one
term aims to minimize CAV states deviation from the references or to max-
imize the velocity such that traffic delays can be minimized while, in the
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4.2 Objective Function

other term, the amount of acceleration/deceleration (input) or fuel/energy
consumption is to be minimized.
Each type of objective functions will be detailed next.

Velocity-Tracking Objective

This objective is used in Paper A-D. Here, CAV i € N follows its reference
speed v; while also minimizing its acceleration/deceleration over some predic-
tion horizon NP*® € N (or TP™ € R, ) as follows

NPre_1
Ji(wi) =" (0 —vin) + D ¢ W —vik) + q"uly, (4.13)
b= )

where ¢ and ¢" are constant weights.

Car-Following Objective

In Paper A, the following car-following objective is applied for the priority
assignment task between a CAV and a HDV. This objective is applied when
CAV i follows The HDV j in a virtual platooning mode, while minimizing the
cost associated with the input over NPT®

NPre_q
Ji(Wi) = TP poee + T woe + > T+ T+ T (4.14)
k=] 4]
where
TP = (™ = (pjr — pis))?, (4.15)
JZk =q"(vjkx — vi,k)2, ;Jk = quuzz,lm (4.16)

and ¢¥, ¢4, r denote the weights and d"f is the reference gap. In above,
the terms J¥;, x € {p,v} penalize the deviations of CAV i’s position and
velocity from the safety distance to HDV j and j’s velocity, respectively, while
the term J}, penalizes i’s control effort.
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Chapter 4 Coordination in Mized Traffic Intersections

Economic Objective

In this part, an economic cost function is utilized to minimize a trade-off be-
tween energy consumption and travel time of a CAV 4. This objective function
is particularly applied for the case with nonlinear dynamics model as in
Paper E.

The energy consumption is obtained as the integral of propulsive power over
time

T8 (1), (1)) = / PEE( (1), (1) dt, (4.17)
0

where

7i(H)wi(t)
8 (7i(t), wi(t))’
with n8(7;(t),w;(t)) denoting the powertrain efficiency [63].

The discretization of the problem by numerical integration over sampling
time At yields

PEE(2(t), ui(t)) = (4.18)

(k+1)At
TP (i ) = / PEE (a5 (1), u (1)) d. (4.19)
kAt
The problem of minimizing the travel time can be translated into maxi-
mization of the average velocity

1 (k+1)At
JV(:L‘i’k) = E /kAt Ui(t) dt. (420)

Hence, the competing-objective problem of (4.19)) and (4.20]) reads as
TV (@i, wi k) = ¢8I (@i ki k) — ¢V (i), (4.21)

where ¢¥8,¢" > 0 are the constant weights that represents the trade-off be-
tween J¥8(z; i, u; k) and JV(x; k). As discussed in |44, the weight values can
be selected such that CAV i reaches a given steady-state velocity vt
Furthermore, a properly defined terminal cost is required to ensure asymp-
totic stabilization of a system subject to the economic stage cost , often
requiring a nonzero gradient at steady state |[64]. Hence, the following terminal
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4.3 Problem Formulation

is adopted
Vf(xi’Npre) = =q ’q(U;?ef — ’l)Z"N1>re)2 + qf’l’l)i,]\lpre7 (422)

where ¢4, ¢5! are the constant weights. The complete stage and terminal
economic objective function over the horizon NP is

NPTe_1
Jl(WZ) :Vf<x7;,Nr)re) + Z JEg’V(xi,k,ui’kL (423)
k=[ 27 ]

T w T
where wW; = [W; 1, ..., Wik, ..., Wi Nore] € R™ with w; g = [k, Ui k]

Slack Penalty

Due to the use of slack variables n; ; 5 in (4.8) (Paper B-D), a corresponding
linear and quadratic penalty objective functions is introduced

NPT NPT

*(1i,5) Z q> nwk"' Z qsqmmk’ (4.24)

k=| %] k=| %]

where 1, ; = (15,0, - M j k> ...,771'7j7Npro]T. ¢*', ¢4 are constants weights for
linear and quadratic terms, respectively. The quadratic term is in principle
not needed, but it is added to the cost to introduce some positive curvature
that can help the solver converge faster.

4.3 Problem Formulation

Here, we formulate an optimization problem consisting of the aforementioned
vehicle model, safety constraints, and objective functions as an optimal control
problem. While the MIP formulation here is defined as a benchmark algorithm
from the optimality viewpoint, the NLP is utilized as part of the heuristic
methods.

37



Chapter 4 Coordination in Mized Traffic Intersections

MIP problem

The vehicle coordination problem is defined as the following Mixed-Integer
Program (MIP) problem

N N-1 N
GMIP (yref g phy min Z Ji(wi) + ; j;ﬂ J5(ni5) (4.25a)

st Zigt1 = F(zig, wik), (4.25Db)

Ti0 = x?, (4.25¢)

A (2 ey i k) <0 (4.25d)

hsafe(pi,k,pj,k) <0 (4.25¢)

P (032 s PE5k) < 0, (4.25f)

Tigs P e Py € 0,1} (4.25g)

where @ = [r,p,w,n] are the decision variables. The binaries are col-

: _ T in __ in in T out __
lectedinr = [ry2,...,7 j, ... 'N—1,N] , P = [P1,2,0a ...,pN_LMNpm] , pOut =

[p‘fjlio, ...,p?\}lﬁl)N’Npre]T, p=[(p™7, (p"“t)T}T. All CAVs states and con-
trol inputs are lumped in w = [wy, ..., W, ..., WN]T, and the slack variable are
n = [771,27"'7771',_7’"'anN—l,N]T' Furthermore, v'f = [v{ef,...,vf\?f]—r collects
the steady-state/reference velocities, Zo = [z1,0, ..., a:N70]T contains CAVs ini-
tial states, and p" = [pm:]\;pm, ...,pMVOZNpm]T are the trajectories of HDVs
used to define i-th length [; . The functions h"™(z; 1, u; 1), B (pi k, Pjk),
hpos(pi?j7k, p?4Y,) collect the vehicle limitations /(B.11)), collision avoid-
ance 7 , and activation/deactivation constraints / , re-

spectively.

Depending on the vehicle model, implementation of , and objective
functions, MIP can be denoted as Mixed-Integer Quadratic Program
(MIQP)(Paper B & C) or Mixed-Integer Non Linear Program (MINLP) (Pa-
per A & D). By solving the MIP and examining r, the CAV-led platoons
T

intersection crossing order Ok = [01,k, .-, Ov ks - ON,%) can be defined, in

which o, = ¢ entails that platoon 7 crosses the intersection in sequence v.

CAV-HDV prioritization: In Paper A, a pair of CAV and HDV priority as-
signment problem is addressed. In this problem, the following switching be-
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4.3 Problem Formulation

tween the car-following (4.14)) and velocity-tracking(4.13)) objectives is imple-
mented within formulation (4.25) as MINLP

Jiwi) = { Eq. (4.14) if Pr==0 (4.26a)
o Eq. @13)  elseif P == 1. (4.26D)

Objective is used when the priority (order) Py = 0, i.e., CAV i follows
HDV j, whereas (P, = 1) is applied when i virtually overtakes j and
thus, the collision avoidance constraint is no longer used.

MIP problem can be executed in a closed-loop fashion. Before a
platoon reaches the CZ, the problem is solved to determine r, i.e., Ok, p,
and CAVs control actions. Once a platoon is close to CZ, Oy is fixed and a
fixed-binaries Nonlinear Program (NLP) problem is solved instead to
update the CAVs control actions.

NLP problem

In the case where the binaries r, p containing the crossing order Oy are known
(given), we can redefine the non-smooth MIP (4.25) above as the following
continuous, fixed-binaries Non Linear Program (NLP)

PNLP (gP) = min ZJ w;) + Z Z J5(ni ) (4.27a)

i=1 j=i+1

st Zipt1 = F(zig, k), (4.27b)

Ti0 =), (4.27c)

R (3 1w g) <0, (4.27d)

RS (p; k, pjx) <0, (4.27e)

where 2P = [v'f zo, p", r, p| T lumps the parameters and 9 = - If (.25)

is instead MIQP, as in Paper B & C, then ) here is sunply Quadratic
Programming (QP). In Paper A, each choice of priority Py also has its own

QP (20,
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Chapter 4 Coordination in Mized Traffic Intersections

4.4 Heuristic Methods

It is known that solving MIP using off-the-shelves MIP solvers in a
closed-loop manner for large-sized problem is not a computationally viable
option due to the use of binaries r, p as decision variables. Hence, heuristics
methods to alternatively retrieve approximately optimal initial solutions and
address reordering scenarios are presented here.

Initial Solutions

As mentioned in Chapter [I} we present heuristic methods to solve the initial
crossing order problem. In Paper B, a feasibility-enforcing Alternating Direc-
tion Methods of Multipliers (ADMM) is proposed, which is intended to obtain
the approximate initial solution for MIQP formulated in Paper C. For
Paper D, the initial solution can obtained via off-the-shelves MINLP solver,
FCFS, or ADMM. For Paper A, the priority is initially set to P, = 0.

The feasibility-enforcing ADMM is utilized to obtain the binaries r, p by
approximately solving MIQP (4.25). The approach here makes use of the
ADMM from [29] but is paired with feasibility checking and enforcing func-
tions tailored to the coordination problem to improve the quality of
solutions. The details of the ADMM here are explained next.

Augmented Lagrangian form: To use ADMM, an Augmented Lagrangian
(AL) form of is required. In AL, the coupling inequalities (4.25€])
- are turned into equalities [65] by adding dummy variables b =
[b°,6°] T € Rsg. Hence, MIQP (4.25) is rewritten as

N N—-1 N
@MIQP(Vref’x()’ ph) = I’I}})n Z Jz(wz> + Z Z Je(,rh:])

i=1 j=i+1

+I(w;) +I(mi;)+ I(r)+ 1(p) (4.28a)

st @i g1 = Az + Bu g, (4.28Db)
Ti0 = 33?, (4.28¢)
hsafe(pi7k7pj,;€) +b° =0, (4.28d)

hP (0l s Pigek) + 07 =0, (4.28¢)
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4.4 Heuristic Methods

where the indicator functions I(w;),I(n),I(r),I(p) represent the box (non-

coupled) constraints of (4.25d)), (4.25¢)). The augmented Lagrangian form of
(4.28)) is written as

N N-1 N
L(.d) = ZJi(Wi) + Z Z J(mig)+ (4.29)

i=1 j=i+1
I(w;i) + 1(mi;) + I(r) + I(p)+

%I\Arci,k + Bui g — Tigp1 + M|[*+
1%} , 0
5 lls, i
%thos +07 4+ Al

1%
+ Xof|? + 5‘°’||hsafe + 5%+ AP+

where the vy_4 are the weights and A = A\;_,4 are their associated dual vari-
ables. This AL is solved using ADMM iterations explained next.

ADMM iterations: The ADMM algorithm consists of L°" outer and L™
inner iterations. In each inner iteration n, the following set of primal and
dual equations is computed

¢n+1/2
riiss | = argmin 20" 87) (1.300)
,¢n+l ,l/}n+1/2 n
[b"“ —n (|0 1), (4.30D)
NFE = AT + Az g+ Buig — Tk, (4.30c)
)\QL—H _ )\g, + hsafe + bs’ (4306)
AL = AT 4 pPOs 4 g (4.30f)

where IT is a projection function. Additionally, the primal and dual variables
are initialized with randomized values within the bounds.

Next, fViel(3p™) is applied to count violations occurring in w.r.t.
Op. This function is implemented alongside the norm of equalities g(4") that
contains , . This combination aims to eliminate solutions that
have an unfavorable order Oy typically associated with a higher input cost
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Chapter 4 Coordination in Mized Traffic Intersections

and infeasible activation binaries p. Finally, the best approximated solution

* is retained based on cost merit, i.e., J(y™) of (4.284a)).

Feasibility check: When solving the problem , ADMM solutions may
yield infeasible Oy and fail to satisfy . Therefore, a set of problem-
tailored feasibility check functions is applied within and at the end of ADMM
iterations.

The first function is to check whether the combination of r" leads to a
feasible Oy. If it is infeasible, r™ is replaced by binaries obtained from, e.g.,
First-Come, First-Serve (FCFS). The second function is to evaluate whether
p" fulfills , .

Finally, the third function, executed after ADMM iterations are done, in-
volves solving the following fixed-binaries QP to retain feasible tra-
jectories involving the continuous variables w,n w.r.t. the resulting binaries
t*, p* extracted from 12;* The resulting control inputs are then applied to
the CAVs.

Reordering Scenarios

As fixing crossing order Oy in closed-loop applications, i.e., at time t; > 0,
might not be reasonable, the change of order (reordering) is required. In
particular, if the current Oy is either leading to a potential accident or is
no longer beneficial, a safe and more efficient trajectories can be obtained by
selecting a different order. As solving MIP (4.25) in closed-loop setting is not
tractable, heuristic methods are proposed here.

The reordering problem is first investigated in Paper A with a simple, low-
complexity setting: a pair of vehicles (a CAV and a HDV) approaching an
intersection as illustrated in Figure [£:2] Additionally, the use of sensitivity
information to approximate the cost function is studied. Next, the investiga-
tion continues to the multi-vehicle coordination setting of CAVs and HDVs,
as illustrated in Figure 3.1 in Chapter [3] This larger setting are discussed in
Paper C and D. The summary of the proposed heuristics in those three papers
are provided next.
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*ﬂ Road sensors
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Automated

Conflict zone
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Figure 4.2: A Pair of CAV and HDV at an unsignalized intersection

CAV-HDV Sensitivity-based Re-prioritization

As mentioned above, the task of the heuristic presented in Paper A is to decide
the priority P at time k depending on the vehicles states and parameter zP.
The idea underlying the heuristic here is to switch P} in the case where the
HDV j behavior is leading to an increase of the cost beyond a prescribed
bound.

Given that the initial P, = 0 and a corresponding QP is solved, solu-
tion wj(XP) and its sensitivities are retrieved. For the next time steps k& > 0,
the cost can be approximated using (2.10)). In this way, the cost can be
monitored in order to detect its growth beyond the following bounds

Ji(Wi(zP)) < JP, VE € {0, NP}, (4.31)

where J" contains the constants that represent the maximum allowed gap,
velocity tracking error from HDV j, and CAV i’s braking efforts.

If any violation is detected in for n™#* consecutive times, then the
priority is switched to P = 1.
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Chapter 4 Coordination in Mized Traffic Intersections

Multi-Vehicle Coordination: Exact Heuristic (EH)

The heuristic for multi-vehicle settings here exploits the nature of the vehi-
cle coordination problem formulated in MIP (4.25). The framework mainly
consists of two modules: feasibility-based consistency check and NLPs/QPs
cost comparison. Both modules are executed in the closed-loop setting. As
the NLPs/QPs are solved in the ezact way, the framework here is denoted as
Exact Heuristic (EH).

Consistency Check (Clustering) A reordering is potentially required when
the position gap between a pair of adjacent-sequence platoons in Oy becomes
smaller and may violate collision avoidance constraint . Thus, an at-
tempt to reduce the complexity of can be made by clustering and tar-
geting a smaller subset of pairs of interests, as well as preventing false positive
trigger. To that end, the following steps are taken:

Step 1: At each time step k > 0, we check the predicted over NPre
w.r.t. O_1 for each pair of platoons (i, j). In particular, this check is applied
to any pair whose preceding one j (currently) is a non-isolated platoon. This
is because j contains HDV(s) which may change their trajectories. Hence, j
and its immediate following platoon i are collected in the set N;'. The pair
(4,7) is excluded if they come from the same direction.

For a pair (i,7) € NI, we check the feasibility of the stacked vector

R¥(p; opik) <0, k€ [k—1,k— 1+ NP (4.32)

where p; 1, pj 1 are extracted from solution w of at k — 1.

Step 2: A violation occurs if any of the rows of A3 > 0. This event
is recorded in s;. When the violation occurs for some consecutive times, i.e.,
s; = n™** the pair (i, 7) is added to the set &.

Cost comparison To decide which order Oy, to select (the current one or the
one swapping the order of one or more pairs of platoons i, j € &), we compare
their respective costs by solving the associated fized-binaries NLPs (Paper D)
or they are instead QPs (Paper C).

For each pair (i,j), two NLPs are constructed, namely Problem
A @ﬁJLP (current order) and Problem B ®XMF (alternative). The difference

Jl
between them is the crossing order of 7 and j, which is reversed in the alterna-
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Candidate | O = [j,%n]i
0

Current Alternative
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ol 02k =1 O2k =T ol
k o3 ="mn 03 =1 k
2nd |avel Pruned
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Figure 4.3: Tree structure for sequential cost comparison

tive order, denoted as , i.c., ¥l = [r15,...,0,...,7y_1.n] " (for Problem A) and
e, 0 = [r1 g, 1, ...,rN,l,N]T (for Problem B), respectively. The other
components of P are the same for the two NLPs. Integers p are obtained
from the previous solution w at time k — 1.

To select the best order among the two, both NLPs are solved and their
cost is compared. The order associated with the lowest cost is then selected.
This comparison process over an entire simulation is illustrated in Figure [{.4h,
where the order is switched at ¢ = 1.5 s when the cost of @ﬂ;ﬂp starts to get
higher than the alternative sequence.

For multiple alternative orders resulting from multiple pairs in &, a tree [53]
tailored to the coordination problem here is organized as depicted in Fig-
ure . In the figure, the comparison process starts sequentially from the
first pair (j,4) to the latest pair (¢,n) in £. During the process, the candi-
date order Oj is initialized and updated at each level according to the cost
comparison result. The new order Oy is eventually taken from the last Oj.
Afterward, the associated control inputs can be implemented in the CAVs. If
any platoon reaches p'®, Oy, is fixed.
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o 4.4a 4.4b
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Figure 4.4: Illustration of cost comparison between current and alternative costs
(4.4a) and computation time for a closed-loop simulation comparison
between EH and SH (4.4b).

Multi-Vehicle Coordination: Sensitivity-based Heuristic (SH)

In the EH framework above, solving multiple NLPs (Paper D) as-
sociated with current and alternative orders in an ezact way can be more
time-consuming. Thus, a computationally cheaper strategy is proposed by
deploying parametric sensitivity-based local quadratic approximation tools as
described in Chapter [2] denoted SH.

SH inherits essentially a framework similar to that of EH, including the
consistency check and cost comparison modules. Their difference lies in the
approximation of NLPs’ solutions of the current and alternative orders (in-
stead of exactly solving them) and the additional sensitivities computation of
the NLP instances.

The sensitivity computation in SH is summarized as follows: after the
initial O is retrieved or anytime reordering occurs, the sensitivities of the
NLPs of the current and alternative orders are (re-)computed. This
requires solving the NLPs with the current (nominal) parameter ZP to obtain
the nominal solution 9 at some k. Henceforth, when the cost comparison is
triggered in the future steps k + 1,k + 2, ..., the cost of the NLP in-
stances can be retrieved using the approximated 9 via the predictor-corrector
QP w.r.t. future parameter P. The comparison of computation times
(in seconds) in a closed-loop simulation between EH and SH is depicted in
Figure b, where it can be observed that SH outperforms EH at all times.

46



CHAPTER b

Numerical results

In this chapter, selected numerical results from the appended papers are pre-
sented and discussed to evaluate the proposed heuristics against the bench-
mark MIP and other heuristics. All results are generated using MATLAB
simulations with CasADi framework. Bonmin [66] is used to solve MIP prob-
lems, whereas QP /NLP is solved via IPOPT [67].

The setting here involves a fixed number of N' CAVs and M HDVs ap-
proaching a symmetric, unsignalized four-junction where the CZ is located in
the middle as depicted in Figure[5.1} The discussion on the simulation results
are detailed next.

5.1 Alternative heuristics

For comparison, alternative heuristics are used here: First-Come, First-Serve
(FCFS) [23] and the Time-To-Intersection (TTI) heuristic [40]. FCFS is ob-
tained by sorting the platoons priority based on the order of entering the
intersection area, which translates to Q. TTI sorts the platoons by their
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Chapter 5 Numerical results

6in/60ult
-r-

Figure 5.1: Vehicles configuration for simulations.

estimated time to reach the intersection entry, defined as

P it 2 (5.1)

Vi, k
The platoon with the shortest ]! is put first in Op. Both methods are
essentially similar except that, while TTI continuously updates Oy, FCFS
keeps it fixed instead. For both methods, at time k& = 0, the binaries r are
computed by solving without enforcing safety constraint . For

k > 0, variables r are obtained from the previously computed trajectories.

5.2 Performance metrics
For performance evaluation, the following metrics are considered.

o Crossing order and reordering (|7]): the evolution of Oy and the number
of occasions (cardinality) in which the crossing order is changed, i.e.,
Oy # O_1 from each method.
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5.8 Results Evaluation

e Total and average closed-loop cost (®°'/®2v&:<l): the total (and average)
closed-loop objective values (cost) from all CAVs over the simulation
duration T5™ s (NS™ steps).

o Average braking energy consumption (E*®8): the average braking en-
ergy consumed by a CAV at a timestep k.

o Average of velocity (v®V8): the average velocity of a CAV.

o Mazimum computation time/timestep (£™/™*%): the worst-case com-
putation times required for solving the crossing order problem at a single

time k.

5.3 Results Evaluation

Collision Avoidance and Reordering

In Paper B, the proposed ADMM is tested against MIQP with simpli-
fied conditions 7 i.e., SMIQP, solved via Bonmin as the optimal bench-
mark. Both methods are executed in closed-loop. The simulations result for
N = 3, M = 2 is presented in Figure In Figure [5.2h, it can be observed
that the MIQP curves (dashed) coincide closely with ADMM (solid). Both
approaches manage to safely avoid any lateral collision by properly maintain-
ing the minimum gap d™® inside the CZ between the incoming vehicles, as
indicated by the dashed and solid dark brown vertical lines. Also, the vehicles
from both approaches access the CZ using the same Q.

From Figure , ADMM manages to avoid constraint violation by
accelerating platoon 3 (CAV 3) and braking platoon 1 (CAV 1 and HDV 4)
and platoon 2 (CAV 2 and HDV 5). The trajectories of ADMM are slightly
seen to be different from those of MIQP. The rest of the curves are similar. In
terms of cost, MIQP is ®°! = 6126.93, whereas ADMM is ®°! = 6353.22. This
shows the capability of ADMM to yield close-to-optimal solutions. In terms
of t™®* ADMM is 22 times faster than MIQP in terms of t™2*.

In Paper C, the proposed Exact-Heuristic (EH) reordering algorithm is
compared with MIQP , FCFS, and TTI. Here, an experiment with re-
ordering scenario with similar setting as in Figure above, but all CAV-led
platoons must additionally yield to the isolated HDV 6 that comes from the
north.
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Figure 5.2: Position/trajectory (Figure 2a), velocity ((Figure 2b), and crossing
order (Figure 2c) profiles from MIQP (dashed lines) and ADMM (solid
lines). The vertical dark brown dashed line indicates d™™. In Figure
2c, the colors on the lines indicate the sequence within Ok.
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Figure 5.3: Position trajectories p; i of all vehicles (CAVs and HDVs) approaching
the intersection’s CZ from MIQP and FCFS (Figure 5.2a), TTI and
EH (Figure 5.2b).
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Figure 5.4: Crossing order Oy of MIQP and FCFS (Figures 5.3a), TTI and EH
(Figure 5.3b). The line colors represent the index inside Ok, e.g., blue
is the first, i.e., 01,5 and so on.

In Figure[5.3] it can be observed that all CAV-led platoons from all methods
initially move according to the crossing order dictated by their initial positions,
i.e., Or—o = [1,2,3]". Due to the use of safety constraint against HDV
6, the CAV-led platoons need to decelerate, except for platoon (CAV) 3 which
leads to reordering events. Reordering is not the case for FCFS that fixes its
order, as can be confirmed in Figure [5.4h.

In MIQP, TTI, and EH, as platoons 1 and 2 slow down, the tail HDVs
behind them are forced to decelerate. This action is necessary to maintain
safety at CZ. In Figure [5.4h, it can be observed that MIQP suffers from order
chattering with |7| = 14, whereas EH and TTI require only a single order
swap in each reordering, i.e., || = 2. In Figure , it can be seen that EH
can converge to the same final order O, = [3,1,2]" as MIQP, whereas TTI
has different order Oy, = [2,3,1]". In terms of cost, MIQP is ®°! = 160883.32,
FCFS is ®°! = 202020.83, TTI is ®°! = 407715.49, and EH is ®°! = 157617.62.

The result of this experiment shows that EH can yield solution close to
MIQP in reordering scenarios and outperform FCFS and TTI, while being
280 times faster than MIQP in terms of t™#*.
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Figure 5.5: Position trajectories p; j of all vehicles (Figure 5.2a) and crossing order
Oy, (Figure 5.2b) of EH and SH in medium CAVs traffic penetration.
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Figure 5.6: Position trajectories p; , of all vehicles (Figure 5.2a) and crossing order
Oy, (Figure 5.2b) of EH and SH in low CAVs traffic penetration.

52



5.8 Results Evaluation

Table 5.1: Average performance comparison for a CAV 7 at a timestep k

Eavg7Eb vave
Experiment Methods ®*&c!

(g1 [m/s]
FCFS -1.27  1768.91 16.42
High EH -1.34  1535.87 17.59
SH -1.34  1535.87 17.59
FCFS -0.92  2124.87 12.31
Medium EH -1.30  1541.54 16.24
SH -1.30  1539.15 16.59
FCFS -0.83  2840.74 10.50
Low EH -0.92  2306.76 13.93
SH -0.92  2306.60 13.95

Experiments with Different CAVs Penetrations

In this part, the performance of SH is compared against EH and FCFS for
the economic optimal coordination task in a different mixed traffic setting, as
covered in Paper D. Hence, the following results from experiments with high,
medium, and low CAVs penetration rates are presented.

In each experiment, 10 simulations are carried out, each with various initial
positions of the HDVs. The result is then averaged and presented in Ta-
ble In Figure the position trajectories and the crossing order of one
of the simulations in the medium penetration are presented. Here, several re-
orderings are performed by the platoons to maximize v®'® and thus minimize
braking energy E*&EP It is interesting to see that both methods generate
approximately the same trajectories. The slight difference between EH and
SH is illustrated in the reordering evolution seen in Figure [5.5b where their
reordering patterns are slightly different, where EH suffers from a few chat-
terings. However, this does not significantly affect the solution. Additionally,
SH is around 4 — 10 times faster than EH. In the low penetration experiment,
it can be seen in Figure that when the CAVs need to accommodate the
behavior of the increasing number of HDVs, the chatter can be worse.

The performance degradation is seen in Table[5.1] where we can see that as
the CAVs penetration is reduced, the average cost ®*V&<! and energy E*V&=P
increase whereas the velocity v®'8 decreases. This shows that CAVs pene-
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tration rate can play important role to improve economical aspects of traffic
coordination. Also, the average cost ®*V&! of EH & SH are better than that
of the fixed-order FCFS.

5.4 Summary

In this chapter, the selected results demonstrate that the proposed ADMM,
EH, and SH perform remarkably well in terms of optimality, computational,
and economical aspects. The ADMM can approximately solve the MIQP
multiple times faster than the off-the-shelves MIP solver, while attaining near-
optimal solutions (Paper B). A similar notion is seen in EH where it can be
few hundreds times faster than MIP and obtain reasonably good solutions
which are better than the alternative heuristics (Paper B). Furthermore, SH
accelerates the NLPs approximate solving process within the heuristic such
that the cost comparison can be performed faster (Paper D).

In different CAV penetration experiments (Paper D), it can be seen that
reducing the ratio of CAVs against HDVs indeed degrades the traffic perfor-
mance from both traffic and energy viewpoints, as CAV needs to adapt more
to HDVs trajectories.
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CHAPTER O

Summary of included papers

This chapter provides a summary of the included papers and individual con-
tributions.

6.1 Paper A

Muhammad Faris, Paolo Falcone, Mario Zanon

A Sensitivity-Based Heuristic for Vehicle Priority Assignment at Inter-
sections

Published in IFAC World Congress,

pp. 4922-4928, Jul. 2023.

©2023 IFAC DOI: 10.1016/j.ifacol.2023.10.1265 .

This paper discusses the possibility of exploiting the sensitivity analysis
tools to retain approximate solutions to the vehicle reordering problem and
we can develop a heuristic approach accordingly. We provide an instance of
a two-vehicle priority assignment, an ego CAV, and a target HDV approach-
ing an intersection, which is formulated as MINLP problem, with switching
costs and constraint sets w.r.t. to the selected order between those vehicles.
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The heuristic relies on the first-order Taylor formula used to approximate the
solution given the HDV trajectories prediction and the nominal solution at
the initial time. The sensitivities are factorized from the KKT matrix under
continuity assumptions. In closed-loop simulations, we construct the approx-
imated cost that we evaluate against some bounds, i.e., we monitor the cost’s
growth and the order is switched if it is beyond the bounds. We show in simu-
lations that the sensitivity-based heuristic can work faster than MINLP while
it is more optimal than FCFS, i.e., the change of order (reordering) timing is
on average close to the one from MINLP.
Individual contributions from each author are listed as follows:

e Muhammad Faris worked on the ideas, methodology, programming,
and manuscript writing.

¢ Paolo Falcone was involved in the ideas discussions, methodology, su-
pervision, manuscript review and editing, and managed project funding.

¢ Mario Zanon worked on the methodology, supervision, and manuscript
review.

6.2 Paper B

Muhammad Faris, Mario Zanon, Paolo Falcone

CAVs Coordination at Intersections in Mixed Traffic Via Feasibility-
Enforcing ADMM

Published in IEEFE International Conference on Intelligent Transporta-
tion Systems (ITSC),

pp. 882-888, Sep. 2024.

©2024 IEEE DOI: 10.1109/ITSC58415.2024.10919611 .

This paper treats the problem of efficiently approximating MIQP solution
of platooning-based coordination, mainly to obtain initial crossing order and
safety constraint activation binaries by using an ADMM technique paired with
problem feasibility check. The MIQP problem consists of vehicle model, limi-
tation, longitudinal and lateral safety constraint, and reference speed tracking
objective function. As solving MIQP is not tractable, ADMM is alternatively
deployed. To that end, AL form is formulated with some indicator functions.
The ADMM consists of an inner and outer loops, where in the former, the
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6.3 Paper C

primal and dual solutions are updated by solving the AL and in the latter,
the variables are randomly initialized. To ensure the solutions within the
inner iterations are feasible w.r.t. the platooning coordination, check func-
tions are used to evaluate whether the binaries associated with crossing order
can yield feasible sequence and the safety constraint is correctly activated.
The simulation results over different scenarios show that the ADMM can pro-
duce close-to-optimal solutions while being faster dozen times than the MIQP
solver.
Individual contributions from each author are listed as follows:

e Muhammad Faris worked on the ideas, methodology, programming,
and manuscript writing.

e Mario Zanon worked on the ideas, methodology, supervision, and
manuscript review and editing.

¢ Paolo Falcone was involved in the discussions on the ideas, supervision,
manuscript review and editing, and managed project funding.

6.3 Paper C

Muhammad Faris, Mario Zanon, Paolo Falcone

An Optimization-based Dynamic Reordering Heuristic for Coordination
of Vehicles in Mixed Traffic Intersections

Published in IEEE Transactions on Control Systems Technology,

pp- 1-16, December 2024.

©2024 IEEE DOI: 10.1109/TCST.2024.3508542 .

This paper addresses the dynamic coordination problem of CAVs in mixed
traffic at unsignalized intersections. Specifically, the reordering issues with
multiple CAVs and HDVs in platooning schemes are considered here. As re-
peatedly solving MIQP in a closed-loop fashion is deemed intractable, a com-
putationally efficient heuristic algorithm is developed instead. The work be-
gins by formulating the platooning-based coordination problem, which yields
original MIQP (OMIQP) and simplified MIQP (SMIQP) problems, in which
the latter has lower complexity. As exactly solving MIQP in closed-loop is
not tractable, a heuristic algorithm is proposed. The heuristic overcomes this
challenge by combining a constraint violation/consistency check and QPs cost
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comparison. The consistency check is used to restrict reordering actions to a
smaller subset of platoons, therefore mitigating subproblems branching com-
plexity. Next, the cost comparison decides whether an order change takes
place or not by comparing the cost of the current and alternative orders. In
simulations, it is shown that the heuristic can be hundreds of times faster
than the OMIQP and SMIQP while minimizing chattering issues and retain-
ing close-to-optimal solutions w.r.t. the benchmark MIQPs and can be better
than TTI and FCFS.
Individual contributions from each author are listed as follows:

e Muhammad Faris worked on the ideas, methodology, programming,
and manuscript writing.

e Mario Zanon worked on the ideas, methodology, supervision, and
manuscript review and editing.

e Paolo Falcone worked on the ideas, methodology, manuscript review
and editing, and managed project funding.

6.4 Paper D

Muhammad Faris, Mario Zanon, Paolo Falcone

A Sensitivity-based Heuristic for Economic Optimal CAVs Coordination
in Mixed Traffic at Intersections

Submitted to a peer-reviewed scientific journal.

This paper addresses the problem of coordinating CAVs in mixed traffic
with a primary emphasize in economic aspects, such as traffic and energy
efficiency. As the problem formulation is cast as Mixed-Integer Nonlinear
Program (MINLP), which is intractable for real-time reordering applications, a
heuristic algorithm is proposed. Here, two heuristics (EH & SH) are proposed,
which consists of feasibility-based pair clustering and (approximate) NLP cost
comparison. First, the clustering function narrows down the search area to a
subset of promising candidate reorderings; the (approximate) costs associated
with the current and alternative sequences are then compared in a search tree
to determine the final reordering. As solving multiple NLPs can be more time-
consuming, the predictor-corrector QP method is deployed in SH to cheaply
approximate NLP solutions. In simulations, it is shown that the performance
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of SH and EH can be close to that of MINLP and better than that of FCFS.

Here, SH is multiple times faster than EH. Also, as the CAVs penetration rate

is reduced, the cost and braking energy consumption can increase.
Individual contributions from each author are listed as follows:

¢ Muhammad Faris worked on the ideas, methodology, programming,
and manuscript writing.

¢ Mario Zanon worked on the ideas, methodology, programming (sensi-
tivities acquisition), supervision and manuscript review and editing.

¢ Paolo Falcone was involved in the discussions on the ideas, supervision,
manuscript review and editing, and managed project funding.
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CHAPTER [

Conclusions and Future Work

This chapter summarizes the work in this thesis and suggests possible exten-
sions for future research.

Concluding Remarks

This thesis addresses the problem of coordinating CAVs in the presence of
HDVs, specifically located at an unsignalized intersection. The setting is there-
fore regarded as mixed traffic. Indeed, accommodating the non-cooperating
HDVs with highly uncertain trajectories introduces challenging problems. These
problems are formulated in the form of the research questions Q1-Q5.

To indirectly control the HDVs, mixed-platooning strategy is utilized, where
a platoon consists of a CAV that happens to be followed by one or more
HDVs. The platoon-based CAVs coordination is formulated as an OCP and is
regarded as a MIP problem. In simulations, the platooning concept has been
proven to be successful to regulate HDVs behavior such that HDVs cannot
enter CZ when another vehicle occupies CZ (Q1). Additionally, solving ex-
actly MIP problem yields optimal trajectories for the CAVs (Q2), albeit it is
computationally intractable for real-world applications.
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This motivates the development of computationally-efficient heuristic al-
gorithms to obtain approximate solutions in a reasonable amount of time.
A feasibility-enforcing ADMM is proposed to retrieve initial solutions which
involve the binaries associated with crossing order and collision avoidance con-
straints. In simulations it can be seen that ADMM can attain near-optimal
solutions while multiple times faster than MIQP (Q3).

Another consequence of having HDVs in a platoon is that the HDVs may
opt to decelerate such that the leading CAV needs to react accordingly. This
can trigger a reordering such that the current crossing sequence is swapped by
an alternative one which is deemed more optimal or feasible. Again, solving
large-size MIP problem in closed-loop scheme to perform reordering is not
reasonable.

As a testbed, the reordering problem is studied in a small-scale prioritiza-
tion problem of a pair of a HDV and a CAV. A heuristic here is built upon
the notion that priority has to switch in the case where the HDV behavior is
leading to an increase of the cost beyond a prescribed bound. To reduce com-
putational burden, the sensitivity-based approximation technique is exploited
to estimate the approximate cost.

To further address reordering in general mixed traffic scenarios, EH is devel-
oped by combining collision avoidance constraint violation consistency check
and QPs cost comparison (Q4). It is shown here that EH can perform rea-
sonably close reordering solutions with the MIQP problem and outperforms
the alternative heuristics.

Furthermore, an optimal coordination problem with an emphasis on eco-
nomic aspects, such as traffic and energy efficiency, is formulated as MINLP
and associated EH algorithms are applied (Q5). As solving multiple NLPs
can be time consuming, SH is then proposed. Here, SH can yield approximate
solutions close to EH but several times faster.

Future Work

Toward realizing a safe CAVs coordination in mixed traffic, there are nev-
ertheless many aspects from the work in this thesis that need to be further
addressed and developed, which are discussed next.

Hierarchical & Scenario-based approaches: To introduce more flexibilities
to the heuristic algorithms when performing in medium to low CAVs pene-
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tration rate, an upper-level configurator can be deployed. The tasks of this
configurator are to assess the possibility of splitting platoons or rearrange
constraints against isolated (leading) HDVs depending on current situations.
Hence, the structure of MIP problem can be time-varying. The framework
can also be extended to include other type of agent, such as Connected HDVs.

Additionally, the driving intention of the HDVs can be explicitly consid-
ered in the coordination problem to formulate stochastic-based/ multi-modal
approaches.

Data-driven HDV prediction model: While here a simple, least-assumption
model to predict HDVs trajectories is employed, a better performance of CAVs
coordination can be potentially achieved if instead a more accurate data-
driven, learning-based model is utilized. Further, if a scenario-based coordi-
nation problem is ever formulated, a multi-modal prediction technique can be
used to estimate the direction taken by HDVs at CZ, e.g., turning or going
forward.

Continuous flow and more realistic traffic settings: To further develop the
heuristics toward generalization, a continuous traffic flow setting, with various
HDVs trajectories and stochasticity, can be simulated to see their effectiveness
in a more realistic traffic. This can be followed by some practical extensions
such as multiple CZs, adjacent intersections, multi-lane, or pedestrian crossing
configurations.

Real-world experiments: It is also important to extend the current work
toward real-world experimental implementations, where practical issues such
as the distribution of algorithms computations to perform in real-time or
communication protocols need to be taken care of.
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