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Abstract—As Machine Learning (ML) systems become integral
to network management, the need for transparent decision-
making grows. While post-hoc explainability methods provide
insights into model behavior, their technical nature often limits
accessibility. We explore Large Language Models (LLMs) for
translating complex ML model explanations, extracted using
explainable artificial intelligence frameworks, into natural lan-
guage to simplify user understanding and interpretability. Using
direct prompting and self-reflection-based prompting, we gener-
ate explanations for a lightpath Quality of Transmission (QoT)
estimation model. Empirical evaluations confirm the correctness
and usefulness of LLM-generated interpretations in about 65% of
the cases, highlighting the benefits of self-reflection in enhancing
explanation quality. The study also remarks on the necessity of
devising enhancements to improve the results achieved so far.

Index Terms—Explainable Artificial Intelligence; Shapley Ad-
ditive Explanations; Empirical Evaluation.

I. INTRODUCTION

As Machine Learning (ML) systems become increasingly
integrated into network management, ensuring the trans-
parency of their decision-making processes is paramount [1]—
[4]. Explaining ML-driven decisions can be particularly im-
portant in network operations where human intervention may
be required to validate or override automated decisions [5],
[6].

Post-hoc explainability techniques have emerged as standard
tools for interpreting the behavior of trained ML models [7].
These methods, ranging from quantifying feature importance
to generating counterfactual explanations, offer valuable in-
sights into model behavior. However, such explanations are
frequently presented in abstract or numerical forms requiring
specialized expertise (see example explanation in Fig. 1). Even
for domain experts, making sense of such explanations can
be time-consuming and cognitively demanding [8], [9]. A
potential solution to alleviate this challenge is the application
of Large Language Models (LLMs) to translate ML model’s
explanations, such as feature importance plots, into human
interpretable language [10], [11].

The adoption of LLMs for automating and optimizing
various networking tasks is increasing [12], [13], with a
growing emphasis on optical networks [14], [15]. In [16],
authors use LLMs to enable the use of natural language to per-
form the creation, search, and explanation of network slices.

In [17], authors use LLMs to help automate Intent-Based
Networking (IBN) by translating high-level operator intents
into optimization code and autoconfiguration policies, making
network operations more efficient and interoperable. In [18],
the authors propose a digital-twin-enhanced LLM framework
to improve autonomous optical networks by integrating real-
time network state updates and strategy pre-verification before
deployment. In [19], authors explore how LLMs can enhance
decision-making in real-time operations by automating key
tasks like failure prediction and lightpath QoT estimation.
Lastly, in [20], the authors leverage LLMs for log analysis to
improve log parsing, anomaly detection, and report generation,
demonstrating their potential to enhance operational efficiency
and reliability.

In this work, we explore the usage of LLMs to interpret
explanations generated by ML models. As a case study,
we focus on the Quality of Transmission (QoT) estimation
problem in optical networks. We develop an XGBoost (XGB)
model to estimate the QoT of a lightpath and employ Shap-
ley Additive Explanations (SHAP) as eXplainable Al (XAI)
framework [21]. SHAP provides insights into the model’s
decisions by quantifying feature importance. More precisely,
we extract local model explanations, i.e., instance-specific
interpretations that highlight how different features influence
individual QoT predictions (see [3], [22] for an overview on
SHAP’s application to lightpath QoT estimation). To enhance
the human interpretability of these explanations, we leverage
ChatGPT as LLM to process and interpret the SHAP-based
explanations, providing human-readable insights that facilitate
decision-making in optical network management. Figure 2
illustrates the translation of complex explanations (extracted
using SHAP) to natural language.

We employ ChatGPT via two distinct approaches: (1) a
direct prompting method and (2) a self-reflection strategy
designed to enhance the quality of the interpretations. To
validate our method, we conduct an empirical study involving
expert evaluation. Domain experts assess the interpretations
generated by the LLM and provide scores based on predefined
evaluation metrics. We evaluate the interpretations in terms
of correctness, scope, and usefulness. Our empirical results
indicate that LLMs can generate useful interpretations of
ML model explanations. The direct prompting and the self-
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Fig. 1: Two examples of SHAP local explanations of a QoT estimation model.

reflection approaches achieve acceptable performance across
evaluation metrics. However, the study highlights the necessity
for enhancements to ensure the correctness and practicality of
the generated interpretations.
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The ML model predicts a lightpath
bit error rate of 0.00022. The
number of spans has the highest
positive impact on the BER
prediction, indicating that a higher
number of spans leads to a higher
prediction. Conversely, the
modulation order has a significant
negative impact, suggesting that a
higher modulation order results in
a lower BER prediction. Other
features such as path length,
number of links, sum of link

I want you to serve as an interpreter of a SHAP explanation of a
ML model. The ML model has the task to predict lightpath bit
error rate, given a set of features. You will be provided with the
features, their values, the SHAP values of the features and the
ML model's prediction. Positive SHAP value of a feature reflects
that the feature caused a higher bit error rate (higher
prediction, undesired) while a negative SHAP value indicates
that the feature caused a lower bit error rate (desired). Please
interpret the explanation providing a summary in natural
language to help an expert understand it.

occurrences, and minimum
modulation order on the left also
contribute  slighty to  the

prediction..

Fig. 2: Illustrative example of translating a SHAP local explanation into
natural language. Note that we have transformed the SHAP local plot into
a simpler bar plot for simplicity.

II. LLM-BASED FRAMEWORK FOR INTERPRETING
MODEL’S EXPLANATION

Our framework consists of three main modules: (/) an
ML model, (2) an XAI framework, and (3) an LLM, as
illustrated in Fig. 3. The objective is to interpret the ML
model’s decisions by extracting explanations via SHAP and
translating them into natural language by means of the LLM.
ML Model. Our framework has the potential to be applied
to ML models that perform any task. Specifically, in this
work, we develop an ML model to estimate the QoT of a
lightpath [23]-[25]. The lightpath QoT estimation problem
is formulated as a regression task, where the objective is
to predict the expected bit error rate (BER) at the receiver
side for each candidate lightpath. Each prospective lightpath
is characterized by a set of descriptive features, capturing
both its intrinsic properties (e.g., path length, number of
links and spans, minimum/maximum link length, modulation
format in use) and its spectral context (e.g., characteristics

of the spectrally adjacent left/right neighbors, and the mini-
mum/maximum/average spectral occupation of the traversed
links).
XAI Framework. To explain the model’s decisions, we apply
SHAP, a post-hoc explainability technique that assigns a
Shapley value (i.e., a feature importance score) to each input
feature [21]. These values quantify the contribution of each
feature to the model’s prediction. These values indicate how
much a feature has influenced the prediction in comparison
to a baseline (e.g., the average prediction across the dataset).
A positive SHAP value means the feature has pushed the
predicted bit error rate (BER) higher, while a negative SHAP
value indicates it has contributed to lowering the predicted
BER. This allows for a detailed, interpretable breakdown of
how each feature affects the model’s output. We extract local
explanations, which provide insight into the predictions of
the model for each sample/inference. The extracted SHAP
explanations are then used as part of the input to the LLM.
Large Language Model. Once the explanations are extracted,
we process them by prompting an LLM to translate the raw
SHAP values into natural language explanations. To identify
a prompt for generating high-quality explanations, we exper-
imented with several prompt templates that varied both the
explanation format and the accompanying text. We evaluated
the quality of the resulting interpretations and iteratively re-
fined our prompts based on these assessments and suggestions
provided by the LLM itself.

We employ two different prompting strategies to guide the
LLM in generating the interpretations:

a) Direct Prompting Approach: in this approach, we
provide the LLM with a structured prompt that includes the
data point, the model’s decision, and the corresponding SHAP-
extracted explanation. The LLM then generates a natural lan-
guage interpretation based on the provided input. The prompt
used in the direct prompting strategy is shown in Fig. 2.

b) Self-Reflection Prompting Approach: this method ex-
tends direct prompting by introducing a self-reflection step.
Specifically, self-reflection is a foundational design pattern of
agentic Al systems that provide an approach to advancing the
capabilities of LLMs [26]—[28]. It focuses on enabling models
to self-correct and iteratively improve their outputs through
feedback mechanisms [27], [29], [30] over multiple iterations.
After generating an initial explanation, we prompt the LLM
to critically evaluate and refine its response, enhancing clarity
and completeness. To optimize the prompt design, we experi-
mented with different formats and phrasing, iteratively refining
them based on the quality of interpretations and the LLM’s
own suggestions. Figure 2 shows the prompt used initially
in our analysis while the prompt used for the Self-reflection
prompting strategy is the following: Please critically analyze
the interpretation of the SHAP explanation provided below,
and provide an improved interpretation.

III. EXPERIMENTAL AND EMPIRICAL RESULTS

To evaluate the performance of the proposed framework, we
train an XGB regressor model that performs QoT estimation.
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Fig. 3: Schematic representation of the framework.

The regressor takes as input a set of features describing a
candidate lightpath for deployment and provides an estimation
of the Bit Error Rate (BER) as output, as in [31]. We use
the dataset made publicly available in [32]. We split the data
following a 90/10 training/testing split.

Based on the trained model, we extract 40 local explana-
tions using SHAP.To maintain objectivity, interpretations are
presented to the experts in a randomized order, preventing
them from knowing which prompting strategy generated each
one. Additionally, experts evaluate the interpretations inde-
pendently, without access to each other’s assessments, thus
minimizing potential bias.

The evaluation metrics we consider are: (i) correctness, as-
sessing how accurately the LLM-generated interpretations re-
flect the underlying explanation; (ii) scope, assessing whether
LLM’s interpretation, when correct, focused on the important
aspects of the explanationl; and (iii) usefulness, assessing, if
correct, the utility in providing practical support for human
understanding. For correctness and scope, evaluators assign a
binary score (e.g., correct/incorrect, within/outside scope). For
usefulness, they provide an assessment using a scale ranging
from O to 5, reflecting the degree to which the interpretation
contributes to their understanding of the model’s decision-
making process.

Table I reports the empirical results in terms of the av-
erage correctness, scope and usefulness. We report results
for scope and usefulness only when the expert evaluates the
interpretation as correct. We also report the agreement among
the experts across correctness and the standard deviation of
usefulness.

Results indicate that the direct prompt strategy achieves
an average correctness of 61.8% while the one based on

ILLM’s interpretation can be correct but not capturing the most important
aspects.

TABLE I: Results in terms average of the predefined metrics, agreement across
experts for correctness and the standard deviation (std) of usefulness.

Metric Direct Prompt Self Reflection
Avg Agreement/Std Avg Agreement/Std
Correctness  61.8% 79% 65.2% 82.1%
Scope 96.8% NA 98.9% NA
Usefulness 3.81 0.14 3.92 0.40

self-reflection yields a slightly higher average correctness of
65.2%. This marginal improvement suggests that a single iter-
ation of self-reflection is insufficient to overcome the LLM’s
limitations in accurately interpreting model explanations for
the lightpath QoT estimation task. Although these scores are
low, they are in line with other LLM benchmark scores for
the same model. The evaluators’ agreement is around 80%
for both cases. Despite relatively high agreement, results
indicate some discrepancy among evaluators due to differences
in scoring LLM’s interpretations. LLM’s interpretations can
sometimes lack specificity, leading experts to interpret the
same output differently. Both strategies perform exceptionally
well in terms of scope. Direct prompt and self-reflection
achieve high averages, 96.8% and 98.2%, respectively. This
indicates that once the LLM correctly interprets an explana-
tion, it effectively identifies and emphasizes the most relevant
and influential factors. Results regarding usefulness indicate
that the experts believe that the LLM explanations can im-
prove understanding of the SHAP explanations. Direct prompt
achieves a rate of 3.81 (std 0.14), while self-reflection achieves
a rate of 3.92 (std 0.40). Despite the slight score advantage for
the self-reflection strategy, it is worth noting that it received
the two lowest ratings from the evaluators. This was because
interpretations, in some cases, were more detailed than desired.



IV. CONCLUSION

Our study demonstrates that LLMs can effectively translate
ML model explanations into natural language to improve their
interpretability. We employ two prompting strategies, referred
to as direct prompting and self-reflection prompting. Empirical
evaluations confirm the effectiveness of the LLM-generated
interpretations. Moreover, while the two strategies yield mean-
ingful explanations, the self-reflection strategy shows an edge
over direct prompting in terms of scope and usefulness.

ACKNOWLEDGMENTS

This work has been partially supported by the Euro-
pean Union under the Italian National Recovery and Re-
silience Plan (NRRP) of NextGenerationEU, partnership on
“Telecommunications of the Future” (PE00000001 - program
“RESTART”) and by the EUREKA cluster CELTIC-NEXT
project SUSTAINET-Advance funded by the Swiss Innovation
Agency.

[1]

[2]

[3]

[5]

[6]

[9]

[10]

(1]

[12]

REFERENCES

Y. Wu, G. Lin, and J. Ge, “Knowledge-powered explainable artificial
intelligence for network automation toward 6g,” IEEE network, vol. 36,
no. 3, pp. 16-23, 2022.

S. Wang, M. A. Qureshi, L. Miralles-Pechuan, T. Huynh-The, T. R.
Gadekallu, and M. Liyanage, “Applications of explainable ai for 6g:
Technical aspects, use cases, and research challenges,” arXiv preprint
arXiv:2112.04698, 2021.

O. Ayoub, S. Troia, D. Andreoletti, A. Bianco, M. Tornatore, S. Gior-
dano, and C. Rottondi, “Towards explainable artificial intelligence in
optical networks: the use case of lightpath QoT estimation,” Journal of
Optical Communications and Networking, vol. 15, no. 1, pp. A26-A38,
2022.

O. Ayoub, C. Natalino, and P. Monti, “Towards explainable reinforce-
ment learning in optical networks: The RMSA use case,” in Optical
Fiber Communications Conference and Exhibition (OFC), 2024, p.
W4l.6.

B. Dutta, A. Krichel, and M.-P. Odini, “The challenge of zero touch
and explainable AL” Journal of ICT Standardization, vol. 9, no. 2, pp.
147-158, 2021.

S. Wang, M. A. Qureshi, L. Miralles-Pechuan, T. Huynh-The, T. R.
Gadekallu, and M. Liyanage, “Explainable ai for 6g use cases: Technical
aspects and research challenges,” IEEE Open Journal of the Communi-
cations Society, 2024.

D. Vale, A. El-Sharif, and M. Ali, “Explainable artificial intelligence
(XAI) post-hoc explainability methods: Risks and limitations in non-
discrimination law,” Al and Ethics, vol. 2, no. 4, pp. 815-826, 2022.
A. Hudon, T. Demazure, A. Karran, P-M. Léger, and S. Sénécal,
“Explainable artificial intelligence (XAI): how the visualization of ai
predictions affects user cognitive load and confidence,” in Information
Systems and Neuroscience: NeurolS Retreat 2021. Springer, 2021, pp.
237-246.

L. Weber, S. Lapuschkin, A. Binder, and W. Samek, “Beyond explain-
ing: Opportunities and challenges of XAl-based model improvement,”
Information Fusion, vol. 92, pp. 154-176, 2023.

P. Mavrepis, G. Makridis, G. Fatouros, V. Koukos, M. M. Separdani,
and D. Kyriazis, “XAI for all: Can large language models simplify
explainable ai?” arXiv preprint arXiv:2401.13110, 2024.

A. Zytek, S. Pido, and K. Veeramachaneni, “LLMs for XAl: Future di-
rections for explaining explanations,” arXiv preprint arXiv:2405.06064,
2024.

Y. Huang, H. Du, X. Zhang, D. Niyato, J. Kang, Z. Xiong, S. Wang,
and T. Huang, “Large language models for networking: Applications,
enabling techniques, and challenges,” IEEE Network, 2024.

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

H. Zhou, C. Hu, Y. Yuan, Y. Cui, Y. Jin, C. Chen, H. Wu, D. Yuan,
L. Jiang, D. Wu et al., “Large language model (LLM) for telecommu-
nications: A comprehensive survey on principles, key techniques, and
opportunities,” IEEE Communications Surveys & Tutorials, 2024.

D. Wang, Y. Wang, X. Jiang, Y. Zhang, Y. Pang, and M. Zhang,
“When large language models meet optical networks: paving the way
for automation,” Electronics, vol. 13, no. 13, p. 2529, 2024.

S. Cruzes, “Revolutionizing optical networks: The integration and im-
pact of large language models,” Authorea Preprints, 2024.

D. Adanza, C. Natalino, L. Gifre, R. Muiloz, P. Alemany, P. Monti,
and R. Vilalta, “IntentLLM: An AI chatbot to create, find, and explain
slice intents in TeraFlowSDN,” in IEEE 10th International Conference
on Network Softwarization (NetSoft), 2024, pp. 307-309.

A. Tzanakaki, M. Anastasopoulos, and V.-M. Alevizaki, “Intent-based
control and management framework for optical transport networks
supporting B5G services empowered by large language models,” Journal
of Optical Communications and Networking, vol. 17, no. 1, pp. A112—
A123, 2024.

Y. Song, Y. Zhang, A. Zhou, Y. Shi, S. Shen, X. Tang, J. Li, M. Zhang,
and D. Wang, “Synergistic interplay of large language model and digital
twin for autonomous optical networks: Field demonstrations,” IEEE
Communications Magazine, 2025.

S. Cruzes, “Enhancing optical networks with large language models: An
era of automated efficiency,” Authorea Preprints, 2024.

Y. Pang, M. Zhang, Y. Liu, X. Li, Y. Wang, Y. Huan, Z. Liu, J. Li, and
D. Wang, “Large language model-based optical network log analysis
using LLaMA?2 with instruction tuning,” Journal of Optical Communi-
cations and Networking, vol. 16, no. 11, pp. 1116-1132, 2024.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

O. Ayoub, A. Bianco, D. Andreoletti, S. Troia, S. Giordano, and
C. Rottondi, “On the application of explainable artificial intelligence to
lightpath QoT estimation,” in Optical Fiber Communication Conference.
Optica Publishing Group, 2022, pp. M3F-5.

C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, “Machine-learning
method for quality of transmission prediction of unestablished light-
paths,” Journal of Optical Communications and Networking, vol. 10,
no. 2, pp. A286-A297, 2018.

S. Aladin, A. V. S. Tran, S. Allogba, and C. Tremblay, “Quality of trans-
mission estimation and short-term performance forecast of lightpaths,”
Journal of Lightwave Technology, vol. 38, no. 10, pp. 2807-2814, 2020.
G. Davoli, R. Di Tommaso, A. Giorgetti, and C. Raffaelli, “Impact of
lightpath selection on end-to-end service orchestration in disaggregated
optical networks,” in International Conference on Optical Network
Design and Modeling (ONDM), 2024.

J. Huang and K. C.-C. Chang, “Towards reasoning in large language
models: A survey,” arXiv preprint arXiv:2212.10403, 2022.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegrefte,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang et al., “Self-refine: Iter-
ative refinement with self-feedback,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

A. Plaat, A. Wong, S. Verberne, J. Broekens, N. van Stein, and T. Back,
“Reasoning with large language models, a survey,” arXiv preprint
arXiv:2407.11511, 2024.

N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and S. Yao, “Re-
flexion: Language agents with verbal reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

Z. Gou, Z. Shao, Y. Gong, Y. Shen, Y. Yang, N. Duan, and W. Chen,
“Critic: Large language models can self-correct with tool-interactive
critiquing,” arXiv preprint arXiv:2305.11738, 2023.

O. Ayoub, D. Andreoletti, S. Troia, S. Giordano, A. Bianco, and
C. Rottondi, “Quantifying features’ contribution for ML-based quality-
of-transmission estimation using explainable Al in 2022 European
Conference on Optical Communication (ECOC). 1EEE, 2022, pp. 1-4.
G. Bergk, B. Shariati, P. Safari, and J. K. Fischer, “ML-assisted
QoT estimation: a dataset collection and data visualization for dataset
quality evaluation,” Journal of Optical Communications and Networking,
vol. 14, no. 3, pp. 43-55, 2021.



	Introduction
	LLM-based Framework for Interpreting Model's Explanation
	Experimental and Empirical Results
	Conclusion
	References

