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Abstract—This paper undertakes a holistic investigation of
two fundamental trade-offs in monostatic OFDM integrated
sensing and communication (ISAC) systems, namely, the time-
frequency trade-off and the spatial trade-off, originating from
the choice of modulation order for random data and the design of
beamforming strategies, respectively. To counteract the elevated
side-lobe levels induced by varying-amplitude data in high-
order QAM signaling, we introduce a novel linear minimum
mean-squared-error (LMMSE) estimator. We also provide a
rigorous theoretical characterization of side-lobe levels achieved
by the proposed LMMSE estimator and two benchmark schemes,
proving its superiority for any modulation scheme and SNR
level. Moreover, we explore spatial domain trade-offs through
two ISAC transmission strategies: concurrent, employing joint
beams, and time-sharing, using separate beams for sensing and
communications not overlapping in time. Simulations demon-
strate improved performance of the LMMSE estimator, especially
in detecting weak targets in the presence of strong ones with high-
order QAM, consistently yielding more favorable ISAC trade-offs
than existing baselines under various modulation schemes, SNR
conditions, RCS levels and transmission strategies. Additionally,
we present experimental results to validate the effectiveness of
the LMMSE estimator in reducing side-lobe levels, based on real-
world measurements.

Index Terms—OFDM, ISAC, monostatic sensing, LMMSE
estimator, time-frequency trade-off, spatial trade-off, concurrent
transmission, time-sharing transmission.

I. INTRODUCTION

A. Background and Motivation

AS RESEARCH and standardization efforts for 6G inten-
sify, integrated sensing and communications (ISAC)

stands out as a key enabler that can facilitate high-quality
connectivity and endow networks with intrinsic sensing
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SE 44737 Vårgårda, Sweden.

Jesus O. Lacruz and Joerg Widmer are with IMDEA Networks, 28918
Madrid, Spain.

Andrea Giorgetti is with CNIT/WiLab and the Department of Electrical,
Electronic, and Information Engineering “Guglielmo Marconi,” University of
Bologna, 40126 Bologna, Italy.

Digital Object Identifier 10.1109/TWC.2025.3563197

capability [1], [2], [3]. Such a convergence can revolution-
ize network functionalities that extend beyond traditional
communication-only paradigms by making sensing a funda-
mentally built-in component rather than an add-on feature
[4], [5]. In ISAC configurations, the monostatic approach
is gaining momentum, especially given its ability to exploit
the entire communication data for sensing purposes and
its potential to mitigate the stringent synchronization chal-
lenges arising in bistatic and multistatic systems [6], [7],
[8], [9]. Among various waveform candidates for ISAC
implementation, the orthogonal frequency-division multiplex-
ing (OFDM) waveform emerges as a natural choice owing
to its widespread adoption across current wireless stan-
dards such as 5G, 5G-Advanced, WiFi/WLAN and DVB-T
[10]. The inherent characteristics of OFDM, including its
high spectral efficiency, immunity to multipath effects, high-
accuracy and low-complexity radar operation and design
flexibility, make it an ideal choice for ISAC applications
[11], [12], [13], [14].

In the context of monostatic ISAC, OFDM radar sensing
with 5G waveforms has recently received increasing attention
[6], [15], [16], [17], [18], [19], [20]. Evaluations have been
conducted on the sensing performance of a base station (BS)
acting as a monostatic radar with downlink 5G new radio (NR)
OFDM signals, focusing on the use of pilot/reference symbols
alone [15], [18] as well as a combination of pilot/reference
and data symbols [6], [16]. To achieve satisfactory target
detection performance with sparse pilots, maintaining low
side-lobe levels and eliminating ambiguities become critical
in 5G/6G OFDM sensing [20]. In [15] and [17], various 5G
signals and channels, including SSB, PRS, PDSCH and CSI-
RS, have been investigated in terms of their delay-Doppler
ambiguity function (AF) characteristics. Similarly, the study
in [16] evaluates tracking performance using 5G NR signals
within V2X networks, leading to guidelines on the design
of 5G-Advanced and 6G frame structures [15], [16]. Overall,
these studies highlight the significant potential of employing
OFDM waveforms for sensing purposes, while also noting the
challenges associated with target detection due to suboptimal
side-lobe performance.

Another major challenge pertaining to side-lobe levels in
monostatic OFDM sensing emerges from the use of random
communication data [14], [21], [22]. This issue unveils a
crucial inherent trade-off in monostatic OFDM ISAC sys-
tems, namely the time-frequency trade-off, falling under the
umbrella of deterministic-random trade-offs [3], [23]. The
time-frequency trade-off stems from the choice of modu-
lation order for random data: higher-order QAM enhances
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communication rates but compromises sensing performance,
as the random, non-constant-modulus data leads to elevated
side-lobe levels [14]. On the other hand, employing constant-
modulus QPSK minimizes side-lobe levels, enhancing sensing
performance but at the cost of lower communication rates.
To explore and enhance the time-frequency trade-off, var-
ious transmit optimization schemes have been recently
proposed, focusing on OFDM [14], [21], [24] as well as
generic communication systems (along the lines of broader
deterministic-random trade-offs) [23], [25], [26]. In [23],
[24], and [26], multiple ISAC trade-off optimization problems
have been formulated to optimize the input data distribu-
tion for improving the time-frequency trade-off. Considering
MIMO-OFDM ISAC systems, [21] designs a symbol-level
transmit precoder to minimize the range-Doppler integrated
side-lobe level under multi-user communication quality-of-
service (QoS) constraints. Similarly, the work in [14] proposes
a probabilistic constellation shaping (PCS) approach to maxi-
mize the achievable rate under constraints on the variance of
the radar AF with random OFDM data.

B. Research Gaps

Despite extensive research into sensing algorithms [6], [15],
[16], [17], [18], [19] and trade-off analysis [14], [21], [23],
[24], [25], [26] in OFDM ISAC systems, a number of crucial
topics remain unexplored. First, previous studies on OFDM
sensing have typically utilized QPSK signaling [6], [15],
[17], [21], which compromises communication performance,
or have implemented QAM data with reciprocal filtering (RF)
[11], [16], [19], [27], which leads to elevated side-lobe levels
at low SNRs due to enhanced noise power [21]. On the
other hand, employing matched filtering (MF) [27] with QAM
signaling as an alternative to RF results in increased side-lobe
levels at high SNRs, caused by varying-amplitude data. Hence,
no universally effective sensing algorithm exists that maintains
robust performance across a wide range of SNR conditions,
particularly when dealing with high-order modulations in
monostatic OFDM ISAC systems. Moreover, prior works on
time-frequency trade-off analysis focus exclusively on ISAC
transmit signal optimization [14], [21], [23], [24], [25], [26]
without tackling the problem of sensing receiver design. This
leads to several drawbacks as optimizing transmitter design to
tune ISAC trade-offs may hamper communication functional-
ity and necessitate conveying additional control information
to the communication receiver for symbol decoding, thereby
increasing overhead. Conversely, the receiver design strategy
adopted in this paper aligns with the opportunistic sensing
paradigm [28], which does not interfere with the communi-
cation system. Finally, the spatial trade-off, resulting from
the design of ISAC beamformers (e.g., [6], [29]), has been
rarely studied alongside the time-frequency trade-off, which
merits further investigation considering their complex interplay
within various transmission schemes, such as concurrent and
time-sharing [30].

In light of the existing literature on monostatic ISAC
systems, several fundamental questions remain unanswered:
• How can robust sensing algorithms be designed for

monostatic OFDM ISAC systems, accommodating known

yet varying-amplitude random data symbols in the time-
frequency domain generated by high-order modulation
schemes? To what extent can we mitigate the mask-
ing effect in both single- and multi-target environments,
resulting from increased side-lobe levels induced by non-
constant-modulus data?

• What spatial domain trade-offs arise from the choice
of ISAC transmit beamformers? How do different trans-
mission strategies, namely, concurrent and time-sharing
transmission, perform under various settings concerning
the sensing algorithm, percentage of sensing-dedicated
pilots and modulation order of random data?

• Given the inherent tension between sensing and commu-
nication (S&C) in time-frequency and spatial domains,
how can communication data rates and accompanying
ISAC trade-offs be realistically evaluated under different
modulations and power allocations between S&C beams?

C. Contributions

With the aim of addressing the identified research gaps
towards 6G, this study performs a comprehensive inves-
tigation of fundamental trade-offs in monostatic OFDM
ISAC systems by introducing novel sensing algorithms,
beamforming/transmission strategies and holistic performance
evaluations using both simulated and experimental data. The
main contributions can be summarized as follows:
• Sensing with Varying-Amplitude Data in OFDM ISAC

(Time-Frequency Trade-Offs): We introduce a novel
MIMO-OFDM radar sensing algorithm based on an
LMMSE estimate of the time-frequency domain radar
channel, specifically tailored for detection with varying-
amplitude random communication data in monostatic
ISAC systems. The proposed algorithm can effectively
suppress high side-lobes induced by varying-amplitude
data and significantly improve detection capability for
weak targets, outperforming the conventional OFDM
sensing algorithms (i.e., MF and RF [6], [11], [19], [27]).

• Theoretical Characterization of Side-lobe Levels: We
provide a rigorous theoretical characterization of side-
lobe levels obtained by the proposed LMMSE estimator
as well as RF and MF benchmarks, valid for any
modulation scheme and SNR level, yielding valuable
insights into their sensing performance under different
SNR regimes and modulation orders.

• ISAC Transmission Strategies (Spatial Trade-Offs):
To analyze the spatial domain trade-offs, we investigate
two ISAC transmission strategies: concurrent transmis-
sion, where the same beam is used for S&C, and
time-sharing transmission, which uses dedicated beams
for S&C non-overlapping in time. We also introduce
a mutual information (MI) approximation method that
leverages Monte Carlo sampling techniques to evaluate
data rates (with imperfect knowledge of channel) and
the resulting ISAC trade-offs under various modulation
schemes.

• Holistic Performance Investigation via Simulations
and Experiments: To offer comprehensive guidelines for
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Fig. 1. Monostatic ISAC system featuring a monostatic ISAC transceiver, which integrates an ISAC transmitter and a sensing receiver on the same hardware
platform, and a communications receiver on a separate device. In concurrent transmission, sensing receiver utilizes all communication data, with transmit
power distributed between sensing and communication beams. In time-sharing transmission, dedicated sensing and communications beams are transmitted in
a time-multiplexed fashion.

the design of 6G systems, we carry out extensive simu-
lations to investigate fundamental ISAC trade-offs within
the time-frequency and spatial domains under a wide
array of transmission settings and channel conditions,
including modulation order, SNR and power/time allo-
cation between S&C. The proposed LMMSE estimator
demonstrates substantial improvements in the trade-offs
between probability of detection and achievable rate
compared to existing baselines. We also provide experi-
mental results to verify the effectiveness of the LMMSE
estimator on real measurements.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

Consider a monostatic OFDM ISAC system consisting
of two entities, as shown in Fig. 1: a multiple-antenna
dual-functional ISAC transceiver and a single-antenna com-
munications receiver (RX). The ISAC transceiver contains (i)
an ISAC transmitter (TX) with an NT-element uniform linear
array (ULA) that sends data/pilot symbols to the communi-
cations RX and (ii) a sensing RX with an NR-element ULA
that performs radar sensing by processing the backscattered
signals for target detection, estimation and tracking [2], [4],
[11]. In the monostatic configuration under consideration, the
sensing RX is co-located on the same device as the ISAC TX,
thereby sharing the same oscillator and having access to the
entire OFDM transmit signal [6], [8], [31]. To ensure that the
sensing RX experiences no self-interference during full-duplex
operation, we assume that the TX/RX antennas at the ISAC
transceiver are sufficiently isolated [4], [7], [11], [32], [33],
[34], [35]. In this section, we introduce the OFDM transmit
signal model, different ISAC transmission/beamforming strate-
gies and provide received signal models at both the sensing and
communication RXs. Additionally, we formulate the problems
of interest tackled throughout the paper.

A. Transmit Signal Model

We consider an OFDM frame with N subcarriers and M
symbols. The complex baseband transmit signal for the mth

symbol can be expressed as [6] and [11]

sm(t) =
1√
N

N−1∑
n=0

xn,m e
j2πn∆ftg

(
t−mTsym

Tsym

)
, (1)

where xn,m is the data/pilot on the nth subcarrier and the
mth symbol, ∆f = 1/T is the subcarrier spacing with T
representing the elementary symbol duration, Tsym = T +
Tcp is the total symbol duration including the cyclic prefix
(CP) Tcp, and g(t) is a rectangular pulse that takes the value
1 for t ∈ [0, 1] and 0 otherwise. Employing single-stream
beamforming [6], [34], [36], the passband transmit signal over
the TX array for the entire OFDM frame is given by

<

{
M−1∑
m=0

fmsm(t)ej2πfct

}
, (2)

where fm ∈ CNT×1 is the TX beamforming (BF) vector
applied for the mth symbol and fc is the carrier frequency.
Denoting by PT the transmit power, we set ‖fm‖2 = PT ∀m
and E{|xn,m|2} = 1.

B. ISAC Transmission Strategies

We investigate two ISAC transmission strategies concerning
the choice of xn,m and fm in (2).

1) Concurrent Transmission: In the concurrent transmis-
sion, a common beam is utilized simultaneously for S&C.
Inspired by [29, Thm. 2], we use the multibeam approach
in which the TX BF vector employed at the mth symbol is
given by [6] and [37]

fm =
√
ρ fm,s +

√
1− ρ fm,c , (3)

where fm,s ∈ CNT×1 and fm,c ∈ CNT×1 represent, respec-
tively, the sensing and communication BF vectors, and 0 ≤
ρ ≤ 1 denotes the ISAC weight that controls the trade-
off between S&C. In this strategy, all xn,m’s are assumed
to be data symbols1 intended for the communications RX,
while the sensing RX exploits the entire frame for radar
sensing. It has been proven in [29, Thm. 2] that the optimal
ISAC beamformer that maximizes SNR at a given sensing
location while satisfying a communication SINR constraint
in a single user scenario lies in the subspace of sensing and

1For ease of exposition and analysis, the communication channel is assumed
to be estimated a-priori, eliminating the need for pilot symbols. While the
proposed framework can theoretically be extended to account for the impact of
communication pilots on ISAC performance trade-offs, exploring this aspect
is beyond the scope of the current study and is reserved for future research.
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communication channels, which strongly motivates the use of
the structure in (3) (i.e., a weighted combination of sensing
and communication beamformers).

2) Time-Sharing Transmission: In the time-sharing trans-
mission, dedicated beams for sensing and communications are
used in non-overlapping time slots [30]. Thus, at each OFDM
symbol, the ISAC TX transmits either a sensing beam or a
communication beam. More formally,

fm =

{
fm,s, m ∈ S
fm,c, m ∈ C

, xn,m =

{
pilot, m ∈ S
data, m ∈ C,

(4)

where S ∪ C = {0, . . . ,M − 1} and S ∩ C = ∅. In (4), ‘pilot’
refers to dedicated sensing pilots with unit amplitude [38],
whereas ‘data’ could be either unit-amplitude (e.g., QPSK) or
varying-amplitude (e.g., QAM). The sensing RX utilizes only
the pilots for sensing, while the communications rate might be
compromised due to the replacement of a portion of data by
pilots. The time-sharing ratio |S|/M allows tuning the trade-
off between S&C.

C. Sensing Signal Model

Given (1) and (2), the backscattered signal at the sensing
RX array over subcarrier n and symbol m after the CP removal
and FFT operations can be written as [39]

yn,m = Hn,mfmxn,m + nn,m ∈ CNR×1 , (5)

where Hn,m ∈ CNR×NT denotes the channel matrix at the
nth subcarrier and the mth symbol, and nn,m ∈ CNR×1 is
the additive white Gaussian noise (AWGN) component with
nn,m ∼ CN (0, σ2I) and σ2 = N0N∆f , with N0 represent-
ing the noise power spectral density (PSD). Considering the
presence of K point targets in the environment, the sensing
channel can be expressed as

Hn,m =
K−1∑
k=0

αke
−j2πn∆fτkej2πmTsymνkaR(θk)aTT(θk) ,

(6)
where αk, τk, νk and θk denote, respectively, the complex
channel gain (including the effects of path attenuation and
radar cross section (RCS)), round-trip delay, Doppler shift and
angle-of-arrival (AOA)/angle-of-departure (AOD) of the kth

target. Here, τk=2dk/c and νk=2vk/λ, with c, λ = c/fc, dk
and vk denoting the speed of propagation, the wavelength, the
range and velocity of the kth target, respectively. In addition,
the channel gain is given by the radar range equation |αk|2 =
σrcs,kλ

2/[(4π)3d4
k] [40, Eq. (2.8)], where σrcs,k denotes the

RCS of the kth target. Moreover, the ULA steering vectors
are defined as

aT(θ) =
[
1 ej

2π
λ d sin(θ) . . . ej

2π
λ d(NT−1) sin(θ)

]T
, (7)

aR(θ) =
[
1 ej

2π
λ d sin(θ) . . . ej

2π
λ d(NR−1) sin(θ)

]T
, (8)

where d = λ/2 denotes the antenna element spacing.

D. Communications Signal Model

The signal received at the communications RX over subcar-
rier n and symbol m is given by

ycom
n,m = (hcom

n,m)T fmxn,m + zn,m ∈ C , (9)

where hcom
n,m ∈ CNT×1 is the communication channel over

subcarrier n and symbol m. In addition, zn,m is AWGN with
zn,m ∼ CN (0, σ2

c ). Assuming K̃ paths between the ISAC TX
and the communications RX, hcom

n,m can be modeled as

hcom
n,m =

K̃−1∑
k=0

α̃ke
−j2πn∆fτ̃kej2πmTsymν̃kaT(θ̃k) , (10)

where α̃k, τ̃k, ν̃k and θ̃k denote, respectively, the complex
channel gain, delay, Doppler shift and AOD of the kth path.
Here, k = 0 represents the line-of-sight (LOS) path. Accord-
ingly, the channel gains are given by |α̃0|2 = λ2/(4πd̃0)2 and
|α̃k|2 = σ̃rcs,kλ

2/[(4π)3d̃2
k,1d̃

2
k,2] for k > 0 [41, Eq. (45)],

where σ̃rcs,k denotes the RCS of the scatterer associated with
the kth path, d̃k,1 and d̃k,2 are the distances between TX-
scatterer and scatterer-RX.

E. Beamformers for Sensing and Communications

To search for potential targets in the environment, the TX
sensing beam fm,s in (3) and (4) sweeps an angular range
[−θmax, θmax]. We assume the use of B different sensing
beams over M symbols. Let Mb denote the set of indices
of symbols for which the bth beam is employed, i.e., M1 =
{1, . . . ,M/B}, . . . ,MB = {M−M/B+1, . . . ,M}. Hence,
the sensing beams are given by fm,s =

√
PT/NTa

∗
T(θb) for

m ∈Mb, where θb = −θmax + 2(b− 1)/(B − 1)θmax.
For communications, we assume a LOS beam tracking

scenario [42] where the TX communication beam fm,c in (3)
and (4) is aligned with θ̃0 and stays constant during the entire
frame, i.e., fm,c =

√
PT/NTa

∗
T(θ̃0)∀m.

F. Impact of Non-Constant-Modulus Data on Sensing

To demonstrate the impact of different modulation orders
on sensing performance, we provide an illustrative example of
range profiles in Fig. 2, obtained with QPSK and 1024−QAM
modulations. The range profiles are generated by applying
reciprocal filtering and 2-D FFT based standard OFDM radar
processing (e.g., [6], [11], [27], [33]). From the figure, it is
evident that while high-order modulations provide high data
rates, they also tend to result in elevated side-lobe levels,
which significantly impairs the detection of weak targets. This
example sheds light on one of the fundamental trade-offs in
ISAC systems, namely the time-frequency trade-off, from the
perspective of detection.

G. Problem Description

Given the OFDM frame X ∈ CN×M with [X]n,m = xn,m
consisting of random data (and, potentially, pilot symbols),
the ISAC TX beamformers {fm}M−1

m=0 , and the sensing and
communications models in (5) and (9), the problems of interest
in this work are: (i) to develop a radar sensing algorithm
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Fig. 2. Range profiles obtained via conventional OFDM radar processing
based on reciprocal filtering (i.e., element-wise division of transmit symbols)
and 2-D FFT [6], [11], [27], [33] with QPSK, 16−QAM and 1024−QAM
modulations. The parameters employed are B = 100MHz, M = 140, with
additional details as specified in Table II. The scenario involves three targets,
each moving at 10m/s, with RCSs of (0,−10,−5) dBsm and located at
ranges of (20, 60, 80)m and angles of (10◦, 5◦, 15◦). It is observed that the
use of communication data symbols from high-order modulations increases
side-lobe levels, thereby masking the presence of weaker targets.

to detect the presence of multiple targets and estimate their
delay-Doppler-angle parameters from 3-D tensor observations
{yn,m} in (5) over NR receive antennas, N subcarriers and M
symbols, (ii) to evaluate the data rate for the signal model in
(9) across diverse modulation orders (e.g., QAM, QPSK), and
(iii) to investigate ISAC trade-offs for different configurations
of X and different choices of fm (determined by the ISAC
weight in (3), the data/pilot ratio in (4) and the modulation
order in both strategies). We begin by tackling the first problem
in Sec. III. The method to approximate the communication MI
for data rate evaluation will be introduced in Sec. IV. Finally,
we present simulation and experimental results to explore
sensing and ISAC trade-off performances in Sec. V.

III. RADAR SENSING ALGORITHM

In this section, we introduce a novel sensing algorithm
for multiple target detection and accompanying parameter
estimation using the observation in (5), that can account for
arbitrary X and TX beam sweeping.

A. Beam-Specific Channel Estimation

Target detection from the observation (5) via coherent
processing in the spatial-frequency-time domains involves
a computationally demanding 3-D search over the delay-
Doppler-angle tuples of potential targets [43], [44]. Further-
more, the beam sweeping procedure used for sensing, as
discussed in Sec. II-E, results in varying gains for targets
across different beams. This is because the overall gain of the
kth target in (6) is represented by αkaTT(θk)fm, which varies
over symbols m when fm changes [6].

Given these two challenges in detection/estimation from (5),
we propose to formulate the problem of sensing as a series
of beam-specific channel estimation problems where for each
beam the time-frequency domain radar channel is estimated
per RX element by treating it as an unstructured channel rather
than a delay-Doppler parameterized one as in (6), followed

by noncoherent integration [43], [44] of the resulting delay-
Doppler images over the RX array. More formally, for the bth

beam, the sensing observations in (5) at the ith RX element
can be expressed using (6) as

Yi,b = Hi,b �Xb + Ni,b ∈ CN×Mb , (11)

where � denotes the Hadamard (element-wise) product,

Hi,b ,
K−1∑
k=0

αb,kb(τk)cHb (νk)[aR(θk)]i ∈ CN×Mb (12)

represents the time-frequency radar channel at the ith RX
element for the bth beam, Xb = [X]:,Mb

∈ CN×Mb is the
transmit symbols for the bth beam, vec (Ni,b) ∼ CN (0, σ2I)

and Mb = |Mb|. In (12), αb,k = αka
T
T(θk)f̃b denotes the

overall gain of the kth target for the bth beam,

b(τ) ,
[
1 e−j2π∆fτ . . . e−j2π(N−1)∆fτ

]T
, (13)

c(ν) ,
[
1 e−j2πTsymν . . . e−j2π(M−1)Tsymν

]T
, (14)

represent the frequency-domain and temporal (slow-time)
steering vectors, respectively, and cb(ν) = [c(ν)]Mb

. More-
over, f̃b ∈ CNT×1 represents the bth beam, i.e., [F]:,Mb

=

[̃fb . . . f̃b] ∈ CNT×Mb , with F , [f1 . . . fm] ∈ CNT×M

denoting the entire TX beamforming matrix.
We revisit the two commonly employed methods to estimate

Hi,b from Yi,b in (11) and present the proposed method.
1) Reciprocal Filtering (RF): The reciprocal filtering

(RF) performs channel estimation by element-wise divi-
sion of received symbols by transmit symbols [6], [11],
[15], [27], [33]

Ĥi,b = Yi,b �Xb , (15)

where � denotes element-wise division. The RF estimator
in (15) can be derived as a result of the least-squares (LS)
solution in (11) and thus corresponds to the zero-forcing [45].

2) Matched Filtering (MF): The matched filtering (MF)
approach aims to maximize the SNR at the output of the filter
and applies conjugate multiplication of received symbols by
transmit symbols2 [27], [47]

Ĥi,b = Yi,b �X∗b . (16)

3) Proposed LMMSE Estimator: We propose to employ
an LMMSE estimator to estimate Hi,b in (11) by treating it
as a random unknown parameter as opposed to deterministic
modeling in RF and MF strategies. To this end, let us assume
that the vectorized version of the channel in (12), given by

hi,b , vec (Hi,b) =

K−1∑
k=0

αb,kc
∗
b(νk)⊗ b(τk)[aR(θk)]i ,

(17)

has the following first and second moments:

hi,b , E{hi,b}, Ci,b , E{(hi,b − hi,b)(hi,b − hi,b)
H} .

(18)

2The counterpart of the MF estimator in communications is represented by
the maximum ratio combining (MRC) scheme [46, Eq. (2.35)], which performs
equalization using channel coefficients to estimate data symbols while (16)
removes the impact of data symbols to estimate the channel.
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Based on (17), the vectorized observations in (11) can be
written as

yi,b = Di,bhi,b + ni,b , (19)

where yi,b , vec (Yi,b), Di,b , diag (vec (Xb)) and ni,b ,
vec (Ni,b). Given the statistics in (18), the LMMSE estimate
of the radar channel hi,b in (19) is given by [48, p. 389]

ĥi,b = Ci,bD
H
i,b(Di,bCi,bD

H
i,b + σ2I)−1

× (yi,b −Di,bhi,b) + hi,b . (20)

The following lemma helps simplification of (20).
Lemma 1 (OFDM Radar Channel Statistics): Suppose

that the target parameters in the radar sensing channel (17)
are distributed independently as αb,k ∼ CN (0, σ2

αb,k
), τk ∼

U [0, 1/∆f ], νk ∼ U [0, 1/(fcTsym)], θk ∼ U [−π/2, π/2]
(i.e., delays, Dopplers and angles are drawn uniformly from
their respective unambiguous detection intervals). In addition,
different targets are assumed to have independent distribu-
tions3.Then, the statistics of hi,b in (18) are given by hi,b = 0

and Ci,b = σ2
αb
I, where σ2

αb
,
∑K−1
k=0 σ2

αb,k
.

Proof: Please see Appendix A. �
Based on Lemma 1, (20) becomes

ĥi,b = σ2
αb
DH
i,b(σ

2
αb
Di,bD

H
i,b + σ2I)−1yi,b . (21)

Folding (21) back into matrix and plugging the definition of
Di,b, the LMMSE channel estimate is given by4

Ĥi,b =
Yi,b �X∗b∣∣Xb

∣∣2 + SNR−1
b

, (22)

where SNRb , σ2
αb
/σ2, and the |·|2 operation is performed

element-wise.5

4) Interpretation of LMMSE Estimator: A comparative
analysis of (22) with (15) and (16) yields the following
insights:
• At high SNRs, i.e., as SNRb → ∞, we have Ĥi,b ≈

Yi,b�Xb. Thus, the LMMSE estimator converges to the
RF estimator in (15).

• At low SNRs, i.e., as SNRb → 0, we obtain Ĥi,b ≈ Yi,b�
X∗b . This suggests that the LMMSE estimator converges
to the MF estimator in (16).

Hence, the LMMSE estimator represents a generalization of
the RF and MF receivers to the entire SNR range. When using

3In each OFDM frame, we sample a realization from these distributions,
which we assume to stay constant during the frame. We note that the resulting
LMMSE channel estimate derived in (22) is valid for any arbitrary (non-
Gaussian) distribution of αb,k with zero mean and a variance of σ2

αb,k
. The

zero-mean assumption generally holds since the phase induced by two-way
propagation and target scattering is uniformly distributed over [−π, π] [49,
Eq. (7)].

4Note that the LMMSE estimator in (22) of the radar sensing channel
is reminiscent of LMMSE equalizers in communication systems (e.g., [46,
Eq. (2.41)]). Such connections illustrate the underlying synergy between
sensing and communications, highlighting how foundational techniques can
be adapted to address challenges (see Fig. 2) arising in different fields such
as ISAC.

5The LMMSE estimator can be applied to any type of waveform, not
just OFDM, that results in a linear input-output relationship as in (19), e.g.,
orthogonal time frequency space (OTFS) [44], [50].

unit-amplitude modulations, where |Xb| is an all-ones matrix,
all estimators become equivalent, regardless of the SNR level6.

5) Theoretical Characterization of Side-Lobe Levels of Dif-
ferent Estimators: To quantify the side-lobe behavior of the
RF, MF and LMMSE estimators across various SNR regimes
and modulation orders, we provide several theoretical results
regarding the peak-to-sidelobe level ratio (PSLR) achieved by
these estimators. Here, the PSLR is defined as [52]

PSLR =
E{|χ(τ0, ν0)|2}
E{|χ(τ, ν)|2}

, (τ, ν) ∈ R , (23)

where χ(τ, ν) is the delay-Doppler response corresponding
to a certain OFDM radar receiver (e.g., RF, MF, LMMSE),
(τ0, ν0) represents the delay-Doppler of the target of interest,
and R = {(τ, ν) | |τ − τ0| � ∆τ, |ν − ν0| � ∆ν}
denotes the asymptotic side-lobe region containing delay-
Doppler cells located sufficiently far from the main-lobe at
(τ0, ν0), with ∆τ and ∆ν denoting the resolution in delay and
Doppler, respectively. The following results provide rigorous
theoretical characterizations of side-lobe levels, applicable to
any modulation and SNR level (dropping b for simplicity), as
well as comparative analyses of the different estimators.

Proposition 1: The PSLR in (23) achieved by the different
estimators under consideration is given by

PSLRRF = 1 +NM

(
E
{

1

|x|2

}
SNR−1

)−1

, (24)

PSLRMF =1 +NM
(
E{|x|4}−1+SNR−1

)−1
, (25)

PSLRLMMSE = 1 +NM

((
E
{

|x|2

|x|2+SNR−1

})−1

−1

)−1

(26)

where x represents the transmit symbol modeled as a complex
random variable from a given discrete constellation with unit
average power, i.e., E{|x|2} = 1.

Proof: Please see Appendix B. �

Proposition 2: PSLRLMMSE ≥ PSLRRF always holds.

Proof: Please see Appendix C. �

Proposition 3: PSLRLMMSE ≥ PSLRMF always holds.

Proof: Please see Appendix D. �

Corollary 1: The PSLR of LMMSE converges to that of MF
and RF at low and high SNRs, respectively, i.e.,

lim
SNR→0

PSLRLMMSE = PSLRMF , (27)

lim
SNR→∞

PSLRLMMSE = PSLRRF . (28)

Proof: The proof follows via first-order Taylor
expansions. �

6This indicates that the LMMSE estimator can also improve the sensing
performance of non-constant-envelope chirp-based waveforms, such as the
dual-mode chirp spread spectrum (DM-CSS) waveform [51], when compared
to RF and MF estimators.
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TABLE I
GUIDELINES ON WHICH ESTIMATOR TO USE IN OFDM RADAR

SENSING WITH HIGH-ORDER MODULATIONS UNDER
DIFFERENT SNR REGIMES

TABLE II
SIMULATION PARAMETERS

Corollary 2: The RF and MF estimators achieve the highest
PSLR with PSK modulation and result in lower PSLR values
with QAM modulations.

Proof: Please see Appendix E. �
Remark 1 (Increasing Side-Lobe Levels With Modulation

Order): Corollary 2 establishes a theoretical basis for the
increase in side-lobe levels with increasing modulation order
in Fig. 2.

Corollary 3: The RF estimator achieves lower side-lobe
levels (i.e., higher PSLR) than the MF estimator when the
SNR exceeds a certain threshold that depends on the employed
modulation. Specifically,

PSLRRF ≥ PSLRMF ⇐⇒ SNR ≥
E
{

1
|x|2

}
− 1

E {|x|4} − 1
. (29)

Proof: The proof follows readily from (24) and (25). �
6) Illustrative Example: We provide illustrative examples

in Fig. 3 and Fig. 4 to showcase the behavior of the estimators
in (15), (16) and (22) with 1024−QAM modulation. The
figures demonstrate the range and velocity profiles obtained
by 2-D FFT [11], [27], [33], [36] on Ĥi,b under two different
scenarios corresponding to low and high SNR operation7. We
observe that the proposed LMMSE approach emerges as a
robust and globally effective solution, maintaining low side-
lobe levels under high-order QAM modulations across all SNR
conditions. In contrast, conventional RF and MF estimators
struggle with the detection of weak targets due to increased
side-lobe levels at low and high SNRs, respectively. These
results corroborate Proposition 2 and 3, and Corollary 1.
Drawing from these findings, Table I offers general guidelines
for selecting estimators to achieve robust sensing performance
across various SNR levels.

7Defining SNRmean ,
∑B
b=1 SNRb/B, the low and high SNR scenarios

have SNRmean = −29.7 dB and SNRmean = 19.5 dB in Fig. 3, and
SNRmean = −21.5 dB and SNRmean = 35.5 dB in Fig. 4.

Fig. 3. Comparative analysis of range profiles obtained by different channel
estimation strategies with 1024−QAM modulation. (a) Low-SNR scenario
with the OFDM parameters in Table II except B = 100MHz and M = 140.
The scenario involves two targets, each moving at 15m/s, with RCSs of
(−7, 20) dBsm and located at ranges of (75, 85)m and angles of (10◦, 10◦).
(b) High-SNR scenario with the OFDM parameters in Table II except B =
200MHz and M = 140. The scenario involves two targets, each moving
at 15m/s, with RCSs of (15, 20) dBsm and located at ranges of (75, 5)m
and angles of (10◦, 10◦). As opposed to the RF and MF estimators, which
fail, respectively, at low and high SNRs, the proposed LMMSE approach
provides a globally effective solution that achieves low side-lobe levels under
high-order QAM modulations across diverse SNR conditions.

B. Beam-Specific Delay-Doppler Estimation

We are now interested in estimating target delays and
Dopplers from the output of channel estimation Ĥi,b in (15),
(16) or (22). The channel estimates will have the form

Ĥi,b = Hi,b + Zi,b ∈ CN×Mb , (30)

where Hi,b is given in (12) and Zi,b represents the chan-
nel estimation error term. Based on (12) and following a
generalized likelihood ratio test (GLRT) approach [36], the
delay-Doppler images can be computed simply via 2-D FFT,
i.e.,

hi,b(τ, ν) = bH(τ)Ĥi,bcb(ν) , (31)

where b(τ) in (13) and cb(ν) in (14) coincide with (zero-
padded) DFT matrix columns. In matrix form with sampled
delay-Doppler grid, (31) can be written as

ĤDD
i,b = FHNĤi,bFMb

∈ CN×Mb , (32)

where FN ∈ CN×N is the unitary DFT matrix of size N. Since
target angles are a-priori unknown and 3-D delay-Doppler-
angle processing is computationally demanding, we propose
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Fig. 4. Comparative analysis of velocity profiles obtained by different channel
estimation strategies with 1024−QAM modulation. (a) Low-SNR scenario
with the OFDM parameters in Table II except B = 100MHz and M = 140.
The scenario involves two targets, each located at 75m and 10◦, with RCSs of
(−7, 20) dBsm, and moving at (−25, 15)m/s. (b) High-SNR scenario with
the OFDM parameters in Table II except B = 100MHz and M = 1120.
The scenario involves two targets, each located at 5m and 10◦, with RCSs
of (−30, 30) dBsm and moving at (−55, 50)m/s.

to non-coherently integrate over the antenna elements [43],
[44] to obtain the delay-Doppler image for each beam b (i.e.,
without seeking phase-alignment with [aR(θk)]i in (12)):

ĤDD
b =

NR∑
i=1

∣∣ĤDD
i,b

∣∣2 . (33)

Multiple target detection and delay-Doppler estimation can be
performed by searching for peaks in (33), e.g., via a constant
false alarm rate (CFAR) detector [40].

C. Multi-Target Angle Estimation per Delay-Doppler Cell

For each delay-Doppler detection (τ̂ , ν̂) obtained via 2-
D CFAR on ĤDD

b in (33), we estimate angles of (possibly)
multiple targets residing within the resolution cell of (τ̂ , ν̂).
To this end, we construct the spatial domain compressed
observation ŷb ∈ CNR×1 from the original channel estimates
in (30) as follows:

[ŷb]i =
1

NMb
bH(τ̂)Ĥi,bcb(ν̂) ,

=

K−1∑
k=0

αb,k
bH(τ̂)b(τk)

N

cHb (νk)cb(ν̂)

Mb
[aR(θk)]i + [nb]i ,

≈
∑

k∈K(τ̂,ν̂)

αb,k[aR(θk)]i + [nb]i , (34)

where [nb]i , 1
NMb

bH(τ̂)Zi,bcb(ν̂) is the noise component,
K(τ̂ ,ν̂) ⊆ {1, . . . ,K} contains the indices of the targets located
within the resolution cell of (τ̂ , ν̂) (i.e., |bH(τ̂)b(τk1)| �
|bH(τ̂)b(τk2)| and |cHb (ν̂)cb(νk1)| � |cHb (ν̂)cb(νk2)| for
k1 ∈ K(τ̂ ,ν̂), k2 /∈ K(τ̂ ,ν̂)). Stacking (34) over the RX array
yields

ŷb =
∑

k∈K(τ̂,ν̂)

αb,kaR(θk) + nb . (35)

Due to relatively small number of antenna elements NR

at typical ISAC sensing receivers, we propose to retrieve
multiple angles from (35) using the ESPRIT algorithm in order
to resolve targets closely spaced in the angular domain. In
particular, we resort to 1-D ESPRIT using spatial smoothing
with Hankel matrix construction [53], [54]. Due to space
limitations, the reader is referred to [53, Sec. IV-D]and [54,
Sec. III-A] for details on multiple angle estimation using (35).

D. Beam-Specific Gain Estimation

Given the estimates Eb = {τ̂b,k, ν̂b,k, θ̂b,k}Kbk=1 from the
beam-specific processing for the bth beam, we estimate the
corresponding target gains αb ∈ CKb×1 via least-squares (LS)
using the channel estimates {Ĥi,b}NR

i=1 in (30). Based on the
channel structure in (30) and (12), the channel estimates over
all RX antenna elements can be expressed as

ĥb ,

 ĥ1,b

...
ĥNR,b

 =

 A1,b

...
ANR,b


︸ ︷︷ ︸

,Ab∈CNMbNR×Kb

αb + zb , (36)

where ĥi,b , vec
(
Ĥi,b

)
∈ CNMb×1, Ai,b ,

[a
(1)
i,b . . . a

(Kb)
i,b ] ∈ CNMb×Kb ,, and a

(k)
i,b ,

[aR(θ̂b,k)]i c
∗
b(ν̂b,k) ⊗ b(τ̂b,k) ∈ CNMb×1. Using (36),

the gain estimates can be obtained as

α̂b = A†bĥb . (37)

Algorithm 1 Beam-Specific Parameter Estimation From
Unstructured Radar Channel Estimates

1: Input: Frequency/slow-time radar channel estimates
{Ĥi,b}NR

i=1 for the bth beam in (15), (16) or (22), proba-
bility of false alarm Pfa.

2: Output: Delay, Doppler, angle and gain estimates
{τ̂b,k, ν̂b,k, θ̂b,k, α̂b,k}Kbk=1 of multiple targets.

3: Obtain the noncoherentlyintegrated delay-Dopplerimage
ĤDD
b for the bth beam via (32) and (33).

4: Run a CFAR detector on ĤDD
b with the specified Pfa for

target detection in the delay-Doppler domain.
5: For each delay-Doppler detection (τ̂ , ν̂), compute the

spatial domain observation ŷbin (34).
6: Estimate angles from ŷb via 1-D ESPRIT.
7: Using the estimates {Ĥi,b}NR

i=1 and {τ̂b,k, ν̂b,k, θ̂b,k}Kbk=1,
estimate the gains via (36)–(37).
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Algorithm 2 LMMSE-Based MIMO-OFDM Radar Sensing
1: Input: Space/frequency/slow-time MIMO-OFDM radar

data cube {yn,m} in (5), transmit symbols X, number
of distinct beams B, probability of false alarm Pfa.

2: Output: Delay-Doppler-angle estimates {τ̂k, ν̂k, θ̂k}K−1
k=0

of multiple targets.
3: for b = 1, . . . , B
4: Compute the RF, MF and LMMSE channel estimate

Ĥi,b in (15), (16) and (22), respectively, for each RX
element i = 1, . . . , NR using SNRb = 1 in (22).

5: For each estimate, run Algorithm 1 to obtain the
estimates Eb = {τ̂b,k, ν̂b,k, θ̂b,k, α̂b,k}Kbk=1 and compute
the corresponding SNRs via (37) and (38).

6: Compute two LMMSE channel estimates in (22) with
thetwo SNRs obtained using the RF and MF estimates
and run Algorithm 1.

7: Merge the detections from the three LMMSE estima-
torsand cluster them via DBSCAN in Sec. III-F.

8: Compute the resulting SNRb via (37) and (38), and
the corresponding LMMSE channel estimate in (22)
by inserting SNRb and run Algorithm 1.

9: end for
10: Perform DBSCAN clustering of the resulting detections
{Eb}Bb=1 using the settings in Sec. III-F.

E. LMMSE Processing With A-Priori Unknown Gains

The LMMSE estimator expression in (22) involves the SNR
term SNRb, the evaluation of which requires the knowledge of
the target channel gains (i.e., σ2

αb,k
= E{|αb,k|2}). Since the

channel gains are a-priori unknown, we propose to first run the
LMMSE estimator in (22) using three different SNRb values,
following the subsequent processing steps in Sec. III-B–Sec.
III-C, and merge and cluster the detections obtained via the
different SNRb values (see Lines 4– 7 of Algorithm 2). Then,
we plug the resulting gain estimates from (37) into the SNR
expression (22), i.e.,

SNRb = ‖α̂b‖2 /σ2 , (38)

which can now be inserted into (22) for LMMSE estimation.

F. Clustering Detections Over All Beams

Since the same target might be detected in multiple beams
during beam sweeping, we need a clustering algorithm to
merge detections from all beams. To this end, given the
estimates {Eb}Bb=1, we resort to the density-based spatial
clustering of applications with noise (DBSCAN) algorithm
[55], [56] to cluster detections over B beams. In DBSCAN,
we set the minimum number of points in a cluster to 1
and define the distance measure (used to characterize the ε-
neighbourhood of a point [55]) in the range-velocity-angle
space as the weighted Euclidean distance:

dW(ŝp, ŝq) = [(ŝp − ŝq)
TW(ŝp − ŝq)]

1/2 , (39)

where ŝp = [R̂p, v̂p, θ̂p]
T contains the range, velocity and

angle estimates of the pth detection in {Eb}Bb=1, and W ∈
R3×3 is a diagonal matrix to account for scaling due to unit

differences. The ε parameter [55] is set to ε = (sT∆Ws∆)1/2,
where s∆ = [∆R,∆v,∆θ]T with ∆R = c/(2N∆f) denoting
the range resolution, ∆v = λB/(2MTsym) the velocity
resolution per beam and8 ∆θ = 2◦.

G. Summary of the Proposed Algorithm

The proposed LMMSE based sensing algorithm is summa-
rized in Algorithm 2, which uses Algorithm 1 as a subroutine.

IV. COMMUNICATIONS DATA RATE EVALUATION

In this section, we provide a methodology to evaluate the
data rate of the communications subsystem of the considered
ISAC system under different constellations, extending [14] to
the case with imperfect channel state information (CSI).

A. Calculation of Mutual Information

The received signal at the communications RX in (9) can be
recast as ycom

n,m = hn,mxn,m+zn,m, where hn,m , (hcom
n,m)T fm.

As we accumulate the values of ycom
n,m over the entire OFDM

frame, we obtain

Ycom = H�X + Z , (40)

where Ycom ∈ CN×M with [Ycom]n,m = ycom
n,m, the effective

channel matrix H ∈ CN×M with [H]n,m = hn,m, and
Z ∈ CN×M is a noise matrix with independently and identi-
cally distributed (i.i.d.) entries zn,m ∼ CN (0, σ2

c ). Hence, the
mutual information (MI) of the entire frame can be written as

I(X;Ycom|H) =
∑
n,m

I(xn,m; ycom
n,m) . (41)

The separability of the MI in (41) results from the indepen-
dence of ycom

n,m across subcarriers and symbols.
To declutter the notation, we drop the indices and consider

the received signal as y = hx+z , where h is the deterministic
channel, x is the transmit symbol uniformly distributed over
a finite alphabet X = {x1, x2, . . . , xL} and z ∼ CN (0, σ2

c ).
Under imperfect CSI, h can be expressed as [57]

h = h+ ε , (42)

where h is the random channel estimate and ε ∼ CN (0, σ2
e )

denotes the estimation error, leading to

y = hx+ εx+ z . (43)

In (43), the MI between x and y can be written as [57]

I(x; y) = Eĥ[I(x; y |h = ĥ)] ,

= Eĥ[H(y |h = ĥ)]− Eĥ[H(y |x, h = ĥ)] , (44)

whereH(y |h = ĥ) andH(y |x, h = ĥ) denote the conditional
entropy of y and y |x, respectively, given h = ĥ. Summing
(44) over subcarriers and symbols yields the MI in (41).

8Since the ESPRIT algorithm in Sec. III-C offers higher angular resolution
than the standard Rayleigh resolution of aR(θ) in (8), we set the proximity
criterion in angle to a lower value than the standard resolution.
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B. Evaluation of Entropies in (44)

We now evaluate the second term in the entropy expression
in (44). From (43), we have

y |x = x`, h = ĥ ∼ CN
(
ĥx`, |x`|2σ2

e + σ2
c

)
, (45)

leading to [58]

H(y |x, h = ĥ) =
1

L

L∑
`=1

log2

(
πe(|x`|2σ2

e + σ2
c )
)
. (46)

Since (46) is independent of ĥ, the second term in (44) is
directly given by (46).

The argument inside the expectation in the first term in (44)
can be expressed as

H(y |h = ĥ) = Ey |h=ĥ

[
− log2 f(y |h = ĥ)

]
,

≈ − 1

Ns

Ns∑
i=1

log2 f(yi |h = ĥ) , (47)

where Ns denotes the number of samples drawn from X . The
approximation herein leverages the law of large numbers and
becomes exact as Ns increases. For the ith sample, we draw a
symbol x`(i) (where `(i) ∈ {1, . . . , L}) from X and generate
a realization of z ∼ CN (0, σ2

c ) to compute a realization of the
received signal as yi = hx`(i) + zi. For a given h = ĥ, (47)
can be evaluated using (45) in the same manner as in (46):

f(yi |h = ĥ)

=
1

L

L∑
`=1

f(yi |h = ĥ, x`) ,

=

L∑
`=1

1

Lπ(|x`|2σ2
e + σ2

c )
exp

(
− |yi − ĥx`|

2

|x`|2σ2
e + σ2

c

)
. (48)

We can now evaluate the first term in (44) by inserting (47)
and (48), and taking expectation over the distribution of ĥ:

Eĥ[H(y |h = ĥ)]

≈ log2(Lπ)

− 1

Ns

Ns∑
i=1

Eĥ

[
log2

(
L∑
`=1

κ` exp
(
− κ`|yi − ĥx`|2

))]
,

(49)

where κ` , 1
|x`|2σ2

e +σ2
c

. Using a similar Monte Carlo sampling
approach as in (47), one can evaluate the expectation in (49)
by drawing Nh samples from ĥ ∼ CN (h, σ2

e ) (see (42)):

Eĥ

[
log2

(
L∑
`=1

κ` exp
(
− κ`|yi − ĥx`|2

))]

≈ 1

Nh

Nh∑
j=1

log2

(
L∑
`=1

κ` exp
(
− κ`|yi − ĥjx`|2

))
. (50)

We now insert (50) into (49) to obtain

Eĥ[H(y |h = ĥ)] ≈ log2(Lπ)− 1

NsNh

Ns∑
i=1

Nh∑
j=1

g(yi, ĥj) ,

(51)

where g(yi, ĥj) , log2

(∑L
`=1 κ` exp

(
− κ`|yi − ĥjx`|2

))
.

Algorithm 3 Rate Evaluation Under Different Constellations
1: Input: Frequency/slow-time communication channel H in

(40), alphabet X = {x1, x2, . . . , xL}, number of samples
for entropy approximation Ns, Nh.

2: Output: MI in (41).
3: for n = 0, . . . , N − 1, m = 0, . . . ,M − 1 do
4: for j = 1, . . . , Nh do
5: Generate a realization of channel estimate, ĥjn,m,

from CN (hn,m, σ
2
e ).

6: for i = 1, . . . , Ns do
7: Select a symbol x`(i)(where `(i) ∈ {1, . . . , L})

from X in a uniformly random manner.
8: Generate a noise realization zi from CN (0, σ2

c ).
9: Calculate the output via yi = hn,mx`(i) + zi.

10: Compute g(yi, ĥ
j
n,m) in (51).

11: end for
12: end for
13: Compute Eĥ[H(y |h = ĥ)] via (51).
14: Compute Eĥ[H(y |x, h = ĥ)] via (46).
15: Compute the MI in (44) via (46) and (51).
16: end for
17: Compute the MI of the entireframe in (41) by summing

(44) over N subcarriers and M symbols.

C. General Procedure to Evaluate MI in (41)

Drawing from Sec. IV-A and Sec. IV-B, we outline the MI
evaluation process from (41) in Algorithm 3.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
sensing algorithm in Algorithm 2 as well as the accompanying
ISAC trade-offs using the data rate evaluation procedure in
Algorithm 3 on both simulated and experimentally obtained
data. The default simulation parameters are provided in
Table II. For sensing beam sweeping in Sec. II-E, we set the
number of beams B = NT and θmax = 70◦. To evaluate the
detection performance, we set Pfa = 10−4 in Algorithm 2 and
consider 100 independent Monte Carlo noise realizations in
(5), where each realization corresponds to a 3-D noise tensor
of size NRNM . Unless otherwise stated, we set σ2

e = 0 in
Algorithm 3, i.e., perfect CSI. For benchmarking purposes, we
compare the ISAC performance of the following algorithms:

• LMMSE: The proposed MIMO-OFDM radar sensing
algorithm in Algorithm 2.

• LMMSE (ideal): The genie-aided version of Algorithm 2
where the true value of SNRb is inserted into (22) on Line
8 by skipping Lines 4– 7. This serves as an upper bound
on the performance of LMMSE.

• RF: The standard RF-based sensing algorithm that exe-
cutes Algorithm 2 by skipping Lines 6– 8.

• MF: The standard MF-based sensing algorithm that exe-
cutes Algorithm 2 by skipping Lines 6– 8.

• RF-SOTA: The state-of-the-art RF-based MIMO-OFDM
radar sensing algorithm in [6].
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Fig. 5. PSLR in (23) for different OFDM radar receivers with respect to:
(a) SNR using 1024−QAM modulation, along with the RF-MF SNR threshold
in (29), and (b) modulation order at SNR = 9dB.

• LRF: Loaded reciprocal filter (LRF) in [47], given by
Ĥi,b =

Yi,b�e−j∠Xb√
|Xb|2+γLRF

, with a loading constant9 γLRF.

For the communication channel in (10), we consider the
presence of K̃ = 4 paths to an RX located at [43,−25]T m
with respect to the ISAC TX, including a LOS path and 3 non-
line-of-sight (NLOS) paths. The corresponding scatterers are
located at [40,−20]T m, [42,−27]T m and [38,−30]T m, with
the RCSs {−5,−10,−10} dBsm, respectively. Considering
stationary RX and scatterers, we set ν̃k = 0 for all the paths.

In the following subsections, we first analyze the PSLR
expressions given in Sec. III-A5, followed by an investigation
of the time-frequency and spatial domain ISAC trade-offs
under concurrent transmission. Then, we compare concurrent
and time-sharing strategies as described in Sec. II-B. Finally,
we provide experimental results using real-world OFDM
monostatic sensing measurements to verify the behaviour of
the considered algorithms as illustrated in Fig. 2 and Fig. 3.

A. PSLR Analysis

To demonstrate the analytical PSLR expressions in Propo-
sition 1 for various modulations and OFDM radar receivers,
and to confirm the theoretical insights from Proposition 2
and 3, and Corollaries 1–3, we present in Fig. 5 the PSLR
levels obtained by LMMSE, RF and MF against SNR (for
1024−QAM modulation) and modulation order (at a fixed
SNR of 9 dB), using parameters from Table II. As shown in
Fig. 5(a), LMMSE consistently outperforms MF and RF in
PSLR performance across the entire SNR range, converging

9γLRF = tNE{|x|2} where we set t = 0.5 [47, Eq. (26)].

Fig. 6. ISAC performances in the low-SNR sensing scenario under concurrent
transmission. (a) Probability of detection with respect to target RCS using
1024−QAM data. (b) Probability of detection and achievable rate with respect
to modulation order for target RCS of −2 dBsm.

to MF at low SNRs and RF at high SNRs. This result confirms
Proposition 2 and 3, and Corollary 1, and aligns closely with
the illustrative examples in Figs. 3 and 4. Fig. 5(a) also
verifies the SNR threshold for the RF-MF PSLR transition
derived in Corollary 3. From Fig. 5(b), we observe that RF and
MF achieve peak PSLR with QPSK modulation and exhibit
declining PSLR with higher-order modulations, substantiating
Corollary 2. Furthermore, LMMSE attains higher PSLR than
RF and MF across all QAM modulations, which, together with
Fig. 5(a), indicates its superiority in radar detection (which will
be verified in the subsequent sections).

B. Time-Frequency Trade-Offs Under Concurrent
Transmission

To investigate time-frequency domain ISAC trade-offs, the
performance of the algorithms under concurrent transmission,
as outlined in Sec. II-B1, is evaluated using different modu-
lation orders for transmit symbols X in (5). We set ρ = 0.8
in (3) and consider two sensing scenarios, low-SNR and high-
SNR (quantified by SNRmean defined in Footnote 7), which
are crucial for highlighting the distinct characteristics of the
algorithms, as extensively demonstrated earlier in Fig. 3.

1) Low-SNR Sensing Scenario: In the low-SNR scenario,
we consider a single target with range 80 m, velocity 15 m/s,
angle 10◦ and RCS −2 dBsm, leading to SNRmean =
−50.6 dB. The goal is to investigate whether the target
is drowned out by its own interference under high-order
modulations due to increased side-lobe levels as depicted in
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Fig. 2 and Fig. 3. In Fig. 6(a), we show the probability of
detection (Pd) of various algorithms relative to target RCS,
employing 1024−QAM modulation for X. It is observed that
the proposed LMMSE estimator significantly outperforms the
RF estimator, achieving gains in Pd as high as 1 for a constant
RCS and enabling the detection of targets with RCS values
smaller by up to 6 dBsm for a specified Pd. Furthermore,
consistent with the discussions in Sec. III-A4 and findings in
Fig. 3(a), LMMSE and MF achieve the same performances.
Thus, in compliance with Table I and Fig. 5(a), LMMSE
and MF are suitable for low-SNR sensing, whereas RF leads
to severe degradations in probability of detection. Moreover,
LMMSE matches the detection performance of its genie-aided
version, which assumes perfect knowledge of SNRb in (22),
validating the effectiveness of the SNR estimation approach
in Algorithm 2. We also observe that LRF outperforms RF,
but performs slightly worse than MF due to the noise ampli-
fication effect at low SNRs for LRF, arising from the division
by
√
|Xb|2 + γLRF. Finally, when comparing our proposed

MIMO-OFDM radar sensing approach to the state-of-the-art,
the RF method in Algorithm 2 substantially outperforms the
one in [6]. Indeed, the latter method is more suitable in a
tracking scenario where, if the target angular sector is known,
the TX and RX beams can be steered towards the target,
thereby exploiting receive combining gain. Conversely, in the
considered scanning/search scenario where the target angular
sector is unknown, the method in [6] fails to fully exploit the
available measurements at RX antennas, as reflected in the
RCS loss shown in Fig. 6(a).

To investigate ISAC trade-offs, we explore the impact of
modulation order on the sensing and communication perfor-
mances. To this end, in Fig. 6(b) we depict the probability
of detection and achievable rate across various modulations,
from QPSK to 1024−QAM, for a constant RCS of −2 dBsm.
The detection curves reveal the robustness of the proposed
LMMSE approach against increasing modulation order, show-
casing its capability to mitigate target masking effects under
high-order modulations. Conversely, the RF estimator suffers
from substantial loss in probability of detection with increasing
modulation order due to rising side-lobe levels, corroborat-
ing the findings in Fig. 2. Furthermore, the achievable rate
improves as modulation order increases, as expected, which
suggests that LMMSE (along with its genie-aided, ideal ver-
sion and MF) achieves much more favorable ISAC trade-offs
compared to RF. Hence, employing LMMSE in the sensing
receiver enables significant improvements in communication
rates through high-order QAM signaling without compromis-
ing detection performance.

2) High-SNR Sensing Scenario: We now turn our atten-
tion to a high-SNR scenario which contains three targets
with ranges of (75, 5, 5) m, velocities of (15,−10,−10) m/s,
angles of (10◦, 10◦, 18◦) and RCSs of (5, 20, 5) dBsm, result-
ing in SNRmean = 19.6 dB. In Fig. 7(a), we show the
probability of detection of Target-1 relative to its RCS
with 1024−QAM modulation. It is seen that the proposed
LMMSE estimator outperforms RF, MF and LRF benchmarks,
indicating that it can effectively reduce side-lobe levels to
prevent target masking when using varying-amplitude data.

Fig. 7. ISAC performances in the high-SNR sensing scenario under concurrent
transmission. (a) Probability of detection with respect to RCS of Target-1
using 1024−QAM data. (b) Probability of detection and achievable rate with
respect to modulation order for Target-1 RCS of 5 dBsm.

In particular, LMMSE provides up to 11 dBsm gain in RCS
for fixed Pd over MF. In accordance with Table I, Fig. 3(b)
and Fig. 5(a), at high sensing SNRs, MF experiences signif-
icant loss in detection performance, while RF leads to slight
degradations in performance compared to LMMSE. We also
note that LRF outperforms MF but suffers a considerable
performance loss compared to RF. At high SNRs, the impact
of varying-amplitude data for LRF is less severe than for
MF due to the inclusion of γLRF in the denominator, which
offers an additional degree of freedom to control the side-lobe
behavior [47]. However, since γLRF is not adapted based on
SNR, it fails to provide a universally effective solution, unlike
LMMSE, which surpasses LRF in both low and high SNR
conditions. Moreover, in Fig. 7b we report the probability of
detection of Target-1 and achievable rate against modulation
order for a fixed Target-1 RCS of 5 dBsm. We observe that MF
fails to detect the target when employing 16-QAM modulation
and higher, while LMMSE maintains a constant Pd of 1 across
all modulation orders. The achievable rate under imperfect CSI
with σ2

e = 0.5σ2
c (see (42) and (43)) is also reported, showing

reduced rates under channel estimation errors, as expected.
3) Summary of Low-SNR and High-SNR Scenarios: Fig. 6

and Fig. 7 reveal that LMMSE provides consistently superior
detection performance across different SNR regimes over
existing benchmarks when using high-order QAM signaling.
This establishes LMMSE as a universally effective strategy
for OFDM radar sensing across a spectrum of SNR levels and
modulation schemes, validating the PSLR analysis in Fig. 5.
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Fig. 8. ISAC trade-off curves under concurrent transmission for QPSK and
1024−QAM modulations as the trade-off weight ρ in (3) varies over [0, 1].
(a) Low-SNR sensing scenario for target RCS of −3 dBsm. (b) High-SNR
sensing scenario for Target-1 RCS of 2 dBsm.

C. Spatial Trade-Offs Under Concurrent Transmission

To evaluate spatial domain ISAC trade-offs, we study the
impact of the trade-off weight ρ in (3) on sensing and
communication performances with varying modulation orders
for X, considering the same low-SNR and high-SNR scenarios
as in Sec. V-B. The low-SNR scenario yields SNRmean =
(−60.3,−49.9) dB for ρ = (0, 1), respectively, while the
high-SNR scenario leads to SNRmean = (9.9, 20.3) dB for
ρ = (0, 1). In the considered setting, the UE is located at
an angle of −30.2◦, while the targets lie at 10◦ and 18◦.
Hence, we expect to observe a trade-off between sensing and
communications as ρ varies. In Fig. 8, we plot the ISAC trade-
off curves obtained by the algorithms under consideration in
the low-SNR and high-SNR scenarios as ρ sweeps the interval
[0, 1], using both QPSK and 1024−QAM modulations.10

1) Low-SNR Sensing Scenario: Looking at the low-SNR
results in Fig. 8(a), LMMSE significantly improves ISAC
trade-offs over RF when utilizing 1024−QAM signaling,
aligning with insights from Table I and Fig. 6(a). In addition,
as expected, the performance of LMMSE mirrors that of MF
in low-SNR environments. When comparing QAM and QPSK

10Since all estimators are equivalent under QPSK signaling, as discussed
in Sec. III-A4, a single curve is plotted for the case of QPSK.

TABLE III
GUIDELINES ON WHICH TRANSMIT SIGNALING STRATEGY (QAM OR

QPSK) AND CHANNEL ESTIMATOR TO USE UNDER DIFFERENT SNR
REGIMES AND ISAC REQUIREMENTS

signaling, we observe that LMMSE can achieve substantially
better ISAC trade-offs with QAM signaling through its robust-
ness in detection performance against increasing modulation
order (as illustrated in Fig. 6(b)). This robustness enables
the use of high-order QAM to boost rates without sacrificing
sensing performance.11

2) High-SNR Sensing Scenario: As observed in Secs. V-A
and V-B, the trends for MF and RF become opposite
when transitioning from low-SNR to high-SNR scenarios.
Specifically, in high-SNR environments, MF fails to pro-
vide satisfactory ISAC trade-off performance whereas RF
surpasses MF, albeit with a performance gap compared to
LMMSE. Hence, employing QAM signaling at the transmit
side, in conjunction with the LMMSE algorithm at the sensing
receiver, yields superior ISAC trade-offs over both RF and MF
benchmarks.

3) Summary of Low-SNR and High-SNR Scenarios: In
alignment with Table I and the previous findings in Fig. 6 and
Fig. 7, the spatial domain trade-off results in Fig. 8 demon-
strate that LMMSE consistently outperforms the traditional
OFDM radar sensing benchmarks MF and RF across various
SNRs, modulation schemes and sensing-communication beam-
forming weights. Based on the findings in Fig. 8, Table III
provides rough guidelines on the choice of transmit signal-
ing strategies and sensing channel estimators under different
sensing SNRs and ISAC requirements.

D. Concurrent Versus Time-Sharing Transmission

We now carry out a comparative analysis of Concurrent and
Time-Sharing strategies, as depicted in Fig. 1 and described in
(3) and (4), using the same scenarios in Sec. V-C. Fig. 9 shows
the trade-off curves achieved by Time-Sharing12 as the time-
sharing ratio |S|/M in (4) sweeps the interval [0, 1], along
with those belonging to the Concurrent strategy.

The comparison between Concurrent and Time-Sharing
strategies reveals the effect of two counteracting factors, each
prevailing under distinct operational conditions:
• C-SNR-Boost: Full Data Utilization for Sensing: Concur-

rent (C) strategy leverages the entire OFDM frame for
sensing, offering a potential advantage in data utilization

11The steep trade-off curve for QPSK, in contrast to QAM, is attributed
to the fact that the rate for QAM reaches its maximum at a higher SNR
level than QPSK, leading to a more gradual decrease in Pd as the rate
increases. Note that as ρ in (3) approaches 0, the sensing SNR decreases
and the communication SNR increases.

12Since only QPSK pilots are used for sensing in the Time-Sharing
strategy(see Sec. II-B.2 and Fig. 1), all sensing algorithms are equivalent.
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Fig. 9. ISAC trade-off curves under concurrent and time-sharing transmission
strategies, where dedicated QPSK pilots are used for sensing in time-
sharing and 1024−QAM data are used for communications (see Fig. 1).
The time-sharing curves are obtained by sweeping |S|/M in (4) over [0, 1].
(a) Low-SNR sensing scenario for target RCS of 0 dBsm. (b) High-SNR
sensing scenario for target-1 RCS of 2 dBsm.

via SNR boosting over Time-Sharing, which limits sens-
ing to dedicated pilots, reducing detection capabilities.

• NCM-Loss: Impact of Non-Constant-Modulus (NCM)
QAM Data on Sensing: While Concurrent transmission
benefits from using QAM data for sensing, this does
not guarantee enhanced detection over Time-Sharing. The
presence of high side-lobe levels from QAM can be
detrimental if the sensing algorithm is ill-equipped to
handle them, placing Concurrent at a disadvantage against
Time-Sharing, which relies on QPSK pilots for sensing.13

For the low-SNR scenario depicted in Fig. 9(a), Concurrent
transmission with QAM, in combination with LMMSE at
the sensing receiver, yields significantly better ISAC trade-
offs than Time-Sharing. This indicates that the full utilization
of data for sensing (C-SNR-Boost) outweighs the challenges
associated with using QAM data (NCM-Loss) in this sce-
nario, confirming the effectiveness of the proposed LMMSE
approach. The allocated sensing pilots in Time-Sharing are not

13It is worth emphasizing that the influence of these factors on sensing
performance depends on the specific circumstances, suggesting that observed
performance patterns may vary with changes in sensing and communication
channel characteristics, time/power allocations between the two functionalities
and the choice of sensing algorithm, as subsequent discussions will illustrate.

Fig. 10. Experimental setup with the testbed and a single target.

sufficient to achieve Pd as high as that achieved by Concurrent
for an equivalent rate (corresponding to a certain |S|/M in
Time-Sharing and a certain ρ in Concurrent). Conversely, a
scenario where NCM-Loss dominates C-SNR-Boost is seen
when comparing the performance of the RF estimator in Con-
current transmission to Time-Sharing. Despite the utilization
of the full OFDM frame with QAM data by the RF estimator in
Concurrent transmission, it experiences a noticeable reduction
in Pd compared to Time-Sharing, which relies solely on QPSK
pilots for sensing. This disadvantage for RF in Concurrent
mode results from increased side-lobe levels at low SNRs, as
previously shown in Fig. 2 and Fig. 3.

The high-SNR scenario in Fig. 9(b) reveals trends in ISAC
trade-offs that differ considerably from those observed in
the low-SNR scenario, which highlights the scenario-specific
nature of the relative weights of C-SNR-Boost and NCM-Loss.
In this scenario, the high-SNR environment renders the use
of dedicated QPSK pilots sufficiently effective for achieving
a detection probability (Pd) of 1, making the full utilization
of OFDM data for sensing (C-SNR-Boost) less critical up to
a certain rate threshold. This effect is particularly noticeable
until the rate approaches 1.4 Gbps, where Pd of 1 is attainable
with only a fraction of the transmit symbols dedicated to
pilots. A key insight emerges when rates surpass 1.5 Gbps:
Concurrent begins to outperform Time-Sharing as the reduced
proportion of pilots no longer suffices for maintaining high Pd

in Time-Sharing. In contrast, exploitation of data in Concurrent
provides additional SNR benefits, enhancing detection per-
formance, thereby indicating the dominance of C-SNR-Boost
over NCM-Loss in this rate regime. We note that such gains
are possible with the use of the proposed LMMSE estimator,
which can successfully counteract target masking effects,
whereas RF (and, thus MF) with Concurrent transmission
is outperformed by Time-Sharing. The threshold at which
Concurrent gains an advantage over Time-Sharing varies with
the scenario, influenced by the interplay between C-SNR-
Boost and NCM-Loss. For instance, Concurrent outperforms
Time-Sharing in all rate regimes in the low-SNR scenario.

E. Experimental Results

In this part, to corroborate the findings in Fig. 2 and Fig. 3,
we provide experimental results obtained via a full-duplex
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Fig. 11. Range profiles obtained by different channel estimation algorithms
with QPSK and 1024-QAM modulations, using real-world experimental data
collected via a monostatic full-duplex OFDM radar at fc = 28GHz.

OFDM monostatic sensing setup at IMDEA Network labora-
tories. The data is collected using the Mimorph testbed from
[59], which was enhanced to support fully synchronized and
concurrent transmit/receive operation. Millimeter wave front-
end is formed by a Sivers IMA EVK operating at the 28 GHz
frequency band. The front-end is composed by up/down con-
verters and a 2 × 8 linear phased antenna array with analog
beamforming capabilities. Experiments were collected in a
indoor laboratory environment of 6 m×8 m with furniture. The
testbed was located on one side of the room in the presence
of a cylindrical metallic target, as shown in Fig. 10.

Fig. 11 shows the range profiles obtained by the considered
algorithms using QPSK and 1024-QAM modulations on exper-
imentally collected data. We observe the peak corresponding
to the target at 2.76 m as well as the self-interference peak
resulting from full-duplex operation and the peak due to
a large whiteboard located at 6.25 m in the wall opposite
to the testbed. Consistent with Fig. 2 and Fig. 3, the RF
estimator produces substantially higher side-lobe levels with
QAM modulation compared to QPSK modulation, particularly
beyond the 20 m range. Moreover, the LMMSE estimator
with QAM modulation (using SNRb = −20 dB in (22))
can significantly reduce side-lobe levels and restore the range
profile comparable to that achieved with QPSK modulation,
in line with insights from Fig. 3.

VI. CONCLUDING REMARKS

In this paper, we have investigated two fundamental
trade-offs in monostatic OFDM ISAC systems: (i) the time-
frequency trade-off, resulting from the choice of modulation
scheme for random data, and (ii) the spatial trade-off,
stemming from how ISAC transmit beamforming is applied
to balance sensing and communication objectives. A novel
LMMSE based sensing algorithm has been proposed to
deal with the increased side-lobe levels induced by high-
order QAM data, showcasing substantial improvements over
existing OFDM radar sensing benchmarks. Moreover, two
ISAC transmission strategies have been considered: (i) Con-
current, utilizing all data for sensing with power allocated
between sensing and communication beams, and (ii) Time-
Sharing, where sensing relies solely on dedicated pilots with

time-multiplexing for sensing and communication beams.
Extensive simulations and experimental results demonstrate
the superiority of LMMSE over the conventional RF and MF
estimators under a wide range of operating conditions, while
unveiling key insights into the ISAC trade-offs achieved by
these strategies at different SNRs and modulation schemes. As
future research, we intend to focus on the same fundamental
trade-offs in bistatic ISAC scenarios. Moreover, we plan
to conduct further experimental validation of the proposed
method, especially at high SNRs.

APPENDIX A
PROOF OF LEMMA 1

Using (17), (18) and the definitions in Lemma 1, one
can readily obtain hi,b =

∑K−1
k=0 E{αb,k}E{c∗b(νk) ⊗

b(τk)[aR(θk)]i} = 0. As to the covariance, we have that

Ci,b =

K∑
k1=1

K∑
k2=1

E{αb,k1
α∗b,k2

φk1,b,iφ
H
k2,b,i} , (52)

where φk,b,i , c∗b(νk)⊗b(τk)[aR(θk)]i. Due to the indepen-
dence across the different parameters and the different targets,
and using the definitions in Lemma 1, (52) simplifies to

Ci,b =

K−1∑
k=0

E{|αb,k|2}E{φk,b,iφ
H
k,b,i} ,

=

K−1∑
k=0

σ2
αb,k

E
{
c∗b(νk)cTb (νk)

}
⊗ E

{
b(τk)bH(τk)

}
,

(53)

where the mixed-product property of the Kronecker
product is used. Using (13), it follows that
E
{

[b(τk)bH(τk)]n,n
}

= 1 and E
{[

b (τk)bH (τk)
]
n1,n2

}
=∫ 1

∆f

0 ej2π(n2−n1)∆fτk dτk = 0, for n1 6= n2, which yields
E
{
b(τk)bH(τk)

}
= IN . Similarly, using (14), we obtain

E
{
c∗b(νk)cTb (νk)

}
= IMb

. Plugging these into (53) gives
Ci,b = σ2

αb
I.

APPENDIX B
PROOF OF PROPOSITION 1

To derive χ(τ, ν) in (23), we consider a target with channel
gain α, delay τ0 and Doppler shift ν0, and a generic OFDM
radar observation matrix

Y = H�X + N ∈ CN×M , (54)

where H = αb(τ0)cH(ν0) ∈ CN×M is the radar channel,
X ∈ CN×M is the transmit symbol matrix and N denotes the
noise matrix with vec (N) ∼ CN (0, σ2I). The delay-Doppler
response for Y in (54) is obtained as in (31), i.e.,

χ(τ, ν) =
1

NM
bH(τ)(Y �G)c(ν) , (55)

where Y �G represents the radar channel estimate obtained
using RF, MF or LMMSE estimators in (15), (16) and (22),

G =


X∗

|X|2
, RF

X∗ , MF
X∗

|X|2 + SNR−1 , LMMSE

, (56)
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and SNR = |α|2/σ2. Inserting (54) into (55) yields χ(τ, ν) =
χs(τ, ν)+χn(τ, ν), where χs(τ, ν) and χn(τ, ν) represent the
signal and noise part of the delay-Doppler response, i.e.,

χs(τ, ν) ,
1

NM
αbH(τ)

(
b(τ0)cH(ν0)�X�G

)
c(ν) ,

χn(τ, ν) ,
1

NM
bH(τ) (N�G) c(ν) .

The average delay-Doppler response is then given by

E{|χ(τ, ν)|2} = E{|χs(τ, ν)|2}+ E{|χn(τ, ν)|2}
+ 2<{E{χs(τ, ν)χ∗n(τ, ν)}} . (57)

We present the following auxiliary lemmas to compute (57).
Lemma 2: The signal component in (57) at the main-

lobe peak and in the asymptotic side-lobe region R can be
expressed as

E{|χs(τ0, ν0)|2} =
|α|2

(
βx + (NM − 1)µx

)
NM

, (58)

E{|χs(τ, ν)|2} =
|α|2(βx − µx)

NM
, (τ, ν) ∈ R , (59)

where

βx ,


1 , RF

E{|x|4} , MF

E
{

|x|4

(|x|2 + SNR−1)2

}
, LMMSE,

(60)

µx ,


1 , RF

(E{|x|2})2 , MF(
E
{

|x|2

|x|2 + SNR−1

})2

, LMMSE.

(61)

Proof: The proof relies on the fact that we consider a
sufficiently large N and M to ensure (τ, ν) ∈ R in (59),
i.e., |τ − τ0| � ∆τ = 1/(N∆f) and |ν − ν0| � ∆ν =

1/(MTsym). Utilizing the limits limN→∞

(
sin(πN∆fτ)
N sin(π∆fτ)

)2

=

0 and limM→∞

(
sin(πMTsymν)
M sin(πTsymν)

)2

= 0, and through algebraic
manipulations, we derive the equations (58) and (59). The
detailed steps are omitted due to space constraints. �

Lemma 3: The noise component in (57) is given by

E{|χn(τ, ν)|2} =
σ2κx
NM

, (62)

where

κx ,


E
{

1

|x|2

}
, RF

E{|x|2} , MF

E
{

|x|2

(|x|2 + SNR−1)2

}
, LMMSE.

(63)

Proof: The proof follows readily from the independence of
the transmit symbols X and the noise N. �

Lemma 4: The cross-term in (57) is given by

E{χs(τ, ν)χ∗n(τ, ν)} = 0 . (64)

Proof: The proof is obtained similarly to that of
Lemma 3. �

Using Lemmas 2–4 in (57) and considering E{|x|2} = 1,
the PSLR in (23) evaluates to (24), (25) and (26) for the RF,
MF and LMMSE estimators, respectively.

APPENDIX C
PROOF OF PROPOSITION 2

By Jensen’s inequality and the convexity of 1/x,(
E
{

|x|2

|x|2 + SNR−1

})−1

≤ 1 + E
{

1

|x|2

}
SNR−1 . (65)

Inserting this into (26) yields the desired result.

APPENDIX D
PROOF OF PROPOSITION 3

By the Cauchy-Schwarz inequality,

E
{
|x|2(|x|2+SNR−1)

}
E
{

|x|2

|x|2+SNR−1

}
≥(E

{
|x|2
}

)2 .

Inserting E
{
|x|2
}

= 1, we obtain

E
{
|x|4
}

+ SNR−1 ≥
(
E
{

|x|2

|x|2 + SNR−1

})−1

,

which leads to the desired result based on (25) and (26).

APPENDIX E
PROOF OF COROLLARY 2

By Jensen’s inequality and the convexity of 1/x and x2,
E
{

1
|x|2

}
≥ 1

E{|x|2} = 1 and E
{
|x|4
}
≥ (E

{
|x|2
}

)2 = 1,

with equality if and only if |x|2 is a constant. Hence, PSLRRF

and PSLRMF achieve their highest values with PSK modula-
tion and decrease with varying-amplitude modulations.
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