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Abstract—Global power consumption is growing each year,
with a significant contribution from the ICT sector. Although
the number of primary devices, such as ROADMs and routers, is
usually constant, the number of active transceivers depends on
the routing and allocation policy and can be tuned. This work
demonstrates how dynamic network optimization aided by traffic
prediction leads to a 16 % power saving, expressed as the number
of active transceivers, and a 15% provisioned traffic increase.

Index Terms—Energy efficiency, multilayer network, time-
varying traffic, machine learning.

I. INTRODUCTION

The global power consumption is accelerating each year,
driven by the development of new technologies and artificial
intelligence (AI). Energy efficiency is thus an essential issue,
recognized also by the European Commission, which has iden-
tified the ICT sector as a relevant contributor to global energy
consumption [1]. In the case of optical networks, various
devices consume significant amounts of energy. Although the
number of primary devices, such as ROADMs and routers, is
usually constant, the number of active transceivers depends
on the chosen routing and allocation policy, and can be tuned
programmatically. It has been shown both theoretically and
experimentally that transceivers use similar amounts of energy
for different modulation formats and transmission distances
[2], [3]. Thus, the number of active transceivers in the network
is a good measure of the overall energy usage. In particular, the
calculations in [3] derived that the difference in energy used
by transceivers configured to operate for different modulation
formats and transmission distances is relatively small when
compared to the much more significant difference between
their idle (currently not supporting connections) and active
(currently supporting connections) state. In turn, for versa-
tility, the energy consumption of networks operated using
specific algorithms can be expressed as the number of active
transceivers. At the same time, transceiver utilization con-
tributes meaningfully to the network operational costs, thus
also serving as a measure for efficiency estimation [4], [5].
Moreover, we assume that the energy consumption overhead
related to programatic transceivers reconfiguration assisted
with a machine learning (ML) prediction module is marginal
with respect to transceivers operation consumption.

The existing research on energy-efficient multilayer net-
works focuses mainly on hardware-based optimization tech-
niques (e.g., [2]). Traffic-aware approaches to switch the
networking devices on and off depending on the demand
changes (e.g., [6]) or use traffic grooming to achieve energy

This work was supported by the National Science Center, Poland under
Grant 2019/35/B/ST7/04272.

savings by establishing fewer lightpaths (e.g., [7]), are also re-
searched. However, the proposed algorithms rely on analytical
models and do not employ traffic forecasting. The recent rapid
technological development has enabled, however, new, data-
driven optimization methods for the networking community
to achieve the discussed energy and cost savings. Automated
networks leverage network programmability, monitoring, and
data analytics, facilitating dynamic self-optimization to match
the current traffic conditions, primarily with the help of ML
models [8]-[10]. Gained knowledge helps to discover daily
traffic patters enabling periodic reallocations of time-varying
traffic, which enables notable improvements in blocking prob-
ability when using shorter reallocation periods [11]. However,
an objective measure is required to quantify the potential
benefits in realistic settings, i.e., without artificial network
oversaturation to achieve bandwidth blocking.

The aim of this work is to explore the energy efficiency
of multilayer networks with time-varying traffic. To this end,
we analyze various dynamic network optimization variants to
match the forecasted upcoming traffic conditions. As a base-
line scenario, the network is configured to consider each
connection request’s predicted peak daily bitrate and avoid
any reallocations during the day. Then, we propose three
variants with dynamic optimization for different relocation
periods, considering the time-varying nature of requests to
different extents. Through experiments in a realistic setting,
we analyze the number of active transceivers and the amount
of provisioned traffic before blocking appears in scenarios with
different reallocation frequencies. We quantify the benefits
coming from utilizing the dynamic self-optimization. Finally,
we examine the benefits of advance resource reservation for
further optimization of the dynamic approach.

II. NETWORK MODEL AND ALLOCATION ALGORITHM

In this work, we consider a multilayer network with time-
varying traffic of various services and applications. The bottom
layer is an elastic optical network (EON), while the top one
is a packet (IP) layer. The 1P layer is a virtual topology
of lightpaths set up in the EON layer. The layers exchange
information about the lightpaths, e.g., their current used and
free capacity. The cross-layer information exchange enables
traffic grooming, where additional connection requests are pro-
visioned in the existing lightpaths according to the remaining
free bandwidth. That way, there is more stability in the bottom
layer, and bandwidth wastage is minimized. For more details
regarding the considered architecture we refer to [12].

The details of our multilayer routing and spectrum alloca-
tion (RSA) algorithm are provided in Alg. 1. First, connec-
tion requests are sorted by their initial required bandwidth



Algorithm 1 RSA in a multilayer 1P-over-EON network

> Initial network setup

1: Sort requests by initial bitrate

2: for each request do

3: if a direct lightpath from its source to its destination exists and has
enough free space then

4 groom the request into this lightpath

5:  end if

6: if request not allocated then

7: set up a new lightpath in EON layer using Alg. 2

8 allocate the request into the newly-created lightpath

9: end if

0: end for

> Consecutive iterations in the network lifecycle
11: Sort requests by bitrate predicted for the upcoming period
12: for each request with bitrate decrease do
13:  update free space in each segment of its routing path
14: end for
15: for each request with bitrate increase do
16:  check if it still fits in each segment of its routing path
17:  if request no longer fits in its path then
18: process it using Alg. 3
19:  end if
20: end for

(line 1), and then they are processed one by one (line 2). The
considered bitrate of each request is based on its prediction
(more details in Sec. IIT). The algorithm first checks if a direct
lightpath exists from the request’s source to its destination and
has enough free space (line 3). In that case, the algorithm
performs grooming (line 4), which utilizes the previously
existing lightpath topology, saving resources and improving
stability, as shown in [7], [12]. If grooming is not possible,
a new lightpath is set up in the EON layer (line 7) using Alg. 2
(explained below). In the following iterations, the algorithm
proactively reacts to the bandwidth requirement changes of
the requests. Each iteration corresponds to a set period (more
details in Sec. III). In particular, the algorithm starts each
iteration by sorting the requests by their currently considered
(forecasted peak for the period) bitrate (line 11). Then, it first
processes the ones with a required bandwidth decrease to free
the resources (line 13). Next, it checks each increasing request
to see if it still fits in its path (line 16). If not, it processes the
request using Alg. 3 (explained below).

Algorithm 2 Lightpath allocation in the EON layer

Input: source node, destination node, requested bandwidth
Output: lightpath
1: consider £k =
destination node
2: for each candidate path do
3:  using the First Fit heuristic, find a suitable channel for the requested
bitrate, choose the most efficient modulation format supporting the
required transmission distance
4: end for
. sort the candidate paths by the highest frequency slot index of their found
channels, ascending
6: set up a new lightpath on the path with found channel with the lowest
channel-ending slot

10 shortest paths between the requested source and

W

Alg. 2 details how lightpaths are created in EON layer. A
set of £ = 10 (tuned in the preliminary experiments) shortest
candidate paths is considered between node pairs (line 1). To
choose the best path, we use a greedy algorithm to minimize
spectrum usage (line 3). In particular, the algorithm tries to
find a channel on each path with the most spectrally efficient
modulation format, supported by the assumed transceiver
model, for the path length and requested bitrate. We use the
First Fit heuristic to find suitable optical channel on each

considered path. The path candidates with found channels are
sorted according to the highest channel-ending slot, ascending
(line 5). The lightpath is finally set up on the path with a found
channel with the lowest channel-ending slot (line 6).

Algorithm 3 Grooming and routing in the IP layer

Input: source node, destination node, requested bandwidth
Output: allocation information

1: consider k = 3 shortest paths according to number of hops in the IP layer

between the requested source and destination node

2: sort candidate paths by number of hops, ascending

3: while request not allocated and next candidate path exists do

4:  groom the request to the candidate path if it has enough spare bandwidth
5: end while
6: if request not allocated then
7: set a new lightpath in the EON layer using Alg. 2

8: allocate the request into the newly-created lightpath
9: end if

Alg. 3 details the grooming and routing in IP layer. A set
of k = 3 (tuned in the preliminary experiments) shortest paths
in the IP layer is considered between node pairs (line 1). The
candidate paths are sorted by the number of hops, ascending
(line 2). The algorithm tries to groom the request into the
shortest possible path (line 4). If there is no existing path in the
IP layer with enough free space, a new lightpath is requested
in the EON layer (line 7). The number of candidate paths in
both layers was tuned to balance the path length and resource
utilization (longer paths in the top layer consume resources in
more lightpaths in the bottom layer).

III. TRAFFIC MODEL AND PERIODIC REALLOCATION

The traffic model considered in this work consists of time-
varying connection requests (intents), i.e., with bitrate chang-
ing throughout the day. Each request follows a pattern of
a specific network-based service or application (e.g., YouTube,
TikTok), as published in the Sandvine report [13]. Because
the report only provides the hourly averages of each traffic
pattern, we use our approximation and noising algorithm
(available as the Traffic Weaver Python package [14]) to create
a continuous signal from the available bar plots. In turn, we
use semi-synthetic data, where real traffic patterns are a base
for a request generator. Such an approach allows for a fair
simulation with realistic assumptions, considering the lack of
detailed real-world data. Because of each service’s unique
purpose and properties, their traffic patterns, including the
number, placement, and range of daily spikes, vary signifi-
cantly (see Fig. 1). In our simulations, we assume multiple
requests of various traffic volumes for each node pair. For
more information about the traffic model, refer to [12].
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Fig. 1: Illustration of the diversity of time-varying connection requests. Daily
traffic patterns of various applications and services as provided in [13].

The proposed algorithm utilizes the dynamic self-
optimization to the current traffic conditions. In other words,
the network makes the routing and allocation decisions ac-
cording to the requests’ peak traffic within a set period. In



this work, we consider four period lengths (24 hours, 8 hours,
1 hour, 5 minutes), as illustrated in Fig. 2. The baseline
algorithm is the traditional one-time (static) request allocation
approach to match their forecasted daily peak traffic (purple
dashed line on the plot). In this setting, the network does not
exploit the daily traffic (dynamic) changes in any way. In turn,
Alg. 1 only performs the initial allocation, and the considered
bitrate of each connection request is its daily peak. On the
contrary, assuming reallocations during the day, the algorithm
adapts to the current conditions as explained in Sec. II. As
it is easily noticeable from Fig. 2, more extended allocation
periods result in vast overprovisioning. On the other hand, the
network requires fewer reconfigurations within the day.
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Fig. 2: Illustration of allocation for peak traffic for different periods of a day.

Intuitively, provisioning for periodic peak traffic requires
traffic forecasting. To this end, as in [12], we employ pre-
diction models for each request based on its one-month
history. Following the recommendation from [15], the data-
driven models are trained to learn the relationship between the
current traffic level and the traffic a day and a week before at
the same time, thus having two input features. Such feature
engineering is effective in highly seasonal traffic (with daily
and weekly patterns), which is present in backbone networks.
At the same time, obtaining a forecast for the day ahead
(specifically the daily peak) is possible, as the models do not
use observations shorter than one day as features. As a ML
algorithm of choice, we use Linear Regression. This algorithm
proved to be a fast and reliable predictor of network traffic
in preliminary experiments. At the same time, as in [16], it
was the computationally cheapest method with satisfactory
performance to follow the green networking paradigm.

Considering the smallest of the explored reallocation fre-
quencies (5 minutes), the forecasts can be additionally applied
to improve network operation further. To avoid unnecessary
instabilities and enable more informed planning as the requests
fluctuate, in the final algorithm variant, the maximum bitrate
from the upcoming 15 minutes is considered for the allo-
cation and reallocation decisions for each request having an
increasing trend, thus leaving extra space for its forthcoming
peak. In particular, Alg. 2 and 3 make the allocation and
reallocation decisions based on the maximum 15-minute-ahead
traffic forecasts, while Alg. 1 updates the network state every
5 minutes. That way, additional use of ML is utilized in
the network for advance reservation (AR). On the plots in
the experimental part (Sec. IV), we denote this algorithm
modification as "with AR."

IV. EXPERIMENTAL EVALUATION

We run the experiments on the EURO28 and US26 topolo-
gies (see Fig. 3). As in [12], in our simulations, we use the
Ciena Wavelogic 5 Extreme commercial transceiver model

with specifications as provided in [17]. The experiments were
repeated ten times for each topology, with randomly generated
sets of requests of bitrate within a 50-150 Gbps range (uniform
distribution). The traffic load was increased by increasing the
number of requests in the network. In the following part, we
discuss the averaged results of our simulations.

Fig. 3: Considered ﬁetwork topologies: EURO28 with 28 nodes and 82 links
(left) and US26 with 26 nodes and 84 links (right).

In Fig. 4, we present the number of active transceivers
as a function of traffic load for different analyzed reallo-
cation periods for the considered topologies. Additionally,
vertical dashed lines indicate the traffic loads where bandwidth
blocking probability (BBP) of 1% for subsequent methods
appear. The BBP is a measure commonly used to evaluate
dynamic RSA algorithms (e.g., [18], [19]), specifying the ratio
of provisioned bandwidth to the requested bandwidth; 1% BBP
is commonly recognized in the literature as acceptable in
operational network scenarios.

Clear benefits of the proposed approach enabling various
frequencies of periodic reallocation are visible when compared
to the traditional daily allocation. Furthermore, they increase
with the increase in traffic load. As an example, consider
the traffic load corresponding to 1% BBP for the 24-hour
reallocation period (the lightest vertical dashed line on the
plots) — the highest load that is possible to be provisioned in
the network using the traditional daily allocation (47.5 Tbps
for US26 and 40 Tbps for EUR028). For US26, the respective
average number of active transceivers is 940.4 for the 24-hour
reallocations (purple curve on the plot) and only 791.2 for the
5-minute reallocations (green curve on the plot), which is 16%
fewer. In other words, thanks to more frequent reallocations,
provisioning the same amount of traffic can be achieved using
as much as 16% less energy. For EURO28, the analogous case
yields 10% transceiver (power) savings. Moreover, to achieve
the network saturation (1% BBP), an additional 7.5 Tbps
(US26) or 5 Tbps (EURO28) of traffic can be provisioned in
both topologies when using the dynamic 5-minute reallocation
period (the darkest vertical dashed line on the plots) when
compared to the traditional static case. Comparing the number
of transceivers at the network saturation point (1% BBP)
for each of the reallocation periods, we still achieve 7%
(US26) or 5% (EURO28) transceiver savings. In other words,
provisioning a larger amount of traffic can be achieved using
as much as 7% less energy.

Overall, 1% BBP appears under heavier traffic load for
consecutive reallocation periods, which is another notable
benefit of frequent reallocations. In particular, for US26, the
network saturation (vertical dashed lines on the plots) was
noted for a 10% and 15% higher traffic load for 1-hour- and
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Fig. 4: Number of active transceivers as a function of traffic load for the
considered reallocation frequencies, vertical lines indicate the traffic load
corresponding to 1% BBP of various reallocation frequencies. US26 (top);
EURO28 (bottom).

5-minute reallocation compared to the 24-hour one. The trends
for EURO28 are equivalent. Together with the transceiver
usage curves, more traffic can be provisioned in the network
using the same or less energy. It is evident by comparing
the number of active transceivers for the 1-hour and 5-minute
reallocation periods. In both topologies, the numbers in terms
of the number of active transceivers are very similar; however,
the 1% BBP appears later for the more frequent relocations.
Finally, even though in our testing, the 24-hour and 8-hour
reallocation periods yielded the same amount of accepted
traffic for 1% BBP, the number of active transceivers (used
power) was 10% (US26) and 9% (EURO28) smaller for the
more frequent reallocations.

Furthermore, considering the addition of AR to the most effi-
cient 5-minute reallocation period enables even more reduction
in transceiver usage and thus power saving. The bottom parts
of Fig. 4 illustrate zoomed-in fragments of the plots around
each network’s saturation point. It is clearly visible that the
number of active transceivers is smaller for the same traffic
load in both tested topologies with the additional use of ML.

Finally, we repeated our experiments for other commercial
transceiver models explored in [20]: Ciena Wavelogic Al
from 2016 and Ciena Wavelogic 3 from 2012. All the trends
discussed above also hold for the older equipment, indicating
transceiver and, thus, energy saving when using the data-driven
adaptive provisioning, therefore confirming the versatility of
our study. Considering their often worse spectral efficiency,

the benefits from more frequent reallocations are even more
noticeable. In turn, updating the network operation policy is
worthwhile despite the used equipment for power saving and
increased traffic load provisioning.

V. CONCLUSIONS

In this work, we explored the energy consumption savings
that dynamically-optimized multilayer networks bring. We
discussed how the number of active transceivers is a good
measure of the network’s energy efficiency and operational
costs, thus being a versatile network performance estimator.
We then provided ways to reduce it, demonstrating the benefits
of dynamic network self-optimization to the current traffic
conditions, thus decreasing overprovisioning and enabling var-
ious resource savings. Through experiments on two benchmark
topologies, we showed how a 16% energy saving can be
obtained by increasing the relocation frequency in our data-
driven approach. Furthermore, we showed how, with the same
or less energy spent, more traffic can be provisioned when us-
ing more frequent reallocations. Finally, we demonstrated the
benefits of employing additional ML-based traffic prediction
for further optimization. In the future, we aim to further inves-
tigate data-driven intent-based network optimization methods
and develop a QoS-aware framework that diversifies request
provisioning according to their individual requirements.
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